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Abstract Consider arrangements of n pseudolines in the real projective plane. Let tk
denote the number of intersection points where exactly k pseudolines are incident. We
present a new combinatorial inequality:

t2 + 1.5t3 ≥ 8 +
∑

k≥4

(2k − 7.5)tk,

which holds if no more than n − 3 pseudolines intersect at one point. It looks similar
but is unrelated to the Hirzebruch inequality for arrangements of complex lines in the
complex projective plane. Based on this linear inequality, we construct lower bounds
for the number of regions via n and the maximal number of (pseudo)lines passing
through one point.

Keywords Pseudoline arrangement · tk inequalities for arrangements of lines ·
Partitions of projective plane

1 Relations for tk

By an arrangement of pseudolines we mean a finite collection of n ≥ 3 smooth closed
curves in the real projective plane RP2 such that

Curves do not self-intersect;
Curves intersect transversally at exactly one point;
There is no point where all pseudolines of the arrangement are incident.
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Let tk , 2 ≤ k ≤ n − 1 denote the number of intersection points where exactly k
pseudolines of the arrangement are incident. Each pseudoline of the arrangement is
homotopically nontrivial and does not bound a disk in the plane RP2. Also, tn = 0.

Some known relations for values of tk are:

• ∑
k≥2 k(k − 1)tk = n(n − 1), couple counting;

• t2 ≥ 3 + ∑
k≥4(k − 3)tk , Melchior [10];

• max{t2, t3} ≥ n − 1 for n ≥ 25, Erdős and Purdy [4];
• If t2 < n − 1, then t3 > cn2 for some positive c, Erdős and Purdy [4];
• t2 ≥ 6

13n for n ≥ 8, Csima and Sawyer [1,2];
• t2 + 0.75t3 ≥ n + ∑

k≥5(2k − 9)tk , if tn−1 = tn−2 = 0, Hirzebruch [8];
• t2 ≥ n

2 and t2 ≥ 3[ n4 ] for sufficiently large, even and odd n, respectively,
Green and Tao [6].

The Hirzebruch inequality holds for arrangements of complex lines in the complex
projective plane; consequently, it also holds for arrangements of lines in the real
projective plane. It is tight for several arrangements, e.g., for the real arrangements in
Fig. 1 (in the right figure, three intersection points are at infinity). Tight examples of
complex arrangements are presented in [8].

Someof these resultswere inspired andmotivated bySylvester’s conjecture (t2 ≥ 1)
[14], the Dirac–Motzkin conjecture (t2 ≥ [ n2 ]) [3], and the orchard problem (t3 ≤
[n(n − 3)/6] + 1, posed in [13]). One can find more problems related to values of
tk in the reviews by Erdős and Purdy [5] and Nilakantan [11], and Grünbaum’s book
[7].

2 Formulation of Main Results

2.1 Inequalities for tk

Let us denote by p j the number of regions bounded by exactly j arcs of pseudolines.

Fig. 1 n = 6, t2 = 3, t3 = 4; n = 9, t2 = 6, t3 = 4, t4 = 3
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Lemma 1 (Melchior [10]).

∑

k≥2

(3 − k)tk = 3 +
∑

j≥3

( j − 3)p j .

One may prove this using the Euler characteristic of the projective plane (see the next
section for details). Since p j ≥ 0, we see that Melchior’s inequality follows from this.

Theorem 1 Suppose that tn−1 = tn−2 = 0 for arrangements of n pseudolines. Then,
we have

(a) 2t2 ≤ 1 + 3p4 +
∑

j≥5

j p j +
∑

k≥3

(k − 1.5)tk;

(b) t2 + 1.5t3 ≥ 8 +
∑

k≥4

(2k − 7.5)tk .

For convenience of reading, the proofs of Theorem 1(a), Lemma 1, and other lemmas
are shifted to the next section. Now, we deduce Theorem 1(b) from Theorem 1(a) and
Lemma 1. So, we have

∑

k≥2

(9 − 3k)tk = 9 + 3p4 +
∑

j≥5

(3 j − 9)p j ,

3p4 +
∑

j≥5

j p j ≥ 2t2 −
∑

k≥3

(k − 1.5)tk − 1,

by Lemma 1 and Theorem 1(a), respectively. The inequalities

∑

k≥2

(9 − 3k)tk ≥ 9 + 2t2 −
∑

k≥3

(k − 1.5)tk − 1

⇐⇒ t2 + 1.5t3 ≥ 8 +
∑

k≥4

(2k − 7.5)tk

follow from 3 j − 9 ≥ j for j ≥ 5 and p j ≥ 0.

Remark 1 The inequalities of Theorem1 are tight for and only for (up to combinatorial
equivalence) the following arrangement of n = 7 pseudolines [this will become clear
after Lemma 4 and the proof of Theorem 1(a)]. Let each of the distinct points A and
B have four incident pseudolines, with one of these pseudolines passing through both
points. Then, t4 = 2, t2 = 9, and t3 = tk = 0 for k ≥ 5. For other arrangements of
pseudolines with tn−1 = tn−2 = 0, we have

2t2 ≤ 3p4 +
∑

j≥5

j p j +
∑

k≥3

(k − 1.5)tk,

t2 + 1.5t3 ≥ 9 +
∑

k≥4

(2k − 7.5)tk .
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Remark 2 The inequality in Theorem 1(b) looks similar to Hirzebruch’s inequality.
However, neither of them follows from the other in the case of arrangements of real
lines, when both inequalities hold.

2.2 Bounds for Number of Regions

Consider an arrangement of n pseudolines and denote by m, m ≤ n − 1 the maximal
number of pseudolines intersecting at one point. Let us associate with an arrangement
a graph, drawn in the plane RP

2. Vertices are intersection points, edges are arcs of
pseudolines, and regions are connected components of the complement in the plane
RP

2 to the union of pseudolines. Let v, e, and f be the number of vertices, edges,
and regions, respectively. The graph has no loops, because tn = 0. Now, we construct
lower bounds for f , which depend on the numbers n and m. Since the characteristic
of a real projective plane is 1, we obtain

v − e + f = 1

by Euler’s formula. As

v =
∑

k≥2

tk, e =
∑

k≥2

ktk

and tk = 0 for k > m, then

f − 1 =
m∑

k=2

(k − 1)tk .

The number of pairs of pseudolines is n(n−1)
2 . Each pair of pseudolines intersects at

exactly one point, and a point where k pseudolines are incident gives k(k−1)
2 such pairs.

Thus, we have

n(n − 1) =
m∑

k=2

k(k − 1)tk .

Let us consider the general linear inequality
∑

k≥2

αk tk ≥ α0 (1)

for some real numbers α0, α2, α3, . . . , αn , possibly depending on n; For example, we
may take Melchior’s or Hirzebruch’s inequality, or Theorem 1(b). Suppose that there
exist coefficients c1 = c1(m, n) > 0 and c2 = c2(m, n) > 0 such that

c1k(k − 1) + c2αk ≤ k − 1 (2)

for all 2 ≤ k ≤ m. Let us multiply both sides of (2) by tk and sum up for k = 2, . . . ,m.
Since tk ≥ 0, then
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c1

m∑

k=2

k(k − 1)tk + c2

m∑

k=2

αk tk ≤
m∑

k=2

(k − 1)tk

⇐⇒ c1n(n − 1) + c2

m∑

k=2

αk tk ≤ f − 1.

From the last inequality, inequality (1), and c2 > 0, it follows that

f ≥ c1n(n − 1) + c2α0 + 1 (3)

for positive c1, c2, satisfying (2).
The lower bounds for f in the form (3) were firstly obtained by the author in [12].

This bound was applied to Melchior’s inequality to obtain a new proof of Martinov’s
theorem [9], which determines all possible pairs (n, f ). In contrast to [12], here we
apply the prescribed construction to the inequalities of Hirzebruch and Theorem 1(b).
Thus, we obtain the following bounds, which are stronger than in [12]:

Theorem 2 (a) Suppose that 5 ≤ m < n − 2 for arrangements of lines in the real
projective plane. Then, we have

f ≥ (3m − 10)n2 + (m2 − 6m + 12)n

m2 + 3m − 18
+ 1.

(b) Suppose that 12 ≤ m < n − 2 for arrangements of pseudolines in the real
projective plane. Then, we have

f ≥
(
3m − 8.5

)
(n2 − n) + 9m2 − 21m + 1

m2 + 3m − 15
.

3 Proofs of Theorems 1(a) and 2, and Auxiliary Lemmas

Let us recall that tn = 0 for arrangements of pseudolines. It follows that each arc of
a pseudoline is incident to two different regions. Every pseudoline has at least two
intersection points with other pseudolines of the arrangement. A region is bounded
by arcs belonging to different pseudolines. Let us consider the graph associated with
the arrangement. We call a vertex of the graph ordinary if it belongs to exactly two
pseudolines (and, therefore, has degree 4 in the graph). An edge is called double
ordinary if both of its endpoints are ordinary. We denote by e0 the number of double
ordinary edges. Let e1 be the number of edges whose endpoints are both not ordinary.
A region is called triangular if it is bounded by three edges; otherwise it is called
nontriangular. Since tn = 0, we see that every nontriangular region is bounded by at
least four edges. A region is called good if it is bounded by at least four edges and
its boundary contains at least one ordinary vertex. Let γ be an arbitrary good region,
e0(γ ) denote the number of double ordinary edges in the boundary of γ , s(γ ) denote
the number of nonordinary vertices in the boundary of γ , and
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δ(γ ) =
{
0 if s(γ ) ≥ 1,
1 if s(γ ) = 0.

Let

s =
∑

good γ

s(γ ).

We shall briefly say “a vertex belongs to the region” if the vertex belongs to the
boundary of the region. A double ordinary edge is called perfect if it is incident to
two good regions. In other words, both regions whose boundaries contain this edge
are good. Let ep denote the number of perfect edges. A region is called excellent if
it is bounded by four edges and all its vertices are ordinary (so, excellent regions are
also good). We denote by fe the number of excellent regions. Let ϕ denote the number
of pairs (γ, κ) where γ is an excellent region, κ is a perfect edge, and κ is incident
to γ .

Let us denote by G the graph associated with the arrangement. For a nonordinary
vertex V , let us delete all edges lying on pseudolines passing through V . The degrees
of the vertices will change, and some vertices could disappear (which belong to at most
one pseudoline, not passing through V ). Let us denote by GV the obtained graph. Let
us denote by γV the region of the graph GV such that the vertex V belongs to the
interior of γV .

For a nonordinary vertex V ∈ G, let us consider edges connecting V with nonordi-
nary vertices of the graph G and good regions whose boundaries contain V ; let q(V )

denote the sum of the number of these edges and double the number of these regions.
Suppose that V is connected with nonordinary vertices by q1 edges and belongs to q2
good regions, then q(V ) = q1 + 2q2. Let q denote the sum of the numbers q(V ) for
all nonordinary vertices V of the graph G.

Proof of Lemma 1 The numbers of vertices v, edges e, and regions f can be found
via tk and p j as follows:

v =
∑

k≥2

tk, e =
∑

k≥2

ktk = 0.5
∑

j≥3

j p j ,

f = 1 +
∑

k≥2

(k − 1)tk =
∑

j≥3

p j .

Let us substitute these equations into the Euler formula:

3 = 3 f − 2e − e + 3v = 3
∑

j≥3

p j −
∑

j≥3

j p j −
∑

k≥2

ktk + 3
∑

k≥2

tk

=
∑

j≥3

(3 − j)p j +
∑

k≥2

(3 − k)tk .

��
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Lemma 2 (a) Suppose that tn−1 = 0, then every double ordinary edge is incident to
at least one good region. Also,

∑

good γ

e0(γ ) = e0 + ep.

(b) Suppose that tn−2 = tn−1 = 0, then every excellent region is incident to at least
two perfect edges.

Proof (a) Let us assume the contrary, i.e., that there exists a double ordinary edgewith
endpoints A and B such that both regions incident to it are triangular. Let l1 and l2
be the pseudolines passing through one of the points A, B and not containing the
edge AB. Let l1 intersect l2 at the point C . Then, both triangular regions which
are incident to the edge AB contain C . Hence, l1 could not have intersection
points except A and C . As A is an ordinary point, it follows that C belongs to
n − 1 pseudolines, which contradicts tn−1 = 0. So, every double ordinary edge
is incident to at least one good region. Hence, there are e0 − ep double ordinary
edges which are incident to exactly one good region, and ep double ordinary edges
which are incident to two good regions.

(b) Let us prove that each pair of opposite edges of an excellent region contains at
least one perfect edge. Assume the contrary, i.e., that both edges AB and CD of
an excellent region ABCD are not perfect, where A, B,C, D are vertices of G.
Then, edges AB and CD are incident to triangular regions ABH and CDG. We
denote by l1 the pseudoline passing through points B and C . We denote by l2
the pseudoline passing through points A and D. Then, the intersection point of l1
and l2 coincides with both points H and G. So G = H and G belongs to n − 2
pseudolines, all but two of which pass through points A, B and C, D. This is in
contradiction with tn−2 = 0. ��

Lemma 3

e0 = 2t2 + e1 −
∑

k≥3

ktk .

Proof The graph contains
∑

k≥2 ktk edges. There are
∑

k≥2 ktk − e0 − e1 edges with
one ordinary endpoint. Every ordinary vertex is an endpoint of four edges that have
at least one ordinary endpoint. Thus, the total number of ordinary endpoints over all
edges is

4t2 = 2e0 +
∑

k≥2

ktk − e0 − e1.

��
Lemma 4 Suppose that tn−1 = tn−2 = 0 and that there exist two points A, B such
that each of the pseudolines in the arrangement contains at least one of them. Then,
the statement of Theorem 1(a) holds:
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2t2 ≤ 1 + 3p4 +
∑

j≥5

j p j +
∑

k≥3

(k − 1.5)tk .

Proof Let us denote by a and b the number of pseudolines passing through points A
and B, respectively. We consider two cases.
In the first case, the arrangement does not contain a pseudoline passing through both
points A and B. The inequalities a ≥ 3 and b ≥ 3 follow from a+b = n and tn−2 = 0.
So, we have

t2 = ab,
∑

k≥3

(k − 1.5)tk = a + b − 3,

p4 = ab − a − b + 3, p j = 0 for j ≥ 5.

In the second case, the arrangement contains a pseudoline passing through both of the
points A and B. The inequalities a ≥ 4 and b ≥ 4 follow from a + b = n + 1 and
tn−2 = 0. So, we have

t2 = ab − a − b + 1,
∑

k≥3

(k − 1.5)tk = a + b − 3,

p4 = ab − 2a − 2b + 4, p j = 0 for j ≥ 5.

Now, it is easy to check that the required inequality holds in the first and second cases,
for a ≥ 3, b ≥ 3 and a ≥ 4, b ≥ 4, respectively. ��
Lemma 5 Suppose that a good region γ is bounded by j edges. Then,

s(γ ) ≤ j − 1 − e0(γ ) + δ(γ ), (4)

s ≤
∑

j≥4

( j − 1)p j +
∑

good γ

(δ(γ ) − e0(γ )). (5)

Proof Let us consider three cases.

(i) e0(γ ) = 0. Then s(γ ) ≤ j − 1, because the boundary of γ contains an ordinary
point.

(ii) e0(γ ) = j . Then s(γ ) = 0 and δ(γ ) = 1.
(iii) 0 < e0(γ ) < j . Let us consider the boundary of γ consisting of j edges.

Let the double ordinary edges in the boundary of γ determine z(γ ) connected
components in the boundary of γ , where the boundary is considered a separate
topological space, homeomorphic to a circle. So, each connected component is a
union of consecutive double ordinary edges. From 0 < e0(γ ) < j it follows that
z(γ ) ≥ 1 and that each connected component is homeomorphic to a segment.
So, in each connected component, the number of vertices exceeds the number of
edges by one. Hence, the boundary of γ contains at least e0(γ ) + z(γ ) ordinary
vertices. Since z(γ ) ≥ 1, then s(γ ) ≤ j − 1 − e0(γ ). Summing up (4) for all
good regions γ , we get (5).

��
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Lemma 6 Suppose that tn = tn−1 = 0. Then,

s ≤ 3p4 − e0 +
∑

j≥5

j p j .

Proof There are
∑

good γ δ(γ ) good regions, all vertices of which are ordinary. So,

∑

good γ

δ(γ ) ≤ fe +
∑

j≥5

p j . (6)

By Lemma 2(b), every excellent region is incident to at least two perfect edges, so
ϕ ≥ 2 fe. Every perfect edge is incident to at most two excellent regions, so 2ep ≥ ϕ.
Hence, ep ≥ fe. The required inequality follows from Lemma 2(a) and inequalities
(5), (6), and ep ≥ fe. ��
Lemma 7 Suppose that there are no two points such that every pseudoline of the
arrangement passes through at least one of them. Then, for every nonordinary vertex
V , at least one of the following statements holds:

(a) There are at least three edges of the graph G connecting V with the vertices of
γV .

(b) There are two edges of the graph G connecting V with the vertices of γV , and V
is the vertex of a good region of the graph G.

(c) V is the vertex of at least two good regions of the graph G.

Proof The graph GV has at least two vertices for every vertex V . Each region of the
graph GV is bounded by at least three edges of GV for every vertex V . Suppose that
the vertex V is not connected by an edge of the graph G with some vertex U of the
region γV . Then, U and V are vertices of some region γU,V ⊂ γV of the graph G.
The region γU,V is bounded by at least four edges of the graph G. If γU,V is not good,
then all its vertices except V are vertices of the region γV , and so there are at least two
edges of the graph G connecting V with the vertices of γV . If statement (a) is false
for a vertex V , then one of the following cases holds:

(1) V is connected by edges of the graph G with exactly two vertices of the region
γV .

(2) V is connected by edges of the graph G with at most one vertex of the region γV .

Case 1 Let these two vertices be U1 and U2.

Subcase 1.1The pointsU1,U2, V do not belong to one pseudoline of the arrangement.
Let W1 and W2 be the intersection points of the boundary of γV and the pseudolines
passing through V,U1 and V,U2, respectively (so W1 and W2 are ordinary vertices
of G). Then, on the part U1W2W1 of the boundary of γV , there is at least one vertex
U of γV [otherwise we would have that the pointsU1,W2,W1 belong to a pseudoline
of the arrangement, intersecting the pseudoline (U1, V,W1) at two points]. Then, U
and V are vertices of some good region γU,V ⊂ γV of the graph G, and we obtain
statement (b).
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Subcase 1.2The pointsU1,U2, V belong to one pseudoline of the arrangement. Points
U1 and U2 divide the boundary of γV into two open parts. Each part contains at least
one vertex of γV (disjoint from U1 and U2) and two ordinary vertices of graph G.
So, in the graph G there are at least two good regions with vertex V and we obtain
statements (b) and (c).

Case 2

Subcase 2.1 Suppose that the vertex V is connected by an edge of the graph G with a
vertex U in the boundary of region γV . The pseudoline passing through points V and
U divides the region γV into two parts. Each of these parts contains at least one vertex
of the region γV , disjoint from U . It follows that each part contains at least one good
region for the graph G, so that V is a vertex of this good region.

Subcase 2.2 Suppose that V is not connected by an edge of the graph G with vertices
in the boundary of region γV . Then, we may take a pseudoline of the arrangement
passing through V and do the same as we did for a pseudoline passing through points
V and U . So, in both subcases of case (2), we obtain statement (c). ��
Proof of Theorem 1, part (a). Suppose there are two points such that each pseudoline
of the arrangement passes through at least one of them, then we are done by Lemma 4.
Thus, we may assume that there are no such points. By Lemma 7,

q(V ) ≥ 3 and q ≥ 3
∑

k≥3

tk .

Let us count q via edges and regions, then we have q = 2e1 + 2s. Hence,

e1 + s ≥ 1.5
∑

k≥3

tk . (7)

From Lemmas 3 and 6 it follows that

3p4 +
∑

j≥5

j p j − s ≥ e0 = 2t2 + e1 −
∑

k≥3

ktk


⇒ 3p4 +
∑

j≥5

j p j +
∑

k≥3

ktk − 2t2 ≥ e1 + s.

From the last inequality and inequality (7) it follows that

3p4 +
∑

j≥5

j p j +
∑

k≥3

ktk − 2t2 ≥ 1.5
∑

k≥3

tk


⇒ 3p4 +
∑

j≥5

j p j +
∑

k≥3

(
k − 1.5

)
tk ≥ 2t2.

��
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Proof of Theorem 2 (a)We use Hirzebruch’s inequality [8] as described in subsection
“Bounds for Number of Regions” above. Hence, m < n − 2 and we may present the
inequality

t2 + 0.75t3 ≥ n +
∑

k≥5

(2k − 9)tk

in the form (1) with

α0 = n, α2 = 1, α3 = 0.75, α4 = 0, αi = 9 − 2i for i ≥ 5.

Let us take positive (for m ≥ 5) numbers

c1 = 3m − 10

m2 + 3m − 18
, c2 = m2 − 3m + 2

m2 + 3m − 18
.

The system (2) takes on the form

1 ≥ 2c1 + c2, 2 ≥ 6c1 + 0.75c2, 3 ≥ 12c1,

i − 1 ≥ c1i(i − 1) − c2(2i − 9) for 5 ≤ i ≤ m.

Let us check these inequalities for m ≥ 5 and for given c1, c2. The first three are
obvious; to verify the last one for 5 ≤ i ≤ m, let us consider the quadratic polynomial

c1i(i − 1) − c2(2i − 9) − (i − 1) = (i − m)(3mi − 10(m + i) + 24)

(m − 3)(m + 6)
≤ 0,

because 3mi − 10(m + i) + 24 > 0 for m ≥ 6 and i ≥ 5. So, we obtain (3) for given
c1, c2, and hence the inequality of Theorem 2(a).

(b) Hence, m < n − 2, then the inequality of Theorem 1(b) is valid and can be
presented in the form (1) with

α0 = 8, α2 = 1, α3 = 1.5, αk = 7.5 − 2k for k ≥ 4.

Let us take positive (for m ≥ 12) numbers

c1 = 3m − 8.5

m2 + 3m − 15
, c2 = m2 − 3m + 2

m2 + 3m − 15
.

The system (2) takes on the form

1 ≥ 2c1 + c2, 2 ≥ 6c1 + 1.5c2,

i − 1 ≥ c1i(i − 1) − c2(2i − 7.5) for 4 ≤ i ≤ m.
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Let us check these inequalities for m ≥ 12 and for given c1, c2. The first two are
obvious; to verify the last one for 4 ≤ i ≤ m, consider the quadratic polynomial

c1i(i − 1) − c2
(
2i − 7.5

) − (i − 1)

= (i − m)(3mi − 8.5(m + i) + 19.5)

m2 + 3m − 15
≤ 0,

because 3mi − 8.5(m + i) + 19.5 > 0 for m ≥ 12 and i ≥ 4. So, we obtain (3) for
given c1, c2, and hence the inequality of Theorem 2(b). ��
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