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Moreover, the counting results are used to show that the number of combinatori-
ally non-equivalent (n − 1)-dimensional 2-level polytopes is bounded from below by
c · n−5/2 · ρ−n , where c ≈ 0.03791727 and ρ−1 ≈ 4.88052854.

Keywords Matroid theory · 2-level polytopes ·Analytic combinatorics ·Asymptotic
enumeration

Editor in Charge: János Pach

Francesco Grande
fgrande@zedat.fu-berlin.de
http://page.mi.fu-berlin.de/grande/

Juanjo Rué
jrue@zedat.fu-berlin.de
http://www-ma2.upc.edu/jrue/

1 Institut für Mathematik und Informatik, Freie Universität Berlin, Arnimallee 2, 14195 Berlin,
Germany

2 Institut für Mathematik und Informatik, Freie Universität Berlin, Arnimallee 3, 14195 Berlin,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-015-9735-5&domain=pdf


Discrete Comput Geom (2015) 54:954–979 955

1 Introduction

A hyperplane H is facet-defining for a polytope P if it is supporting for P and dim
(P ∩ H) = dim(P) − 1. A 2-level polytope is a polytope P such that for each
facet-defining hyperplane H , there exists a hyperplane H ′ parallel to H that con-
tains all the vertices of P not in H . The family of 2-level polytopes appeared
in the literature in different areas under different names: in [5] they are called
compressed polytopes and also show up in statistics (see [23]). In the context
of combinatorial optimization [13,18], 2-level polytopes are related to the so-
called exact point configurations: the interest in these configurations is due to
the fact that some techniques from polynomial optimization, namely semidefinite
programming relaxations, are very efficient for these configurations. Furthermore 2-
level polytopes play a role in the study of extremal centrally-symmetric polytopes
[21].

Two polytopes are combinatorially equivalent if their face lattices are isomor-
phic. It is known that all 2-level n-dimensional polytopes are affinely equivalent to
0/1-polytopes (polytopes with all vertices in {0, 1}n) and the number of combinatori-
ally non-equivalent 0/1-polytopes is doubly-exponential in the dimension (see [26]).
Among the finite number of 0/1-polytopes of fixed dimension, it is natural to ask how
many are 2-level, up to combinatorial equivalence.

Though 2-level polytopes are endowed with a very restrictive geometric property,
this class is not well-understood and an exact enumeration seems to be com-
plicated. It is easy to see that the 2-levelness is preserved for some polytopal
constructions: pyramid, prism, and Cartesian product. Moreover some subfamilies
of 2-level polytopes are known: two of them are explored in [11], the so-called
Hansen polytopes [17] and Hanner polytopes [16], while a third one arises from
stable sets of perfect graphs as explained in [15, Chap. 9]. Note that the construc-
tion of twisted prism over this last family yields the family of Hansen polytopes.
Order polytopes of finite posets [22] are also 2-level. Very recently, a new sub-
family of 2-level polytopes arising from matroid theory has been characterized in
[14]. More precisely, this subfamily is associated with the base polytopes of 2-level
matroids.

A complete classification of the 0/1-equivalence classes of 0/1-polytopes is only
available for dimension 3, 4, 5, (and 6 for polytopes up to 12 vertices). Moreover
two polytopes that are 0/1-equivalent are also combinatorially equivalent, but the
converse is not true. The difficulties in providing a complete list already in dimen-
sion 6 suggest that a computational approach to the problem could be unsuccessful.
The lack of an exact enumeration in dimension ≥ 6 leads to a second natural
question, namely the existence of asymptotic bounds for the number of 2-level poly-
topes.

By means of the polytopal constructions we mentioned above (pyramid, prism,
and Cartesian product) exponentially many combinatorially non-equivalent 2-level
polytopes can be constructed. In this paper we compute an explicit exponential lower
bound for the number of 2-level polytopes via 2-level matroids. More precisely, we
prove the following theorem.
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Theorem 1.1 The number of combinatorially non-equivalent (n−1)-dimensional
2-level polytopes is bounded from below by

c · n−5/2 · ρ−n,

where c ≈ 0.03791727 and ρ−1 is a computable constant whose value is approxi-
mately equal to 4.88052854.

The interest in the subfamily of 2-level matroids is motivated by the fact that it contains
more complicated polytopes, namely not obtained by means of elementary polytopal
constructions. Moreover it allows to determine a large basis for the exponential lower
bound.

New combinatorial aspects of 2-level matroids are introduced in Sect. 3 and give the
possibility to increase the control on the enumerative formulas. It is noteworthy that this
matroid family generalizes the family of series-parallel graphs, which appears in vari-
ous areas andhas several interesting properties that are likely to have counterparts for 2-
levelmatroids. In particular, series-parallel graphs have been already successfully stud-
ied from an enumerative point of view in [2,8]. To approach the enumeration of 2-level
matroids we investigate the matroid tree decomposition associated to these matroids.
We analyze the features of the decomposition and we get one of the main results of
the paper: we observe that there is an interesting interpretation in terms of acyclic
structures. More precisely, we reveal a bijection between 2-level matroids and a fam-
ily of trees, that we call UMR-trees, whose vertices are labelled by uniform matroids
and satisfy some adjacency restrictions. This last discovery makes 2-level matroids
particularly suitable for enumeration. Indeed the family of UMR-trees is exploited in
Sect. 4 to encode all the enumerative information in terms of generating functions and
relations (equations) among them by means of the symbolic method in enumerative
combinatorics. Finally, powerful analytic techniques are applied to the equations in
order to get an asymptotic estimate for the coefficients of the generating functions.

The paper is structured in the following way: in Sect. 2 the basics on matroid theory
and enumerative combinatorics are stated. In Sect. 3 we study how to decompose 2-
level matroids in terms of tree-like structures (UMR-trees). The structural properties
of theUMR-trees are exploited later in Sect. 4 in order to get counting formulas which
can be analyzed by means of analytic techniques, producing the estimate stated in
Theorem 1.1.

2 Preliminaries

In this section we introduce the basic notions needed in the rest of the paper. In Sect.
2.1 we focus on definitions and concepts related to matroid theory. In Sect. 2.2 we
fix our notation concerning enumeration by means of generating functions and finally
in Sect. 2.3 we state the results needed in order to get asymptotic estimates for the
coefficients of the generating functions under consideration.

123



Discrete Comput Geom (2015) 54:954–979 957

Fig. 1 From left to right, graphical representations of the matroids Un,0, Un,1, Un,n−1, and Un,n

2.1 Matroids

The basic definition is the following:

Definition 1 A matroid of rank k is an ordered pair M = (E,B) consisting of a
finite set E (ground set) and a collection of bases ∅ �= B ⊆ (E

k

)
satisfying the Basis

Exchange Axiom: for B1, B2 ∈ B and x ∈ B1 \ B2 there exists y ∈ B2 \ B1 such that
(B1 \ x) ∪ y ∈ B.
Matroids are combinatorial objects that generalize graphs and linear dependence: the
family of graphic matroids is particularly interesting and useful to visualize examples
of matroids. The matroid associated to a graph G = (V, E) is such that the ground set
is given by the set of edges and the collection of bases is given by the set of spanning
forests. The rank of a connected graph is clearly |V |−1. However, it could sometimes
be misleading to think in terms of the graph structure, since some information, like
the vertex structure, is not retained at matroid level.

Amatroid has many equivalent definitions (see [20] for more details): we presented
the one using the collection of bases. Nevertheless we want to introduce two further
collections of sets that can define a matroid. The first one is the collection of inde-
pendent sets, that is all the sets X ⊆ E such that X ⊆ B, for some B ∈ B. The
rank of X ⊆ E , denoted by rankM(X), is the cardinality of the largest independent
subset contained in X . The second one is the collection of circuits C(M). Circuits are
minimal dependent sets ofM. An element e such that {e} is a circuit is called a loop.

Two matroidsM and N are isomorphic if their collection of circuits are the same
up to relabelling of the ground sets E(M) and E(N ). More formallyM ∼= N if there
is a bijection ϕ : E(M) → E(N ) such that, for all X ⊆ E(M), ϕ(X) ∈ C(N ) if and
only if X ∈ C(M).

Let us consider a fairly simple family of matroids that is of great importance in the
rest of the paper, namely uniform matroids. The uniform matroid Un,k for 0 ≤ k ≤ n
consists of the ground set [n] := {1, . . . , n} and the collection of bases

([n]
k

)
. The

uniform matroids which are also graphic matroids are of the form:Un,0,Un,1,Un,n−1,
and Un,n . See Fig. 1.

Observe that for Un,0 and Un,n we illustrated one among many possible graphical
representations. Namely,Whitney’s 2-IsomorphismTheorem [20, Thm. 5.3.1] implies
that every graph formed by n loops corresponds to Un,0 regardless of the vertex
structure, while any tree with n edges corresponds to the matroid Un,n .

For counting purposes we do not consider the uniform matroids Un,0 and Un,n ,
while among the other uniform matroids we need to distinguish the graphic ones from
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the non-graphic ones.More precisely wewriteMn to denote thematroidUn,1 (it stands
for multiedge) and Rn to denote the matroid Un,n−1 (it stands for ring).

The dual matroid M∗ of a matroidM = (E,B) is the matroid defined by the pair
(E,B∗)whereB∗ = {E \B : B ∈ B}. For uniformmatroids we haveU∗

n,k = Un,n−k

and in particular R∗
n = Mn . An element e is called a coloop of M if it is a loop of

M∗. A matroid M is self-dual if M ∼= M∗. For instance, all uniform matroids of
type U2n,n are self-dual.

Definition 2 LetM = (E,B) be a matroid. The base polytope ofM is the polytope

PM := conv({1B : B ∈ B}).
It was proven in [12] that all the edges of a base polytope are parallel to some difference
ei − e j of two unit vectors.

The base polytopes PRn and PMn are n-simplices, while the polytopes PUn,k for
2 ≤ k ≤ n−2, are called hypersimplices and denoted by �n,k . For more background
about this family of polytopes we refer to [27].

A 2-level matroid is a matroid such that the corresponding base polytope is
2-level. In [14] an excludedminor characterization for the family of 2-level matroids is
provided. The four excluded minors are the following rank 3 matroids on 6 elements:
M(K4), W3, Q6, P6. The first excluded minor of the list is nothing but the graphic
matroid of the complete graph on 4 vertices; for more details about these matroids we
refer to Oxley’s book [20] or to the paper where they are used to describe the 2-level
matroids [14]. Since P6 = ([6],B) appears in Example 3, we list here its collection
of circuits

C(P6) = {123, 1245, 1246, 1256, 1345, 1346, 1356, 1456, 2345, 2346, 2356, 2456, 3456}.
It is important to notice that there is only one circuit with 3 elements. In [14], together
with the excluded minor characterization of 2-level matroids, a synthetic description
of this class is also provided. Before presenting it, we need to introduce two matroid
operations. Let M1 and M2 be matroids with disjoint ground sets E1 and E2. The
collection

B := {B1 ∪ B2 : B1 ∈ B(M1), B2 ∈ B(M2)}

is the set of bases of a matroid on E1 ∪ E2, called the direct sum of M1 and M2
and denoted by M1 ⊕ M2. On the other hand, if we choose e1 ∈ E1 and e2 ∈ E2
such that they are neither a loop nor a coloop of the respective matroids and define the
collection

B := {B1 ∪ B2\{e1, e2} : B1 ∈ B(M1), B2 ∈ B(M2), |(B1 ∪ B2) ∩ {e1, e2}| = 1},

then the pair (E1 ∪ E2 \ {e1, e2},B) defines a matroid called 2-sum of M1 and M2
with base points e1 and e2. We denote it by (M1, e1) ⊕2 (M2, e2). Observe that this
notation is slightly different from the one used in [20], but it turns out to be more
efficient for the constructive part.
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Theorem 2.1 ([14]) Every 2-level matroid can be obtained as a sequence of direct
sums and 2-sums of uniform matroids. Moreover every combination of uniform
matroids yields a 2-level matroid.

The direct sum and the 2-sum of matroids are closely related to the connectedness
of a matroid: a matroid M is 2-connected (or also connected) if it cannot be written
as a proper direct sum of two matroids, and M is 3-connected if it cannot be written
as 2-sum of two matroids each with fewer elements than M.

A separator of amatroidM is a set T ⊆ E such that rankM(T )+rankM(E \T ) =
rankM(M). A matroidM is 2-connected if and only if there is no separator T , with
T being a proper subset of E . The base polytope PM of a matroid M = (E,B) has
dimension |E |−c(M)where c(M) is the number of 2-connected components ofM.
In particular, ifM is 2-connected, then dim(PM) = |E |−1.

If we try to look at matroid operations from the point of view of base polytopes we
have:

• PM∗ = 1 − PM. This means that the base polytope of the dual matroid PM∗ is
congruent to the base polytope PM;

• PM1⊕M2 = PM1 × PM2 , where × denotes the Cartesian product of polytopes;
• P(M1,e1)⊕2(M2,e2) can be described using the subdirect product construction intro-
duced in [19] as shown in [14].

To keep the counting as easy as possible we first deal with 2-connected matroids.
This corresponds to considering only sequences of 2-sums of uniform matroids. As a
consequence, the polytopes we count cannot be obtained as a Cartesian product of two
polytopes (for example no prism is in this family). At the end of Sect. 4 we show that,
asymptotically, the restriction to 2-connected matroids does not alter the exponential
growth.

Thebasis graph of amatroidM is the undirected graphwith vertex set the collection
of all bases of M such that a basis B1 is connected to another basis B2 whenever
the symmetric difference B1�B2 has cardinality exactly 2. Equivalently, it is the
1-skeleton of the base polytope PM.

Let us conclude this section with some results for base polytopes that are used
in Sect. 4 to complete the asymptotic enumeration of 2-level matroids. The first one
appears as part of Exercise 4.9 in [25, Chap. 4].

Proposition 2.2 LetM andN be 2-connected matroids. The basis graphs ofM and
N are isomorphic if and only ifM ∼= N or M ∼= N ∗.

Since two congruent polytopes have the same 1-skeleton we easily obtain the fol-
lowing corollary, which also appears as an exercise in [3, Chap. 1, Ex. 18].

Corollary 2.3 Let M and N be 2-connected matroids. The base polytopes PM and
PN are congruent if and only ifM ∼= N or M ∼= N ∗.

It is known that “congruent” ⇒ “combinatorially equivalent”. The converse is in
general not true, not even for 0/1-polytopes: for instance we can find full-dimensional
0/1-simplices with different volumes [26]. Nevertheless, for the class of base poly-
topes, we get the following corollary of Proposition 2.2.
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Corollary 2.4 LetM andN be 2-connectedmatroids. The polytope PM is congruent
to PN if and only if PM is combinatorially equivalent to PN .

Proof We only need to prove one direction. If PM is combinatorially equivalent to
PN , then they have isomorphic face lattices and, in particular, isomorphic 1-skeletons.
By Proposition 2.2, M ∼= N or M ∼= N ∗ and therefore PM is congruent to PN by
Corollary 2.3. ��
This last corollary allows us to investigate the number of non-congruent 2-level base
polytopes, instead of looking at combinatorial equivalence of such polytopes.

2.2 The Symbolic Method in Enumerative Combinatorics. Tree-like Structures

The reader is referred to [10, Chap. 1] to see all the terminology and notation in full
detail. Let (A, | · |) be an admissible combinatorial class, namely a set A endowed
with a size function | · | such that the number of elements in A of any given size is
finite. Then the generating function (GF for short) associated toA is the formal power
series A(x) = ∑

a∈A x |a| = ∑
n≥0 anx

n . In particular, an is the number of elements
inA of size n and we write [xn]A(x) = an . We assume that every combinatorial class
contains no object of size 0, thus a0 = 0. Given two generating functions A(x) and
B(x), we write A(x) ≤ B(x) if for each n, [xn]A(x) ≤ [xn]B(x).

The symbolicmethod in enumerative combinatorics (see [10,Chap. 1]) gives a direct
way to translate combinatorial operations among combinatorial classes into operations
involving their generating functions. Besides the disjoint union and Cartesian product
of combinatorial families, which translate into sums and products of GFs, respectively,
we introduce the multiset construction: given a combinatorial class (A, | · |) with GF
A(x), the multiset ofA is the combinatorial family obtained by taking all multisets of
elements in A. The corresponding GF is equal to

Mul(A(x)) = exp

( ∞∑

r=1

1

r
A(xr )

)
.

Finally, we also need restricted multiset constructions. Let � be a subset of positive
integers. Themultiset operator restricted to�ofA is the combinatorial family obtained
by takingmultisets of elements inAwith the restriction that the number of components
lies in �. We write this as Mul�(A(x)). In particular,

Mul0(A(x)) = 1, Mul1(A(x)) = A(x), Mul2(A(x)) = 1
2 (A(x)2 + A(x2)).

The notation Mul≥k refers to the multiset operator restricted to � = {k, k + 1, . . .}.
The Dissymmetry Theorem for trees The Dissymmetry Theorem for trees (see [1])
provides a general methodology to relate a combinatorial class of unrooted trees with
given properties to the corresponding classes of rooted trees. More precisely, let T be
a class of unrooted trees. We define the following families of rooted trees: T◦ is built
from T by rooting a vertex, T◦−◦ is the class of trees where an edge of T is rooted
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and T◦→◦ is the class of trees obtained from T by rooting and orienting an edge. The
Dissymmetry Theorem for trees asserts that

T ∪ T◦→◦ � T◦−◦ ∪ T◦, (1)

where “�” means that there a bijection between the two combinatorial classes which
translates directly into equalities of the corresponding generating functions.

2.3 Asymptotic Estimates and Analytic Combinatorics

By means of analytic methods we can obtain asymptotic estimates for [xn]A(x) in
terms of the singularities of A(x)with minimum complex modulus. Such singularities
are called dominant.Whenever A(x) has non-negative coefficients, one of its dominant
singularities (if there is any) is a positive real number by Pringsheim’s Theorem,
see [10, Thm. IV.6].

With this language,we obtain the asymptotic expansion of [xn]A(x) by transferring
the behaviour of A(x) around its dominant singularity from a simpler function B(x)
for which we know the asymptotic behaviour of the coefficients. The first result in this
direction is the Transfer Theorem for singularity analysis [9,10]. For our purposes we
present a version of the theorem that covers the case when there is a unique dominant
singularity ρ.

Theorem 2.5 (Transfer Theorem for a unique dominant singularity [9], simplified
version) Assume that the generating function A(x) is analytic in a dented domain
�(φ, R) at ρ ∈ C, defined as the set

{x ∈ C : x �= ρ, |x | < R, |Arg(x − ρ)| > φ}

for |ρ| < R ∈ R and 0 < φ < π/2. If A(x) admits an expansion of the form

A(x) = C
(
1 − x

ρ

)−α + O
((
1 − x

ρ

)−α+1)

for x → ρ in the dented domain �(φ, R) at ρ, and α /∈ {0,−1,−2, . . . } then

[xn]A(x) = C
1

	(α)
· nα−1 · ρ−n (1 + o(1)),

where 	(s) = ∫ ∞
0 t s−1e−t dt denotes the classical Gamma function.

In the next sections we also have to analyze systems of functional equations. The
main reference for this topic is the paper [6]. For convenience, we rephrase it here
in a simplified version (the interested reader could find the more general result in
[7, Sect. 2.2.5]).

Let y1(x), . . . , yk(x)be generating functions satisfying a systemof functional equa-
tions. We define the vector y(x) := (y1(x), . . . , yk(x)), and a system y = F(x; y)
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satisfied by y(x). Notice that F(x, y) = (F1(x, y), . . . , Fk(x, y)). We assume that
each yi (x) is analytic at x = 0, and that yi (0) = 0. We also assume that all Fi (x, y)
are analytic around (0, 0) and have nonnegative Taylor coefficients around (0, 0) (this
condition assures the uniqueness of the solution).

The dependency graph G = (V,D) associated to the system y = F(x; y) is the
oriented graph whose vertex set is V = {y1, . . . , yk} and the arc −−→yi y j ∈ D if and

only if ∂Fi (x, y)
∂y j

�= 0 (this indicates that Fi (x, y) really depends on y j ). A dependency
graph is called strongly connected if every pair of vertices is connected by a directed
path. With this terminology we have the following result:

Theorem 2.6 (Singularity analysis of systems of functional equations [6], simplified
version) Let y(x) = F(x; y(x)) be a system of functional equations satisfying the
conditions described above. Additionally, assume that the related dependency graph
is strongly connected. Denote by Ik the k × k identity matrix and by Jac(F) the k × k
Jacobian matrix associated to F(x, y). If the system

{
y = F(x; y)
0 = det

(
Ik − Jac(F)

) (2)

has a unique positive real solution (x0, y0) in the region of analyticity of each com-
ponent of F(x, y), then there is a unique solution y(x) to the system of functional
equations. Moreover, the functions yi (x) have nonnegative coefficients and a square-
root expansion in a domain dented at x0.

3 Matroid Decomposition

This section is devoted to the analysis of the structure of 2-level matroids. Every 2-
connected matroid has a tree decomposition which relies on the 2-sum and we refer to
[20, Sect. 8.3] for a complete overview on this topic. We state here the results which
are relevant for the paper and we explore further features of tree decomposition that
are specific for the class of 2-level matroids. First let us make precise what we mean
by a decomposition.

Definition 3 A matroid-labelled tree is a tree T with vertex set {N1, . . . ,Ns} for
some positive integer s such that

(i) the Ni ’s are matroids with pairwise disjoint ground sets;
(ii) an edge joining Ni and N j is labelled by a set {ei , e j } such that ei ∈ E(Ni ),

e j ∈ E(N j ), and ei , e j are neither loops nor coloops;
(iii) the labels of the edges of T are pairwise disjoint.

We call N1, . . . ,Ns the vertex labels of T .

Example 1 Let us consider the matroid-labelled tree in the picture whose vertex labels
are all graphic matroids. In particular they are rings and multiedges. Each vertex label
must be provided with its ground set and its collection of bases. For instance the ring
R4 has ground set E(R4) = {1, 2, 3, 4} and collection of bases

([4]
3

)
. For a complete

description of the vertex labels we refer to Example 2.
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Fig. 2 Matroid-labelled tree
with vertex labels of type ring
and multiedge

Fig. 3 Graph obtained after contraction of all edges of the matroid-labelled tree

For a matroid-labelled tree T , we can contract an edge t labelled by {ei , e j } con-
necting two vertex labels Ni and N j . The result is a matroid-labelled tree T/t with
the same edges and vertex labels, except that the vertex labels Ni and N j have been
gathered into a unique vertex label, namely (Ni , ei ) ⊕2 (N j , e j ), and the edge t has
been contracted (Figs. 2, 3).

Example 2 The vertex labels of the matroid-labelled tree introduced in Example 1 are
all graphic matroids. Thus, we can represent it as a sequence of 2-sums of graphs. In
the picture we specify the ground set for each of the graphs.

Contracting an edge in the matroid-labelled tree corresponds to computing the
2-sum of two graphs. If we contract all the edges we get the graph on the right which
happens to be a series-parallel graph. Definition 4 shows that the matroid-labelled
tree we are considering is a tree decomposition for the matroid associated to this
series-parallel graph.

Definition 4 A tree decomposition of a 2-connected matroidM is a matroid-labelled
tree T such that if V (T ) = {N1, . . . ,Ns} and E(T ) = {t1, . . . , ts−1}, then
• E(M) = (E(N1) ∪ E(N2) ∪ . . . ∪ E(Ns)) \ (t1 ∪ t2 ∪ . . . ∪ ts−1);
• |E(Ni )| ≥ 3 for all i , unless |E(M)| < 3, in which case s = 1 and N1 = M;
• M is the matroid that labels the single vertex of T/{t1, t2, . . . , ts−1}.
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Fig. 4 Non-isomorphic matroids obtained as 2-sum of two matroids of type P6

We now report a theorem from [20, Thm. 8.3.10]which first appeared in [4]. According
to our definitions, we replace the words “circuit” and “cocircuit” with “ring” and
“multiedge”, respectively.

Theorem 3.1 Let M be a 2-connected matroid. Then M has a tree decomposition
TM in which every vertex label is 3-connected, a ring, or a multiedge, and there
are no two adjacent vertices that are both labelled by rings or are both labelled by
multiedges. Moreover, TM is unique up to relabelling of its edges.

In order to obtain the uniqueness, it is necessary to require that there are no two
adjacent vertex labels that are both rings or multiedges, otherwise adjacent rings (or
multiedges) could make possible to keep the same tree structure while changing the
vertex labels. These additional requirements to get uniqueness justify whywe consider
separately the labels of type U,M, and R in Sect. 4.

The theorem allows us to uniquely represent every matroid by a matroid-labelled
tree whose vertex labels are 3-connected matroids (except rings and multiedges). In
this paper we want to tackle the problem from a different perspective: instead of
starting with a matroid and finding its tree decomposition, the goal is to count how
many non-isomorphic matroid-labelled trees can be constructed from a given set of
possible vertex labels. In this constructive process, every time that we establish the
adjacency of two vertices, we have to decide one element for each ground set of the
two vertex labels to be the base points of the 2-sum.

As shown in Example 3, the choice of the elements affects the result of the 2-sum:
there exist two non-isomorphic matroids whose tree decompositions have the same
tree structure and the same vertex labels, but different labels for the edges of the tree.

Before presenting the example, let us give an explicit description of the collection
of circuits of the matroid (M1, e1) ⊕2 (M2, e2), namely

C(M1\e1)∪C(M2\e2)∪
{
(C1−{e1})∪(C2−{e2}):e1 ∈ C1 ∈ C(M1) and e2 ∈ C2 ∈ C(M2)

}
.

(3)

Example 3 Consider the 3-connected matroid P6 described in Sect. 2.1. Construct a
matroid-labelled tree with two adjacent vertex labels, both equal to P6 (see Fig. 4).
Let us label the ground set of the first copy of P6 from 1 to 6 and the ground set of
the second copy from 7 to 12. Each of the two copies has one circuit of length 3 (we
assume {1, 2, 3} and {7, 8, 9}) and all the other circuits are of length 4.

Consider the matroid (P6, 1) ⊕2 (P6, 7). It has circuits of length 4, 5, 6. On the
other hand, the matroid (P6, 4) ⊕2 (P6, 10) has circuits of length 3, 4, 6. Thus, the
two matroids are not isomorphic.

Nevertheless if we focus on 2-level matroids, the vertex labels are chosen among
uniform matroids that we divide in the following three categories:
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(i) M-vertices: correspond to multiedges of size at least 3;
(ii) R-vertices: correspond to rings of size at least 3;
(iii) U-vertices: correspond to uniform matroids Un,k such that n ≥ 4 and 2 ≤ k ≤

n − 2.

We define a new class of trees as follows.

Definition 5 Let T be a tree whose vertex labels are of type U, M, and R and such
that no twoM-vertices and no two R-vertices are adjacent. The tree T is a UMR-tree
if deg(Ni ) ≤ |E(Ni )| for every vertex label Ni .

For this particular class, the tree structure and the vertex labels are enough to determine
the matroid uniquely up to matroid isomorphism. The proof of this fact is provided by
Lemmas 3.3 and 3.4. The main result of this section is the following theorem, which
is required for the enumeration in Sect. 4.

Theorem 3.2 The family of 2-connected 2-levelmatroids is in bijectionwith the family
of UMR-trees.

Before presenting the proof of the theorem, we introduce some further definitions.
For each vertex label Ni of the tree decomposition of a matroid M, we partition the
ground set E(Ni ) = {e1, . . . , esi } into two sets: the set W (Ni ) of elements which
are base points for the 2-sum with a vertex label adjacent to Ni and the set F(Ni ) =
E(Ni ) \ W (Ni ). We call W (Ni ) the set of ideal elements (generalizing the notion of
ideal edge in [24, Sect. IV.3]) and F(Ni ) the set of free elements. Note that the ideal
elements do not belong to the ground set ofM, while we have E(M) = ∪i F(Ni ).

For a matroidM let us consider the set of its circuits C. We say thatM is transpo-
sition invariant with respect to the pair of elements {e1, e2} ⊂ E(M) if we have that
π(C) = C, where π is the transposition (e1, e2) and

π(C) = {π(C):C ∈ C}.

The notation π(C) means that we apply the permutation of the ground set π :
E(M) → E(M) to the circuit C of M. A matroid is permutation invariant if it
is transposition invariant with respect to every pair of elements in the ground set.

Example 4 Every uniform matroid Un,k is permutation invariant, since for every
choice of e1, e2 ∈ [n] = E(Un,k), π(·) is a bijection from the set of (k + 1)-subsets
of [n] to itself. Moreover if a matroid M = ([n],B) is permutation invariant, then it
is a uniform matroid. Indeed let C be the circuit with the least number s of elements,
then all the other subsets

([n]
s

)
have to be circuits (by transposition invariance). It also

follows that there cannot be other circuits. Thus M = Un,s−1.

We say thatM isNi -transposition invariant, forNi vertex label of the tree decompo-
sition if it is transposition invariant with respect to every pair of elements in F(Ni ).
We say that M is node-invariant if it is Ni -transposition invariant for every vertex
label Ni of the tree decomposition.
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Lemma 3.3 Let M be a Ni -transposition invariant 2-connected matroid and U a
uniform matroid. For any choice of f ∈ F(Ni ) and u ∈ E(U), the 2-sum (M, f ) ⊕2
(U , u) yields the same matroid up to isomorphism.

Proof TheuniformmatroidU is permutation invariant and thus the choice ofu ∈ E(U)

does not affect the result of the 2-sum. Consider any two elements f1, f2 ∈ F(Ni ).
We want to show that

S f1 := (M, f1) ⊕2 (U , u) ∼= (M, f2) ⊕2 (U , u) =: S f2 .

Notice that E(S f2) = E(S f1) − { f2} ∪ { f1}. We claim that the bijection
ϕ : E(S f1) → E(S f2) such that

ϕ(e) =
{
f1 if e = f2,

e otherwise

yields thematroid isomorphism.Weneed to show that for every X ⊂E(S f1),X ∈C(S f1)

if and only if ϕ(X) ∈ C(S f2).
As we have seen in (3) a circuit C of S f1 can be of 3 different types:

• C ∈ C(U \ u). In this case ϕ(C) = C and clearly C ∈ C(S f2).
• C ∈ C(M \ f1). This implies that C is a circuit of M, f1 /∈ C . Since M is Ni -
transposition invariant, we have that π(C) ∈ C(M) for π = ( f1, f2). Moreover,
f1 /∈ C implies f2 /∈ π(C), that is π(C) ∈ C(M \ f2). Finally, ϕ(C) = π(C) ∈
C(M \ f2) and thus ϕ(C) ∈ C(S f2).

• C = (C1 − { f1}) ∪ (C2 − {u}), f1 ∈ C1 ∈ C(M) and u ∈ C2 ∈ C(U). Since
M is Ni -transposition invariant, for π = ( f1, f2) we have π(C1) ∈ C(M) and
f2 ∈ π(C1). Moreover, ϕ(C) = (π(C1)−{ f2})∪(C2−{u}), f2 ∈ π(C1) ∈ C(M)

and u ∈ C2 ∈ C(U) and thus ϕ(C) ∈ C(S f2).

The same argument applies to check that all circuits of S f2 are circuits of S f1 under
the map ϕ−1. This concludes the proof. ��
Lemma 3.4 Let M be a node-invariant 2-connected matroid and U a uniform
matroid. The 2-sum (M, f ) ⊕2 (U , u) is a node-invariant matroid for any choice
of f ∈ E(M) and u ∈ E(U).

Proof Choose a vertex labelNi of the unique tree decomposition TM ofM. Without
loss of generality, let us assume f ∈ F(Ni ). To prove that S f := (M, f ) ⊕2 (U , u)

is node-invariant, we need to check the transposition invariance for each vertex label.
For any vertex labelN j and f1, f2 ∈ F(N j ), f1, f2 �= f , we have that the set C(S f )

is invariant under π = ( f1, f2). Indeed C(M \ f ) and C(U \ u) are invariant under π

becauseM is node-invariant and U is permutation invariant. The same holds true for
the circuits of the third type, since

π((C1 − { f }) ∪ (C2 − {u})) = (π(C1) − { f }) ∪ (C2 − {u})

and f ∈ π(C1) ∈ C(M) by node-invariance of M.
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The tree decomposition of S f has one new node, labelled by the uniform matroid
U . We still have to check that S f is U-transposition invariant. The same argument used
above applies to U , since it is a permutation invariant matroid. ��
Proof of Theorem 3.2 Let us start with a uniformmatroidN1. SinceN1 is permutation
invariant, it is also node-invariant. The 2-sum of N1 with a second uniform matroid
N2 yields a node-invariant matroid by Lemma 3.4. We can iteratively add by 2-sum
new uniform matroids N3, N4, . . . , Ns . The matroid we get at every step is clearly
node-invariant. Moreover, at the j-th iteration we have to select which vertex labelNi ,
i < j ofM is adjacent toN j . OncewefixNi , the resultingmatroid (M, f )⊕2(N j , e)
does not depend (up to isomorphism) on the choice of f ∈ F(Ni ) by Lemma 3.3.
We can conclude that the structure of the tree decomposition and the vertex labels are
enough to determine uniquely the 2-level matroid. Vice versa Theorem 3.1 together
with Theorem 2.1 proves that a 2-connected 2-level matroid uniquely identifies a tree
structure with vertex labels chosen among the uniform matroids. ��

We close the section with a proposition from [20, Prop. 7.1.22] which is needed to
deal with self-duality in Sect. 4.4.

Proposition 3.5 Let M1 and M2 be two matroids and ei ∈ E(Mi ). Then

((M1, e1) ⊕2 (M2, e2))
∗ = (M∗

1, e1) ⊕2 (M∗
2, e2).

4 Counting UMR-Trees

In this section we apply the results in Sect. 3 to get enumerative formulas for the
number of 2-level matroids of fixed size. By means of Theorem 3.2, this is equivalent
to the enumeration ofUMR-trees. To the set ofU-vertices,M-vertices, andR-vertices,
we add an additional type of vertices that we call legs. Legs always have degree 1,
and are graphically represented by small red disks. For each free element of a vertex
label Ni we draw a leg connected to Ni . Observe that legs represent all the leaves
of the tree. Hence, we develop enumerative formulas in terms of the number of legs
in our tree mode and we translate them into counting results in the matroid setting.
The combinatorial restrictions we consider in our trees (which naturally arise from the
obstructions inherited from the matroid setting) are the following:

(1) The edges are unlabelled;
(2) No two R-vertices and no two M-vertices are adjacent;
(3) The degree of the R-vertices and M-vertices is greater or equal than 3, and the

degree of the U-vertices is greater or equal than 4.

In principle, our goal is to get enumerative formulas for UMR-trees, but in order to
apply the Dissymmetry Theorem for trees (Sect. 2) we need to encode rooted families.
For this reason we introduce the following technical definition: a UMR-tree is said to
be pointed if it has a special leaf of size 0 (namely, it does not contribute to the total
amount of legs) that we call virtual leg. Roughly speaking, the virtual leg pinpoints
its adjacent vertex which we call the pointed vertex of the UMR-tree. We use a red
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Fig. 5 A pointed tree with 18 legs, 1 virtual leg, and a pointed R-vertex

Fig. 6 Decomposition of a pointed UMR-tree

triangle to graphically represent the virtual leg. See Fig. 5 for an example of a pointed
UMR-tree.

If a vertex is incident with the virtual leg, its restricted degree is the total degree
minus 1. Notice that U-vertices have multiplicity due to the rank of the associated
matroid. In other words, once the total degree of aU-vertex is fixed (call it d), then the
possible rank could take any value in {2, 3, 4, . . . , d − 2}. This yields d − 3 possible
different uniform matroids for this U-vertex.

In the next subsections we use ordinary generating functions to enumerate UMR-
trees. We first analyze the rooted case and then the unrooted case; in both cases the
variable x encodes non-virtual legs.

4.1 Counting Pointed UMR-Trees

We denote by AR(x), AM(x) and AU(x) the generating functions for pointed trees
where the virtual leg is adjacent to a R-vertex, a M-vertex, and a U-vertex, respec-
tively. Additionally, we write Al(x) for the generating function of the elementary tree
pointed at a leg. Clearly, Al(x) = x . Observe that the first non-zero coefficients in the
generating functions of pointed UMR-trees are [x2]AR(x) = [x2]AM(x) = 1, and
[x3]AU(x) = 1.

We start getting relations between these generating functions by decomposing the
trees at the pointed vertex. Let us start with AR(x). Observe that such a tree can be
described as aR-vertex (the pointed one) followed by amultiset of size greater or equal
than 2 of (the disjoint union of) trees rooted at either anM-vertex or at an U-vertex as
shown in the following figure (Fig. 6).
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The combinatorial description gives us that AR(x) = Mul≥2(AM(x) + AU(x) +
Al(x)). This equation can be made explicit by means of the multiset operator:

AR(x) = exp
( ∞∑

r=1

1

r

(
AM(xr ) + AU(xr ) + Al(x

r )
))

− 1 − (
AM(x) + AU(x) + Al(x)

)
. (4)

A similar argument holds changing the pointed R-vertex by aM-vertex. This gives an
analogous equation for AM(x):

AM(x) = exp
( ∞∑

r=1

1

r

(
AR(xr ) + AU(xr ) + Al(x

r )
)) − 1 − (

AR(x) + AU(x) + Al(x)
)
.

(5)

Observe that (4) and (5) give that AR(x) = AM(x). Indeed, by subtracting (4) from
(5) we obtain that

∑

r≥1

1

r
AR(xr ) =

∑

r≥1

1

r
AM(xr ).

These two formal power series have the same coefficients. In particular, for each choice
of n, [xn] ∑

r≥1
1
r AR(xr ) = [xn] ∑

r≤n
1
r AR(xr ). Now, applying an easy induction

argument we can conclude that for each n, [xn]AR(x) = [xn]AM(x).
Getting formulas for AU(x) is slightly more involved: if the pointed U-vertex has

total degree d, then it has multiplicity d−3. This fact must be encoded in the counting
formulas. Let us use an auxiliary variable u which marks the restricted degree of the
pointed U-vertex (namely, the total degree d minus 1). Here we emphasize that we do
not consider the contribution of the virtual leg to the total number of legs n. This is
due to technical reasons that are going to be clear while proceeding with the counting.
However, the multiplicity of the pointed U-vertex must be considered with respect to
the total degree of the vertex (thus including the virtual leg) and not with respect to
the restricted degree. Indeed, for a pointed U-vertex of degree d, its restricted degree
is equal to r = d − 1, and its multiplicity is equal to d − 3 = r − 2.

We write an,r for the number of pointed trees with n non-virtual legs whose vir-
tual leg is adjacent to a U-vertex of restricted degree r . The notation aU(x, u) :=∑

n, r≥3 an,r xnur refers to the corresponding generating function. Then we have

AU(x) =
∑

n,r≥3

(r − 2)an,r x
nur |u=1 = ∂

∂u
aU(x, u)|u=1 − 2aU(x, 1). (6)

Observe now that aU(x, u) satisfies the equation aU(x, u) = Mul≥3(u(AM(x) +
AR(x) + AU(x) + Al(x))), which arises from the fact that the pointed U-vertex has
restricted degree ≥ 3 (or equivalently, degree ≥ 4). Hence we have that
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aU(x, u) = exp
( ∞∑

r=1

ur

r

(
AR(xr ) + AM(xr ) + AU(xr ) + Al(x

r )
))

− 1 − u
(
AR(x) + AM(x) + AU(x) + Al(x)

)

− Mul2(u(AM(x) + AR(x) + AU(x) + Al(x))).

Now by using (6) we can write AU(x) in terms of aU(x, 1) and its derivative at u = 1:

AU(x) = exp
( ∞∑

r=1

1

r

(
AR(xr ) + AM(xr ) + AU(xr ) + xr

))

× ( ∞∑

r=1

(AR(xr ) + AM(xr ) + AU(xr ) + xr )
)

− (AR(x) + AM(x) + AU(x) + x) − 2Mul2(AM(x) + AR(x) + AU(x) + x)

− 2 exp
( ∞∑

r=1

1

r

(
AR(xr ) + AM(xr ) + AU(xr ) + xr

))+

+ 2 + 2(AR(x) + AM(x) + AU(x) + x) + 2Mul2(AM(x) + AR(x) + AU(x) + x).
(7)

Hence, we have three equations relating AR(x), AM(x) and AU(x).

4.2 Application of the Dissymmetry Theorem

We now proceed by applying the Dissymmetry Theorem for trees (see Sect. 2.2)
in order to express UMR-trees in terms of rooted ones. Let T (x) be the generating
function of UMR-trees, where x marks legs. Write Tv(x), Te(x), and Td(x) the gen-
erating functions associated to families of UMR-trees with a rooted vertex, a rooted
edge and a rooted and oriented edge, respectively. By the Dissymmetry Theorem for
trees stated in (1), we have that

T (x) = Tv(x) + Te(x) − Td(x). (8)

Let us compute each generating function in terms of the pointed families obtained in
Sect. 4.1. Let us start with Te(x). This can be written as

Te(x) = TM−R(x) + TM−U(x) + TM−•(x) + TR−U(x) + TR−•(x) + TU−U(x) + TU−•(x),

where the index of each term shows the type of the end vertices of the rooted edge
(for instance, the first term R−M means that the rooted edge has as end vertices a
R-vertex and a M-vertex). By cutting the rooted edge and pasting two virtual legs on
the ends (see Fig. 7), each term in the sum (with the exception of TU−U(x), which has
an additional symmetry) is the product of the corresponding generating functions of
pointed families.

123



Discrete Comput Geom (2015) 54:954–979 971

Fig. 7 A UMR-tree rooted at an edge (colored red), and its decomposition in terms of pointed trees

The single situation where symmetry exists is in TU−U(x), and in this case we have
a multiset of size 2 of trees pointed at a U-vertex. We conclude that

Te(x) = AM(x)(AR(x) + AU(x) + Al(x)) + AR(x)(AU(x) + Al(x))

+Mul2(AU(x)) + Al(x)AU(x). (9)

A decomposition similar to the one of (9) applies for Td(x). Indeed this generating
function can be written as

Td(x) = TM→R(x) + TM→U(x) + TM→•(x)
+ TR→M(x) + TR→U(x) + TR→•(x)
+ TU→M(x) + TU→R(x) + TU→U(x) + TU→•(x)
+ T•→M(x) + T•→R(x) + T•→U(x),

where the index of each term shows the type of the end vertices for the rooted directed
edge. In this situation the computations are similar and even easier, because there is
no extra symmetry when dealing with an edge linking two U-vertices:

Td(x) = AM (x)(AR(x) + AU (x) + Al(x))

+ AR(x)(AM (x) + AU (x) + Al(x))

+ AU (x)(AM (x) + AR(x) + AU (x) + Al(x))

+ Al(x)(AR(x) + AM (x) + AU (x)). (10)

The last generating function we want to get is Tv(x). Observe that Tv(x) is not the
sum of the generating functions obtained in Sect. 4.1, because now we do not have to
consider the virtual leg. We write

Tv(x) = TR(x) + TM(x) + TU(x) + T•(x), (11)

where the index of each term indicates the type of the rooted vertex.Wewant to express
now each term by means of the previous pointed families. It is obvious that

T•(x) = Al(x)(AR(x) + AM(x) + AU(x)) (12)

because a rooted leg induces canonically a rooted edge. Let us consider the other
situations: observe that TR(x) = Mul≥3(AM(x)+ AU(x)+ Al(x)), which is obtained
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by cutting the edges incident with the rooted R-vertex, and pasting a virtual leg to
each resulting subtree. In particular

TR(x) = Mul≥3(AM(x) + AU(x) + Al(x))

= Mul≥2(AM(x) + AU(x) + Al(x)) − Mul2(AM(x) + AU(x) + Al(x))

= AR(x) − Mul2(AM(x) + AU(x) + Al(x)) (13)

and, mutatis mutandis, an analogous expression holds for TM(x). At last, let us study
TU(x): let tU(x, u) be the generating function of trees with a rooted U-vertex, where
the multiplicity of the rooted vertex is not encoded yet and u encodes the degree of
the rooted U-vertex. Then, tU(x, u) = Mul≥4(u(AR(x) + AM(x) + AU(x) + Al(x)))
and

tU(x, u) =
∑

n,d≥4

tn,d x
nud �⇒ TU(x) =

∑

n,d≥4

(d − 3)tn,d x
nud |u=1

= ∂

∂u
tU(x, u)|u=1 − 3tU(x, 1).

Applying the same trick we used for aU(x, u) in Sect. 4.1, we get that

TU(x) = ∂

∂u
tU(x, u)|u=1 − 3tU(x, 1)

= ( ∂

∂u
− 3

)
(aU(x, u) − u3 Mul3(AR(x) + AM(x) + AU(x) + Al(x)))|u=1

= AU(x) − aU(x, 1) + (3 − 3)Mul3(AR(x) + AM(x) + AU(x) + Al(x)))

= AU(x) − Mul≥3(AR(x) + AM(x) + AU(x) + Al(x))). (14)

Substituting (12), (13) and (14) in (11) we get the expression for Tv(x). Finally,
we replace (9), (10) and this expression of Tv(x) in (8). All together this brings us the
generating function T (x), whose first coefficients are 2x3 + 4x4 + 10x5 + 27x6 +
78x7 + 246x8 + 818x9 + 2871x10 + 10446x11 + 39358x12 + · · ·

4.3 Asymptotic Analysis

Now we can apply the machinery arising from analytic combinatorics in order to get
asymptotic estimates for [xn]T (x). The main point is based on studying the system of
equations which defines AR(x), AM(x) and AU(x), which provides the position and
the nature of the dominant singularity of T (x).

In particular, by means of the Drmota–Lalley–Woods methodology (see Sect.
2.3), we obtain the constant growth, which is ρ−1 ≈ 4.88052854 (whose inverse
ρ ≈ 0.20489584 gives the radius of convergence around the origin of the generating
function). Possibly more important, we can show that all these generating functions
have the same square-root singularity (see the details in the proof). Moreover, the
generating function T (x) is an analytic expression of the previous counting formulas,
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hence the position of the singularity does not change. However, the type of the sin-
gularity changes due to a combinatorial cancellation arising from the Dissymmetry
Theorem for trees applied to UMR-trees. Finally, the asymptotic estimates for the
coefficients of T (x) are deduced by means of the Transfer Theorem for singularity
analysis (see Theorem 2.5).

Before presenting the proofs, it is worth comparing the growth constant we get
with the one arising in the context of unlabelled 2-connected series-parallel graphs,
which is the analogue in the graphical setting. In [8] it is proven that the number of
unlabelled 2-connected series-parallel graphs with n vertices grows exponentially as
γ −n , where γ ≈ 0.12419991 (and γ −1 ≈ 8.05153567). Despite several similarities,
there are few caveats that we have to keep into account:

(i) Matroids do not have a vertex structure; instead we count them by the number
of elements in the ground set, which will also pay off when relating our results
to the enumeration of 2-level base polytopes

(ii) The tree decompositions of series-parallel graphs have only R-vertices and
M-vertices. General 2-level matroids are constructed using also the U-vertices,
that is, a much wider variety of building blocks.

(iii) Series-parallel graphs with different graph realizations can correspond to iso-
morphic matroids and must be counted only once in the matroid setting.

The first result deals with the singular behaviour of AR(x), AM(x) and AU(x):

Proposition 4.1 The generating functions AR(x), AM(x) and AU(x) have a dominant
singularity atρ ≈ 0.20489584. Additionally, this is the unique singularity in the region
{x ∈ C : |x | ≤ ρ}. In a domain dented at ρ, AR(x), AM(x) and AU(x) have a singular
expansion of the form

AR(X) = AM(X) = A0 + A1X + A2X
2 + A3X

3 + O(X4),

AU(X) = U0 +U1X +U2X
2 +U3X

3 + O(X4),

where X = √
1 − x/ρ, A0 ≈ 0.13529174, A1 ≈ −0.23137622, A2 ≈ 0.04653888,

A3 ≈ 0.06281332, U0 ≈ 0.06921673, U1 ≈ −0.19340420, U2 ≈ 0.15045323 and
U3 ≈ 0.01018058.

Proof As we know that AR(x) = AM(x), we just need to analyze the pair of (4) and
(7). Indeed if AR(x) and AU(x) have a unique singularity ρ, then the term

exp
( ∞∑

r=2

1

r

(
AM(xr ) + AU(xr ) + Al(x

r )
))

.

in (4) is analytic at x = ρ (similarly in (7)). Hence, we can approximate this term by
its Taylor series (which can be computed by an iterative algorithm). As a result, we
obtain a pair of functional equations in x , AR(x), and AU(x) satisfying the conditions
of Theorem 2.6. Solving now the resulting system of 3 equations by means of Maple
computations (namely, the two equations and the one associated to the jacobian matrix
in (2)), we obtain the solution x0 ≈ 0.20489584, ÂR ≈ 0.13529174 and ÂU ≈
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0.06921673. By Theorem 2.6 the position of the singularity of both AR(x) and AU(x)
is located at ρ = x0 ≈ 0.20489584, and both AR(x) and AU(x) have a square-root
expansion in a domain dented at ρ of the form

AR(X) = AM(X) = A0 + A1X + A2X
2 + A3X

3 + O(X4),

AU(X) = U0 +U1X +U2X
2 +U3X

3 + O(X4),

where Ai , Ui , i ∈ {1, 2, 3, 4}, are computable constants. In order to get approximate
values of these constants, we substitute the square-root expansions of AM(x) = AR(x)
and AU(x) in (4) and (7). The terms of the form AM(xr ) = AR(xr ) and AU(xr )
(r ≥ 2) are also approximated by a truncation of the Taylor series (which can also
be computed by an iterative algorithm), because these GFs are analytic at the point
x = ρ. At this point we can get a system of equations in the Ai ’s and the Ui ’s by
equating the coefficients with same degree of the square-root expansions. Solving this
system yields the constants reported in the statement of the theorem. ��
More precisely, we get the following result for [xn]T (x):

Theorem 4.2 The following asymptotic estimate holds:

[xn]T (x) = C · n−5/2 · ρ−n (1 + o(1)),

where C ≈ 0.07583455 and ρ ≈ 0.20489584 are computable constants.

Proof We use the singular square-root expansions for AR(x), AM(x) and AU(x)
obtained in Lemma 4.1, together with the expressions in (8)–(14) in order to get
the singular expansion of T (x):

T (x) = T0 + T2X
2 + T3X

3 + O(X4),

with T0 ≈ 0.03457946, T2 ≈ −0.18596384 and T3 ≈ 0.17921766. Observe that the
constant multiplying X in this singular expansion is equal to 0 (due to the unrooting
process in theDissymmetryTheorem for trees). Finallywe apply theTransfer Theorem
for singularity analysis over this singular expansion. ��

4.4 Dealing with Duality. Proof of Theorem 1.1

The last part is devoted to show that the contribution of self-dual 2-level matroids is
exponentially small compared to the estimates we obtained in the previous subsection.
LetM be amatroid with tree decomposition TM, then Proposition 3.5 implies that the
tree decomposition of M∗ has the same tree structure of TM. Moreover, we replace
each vertex label Ni with its dual matroid N ∗

i .
We are interested in self-dual 2-connected 2-level matroids. The vertex labels are

chosen among uniform matroids, and the operation of duality turns labels of typeMn

into labels of type Rn and vice versa, and Un,k-labels into Un,n−k-labels. It is clear
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that the self-dual labels are of the form U2n,n . Moreover, for technical reasons, we
consider also virtual legs and legs to be self-dual.

Our goal is to estimate the contribution of the family of self-dual UMR-trees
(namely UMR-trees associated to self-dual matroids) to the total number of UMR-
trees. To do that we start analyzing the pointed situation: we write AR(x) =
SR(x) + NR(x), AM(x) = SM(x) + NM(x) and AU(x) = SU(x) + NU(x), where the
generating functions SR(x), SM(x) and SU(x) encode self-dual trees whose pointed
vertex is a R-vertex, anM-vertex and an U-vertex, respectively. The generating func-
tions NR(x), NM(x) and NU(x) are the ones encoding trees which are not self-dual.
Observe that in particular SR(x) = SM(x) = 0, because the dual of each R-vertex is
anM-vertex, and consequently there are no self-dual trees pointed at either aR-vertex
or aM-vertex.

We also use a similar notation for unrooted trees. We write T (x) = S(x) + N (x),
where S(x) is the generating function associated to self-dual (unrooted) trees.

The next lemma tells us that the contribution of self-dual rooted trees is exponen-
tially small.

Lemma 4.3 The following estimate holds:

[xn]SU(x) = o([xn]AU(x)).

Proof We get and analyze equations for SU(x). In this situation, the pointed vertex is
a U-vertex associated to a uniform matroid of the form U2n,n . Hence, we notice that
the degree of the pointed vertex determines the rank and, in particular, the multiplicity
in the counting is 1. Moreover, the possible restricted degree of the vertex is clearly
in the set � = {3, 5, 7, . . . }.

Now observe that the collection of pending pointed subtrees is a multiset of pairs
of pointed trees such that one is the dual of the second, followed by a multiset of odd
size of self-dual pointed trees. Hence,

SU(x) = Mul{3,5,7,... }(SU(x) + Al(x))

+ Mul≥1(AR(x2) + AM(x2) + (AU(x2) − SU(x2)))

Mul{1,3,5,7,... }(SU(x) + Al(x)). (15)

Let η be the radius of convergence of SU (x). It is obvious that η ≥ ρ, because the
family of self-dual pointed trees is counted in the family of U-pointed trees. We need
to show that η > ρ.

Equation (15) can be analyzed in a similar way to the one we find in the proof
of Proposition 4.1. However, for our purposes it is enough to bound the coeffi-
cients of SU(x) by means of crude estimates. Observe that Mul≥3(SU(x) + Al(x)) ≥
Mul{3,5,7,... }(SU(x) + Al(x)) and

Mul≥1(AR(x2) + AM(x2) + (AU(x2) − SU(x2)))Mul≥1(SU(x) + Al(x))

≥ Mul≥1(AR(x2) + AM(x2) + (AU(x2)−SU(x2)))Mul{1,3,5,7,... }(SU(x) + Al(x)).

123



976 Discrete Comput Geom (2015) 54:954–979

Hence, if s(x) satisfies the equation

s(x) = Mul≥3(s(x) + Al(x)) + Mul≥1(AR(x2) + AM(x2)

+ NU(x2))Mul≥1(s(x) + Al(x)), (16)

then SU(x) ≤ s(x). Observe also that by the combinatorial specification of UMR-
trees s(x) ≤ AU(x). Let γ be the dominant real singularity of s(x). Observe that this
singularity arises either from the square-root singularity of the terms AR(x2), AM(x2),
NU(x2) at x equals to

√
ρ ≈ 0.45265421 or from a branch point (smaller than

√
ρ)

of (16).
In the second case, (16) can bewritten in the form s(x) = F(x, s(x)) after replacing

all analytic terms by their truncated Taylor series. Any hypothetic branch point arises
as a coalescence of the solutions x ≤ √

ρ of the pair of equations s = F(x, s),
1 = Fs(x, s). Since there is no such solution (these computations have been done
with Maple by taking 30 coefficients in the Taylor series of AR(x2) + AM(x2) +
NU(x2)), there is no branch point γ strictly smaller than

√
ρ, and consequently the

singularity of s(x) arises from the singularity of the term AR(x2)+ AM(x2)+NU(x2).
To conclude, [xn]s(x) has exponential growth of order ρ−n/2, which is exponentially
small compared with ρ−n . ��

Once we know that the number of self-dual pointed trees is exponentially small
compared to the total number of pointed trees,we canprove that the number of self-dual
UMR-trees is also exponentially small compared to the total number of UMR-trees.

Proposition 4.4 The following estimate hold:

[xn]S(x) = o([xn]T (x)).

Proof To prove the statement we obtain a generating function D(x) such that S(x) ≤
D(x) and that [xn]D(x) = o([xn]T (x)).We split the class of self-dual trees by looking
at the type of the center for each self-dual tree. The center of a connected graph is
the set of vertices that minimize the maximal path-distance from other vertices in the
graph. The center of a tree consists of a single vertex or two adjacent vertices (we say
it is an edge).

Let us write S(x) = S◦(x) + S◦−◦(x), where S◦(x) and S◦−◦(x) are the gener-
ating functions associated to self-dual trees whose center is a vertex and an edge,
respectively. We analyze each case separately.

We start with self-dual trees whose center is a vertex. In this situation the center is
necessarily a U-vertex labelled by a matroid of type U2n,n . In this case the degree of
the pointed vertex determines the rank of the U-vertex, which has to be counted with
multiplicity one. Hence, we have the crude bound S◦(x) ≤ Mul(AR(x2) + AM(x2) +
NU(x2))Mul(SU(x) + Al(x)), whose radius of convergence by Lemma 4.3 is strictly
bigger than ρ.

Let us study now self-dual trees whose center is an edge. Consider the pair of
pointed trees that arise when cutting the edge which plays the role of the center of the
tree (and pasting a virtual leg). Two situations may happen:

123



Discrete Comput Geom (2015) 54:954–979 977

(1) Each tree is self-dual.
(2) Each tree is non self-dual, but one is the dual of the other.

In both cases (1) and (2) we can easily find a bound and the sum of the upper
bounds yields the function D(x). Namely, SU (x)2 and AR(x2) + AM(x2) + NU(x2),
respectively. Therefore S◦−◦(x) ≤ SU(x)2 + AR(x2) + AM(x2) + NU(x2). Finally,
again by Lemma 4.3, the radius of convergence of S◦−◦(x) is strictly bigger than ρ.
Hence the result follows. ��

We can now prove that there are exponentially many 2-level polytopes coming from
matroid base polytopes:

Proof of Theorem 1.1 Every 2-connected 2-level matroid M on n elements is, by
definition, associated with a 2-level base polytope PM. The 2-connectedness implies
that the dimension of the base polytope is n−1. By Theorem 2.3 there is only another
matroid with congruent base polytope, namely M∗.

Denote by L2(n) the number of 2-connected 2-level matroids and by S2(n) the
number of self-dual ones. The number of non-congruent (n−1)-dimensional 2-level
polytopes associated with such family is L2(n)+S2(n)

2 . This yields a lower bound to the
number of (n−1)-dimensional 2-level polytopes.

Applying the structural result of Sect. 3 and using the notation of Sect. 4.2 we easily
see that L2(n) = [xn]T (x) and S2(n) = [xn]S(x). We do not have closed formulas
for the coefficients of the generating functions, but nevertheless we are able to provide
asymptotic estimates: by Theorem 4.2 the number of UMR-trees is asymptotically
equal to C · n−5/2 · ρ−n (1 + o(1)), where C ≈ 0.07583455 and ρ ≈ 0.20489584
are computable constants. Due to Proposition 4.4, the contribution of self-dual UMR-
trees to this asymptotic is exponentially small. Hence, the number of non self-dual
UMR-trees is asymptotically equal to the whole number of UMR-trees. Finally, the
number of UMR-trees up to the duality relation is half of this value plus the number
of self-dual UMR-trees. So, Theorem 1.1 holds by dividing the previous bound by 2.

��
To conclude, observe that we can use the singular expansion of T (x) in order

to get asymptotic estimates for the number of 2-level matroids, including the non-
connected ones. This family corresponds with the multiset construction applied over
UMR-trees (namely, forests). Hence, the generating function here is Mul(T (x)) =
exp

( ∑∞
r=1

1
r (T (xr ))

)
. Observe that

exp
( ∞∑

r=1

1

r
(T (xr ))

) = exp(T (x)) exp
( ∞∑

r=2

1

r
(T (xr ))

)
,

and the second term is analytic at x = ρ. Hence, in a domain dented at x = ρ the
singular expansion of Mul(T (x)) is equal to:

Mul(T (x)) = exp(T0 + T2X
2 + T3X

3 + O(X4)) exp
( ∞∑

r=2

1

r
(T (ρr ))

)
,
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(see the singular expansion of T (x) in the proof of Theorem 4.2) which has the
expression

Mul(T (x)) = F0 + F2X
2 + F3X

3 + O(X4),

with F0 ≈ 1.03526853, F2 ≈ −0.19252251, F3 ≈ 0.18553841. Applying now
Theorem 2.5 we conclude that

[xn]Mul(T (x)) = C ′ · n−5/2 · ρ−n(1 + o(1)),

withC ′ ≈ 0.07850913.Observe that the constantC ′ is slightly bigger than the constant
obtained in the asymptotic estimate for UMR-trees.
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