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Abstract Let I' C R® be a lattice, obtained from a module in a totally real algebraic
number field. Let G be an axis parallel parallelepiped, and let |G| be a volume of G.
In this paper we prove that

. [detIT'#(I' N G) — |G|
lim sup - >0
|G|—o00 In’ |G|

Thus the known estimate det T#(I' N G) = |G| + O(In* ! |G|) is exact. We obtain
also a similar result for the low discrepancy sequence corresponding to I.

Keywords Lattice point problem - Low discrepancy sequences - Totally real
algebraic number field
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1 Introduction
1.1 Lattice Points

Let ' C R® be a lattice, i.e., a discrete subgroup of R® with a compact fun-
damental set R*/T", detI" = vol(R*/T"). Let Ny,..., Ny > 0 be reals, N =
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(Ni,...,Ng), BN = [0, N7) x --- x [0, Ny), vol(BN) the volume of By, BN the
dilatation of By by a factor + > 0, BN + x the translation of BN by a vector
x e RS, (x1,...,%5) - V15 .-+, Ys) = (X1Y1, ..., XsYs), and let (xq,...,x5) - BN =
{Ga, oo xg) - Oy ooy ) | (1, -+ -5 9s) € BN Let

N(BN+xT)=#BN+xNT) = > Lpeix(?) (1.1
yel

be the number of points of the lattice I" lying inside the parallelepiped BN, where we
denote by 1 gy 4+x () the indicator function of BN+x. We define the error R(BN+x, I')
by setting

N(Bx +x,T) = (detI) " 'vol(By) + R(Bx +x,T). (1.2)

Let Nm(x) = x1x2...x; forx = (xq, ..., xs). The lattice I' C R® is admissible if

NmI'= inf |Nm > 0.
nf | INm(p)|
Let I" be an admissible lattice. In 1994, Skriganov [27] proved the following theorem:

Theorem A Lett = (t1,...,1t). Then
IR(t-[—1/2,1/2)" + x, T)| < co(I) logy ™' (2 + [Nm(t))), (1.3)

where the constant co(I") depends upon the lattice T only by means of the invariants
detI” and Nm T'.

In [27, p. 205], Skriganov conjectured that the bound (1.3) is the best possible. In
this paper we prove this conjecture.

Let K be a totally real algebraic number field of degree s > 2, and let o be
the canonical embedding of K in the Euclidean space R*, o : £ 3 § — o(§) =
(01(8),...,05()) € R, where {0} }‘;.:1 are s distinct embeddings of /C in the field R
of real numbers. Let Nic,q(&) be the norm of & € K. By [6, p. 404],

Nij) =01(8)---05(§) and |Ng,@)| =1
for all algebraic integers a € K\ {0}. We see that [Nm(co(§))| = [Ni,@(&)|. Let
M be a full Z module in K and let "y be the lattice corresponding to M under
the embedding o. Let (co¢)~" > 0 be an integer such that (cq) 'y are algebraic
integers for all y € M. Hence

Nm g > Ci\/t'

Therefore, I" o4 is an admissible lattice. In the following, we will use notations I =
'y, and N = NyN, - - - Ny > 2. In Sect. 2 we will prove the following theorem:
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Theorem 1 With the above notations, there exist c1 (M) > 0 such that

sup |R(Bg.N + X, Tag)| = cr(M)logy ™' N (1.4)
6<[0,1]8

forallx € RS.

In [15, Chap. 5], Lang considered the lattice point problem in the adelic setting.
In [15,25], the upper bound for the lattice point remainder problem in parallelotopes
was found. In a forthcoming paper, we will prove that the lower bound (1.4) can be
extended to the adelic case (see [18]). Namely, we will prove that the upper bound in
[25] is exact for the case of totally real algebraic number fields.

1.2 Low Discrepancy Sequences

Let (B, 1\/),1{\;_01 be a N-point set in an s-dimensional unit cube [0, 1)*, By = [0, y1) x
- X [0, ys),

A(By, Ben)ircg) =#0 <k <N | By € By} =Ny ...y;.  (15)

We define the star discrepancy of a N-point set (S, 1\/),]2/:_01 as

1
D*(N) = D*((Be.n)py) =  sup |NA(By,(ﬁk,N),iV:7}>|. (1.6)

0<yp,...,ys =<1

In 1954, Roth proved that there exists a constant ¢; > 0, such that
* N-1 . s=1
ND*((Bi.N)i—py ) > ¢1nN) 7,

for all N-point sets (B, N),ivz_ol.

Definition 1 A sequence of point sets ((S, 1\/),]212_01)5’\?’:1 is of low discrepancy (abbre-
viated 1.d.p.s.) if D*((Bk,n)hg) = O(N~'(In N)*~1) for N — oo.

For examples of 1.d.p.s. see e.g. in [3,10,27]. Consider a lower bound for 1.d.p.s.
According to the well-known conjecture (see, e.g., [3, p. 283]), there exists a constant
¢> > 0 such that

ND*((Bin)isg) > é2(In Ny~ (1.7)

for all N-point sets (Bk,n) ,’(V;O] .In 1972, W. Schmidt proved this conjecture for s = 2.

In 1989, Beck [1] proved that ND*(N) > ¢In N(Inln N)'/87€ for s = 3 and some
¢ > 0.In2008, Bilyk et al. (see [4, p. 147], [5, p. 2]) proved in all dimensions s > 3 that
there exists some ¢(s), n > 0 for which the following estimate holds for all N-point
sets: ND*(N) > é(s)(In N) 'z 7.

There exists another conjecture on the lower bound for the discrepancy function:
there exists a constant ¢3 > 0 such that

ND*((Ben)p=y) > ¢3(In N)*/? (1.8)
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for all N-point sets (ﬂk,N),iV;Ol (see [4, p. 147], [5, p. 3] and [8, p. 153]).

Let W = ('p +x) N[O, 1)~ x [0, 00). We enumerate W by the sequence
(214(X), 22k (X)) With 21 £ (x) € [0, D*7L, 22, (x) € [0, 00), and z2;(X) < z2,;(X)
fori < j.In[27], Skriganov proved that the point set ((Br,y (X)) With B,y () =
(z1.k(X), 22.k(X)/z2,n (X)) is of low discrepancy (see also [17]). In Sect. 2.10 we will
prove

Theorem 2 With the notations as above, there exist co(M) such that
ND*((Bev X))y ) = ea(M)logy™ N (1.9)

forallx € RS,

This result supports conjecture (1.7). In [19,20], we proved that (1.9) is also true
for the Halton sequence, and (¢, s)-sequences.

We note that the constant ¢, depends on the chosen module M. Hence we get a
lower bound for translations of one concrete lattice. We do not understand if ¢, (M) is
uniformly bounded from below for all module M. However, it seems that conjecture
(1.7) is more likely than conjecture (1.8), because the following result of Beck [2]:

Consider a Kronecker’s lattice {(n, nay + my, ..., na5—1 + my_1)|(n,my, ...,
mg—1) € Z°} and the corresponding Kronecker’s sequence Py = {({nai},...,
{nos—1}, n/N)},I:/:_OI, where & = (a1, ...,a5_1) € R*~!. Then that for almost all

o € R*~!, we have that D(Py) > c(s)(log N)*~! loglog N, with a uniform constant
c(s) depending only on the dimension s.

2 Proof of Theorems

In this paper we consider a fundamental units of the field L and the appropriate
toral automorphisms Ay, ..., Ay_1. Applying the profound Chevalley’s result [9], we
construct a Hecke character, corresponding to Ay, ..., As_1.

The main idea of this paper is to express the essential part of the normalized dis-
crepancy function as a truncated Lfunction with the above Hecke character. Using the
non-vanishing property of an L-function, we obtain the assertion of Theorem 1.

Let us describe the main steps of the proof of Theorem 1:

In Sect. 2.1, we use the Poisson summation formula and the standard trick of
‘smoothing’. This allows to express the discrepancy function R in terms of absolutely
convergent Fourier’s series. Next we decompose the domain of the summation in three
parts, and we obtain that Rg = Ay + By + Cy. Using the expectation function E,
we get supg |Rg| > |E(Ag)| — |[E(Bp)| — |E(Cp)|. Hence, to obtain the assertion of
Theorem 1, it is sufficient to find the lower bound of | E(Ag)| and the upper bounds
of |[E(Bp)| and [E(Co)|.

In Sect. 2.2, we consider the fundamental domain of the field 1C. We apply [30] to
estimate the error term in the lattice point problem in a compact convex body. We use
these results to compute the difference between an L-function and the corresponding
truncated L-function, and also to estimate the value of the domain of the summation
in the Fourier’s series of Ajy.
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In Sect. 2.3, we use the Chevalley theorem [9] to construct a special Hecke character.

In Sect. 2.4, we consider the truncated L-function ¢, with the above Hecke character.
Using the estimates of Sect. 2.2 and the non-vanishing property of L-function, we
obtain the lower bound of .

In Sect. 2.5, we find the lower bound of | E (Ap)|. First, we decompose the domain of
the summation in seven parts, and we get that Ag = Ag+.A; +- - -+ Ag. Using results
of Sect. 2.2, we compute |E(A;)| + - - - + | E(Ag)|. In addition, we decompose Ay in
several parts and we select the main part A7(I'" 4 x). Lemma 12 is the main result
of this subsection. Let [+ = AZS, Z,, ={(ay, ..., ax)T|a,- ef{0,1,...,p—1},i =
1,...,s},and A, = AZ;',, where p is obtained from the Chevalley theorem (see
Theorem C). In Lemma 12, we prove that p—* ZbeAp |A7(T't + b/ p)|> may be
estimated from below as a part of the corresponding L-function. Next, using results
of Sect. 2.4, we get the lower bound of |E(Ap)]|.

In Sect. 2.6, we cite some inequalities from [27].

In Sect. 2.7, we use the dyadic decomposition method (see, e.g., [27]) to obtain the
convenient expressions for E(By) and E (Cy).

In Sect. 2.8, we apply inequalities from Sect. 2.6 to obtain the upper bound estimate
for |E(Bp)]|.

In Sect. 2.9, we apply the Koksma—Hlawka inequality and Theorem A to obtain the
upper bound estimate for | E (Cy)|.

2.1 Poisson Summation Formula

It is known that the set M of all 8 € K, for which Tric,g(@p) € Zforalla € M,
is also a full Z module (the dual of the module M) of the field K (see [6, p. 94]).
Recall that the dual lattice I’ j\_/l consists of all vectors = € R* such that the inner
product (y, ) belongs to Z for each y € I'. Hence e = Fj/l. Let O be the ring
of integers of the field /C, and let aM+ C O forsomea € Z \ 0. By (1.1), we have
N(BN+x,T ) = N(@ 'By + a 'x, I"'y,-1. o). Therefore, to prove Theorem 1 it
suffices consider only the case M+ C . We set

pr=min{b € Z | bO C M+ C O, b > 0)}. .1

We will use the same notations for elements of O and I'p. Let Dy be the ring
of coefficients of the full module M, Uy be the group of units of Dy, and let
N, ..., Ns—1 be the set of fundamental units of /(. According to the Dirichlet
theorem (see e.g., [6, p. 112]), every unit € € Upq has a unique representation in
the form

= (=D 22)

where ay, ..., a,—; are rational integers and a € {0, 1}. It is easy to proof (see e.g.
[19, Lemma 1]) that there exists a constant ¢z > 1 such that for all N there exists
n(N) € thyg with [IN;N~/5| € [1/e3, c3], where N; = Niloy(n(N)|,i = 1,...,s,
and N = N;---N;.Leto (n(N)) = (61(n(N)), ..., o5(n(N))). We see that o (n(N)) -
@ -BN+x)=80- By +x; and
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yelpmN@:-Bn+x) < y-0mN) € Py N0 - By +x1)),
with x| = o (p(N) - X + o (n(N)) - N/2 — N'/2. Hence
N@-Bx+x,Tp) =N - By +x1. T p).
By (1.2), we have
RO - BN +x,Tp) = R(O - By +x1,Ta).
Therefore, without loss of generality, we can assume that
NNV e1/es,e3], i=1,...,s. (2.3)

Note that in this paper O-constants and constants cy, ¢z, .. . depend only on M.
‘We shall need the Poisson summation formula:

detl D fy —X)= D Fye((y.x)). (2.4)

yell yel'l

where

Fo = /R FOe(ty, x))dx

is the Fourier transform of £(X), and e(x) = exp(2m+/—1x), (y,X) = yjx1 + --- +
vsXs. Formula (2.4) holds for functions f(x) with period lattice I if one of the functions
f or fis integrable and belongs to the class C* (see e.g. [28, p. 251]).

Let TBN () be the Fourier transform of the indicator function 1 gy (p). It is easy to
prove that iBN (0) = Np---Ng and

N

~ e(Niyi) =1 1psin@Nivi) <
Tp(y) = E 27T—«/—_1Vz = gn—me(;‘]\]’y’/z) for Nm(y # 0).
2.5)
We fix a nonnegative even function w(x), x € R, of the class C*°, with a support
inside the segment [—1/2, 1/2], and satisfying the condition f]R w(x)dx = 1. We set
Q&) =wx)) o), 2:(x) =t 52@ 'x,..., 77 %), 7 > 0, and

2 = /]R elly. )R (. (2:6)

Notice that the Fourier transform §r (y) = Q (ty) of the function £2; (y) satisfies the
bound R
1Q2(zy)| < és, @)1+ TlyD ™. @7

It is easy to see that

Q@) =20)+0(y) =1+ 0(y) for [y — 0. (2.8)
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Lemma 1 There exists a constant ¢ > 0 such that we have for N > ¢
IR(Byn +x%.T) = R(Byn +x, 1) <2,
where

R(Bon +x.T) = (detD)™" D" Tp, () 2(y)e((y.x)., T=N"72 (29)
yelh\(0)

Proof Let B‘f,'tliI = [0, max(0, 01 N1 £1)) x---x [0, max(0, 63Ny £ 1)), and let 1 g (x)
be the indicator function of B. We consider the convolutions of the functions 1 BEL »)
and £2;(y):

2 * ]IB;& (x) = /]R 2:(x — y)]lB;?;J (y)dy. (2.10)

It is obvious that the nonnegative functions (2.10) are of class C*° and are compactly

supported in 7-neighborhoods of the bodies B;C,;], respectively. We obtain

Lt () = Ty (0 = Tpie (0, T (0 < 205 Ty (X) < Tpix (0. (211)

Replacing x by y — x in (2.11) and summing these inequalities over y € I' = 'y,
we find from (1.1) that

N(Byx +%xT) < N(Byn +x,T) < N(By{ +x,T),

and
NBy g +x.T) <N(Byx+x,T) < N(BS§ +x,T),
where )
N(Byx+x.T) =D 2+ L,y —x). (2.12)
yel
Hence

—NBx+xT)+N(B,{ +x,T)
<N(Bpn+xT) —N(Byn+x,T) < N(Bj g +x,T) = N(By§ +x.T).

Thus
IN(Bg.N +x,T) —N(Bgn +x, )| < N(B;§+x, ) —N(B‘;1§+x, vl). (2.13)
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Consider the right side of this inequality. We have that B; ;J \ By. ;J is the union of
boxes BY, i =1,...,25 — 1, where

s N
vol(B®) < vol(BY™) — vol(Bg") < [ [N + o) = [ (Vi = 1)
i=1 i=1
N

<N([Ja+n- H(l—r))<c5 t=&/N, t=N"2,

i=1 i=1

with some ¢; > 0. From (2.1), we get M 2 pfl(’). Hence [Nm(y)| > p|* for
y € I'p\0. Wesee that [Nm(y | —p,)| < vol(B® 4+x) < p; fory,,y;, € B® +x
and N > ¢;pj. Therefore, the box B 4 x contains at most one point of " for
N > ¢pj. By (2.13), we have

IN(Box +x.T) = N(Bgn +x.T)| <2° —1 for N > épt. (2.14)
Let 1(Box)
R(Byn +x,T) = N'(Bon +x,T) — %. (2.15)

By (2.12), we obtain that N(Bgn+x,T)isa periodic function of x € R” with the
period lattice I'. Applying the Poisson summation formula to the series (2.12), and
bearing in mind that .Q (y) = 2 (ry), we get from (2.9)

R(BpN +x,T) = R(ByN + %, T).

Note that (2.7) ensure the absolute convergence of the series (2.9) over y € r+ \ {0}.
Using (1.2), (2.14) and (2.15) , we obtain the assertion of Lemma 1. O

Let n(r) = n(t]), t € R be an even function of the class C*; moreover, let
n) = O0for |t] < 1,0 < n() < 1for|t] < 2 and n(t) = 1 for |t|] > 2. Let
n=s"'log, N,M = [/n] , and

nm(y) =1—nCNm(y)|/M). (2.16)
By (2.5) and (2.9), we have
R(Bgn +x,T) = (° det ) "L (Ax, M) + B(x, M)), (2.17)

where

Ax = Y Hsin(n@iN,-y,-) nu ()2 (xy)elly, %) + )

yeri\0i=l1 Nm(y)
Bx. M) = z Hsin(n@iN,-y,-)(l —nu(p)2(ty)e({y, x) +)5)’
yeri\0i=l1 Nm(y)
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with x = Zlgigs 0; N;yi /2. Let

E(f) = / £0)d6.
[0,1]%

By the triangle inequality, we get

7¥detl’ sup IR(Bo.n + x, T)| > |E(A(x, M))| — |[E(B(x, M))|. (2.18)
0<[0,1]°

In Sect. 2.5 we will find the lower bound of |[E(A(x, M))| and in Sect. 2.9 we will
find the upper bound of |[E(B(x, M))]|.

2.2 The Logarithmic Space and the Fundamental Domain

We consider Dirichlet’s Unit Theorem (2.2) applied to the ring of integers O. Let
€1,...,€&5_1 be the set of fundamental units of Up. We set [;(x) = In|x;|, i =
L...,81x) =0X),...,x),1=(1,...,1),wherex € R® and Nm(x) # 0. By
[6, p. 311], the set of vectors 1,1(e;),...,1(e5—1)) is a basis for R*. Any vector
I(x) € R* (x € R®, Nm(x) # 0) can be represented in the form

1x) = &1+ &1l(er) + -+ + & 1l(e5-1), (2.19)

where &, &1, ..., & are real numbers. In the following we will need the next defin-
ition.

Definition 2 [6, p. 312] A subset F of the space R® is called a fundamental domain
for the field K if it consists of all points x which satisfy the following conditions:
Nm(x) # 0, in the representation (2.19) the coefficients & (i = 1, ..., s — 1) satisfy
the inequality 0 < & < 1, x; > 0.

Theorem B [6, p. 312] In every class of associate numbers (# 0) of the field IC, there
is one and only one number whose geometric representation in the space R® lies in
the fundamental domain F .

Lemma A [30, p. 59, Thm. 2, Ref. 3] Let I" C R¥ be a lattice, detT' = 1, Q c Rk a
compact convex body and r the radius of its greatest sphere in the interior. Then

vol(Q) (1 — j—f) <#I'N Q < vol(Q)(1 + }/—f),

provided r > k2.

Let I' C R¥ be an arbitrary lattice. We derive from Lemma A

sup [#I°N (1Q + x) — tfvol(Q)/det '] = O (X1 for 1 — oo. (2.20)

xeRS

See also [11, pp. 141, 142].
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Lemma 2 Let emax = max|<j<s [(e¥);| and emm = minj<;<s [(eX);|. There exists a
constant cq, c5 > 0, such that

#keZ ek <ey=ci T 4002 (2.21)
and
#keZ ek ey =T O (2.22)

Proof By (2.19), we have that the left hand sides of (2.21) and (2.22) are equal to

s—1

#HkeZ | D kiljen) <t j=1.....s},
i=1
and
s—1
#keZ | D ki) = —t, j=1,....s}.
i=1

respectively. Let
={xeRx; <1, jell,s]} and Q) = {x e R '|x; > —1, j e[l,s]},

withx; = x(lj(e1)+---+x5-1/j(e5-1). Wesee x1 +- - -+x; = 0. Hence x; > —s+1
forx € Qrandx; <s—1forx e Q (j =1,...,5). By [6, p. 115], we get
det(l;(lej1)i, j=1,...s—1) # 0. Hence, Q, is the compact convex setin RS, i =1, 2.
Applying (2.20) with k = s — 1, and I" = Z*~!, we obtain the assertion of Lemma 2.

O

Let cI(K) be the ideal class group of IC, h = #cl(K), and cl(K) = {Cy, ..., Cp}.
In the ideal class C;, we choose an integral ideal a;, i = 1, ..., h. Let 91(a) be the
absolute norm of ideal a. If # = 1, then we set pp = l and ')y = I'p. Leth > 1,
i €[l,h],

h
Mi={ueO|u=0moda;}, T;=0(M), and p,=[][N(@). (223)

Lemma3 Letw > 1,i € [1,h], Fp(s) = {y € F | INm(y)| < My,sgn(y;) =

Gi,i =1,...,s}, where sgn(y) = y/|y| fory #0and ¢ = (g1, ..., 65) € {—=1, 1}
Then there exists ce; > 0 such that

sup | > 1 —coMijw'| = oM,

XeR® ) cwry+0nFy, (6)

) for M| — oo.

Proof 1t is easy to see that [F, (g) = M,'/5F, (¢). By [6, p. 312], the fundamental
domain F is a cone in Rf. LetF = {y € F| |yil < yo,sgn(y;) =¢i,i =1,...,s}
andletF = {y € F | [Nm(y)| > 1}, where yp = SUPyeF, (¢),i=1,....s |Yi|. We see that

.....
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Fi(¢) = F \ [F and IF’, IF are compact convex sets. Using (2.20) with k = s, = wl;,
and r = M, 1/s , we obtain the assertion of Lemma 3. O

2.3 Construction of a Hecke Character by Using Chevalley’s Theorem

Let m be an integral ideal of the number field /C, and let 7™ be the group of all ideals
of K which are relatively prime tom. Let S' = {z € C | |z] = 1}.

Definition 3 [24, p. 470] A Hecke character mod m is a character x : J™ — S ! for
which there exists a pair of characters

xr: (O/m)* — S xeo i RH* — S,

such that
x (@) = xf(a)xco(a)

for every algebraic integer a € O relatively prime to m.

The character taking the value one for all group elements will be called the trivial
character.

Definition 4 Let Ay, ..., A; be invertible s x s commuting matrices with integer
entries. A sequence of matrices Ay, ..., Ay is said to be partially hyperbolic if for all
(n1,...,ng) €24 \ {0} none of the eigenvalues of A’fl ...AZ‘J are roots of unity.

We need the following variant of Chevalley’s theorem ([9], see also [29]):

Theorem C [13, p. 282, Th. 6.2.6] Let Ay, ..., Ay € GL(s,Z) be commuting
partially hyperbolic matrices with determinants wy, ..., wg, p® the product of the
first k& primes numbers relatively prime to wy, ..., wy. If z, Z € Z° and there are d
sequences { ji(k), 1 <i < d} of integers such that

-(n) - (k)
Al AN g=2(mod p®),  k=1,2,...,

-(0) -(0)

then there exists a vector (j; 7, ..., j; ) € 75 such that
i i
Al A T=1 (2.24)
Let
1 if s is odd,
p =12 if s is even and Ae with Nic;o(e) = —1, (2.25)

3 if s is even and e with Ng/p(e) = —1.

Let u € {1,2}. By [6, p. 117], we see that there exist units &; € Up with
Nijoe) = Li=1,....,5s — 1, such that every & € Up can be uniquely repre-
sented as follows:

ks—1
s—1

€= (=% &S with (ky,... k1) €Z°7), a e {0, 1) (2.26)
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Let u = 3. By [6, p. 117], there exist units &; € Up with N p(e;) = 1,i =
I,...,s—1and Ni,p(e0) = —1,suchthatevery & € Uy can be uniquely represented
as follows:

&= (—1)’“5‘8245"1(l effll with (ki,..., ks—1) € Z*7', a1, ar € {0, 1}. (2.27)

Consider the case u = 1. Let [; = diag((oj(ej)1<j<s), i = 1,...,5 — 1,
'o =0(0),f;,...,f;beabasisof I'p,e; = (0,...,1,...,00€Z%,i=1,...,sa
basis of Z°. Let Y be the s x s matrix withe; Y =f;,i = 1,...,s5s. Wehave Z°Y = T'¢.
LetA; =YLY Li=1,...,s—1.Wesee Z°A; =Z* (i = 1,...,s — 1). Hence,
A; is the integer matrix withdet A; =det; =1 (i =1,...,5s — 1).

Letz = (1,...,1)andz = —Z. Let h > 1, and let A; = p,I, where [ is the
identity matrix. Taking into account that (elf1 ... e];“_‘ 11 pé“) j = 1forsome j € [1, 5]
if and only if k& = --- = k; = 0, we get that Ay, ..., A; are commuting partially
hyperbolic matrices. By Definition 4, —1 is not the eigenvalue of Allcl ...A];S, and
iAllq . AI;“ # zforall (ki,...,ks) € Z°. Applying Theorem D with d = s, we have
that there exists an integer i > 1 such that (p3, p(i)) =1,

ZAK  AST £ 2 (mod p@) forall (ky,... k1) e Z Y,

and
(e’jl...sft;)j # —1 (mod p®) forall (ki,....ks_1) € Z*7Y, jell,s].
(2.28)
We denote this p(i) by p3. We have (p», p3) = 1. If h = 1, then we apply Theorem D
withd =5 — 1.
Let p3 = p3O and P = O/p3. Denote the projection map O — P by 7;. Let O*
be the set of all integers of O which are relatively prime to p3, P* = 71 (O%),

E=weP |Tk,.... k1) € Z~ " with v = (—1)/&\ ...effll (mod p3)},
where j =0, 1,and £ = & U E. By (2.28), &N E = D. Let
X1 ps(0) = (=1)) for ve&;, j=0,1. (2.29)

We see that 1, p, is the character on group £. We need the following known assertion
(see e.g. [12, p. 63], [14, p. 446, Chap. 8, Sect. 2, Ex. 4]) :

Lemma B Let G be afinite abelian group, H is a subgroup ofG, and x gy is a character
of H. Then there exists a character x¢; of G such that x g (h) = x¢(h) forallh € H.

Applying Lemma B, we can extend the character x p, to a character 2, ,, of group
P*. Now we extend x», ,, to a character x3 p,, of group O by setting

X3,p3(V) = x2,ps (M1 (v)) for ve O (2.30)
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Let
X4,p3(V) = X3,p3 (V) Xoo (V) With  xoo(v) = Nm(v)/|[Nm(v)],

for v € O*, and let
X5,p3 (V) = x4,p; (V). (2.31)

We need to prove that the right hand side of (2.31) does not depend on units & € Up.
Lete = e]]” . ..sffll.By (2.26),(2.29), and (2.30), we have x3 p;(¢) = 1,Nm(e) =1,
and x~o (&) = 1. Therefore

X4,p; (V€) = X3, p3 (V€) Xoo (VE) = X3, p3 (V) X3, p3 (€) Xoo (V) X0 (8) = X3, p3 (V) Xoo (V).
Now let & = —1. Bearing in mind that x3 p,(—1) = —1, Nm(-~1) = —1, and

Xoo(—1) = —1, we obtain x4, ,,(—1) = 1. Hence, definition (2.31) is correct. Let ZP3
be the group of all principal ideals of U which are relatively prime to p3. Let

X6.p3 (V1/v2)) = X5,p3(V1))/ X5,p3((v2)) for vy, vz € O™
Let PP3 is the group of fractional principal ideals (a) such that ¢ = 1mod p3 and

oi(a) >0, i=1,...,s.Letmp : ZP3 — ZIP /PP be the projection map. Bearing
in mind that xe ,,(a) = 1 for a € P, we define

X7.p3 (T2(0)) = xe,p5(a) for aeIP.

By [23, p. 94, Lemma. 3.3], J "3 /P¥3 is the finite abelian group. Applying Lemma B,
we extend the character x7 ,, to a character xg ,, of group JP3/PP. We have
x8,ps(a) = 1 for a € PP, and we set x9 p,(a) = xg,p;(7w3(a)), where 73 is the
proection map JP — JP3 /PP Itis easy to verify

X9, p3 (V) = X8,p3 (T3((V))) = x7,p3(T3((V))) = X7, p3 (T2((V)))
= X6,p3 (1)) = X4,p3 (V) = x3,p3 (V) Xoo (V)

for a € ZP3. Thus we have constructed a nontrivial Hecke character.

Case u = 2. We repeat the construction of the case u = 1, taking p3 = 1 and

X4,p3((v)) = Nm(v)/|Nm(v)|.
Case u = 3. Similarly to the case u = 1, we have that there exists i > 0 with

eh ...sffll £ go(mod p) forall (ki,... ke_1) € Z*\. (2.32)
We denote this p) by ps. Let
Ei=weP |3k, ... k1) € Z " with v = e}l ¥ (mod p;0)},

where j =0, 1,and £ = E U E1. By (2.32), & N E = @. Let

X2.p,(0) = (=1)) for ve&, j=0,1.
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Next, we repeat the construction of the case u = 1, and we verify the correction of
definition (2.31). Thus, we have proved the following lemma:

Lemmad4 Letu € {1, 2, 3}. There exists p3 = p3(i) > 1, (p2, p3) = 1, anontrivial
Hecke character X p,, and a character ¥ ,, on group (O/p3O)* such that

Xp3 () = Xps(v), Wwith Xp;(v) = Xp; (V)Nm(v)/[Nm(v)],

forv e OF and ) p;(v) = 0 for (v, p30) # 1.

2.4 Non-vanishing of L-functions

With every Hecke character y mod m, we associate its L-function

L0 =

where a varies over the integral ideals of /C, and we put x (a) = 0 whenever (a, m) # 1.

Theorem C [15, p. 313, Thm. 2] Let x be a nontrivial Hecke character. Then

L1, x) #0.

Theorem D [21, p. 128, Thm. 10.1.4] Let (ax)x>1 be a sequence of complex numbers,
andlet ) ) _. ax = 0 (x%), for some 8 > 0. Then

> an/n* (2.33)

n>1
converges for N(s) > 4.

Theorem E [23, p. 464, Prop. 1] If the series (2.33) converges at a point sy, then
it converges also in the open half-plane Ns > Nso, the convergence being uniform
in every angle arg(s — s0) < ¢ < m/2. Thus (2.33) defines a function regular in
Ns > Nsp.
Letfy, ..., £ beabasis of T o, andletfli, el fsJ- be a dual basis (i.e. {f;, fl.l) =1,
(f; fjl>=0,1§i,j5s, i # j). Let
Ay ={afi +- +aft|0<aqy<w—1,i=1,...,s}, (2.34)

and A, = {b € Ay | (w,b) = 1}.

Lemma 5 With notations as above,

p(M, j) = > Ap@)=0M'"1), jellh], (235
yel;NF, INm(y)|<M/2
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and
> py(@) =0 (2.36)
MN(a)y<M /2

for M — oo, where a varies over the integral ideals of K.

Proof By Lemma 4, we have

pM, )= D Kp@ > i sih@ s, ),

aGA*I‘,3 gie{—1,+1}, i=1,....s

where
plas, j) = > L.

yel';NF, y=a mod p3,
INm(p)|<M/2, sgn(yi)=¢i, i=1,....s

Using Lemma 3 with M| = M /2 and w = p3 , we get

P g )= 2 L= co;M/p}+ OM' ™).
ye(psTj+a)nF, [Nm(y)|<M/2
sgn(yi)=gi, i=1,...,s
Therefore
oM, j) = Z K ps (@) Z ¢l colce M/ pS + O(M'15Y)
acAyp, sie{—1,+1}, i=1,...s
— O(Ml_l/s),

Hence, the assertion (2.35) is proved. The assertion (2.36) can be proved similarly
(see also [7, p. 210, Thm. 1], [22, p. 142, and p.144, Thm 11.1.5]). O

Lemma 6 There exists My > 0, ig € [1, h], and c¢7 > 0, such that

Po(M. )| = ¢7 for M > Mo with po(M, i) = > ).
| Nm ()
yelinF, INm(y)|<M/2

Proof Let cl(K) = {Cy,...,Cp}, a; € C; be an integral ideal, i = 1, ..., s, and
let Cy be the class of principal ideals. Consider the inverse ideal class C;” ! We set
a; ={ag,...,ax}N Cfl . Then for any a € C; the product ad; will be a principal ideal:
ag; = (a), (@ € K). By [6, p. 310], we have that the mapping a — («) establishes a
one to one correspondence between integral ideal a of the class C; and principal ideals
divisible by a;. Let
piM) = D Xpy(@)/N(a).
N(a)y<M/2
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Similarly to [6, p. 311], we get

Xp3 (@) Xp3(a/a;)
aln=2, 2 ng T 2 2 ey
I<i<h aeC;,M(a)y<M/2 1<i<h aeCy,M(a/&;))<M/2 !
aEOmOdl'l,‘
Let
pp(M.)= D Xp(0)/N).
aeCy, May<M/2
a=0 mod &;
We see o (1)
X a; Loy
prM) = D" TE oy (M), ). (2.37)
\Sen N(1/a;)

By Lemma 4, we obtain x,,(¥)/INm(»)| = xp;((¥))/N((y)). Using Theorem B,
we get po(M, i) = pp(M,i). From (2.36), Theorem C, Theorem D, and Theorem E,

we derive p; (M) M>go L(1, xp;) # 0. By (2.35) and Theorem D, we obtain that

. M .
there exists a complex number p; such that po(M, i) =¥ pi,i =1,...,h. Hence,
there exists My > 0 such that

IL(L, %p)I/2 < lor(M)] and |pi — pa(M, )] < |L(1, %p)I88) ', (2.38)

with B = >, M(a;) for M > Mo. Let p = maxi<i<p |0il = |pi|-
Using (2.37), we have

LA Xp)l/2 < o1 D] < pB +| D) S
" ISZSh N(1/4;)

= pIB + |L(1’ Xp3)|/8 for M > M().

(i — P2(MN(G;), 1)

By (2.38), we get for M > My

p =L, %p)l@B) ™" and |po(M, io)| = |p2(M, i0)| = |L(1, xp)|(88) "
Therefore, Lemma 6 is proved. O

Lemma 7 There exists M> > O such that

|9 > c¢7/2 for M > M,, where ¥ = z M
yel“,-oﬂ]-' m(}’)
Proof Letny (k) =1—nQ2lk|/M),
= Y P sy IinOnG)
yel“,-oﬁ}‘ |Nm(y)| yeriom]: |Nm()’)|
INm(y)[<M/2 M/2<|Nm(y)| <M
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From (2.16), we get ny (y) = nu(Nm(p)), nu(y) = 1 for [Nm(y)| < M/2, and
Ny (y) = 0 for INm(y)| > M. Using Lemma 4, we derive

z Xps @) (Nm(y))
Nm(p)|

Y =

and O =0 + 0n. (2.39)
yeigNF. [Nm(y)|<M

Bearing in mind that Nm(y) € Z and Nm(y) # 0, we have

apnm (k) . .
‘[92 = Z nT Wlth a, = Z Xp3 (}’)
M/2<n<M }'EFioﬂf, INm(y)|=n

Applying Abel’ transformation

D afi=giFi— D (s —g)F, where Fr= > fi,

m<k<n m<k<n—1 m<i<k

with fi = ax, gk = nu()/kand Fy = > cr, 07 m/a-0.1<Nm@y)i<k Xp3 (V) We
obtain

Vo = nu(M)Fy /M — Z mk+ 1) /(k +1) — 0y (k)/ k) Fy. (2.40)
M/2—-0.1<k<M—1

Bearing in mind that 0 < 7p;(x) < 1 and n/(x) = 0(1), for |x| < 2, we get

Ik + 1D/ + 1) —quk)/K)| < [nmk+1)/(k+ 1) = nuk + 1)/ k)]
+ 10 (k + 1) — (k) / k|

< 1/K2+2(M)~" sup |0 (x)] = 0K 2).
x€[0,2]

Taking into account that Fy = O(M'~1/%) (see (2.35)), we have from (2.40) that
D2 = O(M1/5). Using Lemma 6 and (2.39), we obtain the assertion of Lemma 7. O

2.5 The Lower Bound Estimate for E(A(x, M))
Letn = s 'log, N with N = Ny --- Ny, v = N~2, M = [\/n], and

Go = {y e T | Nm(p)| > M},
Gi={y e | INm(y)| < M, max|y;| > 1/7%},
l

Gy ={y e T | INm(y)| < M, 1/7* > max |yi| > n/t},
1

Gy ={y e | Nm()| < M, n/t > max|y;| > n~*/7},
1

Ga={y €T\ 0| |Nm(p)| <M, max|yi| <n "', n™5 > NS min |y},
1 1

@ Springer



Discrete Comput Geom (2015) 54:826-870 843

1

Gs ={y e T INm(p)| < M, max|y;| <n*t", NYSmin|y| € [n75, n*]},
1 1

-1

Ge={y et | INm(y)| < M, max|y| <n "t NYS min|y;| > n'}.
1 1

(2.41)
We see that
F*\0=GoU---UGs and G;NG; =0, fori # j.
Let p = p1pap3, b € Ap. By (2.16) and (2.17), we have
Ab/p, M) = > Aib/p, M) and Ay(b/p, M) =0,  (242)
0<i<6
where
. Qy)e((y.b/p) + i
Ab/p =3 H81n(n9,~Niyi)nM(y) (ty)e({y,b/p) )’ (2.43)

yeG;i=1 Nm(y)

with x = Zlfifs 0; N;yi/2.
We will use the following simple decomposition (see notations from Sect. 2.2 and
(2.25)-(2.27)):

6= U U

I<jsM  yoertnF,|Nm(yp)le(i—1./]

X U {y eGi ly =yo(=D"eg?ek, ke Z*7'}, ie[l,6], (244

ap,ar=0,1

wherek:(k1,...,ks,l),e'k:elf1 ~-~ef‘f1',ande():1foruz 1,2.

Lemma 8 With notations as above
Ai(b/p, M) = O(*>?Inn), where M =[/n] and i€ [1,5].

Proof By (2.43), we have

1A4ib/p. M) < > T Isin(x6;N;y)R2(xy)/Nm(y)|. (2.45)

yeG; 1<j<s

Casei = 1. Applying (2.20), weobtain#{y € I't : j <|y| < j+1} = 0@ .
By (2.7)weget 2(ty) = O((t|y|)_2‘*) fory € G.From (2.45) and (2.41), we have

— —2s =28
Ai(b/p, M) = O( > T (max [y

yeFi,maxielmJ |)/,’|21/‘L’2
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_ —2s 1) —28
=0( > > o Y(max 1))

j=t2 yert
max; |y;|€lj,j+1)
T—ZS
=0( 2 ) =00
jzt2

Casei = 2.By(2.7) we obtain @(ty) = O(n’zs)fory € G».By[6,pp.312,322],
the points of ' N F can be arranged in a sequence y® so that

INm(p )| < INm@@)| < -+ and ¢ Vk < Nm(p©)| <Pk, (246)
k =1,2,... for some @ > ¢ > 0. Let egax = max]<j<s |(sk)l~| and egin =

minj<;<g 1(e%);]. Using Lemma 2, we get
#HkeZ ek <t =0m""), where t=N2=¢2"  (247)

max

Applying (2.44)—(2.47), we have

Ay(b/p. M)y =0( > > nE) = oMnFHh = o).

1<j<MkeZs!, ek <72
Case i = 3. Using Lemma 2, we obtain

ez ek, en r e

= c4(1n5_1(n?i);/‘t) ')+ 0t
= ofim (14 SR - (1 ST DR )
= 0m* 2Inn). (2.48)
Applying (2.44)—(2.47), we get
As(b/p.M)y=0( > > 1) = O(Mn* 2 1nn).

1<j=M keZs-1ek  eln=s~1/T,nst1 /7]

Case i = 4. We see minj<;<s | sin(wN;y;)| = O(n~°) for y € Ga. Applying
(2.44)—(2.47), we have

Asb/pl=0( > S )=o),

1<j=MkeZs—, ek, <t
Case i = 5. Similarly to (2.48), we obtain from Lemma 2 that
kezZ ek e TINTYS S FINTIS = 02 Inn).

min
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Therefore

As(b/p.M)=0( > > 1) = O(Mn*2Inn).
1<j<M k62571,El[;ine[n’S"lN’l/s,nSJrlN’l/S]

Hence, Lemma 8 is proved. O

Letg =(c1,...,6),1=(1,1,...,1),and

Ly ey, b/p +0(c)))

Asb/p, M, ) = 61+ ¢, /=D Y Nm()

v€Gs

] ) ) ) (2.49)
with 0(¢) = (61(g),...,0s(¢)) and 0;(¢) = (1 + ¢))O;N; /4, i =1,...,s.
By (2.43), we see

As/p, M) = > As(b/p, M, ). (2.50)

cefl, -1}y

Lemma 9 With notations as above
E(As(b/p, M)) = As(b/p, M, —1) + O(1),

where

Aio/p, M, =1) = (=2J/=D)* 3" ”M(”l)\flg(”y’)b/p», i=12.. 25

y€G;
Proof By (2.49) and (2.50), we have

[E(As(b/p, M)) — As(b/p, M, —1)]

_ |E(e(5i6;i Niyi/4))|
_0( Z Z z |Nm(y)| )

ce{l,—1} yeGe 1<i<s
s#-1

Bearing in mind that
e(z) — 1

2wA/—1z
and that |N;y;| > n®/c3 for y € Gg (see (2.3), and (2.41)), we get

E(e(6;2)) = (2.52)

[E(As(b/p, M)) — As(b/p, M, =1)| = O( D n*Nm(p)|™").
y€Ge

By (2.49) and (2.51), we obtain

12(zy) — 1

[ A6(b/p. M. ~1) — As(b/p. M. ~1)| = O( > NmO]

v€Ge
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By (2.8) and (2.41), we see §(ty) =14 0®m™?) for y € Gg. From (2.41), (2.44)
and (2.47), we have #G¢ = O(Mn*~"). Hence

E(As(b/p. M) — Asb/p. M. ~1) = 0( D n~*Nm(p)|"") = O(1).

v€Gs
Therefore, Lemma 9 is proved. O
Let
Gr = U U U Bk (2.53)
Yol LNF INm(yo)|<M a1,a2=0,1ke)y
with
Yv={keZ " |ex, =N/}, (2.54)
and

Typarark =y € T |y = yo(=D)e?e ).
We note that #7y, 4,0,k < 1 (may be yo(—1)"ei’ek ¢ T'h).
Lemma 10 With notations as above
E(A(b/p, M)) = A7(b/p, M, —1)+ O(n*>*Inn), where M = [/n]. (2.55)
Proof By (2.51), we have
|As(b/p. M, —1) — A7;(b/p. M. —1)| = O(#(G7 \ Ge) + #(Gs \ G7)).

Consider y € Gg (see (2.41)). Bearing in mind that minj<; <5 |yi| > nN~S_ we get

vil=INm)| [] IylI™ = CTONTETDS <7 with 1= N2
[1.5]3j#i
Thus
Go={y eT" | Nm(p)| < M, N/ min|y| > n'}.
L

From (2.53), we obtain G7 2 Gg. Bearing in mind that [Nm(y)| > 1 fory € rt \ O,
we have that Gg 2 G5, where

G5 = U U U Tyo,al,az,k,

yoeltNF, INm(yo) <M a1.a2=0,1 keyy

with )
Iy =(keZ | Nk >n¥) (2.56)

1

By Lemma 3, we get #{y € r+nr, INm(yy)| < M} = O(M). Therefore

|As(b/p, M, 1) — A7(b/p, M, —1)| = O(M#(Yn \ Vn)).
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Using Lemma 2, we obtain

#ON\IN) =k € 2" | ey € [INV5, n® N™10)
= es(I* V) = @B N ) + 002

= 0w (1 - (1- 2 )

=0n *nn), n=s" log, N.

Hence ) )
[ As(b/p, M, —1) — A7(b/p, M, —1)| = O(Mn* "> Inn).
Applying Lemmas 8 and 9, we get the assertion of Lemma 10. O
Let

1 ify e w0,
0 otherwise.

5w()’) = ’

Lemma 11 Lety € O, then

1
— > ey y)/w) = 8u(y).
w

yeAy

Proof 1t easy to verify that

% Z e(kb/w) = 8,/ (b), where §,(b) = (2.57)

O0<k<w

1 if b=0modw,
0 otherwise.

Lety = dify + -+ difs, and y = aifi" + - + a,f;" (see (2.34)). We have
(y,y) = a1d1 +- - - +asd,. Bearing in mind that y € wQ if and only if d; = 0 mod w
(i =1,...,s), we obtain from (2.57) the assertion of Lemma 11. O

Lemma 12 There existb € Ay, cg > 0 and Ny > 0 such that
[E(A(Mb/p, M))| > cgn®™' for N > Ny.

Proof We consider the case ; = 1. The proof for the cases u = 2, 3 is similar.
By (2.51) and Lemma 11, we have

228 . (Y D (¥2)8p(¥1 —v2)
== Az(b/p. M, -D)|* = L
0= "5 2, MA®/p M —DF = 3 Nm(y )Nm(y,)

beA, V1:726G7

_ nm(y) 2
— Z | Z Nm(y)| . (2.58)

beA, yeG7, y=b mod p
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Bearing in mind that 3, (y) = 0 for [INm(y)| > M (see (2.16)), we get from (2.53)

that .
nm(SeTY) 2
=YY Yy e
beA, ¢=-1.1keYy yperinF, cekyer+
ce¥y=b mod p

We consider only b = p1bg € A, where by € Ay, ,, and p = p1p2p3. By (2.1), we
obtainI"), » C 't crpand Fho={ye I't|y = 0 mod p}. Hence, we can take
', 0 instead of 't Wesee ceky eTpforally e Tp, ke Z° ' and ¢ € {—1, 1}.

Thus y
0> Z | Z Z nm(p1cesy) |2.

Nm ek
beA,,2,,3 s=—1,1 yeloNF (p1g }’)
keVn  ceky=b mod p;p3

By Lemma 4, (p2, p3) = 1. Hence, there exists wo, w3 € Z such that pow, =
! mgd p3 and p3w3 = l.mod P2 It“is easy to verify thatif by, by € A, (see (2.34)),
b3, b3 € A, and (b, b3) # (b2, b3), then

b2 p3ws + b3 paws # bap3ws + bz paws mod paps.

Therefore
Apypy ={beApp, | b2 e Ay, b3 € Ay, with
b = bz p3w3 + b3 paw, mod pap3}.
Thus
nm(p1y) 2
> _IMAPTY )
=3 3y > )
szApz b3EAp3 c=—1,1 yelCoNF
keVv  ceky=b, p3ws-+bs paws mod pap3
.. nm(p1y) 2
= > 2 lims) X > ey m—

Nm
baeA,, b3, c=—1,1 yeToNF (p15y)

keWv  ceky=b; p3wi+bs prw mod pap3

Z Z | Z Z )'('p3(§6‘k}’)77M(P17)|2.

Nm
bredy, bsed,, c=—1,1 yelonF (Picy)
keVv  ceky=b; p3ws-+b3 paws mod pap3

Using the Cauchy—Schwartz inequality, we have

.o k
s Xps(seVInu(p1y) 2
pr3e= Z | Z Z z psNm(cy) | :
bred,, bied,, c=—11 yeLonF 1
keVv  ceky=b; p3ws-+bsz paws mod pap3
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We see that geky = bap3ws = by mod p; if and only if there exists b3 € A, such
that ceXy = by p3w3 + b3 pows mod p; p3. Hence

.. k
p%spgg - Z Z Z Xps(ce V)’?M(pl)’)|2' (2.59)

Nm
szApz c=—1,1 yel“@ﬁ]-' (gy)
keVy  ceky=b; mod p,

By (2.23), we get I';, = ge‘kl",-0 forallk € 751, ¢ € {—1, 1}, and there exists
D, C Ap, with

U (2Fo+b). where (paT'o +b1) N (palo +b2) =0, for by # by.
béq)io

We consider in (2.59) only by € @;,. Applying the Cauchy—Schwartz inequality, we
obtain

. k
25 5§ Xp3(§€ }’)nM(P]}’) 2
SOTSID D D ST
bye®d;y c=—1,1 yelCoNF
keVy  ceky=by mod p

B3> % ps (c€5YInm(pry) 3

¢=—L1 yelj,nF Nm(gy)
keYy

Using Lemma 4, we get

C gk NI _ ok Nm(selty)
Y Nmisy) ~ Y Nty
= (8P = iy () = iy () )]
) " P Ry

Hence

25 s Xps )nm(p1y) 2
rppez| 2 > IBNT} ~
c=—L1 yel,)nF Y

keYn

Bearing in mind that ny (p1y) = nm/p! (y) (see (2.16)), we obtain

XpsWnmyps (V) o

yel",-()ﬂ]-'

Applylng Lemma 2, we have from (2.54) that #)y > 0.5¢5(n/s)*~ Ufor N > No with
some No > 1,andn = s~} log, N. By Lemma 7 and (2.58), we obtain
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sup |A7(b/p, M, —1)| = 275o!/?
beA,,

—s_ s—1

> c7(2pipap3) " H#Vy = 0.5¢sc72p7 papss) *n T,

with M = [{/n] = [/log, N] > M;+log, No. Using Lemma 10, we get the assertion
of Lemma 12. O

2.6 Auxiliary Lemmas

We need the following notations and results from [27]:
Lemma C [27, Lemma 3.2] Let I" C R be an admissible lattice. Then

sup > ] A+ v —xh™™ < Hy

xeR yel 1<i<s

where the constant Hy. depends upon the lattice I" only by means of the invariants
detI” and Nm T'.

Let f(¢), t € R, beafunction of the class C°°; moreover let f(¢) and all derivatives
£® belong to L' (R). We consider the following integrals for 7 > 0:

1G.8) = /°° n(t)a(ti)e(—ét)

—00

dr, J5(%,€) =/oo F(OD(F)e(—ED)dt. (2.60)

Lemma D [27, Lemma4.2] Foralla > 0and > 0, there exists a constant ¢(q,g) >
0 such that

max([1(2, &)1, 177 (&, E)) < Eapy (1 + D)1+ 5D

Let m(t), t € R, be an even non negative function of the class C°°; moreover
m(t) =0 for|t| < 1,m(t) =0 for || > 4, and

+00

> m@in=1. (2.61)

q=—00
For examples of such functions see e.g. [27, Ref. 5.16]. Let p = (p1, ..., Ps),
pi>0,i=1,...,5,a>0,x=p=1,
B(prx1)n(axy) H @(pjxjym(x;) 1
X1

Wa.i (D, X) = for Nmx#£0, (2.62)

= Xj Xi

and Wa,i(p, X) =0forNm(x) =0, i =0,1,...,s.Let

Wai (09, %) = D" Wai(p, p)e((y.x). (2.63)
yel\0
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By (2.6) and (2.7), we see that the series (2.63) converge absolutely, and Wa,i(p, X)
belongs to the class C°°. Therefore, we can use Poisson’s summation formula (2.4):

Wai(,p.x) = det ' D~ Wai(p.y —x), (2.64)
yel’

where VT/a’,-(p, x) and W, ;(p, x) are related by the Fourier transform. Using (2.62),
we derive

. D, - 2) .
Wa,i(p. x) = H w (B x)) H w; "By x)).

jell, . s} jell,...sin{i}

where co-factors can be described as follows (see also [27, Ref. 6.14-6.17]):
If j=1andi # 1, then

w(z, é):/ ;n(at)a(n)e(—st)drzI(a*‘z, a'e). (2.65)

—00

Note that here we used formula (2.60). If j = 1 and i = 1, then

o0
1 - _ _
w?(r,6) = / Sn(and(ene(=Endr = aly (a 't,a7 ).
o
Note that here we used formula (2.60) with fi(¢) = n(t)/tz. If j > 2, then

% |
w§”(r,5) =/ TmOB(ne(—EnNdt = Tp, (7, 8). (2.66)

—00

Here we used formula (2.60) with f>(t) = m(r)/t! j=2,...,s, [ =1,2.
Applying Lemma D, we obtain for 0 < a < 1 that

i (z.8)] < Eas20(1+a~"[E) 7 and [ (7. £)] < Eas20) (1+IED ™, (2.67)

with j = 2,...,s,and [ = 1, 2. Now, using (2.64) and Lemma C, we get (see also
[27, Ref. 6.18, 6.19, 3.7, 3.10, 3,13]):

LemmaE Let I' C R® be an admissible lattice, and 0 < a <1.Then

sup |Wa,i(f‘, P, x)| < 5(25,23) det ll‘Hl;.

xeRS
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2.7 Dyadic Decomposition of B(b/p, M)

Using the definition of the function m(x) (see (2.61)), we set
s
M(x) = [ m(x)). (2.68)
j=2

Let29 = (291, ...,29), and

Yq(y) = M™% »)2(ty)/Nm(p),
Bq(M) = By(b/p, M)

= > ]sin@oNivd (1 = nu ) ¥q)e(y, b/ p) + %),

yer\0i=1
(2.69)
with x = Zlgifs 0; N;iyi/2.
By (2.17) and (2.61), we have
Bb/p, M) = Z Bq(M), (2.70)

QelL

with L ={q=(q1,...,95) €Z° | q1 +---+ g5 = 0}.
Let

ByMy= D []sinGtiNiyi)n(n2™9/Myyq(»)e((y.b/p) + %), (2.71)
yelh\0i=1

and

CoM) = > []sinGo:Nivd(1 = nu ()

yert\oi=I
X(I =271 /M) yq(¥)e((y. b/p) + X).
According to (2.16), we get ny(y) = 1 — n(2INm(p)|/M), n(x) = 0 for x| < 1,

n(x) = n(—x) and n(x) = 1 for |x| > 2. Let n(y1279 /M)m(y22792) - - - m(y;27%)
# 0, then [Nm(p)| > M (see (2.61)), and

(A =nu@Nn(12~ 1 /M) = nINmp)|/M)n(y1279 /M) = n(y1279 /M).

Hence _
By(M) = By(M) + Cq(M). (2.72)
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853

Letn =s! log, N, = N2 and

Gi={qe | max ¢; > —log, t + log, n},
N

i=1,..,

G={q€L\GI | min g <—n—1/2logyn},

i=2,...,:

.....

Gs=1{q€G3|q1 = —n+slogyn},
Gs={qe G| —n—slogyn <q1 < —n+ slog,n},
Go=1{a€0G3lqi <—n—slogyn}.

We see

(2.73)

L=GIUGUG;, G3=G4UGsUGs and giﬂg/’:@, fori £Aj (2.74)

andi, j € [1,3]ori, j €[4,6]. Let

Bi(M) = "> Bq(M).

qeg;
By (2.70), we obtain
B(b/p, M) = B1(M) + B2(M) + B3(M).
Let

By(M) = D By(M), C3(M)= ) Cq(M).

qeGs qeGs

Applying (2.72) and (2.75), we get
B3(M) = By(M) + C3(M).

By (2.7), we obtain the absolute convergence of the following series

> 12G@y)/Nmp)l.

yel'\o

Hence, the series (2.71), (2.75) and (2.77) converges absolutely.
Let

By(M,g)= D nn2 1 /M)yq(»)e((y.b/p+0(s))
yert\0

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)
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with 0(s) = (61(5), ..., 65(c)) and 6;(¢) = (1 + )G N;/4, i = 1,...,s. By
(2.71), we have

ByMy= D ci- V=D By(M, ). (2.80)
se{l, -1}
Letg, =—1=—(1,1,...,1),g3=1=(1,—1,...,—1),and let
BiitM)y= D" D> ci V=D By(M, q), (2.81)
a€Gs se{l,—1)*
§7#62:63
Bij(M) = (=1)"@V=1)"" D" Bq(M.g;), i=3456, j=203
qeg;
(2.82)

Using (2.77) and (2.80), we derive
By (M) = B3, 1 (M) + B3 2(M) + B3 3(M).

Bearing in mind (2.74), we obtain

By(M) =Bsi(M)+ > > B j(M). (2.83)
i=4,5,6 j=2,3

Let

Bo.jk(M) = (=1 V=17 D BP M, ), j=2.3 k=12 (284
q€s

where

B M, )= D a2~ /Myyq(rn@ %" y)e((y, b/p +0(s))
yel'h\0

and

BYM, )= D nn2 1 /M)yq(r)(1 = n2" 2 y))e((y, b/p + 6(5))).
yelrh\0

From (2.79), (2.82) and (2.84) , we get
ByM. g) =B (M. )+ BPM.g) and B j(M) = Bs j.1(M) + Bs j.2(M).

So, we proved the following lemma:

@ Springer



Discrete Comput Geom (2015) 54:826-870 855

Lemma 13 With notations as above, we get from (2.76), (2.78) and (2.83)
B(b/p, M) = B(M) + C3(M), (2.85)

where

B(M) = Bi(M) + Bo(M) + B3(M) (2.86)

and

By(M) = B3\ (M) + D" (Baj(M)+ Bs j(M)+ Be j.1 (M) + Bs j 2(M)). (2.87)
j=2.3

2.8 The Upper Bound Estimate for E(B_ (M))

Lemma 14 With notations as above
Bi(M)=0().

Proof Letq € Gy, andlet j = g, = maXi<;j<sqi,io € [1,...,s]. By (2.73), we have
Jj = —log, © 4 log, n. Using (2.69), we obtain

MQ2™9-p)2(ty)

BgM)| < D" |[]sinGroiNivi)

N . (2.88)
yelh\o i=1 m(y)
From (2.68) and (2.61), we get
. IM(p)2(z29 - p)|
ByM)| < p1 +p2 with pr= > L e
~ [Nm()|
YEA;
where
Xi={ye2 0. TH\0 | |y <2%, |yl €[1,4], i =2,...,s),
and

Xo={ye2 0. T\ 0| |y >2%, |yl ell,4], i=2,...,s).

We consider the admissible lattice 279 - ', where Nm(I'+) > 1. Using Theorem A,
we obtain that there exists a constant co = co(I'') such that

#y e2 0T |yl <4,i=2,...,5 2°67 Dy e [k, 2k]) < cok,  (2.90)

where k =1,2,.....
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Let ig = 1. We see that 729! = 72/ > 2l°2" — ; By (2.7), (2.88) and (2.90), we
get

lo(T291 )| 2,
Bq(M) = O(Z Z W) = O(Z(l + ‘C2ql+k) 29)‘
k=0 yea=a.rh\0, 1<|yy]<4, i>2 k=0

24(3‘71)‘)/1 |€[2k’2k+1]
Hence ‘
By(M) = 0((r2/)_23). (2.91)
Let ip > 2. Bearing in mind (2.7) and (2.90), we have

B(r2%0 y, )|

m=0( 2, 2. Nl

0<k=<ds(j+1D) ype2-9.71\0, 1<|y;|<4, i>2
24(171)')/1 |€[2k’2k+1]

=0( > (1+12%0)™%),

0<k=<d4s(j+1)

Hence '
p1 = 0@ (14 12/)7). (2.92)

Taking into account that g; = — (g2 +- - - +¢5) > —(s — 1)j and 72/ > n, we obtain

(29 g ) (T2%0 g, )|

n=0(2. 2. INm ()] )

k=4sj ye2=a4.0\0, 1<[y;|<4, i>2
24(3‘*1)‘)/1 |e[2k’2k+l]

=0( Z (1 + 720725 (1 4 72%0) ™) = O((1 + 12%0) ™).

k>4sj
Therefore _
2= O((1 +127)7%). (2.93)
Thus ‘
Bq(M) = 0(j(v27)7%). (2.94)
From (2.20), we have
> 1=0(@"?). (2.95)

qeZs, q1+--+qs=0, max; g;=j
By (2.73), (2.75), (2.94) and (2.91), we get

BiMy=> By =0( > > j@2))

qeg j=—logy t+logyn  qeLl,max; ¢i=j

=o( D @) =o00'm ) =00

Jj=—logy T+logy n
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Hence, Lemma 14 is proved. O

Lemma 15 With notations as above
|By(M)| + |Bs.2.2(M) + Bs3.2(M)| = O(n*~/?).

Proof We consider B> (M) (see (2.69), (2.73) and (2.75)). Let q € G, and let j =
—qiy = minzsigx gi.io €[2,...,5]. Wesee j > n+1/2log, nand | sin(m Ny, i) | <
JTNiOZ_j+2 for m(27 % y;,) # 0. By (2.88) and (2.89), we obtain

5 IN'/527IM(p)$2 (229 - p)|

Bq(M) = O(p1 + p2) with p; = INm(p)|

qeX;

Similarly to (2.92), (2.93), we get

N/s2=i
:0 —
pm=0( 2. 2 Nm()
0<k=4s(j+1) ye2~9.T1\0, 1<|y;|<4, i>2
24(‘Y_l)\y1|€[2k,2k+1]

=o( D>, N2 )y=0(@N"27).
0<k<4s(j+1)

We see

NVso=i o291
02 = 0( Z Z |a)(T Vq1)|)

, INm(p)|
k=dsj ye2 0T 0\0, 1<|yi|<4, i=2
240Dy fer2t 244

We have maxi<i<s ¢i < —log, T +log, nforq € Go. Hence g1 = —(q2+... +g5) >

(s — 1)(log, T — log, n) and 29" > t5p=5+1 = 27215y =5+1 5 =25 Thus

p2 = O(N's27 Z (1 + 729175y =%)
k>4sj

— O(Nl/sz—j Z 2—2S(k—2sj)) — O(Nl/sz—j)
k>4sj

Bearing in mind (2.95), we derive

BM)=> Byy=0( > > JNYe2)

8] j=n+1/2logy n qeL,miny<;<s gi=—j

— 0( Z jS*lNl/Szfj) — 0(}1S73/2).
j=n+1/2logy n
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Consider p := B (M, 1) + B (M, —1). By (2.69) and (2.84), we have

p=0( D Isin@hNiy)n(»2 " /M)MQ2 ™9 y)2(y)/Nm(y)
yelt\0

x(1—n@" 2 y))e((y, b/ p))l)
=0( D [sin(@O N2 y)(1 — nQN TRy )M () /Nm(y)]).

ye2—ar1\0

Applying (2.16), (2.68) and (2.90), we obtain

p=0( > IN127 y M(p)/Nm(p)]) = O(1/n).
},627q1"J_\07 |Y1|§27q1—n—log2 n+4
=0( > Ni291) = O(N 2912771 n=logant4y — O (1/n).

ye2 AT N\0, I<|y;|<4, i=2
|7/1 ‘Sz—qlfnflogz n+4

We get from (2.73) that
#G3 = 0(n* Y. (2.96)
By (2.73) and (2.84), we get Bg 2.2(M) + Bs 3.2(M) = (n°~2).
Hence, Lemma 15 is proved. O

Lemma 16 With notations as above
|E(B3.1(M))| + [E(Bs3(M))| + |Bs 2(M)| + |Bs 5(M)| = O(n*~/?).

Proof By (2.69) and (2.79), we have

BeM, o) = D nn/M)yq4-ye((y,x))

ye2—a.r1\0

= (¥, x)),

> oYU Ty N(y1/M) H OQUTy M)

ye2-4.71\0 " j=2 Vi

(2.97)

withx =29 (b/p + () and 6;(¢) = (1 + )G N;i /4, i = 1,....s.
Applying (2.64) and Lemma E with ' = 279", i = 0, and p = 729, we get

By(M, g) = O(1).

Using (2.73), we obtain #Gs = O (n* "2 log, n).
By (2.82) , we get

Bsi(M)=0( D |By(M.g)) =0 *logyn), i=2.3. (2.98)
qe0s
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Consider E(B3. 1 (M)) and E(By 3(M)). Let

1
E:(f) =/0 f(6)do;.

Let ¢ # —1. Then there exists ip = ip(g) € [1, s] with g;, = 1.
By (2.52) and (2.97), we have

z e(N;y2%0y;,/2) — 1 @ y)n(y1/M)

Ei (By(M, ¢)) = :
o s T — lNiOZq’U Yio Y1

ye2—a.r\0
N -~ .

wRYty)m(y;

XH ( J/j) (Vj)

=2 Vi

e({y,x)),

with some x € R®. Hence

Eiy(By(M, ) = O(N'27%0 sup | > By(M.y.io)e((y.x)))),
XeR* ) cr—artyo
where s
= . QM ty)n(y1/M) v @QUty;m(y;) 1
Bq(Ma )’»10): H / J ——
12! io» Vi Vio
]_
Applying (2.64) and Lemma E with I' = 2791, and p = 729, we obtain
E(By(M, §)) = E(E;,(By(M, 5))) = O(N; 127%0). (2.99)

By (2.81), we have ip(g) > 2 and

EBs (M) =0( D D Nyl o).
ge{l —1} qegs
s#-1,1

Using (2.73), we get #{q € G3 | qi{, = j} = Om* % and j > —n — 1/2log, n.
Hence

EB M) =02 > N2U)y=ow . (2100
j=—n—1/2logyn

From (2.73), we getq1 > —n+slog, n for q € Gs4. Applying (2.82), (2.96) and (2.99)
with ig(g) = 1, we obtain

EBy3(M) =0( D] Nl—lz*ql) =0(n*! > NV = o).

qely q1=—n+slogyn

By (2.98) and (2.100), Lemma 16 is proved. O
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Lemma 17 With notations as above
Bia(M) = O(n*3/?).

Proof By (2.97), we have

N

Z oQUty)n(y1/M) H 6(2‘“71’./)171(3//')6

By(M, —1) = ”

(y.29-b/p)).

ye2-ari\0 j=2 Vi

From (2.65), we derive that _I(d, v) = 0 for v = 0. Hence wil)(t, 0) = 0. Now
applying (2.64)—(2.67) with '+ =279.T1 i =0anda = M~!, we get

By(M. —1)| < EpspdetT D" (1+Mlys =27 (b/pn) >
ye24-T, y17#(b/p)

< [T+ 1y —2%m/p)ih ™.

i=2

Bearing in mind (2.1), we get piTp € I't C T'p. Taking into account that p =
p1p2p3 and b € ', we obtain

s
o . 2 _ —
Bg(M, —1)| < éaya0detTp> D" (A+Min) > [[(d+lyh ™. @2.101)

yep24.T\0 i=2
We have 5 ,
|Bq(M, —1)| < Eay.25) det Tp™ (a1 + a2), (2.102)
where
s
a) = > A+ My > ]+ 1w,
yep24-T'\0,max |y;|<M/s i=2
and .
ar = > A+ MinD = [Ja+ b 2.
yep24.-T'\0,max |y; |>M/s i=2

We see that |y;| > M~C6~D/S for max|<; <y |y;| < M'/S. Applying Theorem A, we
have
a <M > 1=om™,
y€p29-T'\0,max |y; |<M /s

and

;< > S iE=0( > ) =0V (2103)

j=Ms  yep29.T\0 j=M/s
max |y; €[/, j+1)
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Taking into account that #G3 = O (n*~!) (see (2.96)), we get from (2.102) and (2.82)
that

Bir(M) = o( Z Bq(M, -1) =0( z M71/2) — oM~ 2,
qu4 qeg3

Hence, Lemma 17 is proved. O

Lemma 18 With notations as above
Bg21(M) + Be3 1 (M) = 0(n* /%), M = [J/nl.
Proof Let M = 2-91—"=logan By (2.73), we get My > n > 2M for q € Gg and

n > 4. From (2.16), we have n(y/M)n(y1/M1) = n(y1/My). Using (2.69), (2.79)
and (2.84), we derive similarly to (2.97) that

BOMep= 3 BN Ty)n(y /M)
q >0
y€29-\0 g

N

" H olity))m(y;)

i=2 Vi

with j =2,3,¢, = —land g5 = 1.

By (2.66), we obtain that, J¢,(t, v) = 0 with f2(¢) = m(t)/t for v = 0 . Hence
wi (z,0) = 0. Now applying (2.64)~(2.67) with ' = 279. T+ i = 0anda =
M = 2a1FnHogn e get analogously to (2.101)

S
o C 2 N — —
1B (M, s )| < éaeandetTp™ D (14 Milyi —x(DD > [+ 1D,
yep24.T\0 i=2

with x(j) = (j — 2)p6127' Ni. We have

o . 2
1BV (M, )| < Eas.a5) det Tp™ (a3 + ay), (2.104)
where
S
as = > A+ Milyr —x(DD > [ ]+ b,
yep24.T\0, max |y;|<M1/s i=2
and )
as = > A+ Milyr —x(OD = A+ 1w 7.
yep24.T',max |y;|>M/s i=2
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We see that |y;| = M~C~D/S formax;<;<, |y;| < M'/S. Bearinginmind that |x (/)| <
c3pn~S forq € Gg, weobtain |y1| > 2|x(j)|for M = [\/n]and N > 8 psc3. Applying
Theorem A, we get

az < 22sM1—2sM2(s—1) Z | = O(M_l),
y€p24.T', max |y;|<M/s

Similarly to (2.103), we have

as< Y > iF=o0( D) i) =0Tk,

j=Ml/s  yep29.T\0 j=Ms
max |y;|€[,j+1)

By (2.73) and (2.96), we obtain #Gs < #G3 = O(n*~'). We get from (2.84) and
(2.104) that

Bso (M) +Bssi(M)y=0( > BPM.g))=0m"*n,
qefs, j=2,3

Hence, Lemma 18 is proved. O

Using (2.87), (2.86) and Lemmas 14—18, we obtain

Corollary 1 With notations as above

EBM)) = 0n* "), M =[J/n].

2.9 The Upper Bound Estimate for E(53 (M)) and Koksma—-Hlawka Inequality

Let

Gr={qeGs| —logyt —slogyn < iinaxsq,- < —log, T + log, n}.

Gy = {4 €93\ Gy | @1 < —n—1/2logy ).

Go=1{qe€Gs\G7|q1 = —n—1/2log, n}, (2.105)
and let

Ci(M) =D Cq(M), i=7.809.
qey;

It is easy to see that
G3=G7UGgUGy, and G NG; =0, fori#j.

Hence _ _ B _
C3(M) = C7(M) + Cs(M) + Co(M). (2.106)
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From (2.71), we have similarly to (2.79) that

CqM) = D 16 V=D"Ce(M, 9, (2.107)

cefl,—1)°

where

CaM, )= 3 Y = nu)( = (127 /M))e((y. b/ p +8(5))),
yelt\0

with 6; (¢) = (1 + ¢/)O;N; /4, i =1,...,s.
By (2.107) and (2.105), we get

Co(M) = Cio(M) + C1 (M), (2.108)

where B 5
Coy=>" > V=1 Cq(M. ), (2.109)

qeGo gef{l,—1}*
s#—1
and B .
CliM) = (=1’ V=1 D Cq(M. -1). (2.110)
qeGo

Lemma 19 With notations as above
ECi(M)=0n%, i=7810, M=I[J/nl.

Proof Lety € 279. r+ \ 0. By (2.16), (2.61) and (2.68), we have (1 — np(¥))(1 —
n(y1/M)M(y) # 0 only if 275 F3M < |y| < 2M, |yl € [1L4].i =2,....s.
From (2.71), we derive

M(y)2(z29 - )

CqM) = O( D [ ] sinroiNi2%y;) NmG)

yeX i=l

) (2.111)

where

X={ye2".TH\0|27 "M <|y| <2M, |yl €[1.4], i =2,....5).
Bearing in mind (2.90), we get Cq(M) = O(1).

Using (2.20), (2.73) and (2.105), we obtain #G; = O(n*~2 log, n). Apply-
ing(2.105), we get

C1(M) = D Co(M) = O(n**logy n). (2.112)
qegy
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Consider Cg(M). Let y € X.Then |sin(w6; N1249'y1)| < w MN 2! F41,
By (2.111), we have

IMNY35201 Q(729 - )|
INm(p)|

) = O(MN'/5241),

Cq(M) = O(Z

yeX

Using (2.20) and (2.105), we derive #{q € Gglq1 = d} = O(n°~2). Hence

Cs(M) =D CqM)y=0( > > MN'2)
qeGg j=n+0.5logy n qefs, g1=—j
=o(?M D> 2y =0 (2.113)
j=n+0.5logy n

Consider C~10(M). From (2.109), we get that there exists ip = ip(g) € [1, s] with
Gip = 1. By (2.52), (2.69) and (2.107), we have

e(Niviy/2) — 1

BiyCaM. )= 2, Ca(M.y)— =i
io Yio

yel't\o

e((y.x))

with some x € R®, where

Ca(M, y) = (1 = nu ()1 = (1279 /M))2(z - y)MQ2 y)/Nm(p).

Hence 5 .
Ei)(Cq(M. )= O(N 12700 > [Cq(M. y.in)]),
ye2-4.r1\0
with

C“q(M9 }’710) =

(1= (@)1 = n(y1/M)) H m(y)) 1
2 i Vi Y

Applying (2.111), we obtain max, ¢ x ief1,s] 11/vil = O(1).
By (2.16) and (2.90), we have

E(Cq(M, ) = E(E;,(Cq(M, ©)))
= O(N;;'27% > 1/INm(p)|)

yeX
- 0(Nig‘2—qfo).
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Similarly to (2.99)—(2.100), we get from (2.105) and (2.73), that

ECoM))=0( 2, D N2 )

ce{l,~1}° qeGo
s#—1

=0( > > > 2t

1<i<s j<n+0.5log, n q€Go,qi=—j

=o' > 2)=o0@m)

j<1/2log, n
Using (2.112) and (2.113), we obtain the assertion of Lemma 19. O
Lemma 20 With notations as above

E(C3(M)) = Cio(M) + 0" %), M = [/n],

where

CoM) = (=)' V=D > D" e((ro.b/p)Cq(¥0). (2.114)

qeGy YoEA)

with

Car)=M~" D" 2y). g® =n@NmE)( — 5(x1)))MEx)/Nm(x),
velm qvo)

and
Taq(o) = (P2 4T +pe) - (/M 1,1,.... 1.

Proof By (2.106), (2.108) and Lemma 19, it is enough to prove that
Cii(M) = Cra(M) + O (/2.

Consider (fq (M, —1). Let

CqM, 1) = D" (1= nu@)e((y,b/p))

yel\0
xn2™ My /M)MQ2™1 - y)/Nm(p).

By (2.107), we have
Cq(M, —1) = CqM. ~D < D [(1 =)@ 1y /M)M2 9 - p)|
yel'\0

x|(2(zy) — 1)/Nm(p)|.
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We examine the case (1 —n(y1279 /M))M(@Q2™9yp) # 0. By (2.16) and (2.61), we get
Iyil < M29+  and |y;| < 29712, i > 2.
Hence, we obtain from (2.73) and (2.105), that |ty;| < 4n—t1/2, i > 1forq € Go.
Applying (2.8), we get ﬁ(ry) =1+ Om™**'/2) for q € Go. Bearing in mind
(2.90), we have

Cq(M, 1) = Cq(M, —1) + O(n™ ). (2.115)

Taking into account that (0) = 0 (see (2.16)), we get

CaM. =1y = D" e((yo.b/p)Cq(¥0).

YoEA)

with

éq(Vo) = Z nC2INm(p)|/M)(1 = n(y1/M))M(y)/Nm(y).
ye2=9(pTt+yy)

It is easy to verify that Cq(y) = Cq(¥0)- By (2.110) and (2.114), we obtain

CuM) = (=1 QV=D7 D (D eyo.b/p))Cq(ye) + 0™ )

qeGy Vo<,
= Cn(M) + O(n*72).

Hence, Lemma 20 is proved. O

We consider Koksma—Hlawka inequality (see e.g. [10, pp. 10, 11]):

Definition 5 Let a function f : [0, 1]* — R have continuous partial derivative
Blf(F’)/axi1 -+ - 0x;, onon the s — [ dimensional face F, defined by x;, = --- =x;, =
1, and let
(F1)
VED(fhy = f dx;, -+ - dx;,.
(f ) |ax” - ax” | Xiy Xi;

Then the number

V= D D Vet

O<l<s F

is called a Hardy and Krause variation.

Theorem F (Koksma-Hlawka) Let f be of bounded variation on [0, 11° in the sense

of Hardy and Krause. Let ((Py, K),f;ol ) be a K -point set in an s-dimensional unit cube
[0, 1)S. Then we have

- . f(ﬁkK)—/Ol FAX| < VDB k)=)-

0<k<K 1
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Lemma 21 With notations as above
E@ (M) = 0(n* ), M =[]

Proof By (2.114) g(x) = n(2Nm(x))(1 — n(x1)))M(x)/Nm(x). We have that g is
the odd function, with respect to each coordinate, and g(x) = O for x ¢ [—2,2] x

[—4, 4. Hence
/ g(x)dx = 0.
[-2,2]x[—4,4]+~!

Let f(x) = g((4x1 —2,8x3 — 4, ..., 8x; —4)). Itis easy to verify that f(x) = 0 for
x ¢ [0, 1]%, and

fx)dx = / g(x)dx = 0.
[0,1] [—2,2]x[—4,4]5~1

We see that f is of bounded variation on [0, 1]° in the sense of Hardy and Krause. Let

Fro) ={(n+2/4 00 +4/8.....(vs +49/8) | ¥ € Tiq(¥0)}.
Using (2.114), we obtain

Car)=M"" D" .

yel'(rg)

Let H = f‘(yo) N [0,1)°, and K = #H. Applying Theorem A, we get K €
[ci1M, coM] for some c1, c; > 0. We enumerate the set H by a sequence ((,Bk,K),f:BI ).
By Theorem A, we have D((Br.x)5 ) = O(M~"1n*~! M).
Using Theorem F, we obtain éq(yo) =oM "In*! M).
_ Bearing in mind that #G3 = O(n*~ 1) (see (2.96)), we derive from (2.114) that
Cio(M) =0 "M~ "1In*~! M).
Applying Lemma 20, we obtain the assertion of the Lemma 21. O

Now using (2.85), Corollary 1 and Lemma 21, we get

Corollary 2 With notations as above
EB(b/p. M) = 0", M = [n].

LetN = (Ny,...,Ny), N =Ny---Ng,n=s5""logy, N, cg = 0.25(* det ")~ cg
and M = [ /n]. From Lemma 12, Corollary 2 and (2.18), we obtain that there exist
No > 0,and b € A}, such that

sup |[E(R)(Be.n +b/p, )| > con®~! for N > No. (2.116)
6<[0,1]%
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2.10 End of Proof

End of the proof of Theorem 1.
We set R(z,y) = R(By_; + z, '), where y; > z; (i = 1,...,5) (see (1.2)). Let
us introduce the difference operator A, 5, : R* — R, defined by the formula

Aa,-,h,-fz(z, Y) = R@, (V1 - Yie1s His Yidds oo Ys))
_ﬁ(z’ ()’17 ceey )’i—l,ai, Yi+17 ceey )’s))

Similarly to [26, p. 160, Ref. 7], we derive

Aayiy - Dag 0, RAz, y) = R(a, h), 2.117)

where h; > a; > z; (i = 1,...,s). Let f], ..., f; be a basis of I". We have that
F={pifi+---+psfs | (p1,...,p5) €[0, 1)*}is the fundamental set of T". It is easy
toseethat R(BN+Xx, ') = R(Bn+x+y, ') forall y € I". Hence, we can assume in
Theorem 1 that x € F. Similarly, we can assume in Corollary 2 thatb/p € F. We get
that there exists y € I with |yy| <4 max; |fi|andx; < (b/p)i +y0.i,i =1,...,5.
Letb; = b+ pyq. By (2.116), we have that there exists @ < [0, 1]* and b € A}, such
that B

IR(b1/p,b1/p+0-N)| = con* " (2.118)

LetS = {y | yi = (byp)i, (b/p)i +6:N;i, i = 1,...,s}. We see #S§ = 2°. From
(2.117), we obtain that R(by/p, b1/p + 0 - N) is the sum of 2° numbers =R (X, y/),
where y/ € S. By (2.118), we get

IR(By—x +x,T)| = [R(x,y)| > 2 *con®~! for some yeS.

Therefore, Theorem 1 is proved. O

Proof of Theorem 2 We follow [17, p. 86] and [19, p. 1]. Letn > 1, N € [2", 2"“),
y=01,...,¥)and I' = I'yq. By (1.2) and (1.5), we have

NA(By, (Ben(X))psg) = @1 — Y1+ yeg2, (2.119)
where
o1 = N(B(y.....ys1ys2nve) FXT) and @2 =N =N (B, 1.5 yx) + X, ).
Let

a1 =N(Bgy,,...y 1 yNdetT) + X, T) and ap = N(B(1,. 1, NdetT) + X, ).

@ Springer



Discrete Comput Geom (2015) 54:826-870 869

Applying Theorem A, we get
N@detD) ' =N = 0@ ™), gr—ar =22 y&®)(det T) ' =N+ 0(logs " n),

and
@1 — ) = y1..ys(z2nX)(det )™ — N) + O(logs ™" n).

From (2.119), we derive
NA(By, (Ben X)) =i — yi -+~ ys—1a2 + O(logy ™" n) (2.120)

By (1.2), we obtain
o — Y1 Ys—102 = Pi — yi - Ys—152 (2.121)
with
Br = R(B(y,....y_1,ysNdetT) + X, ') and B = R(B(1,...1,NdetT) + X, ).

Letyo = 0.125min(1, 1/det T, (c1(M)/co(T)V/E™D), 0 = (01, ..., 65), yi = yobi,
i=1,...,5 —1,and y; = 6. Using Theorem A, we get

1+ Y R(Ba,... 1N detry + X D] < v 'eo(T) logy ™' (2 + N det I)
< 2y0)* leo(M logy™' N
<0.25¢;(M)n*~! for N > detl +2.
(2.122)

Applying Theorem 1, we have

sup |R(B@, yo,....05—1y0,0,N det T) + X, )]
0€[0,1)°

> (M) logs ™! (35" det TN)
> ey (Mn* 11+ 71 (s — D logy(v) ™' det ) > 0.5¢; (M)n*~!

forn > 10(s — 1)| 10g2(y3_1 detI")|. Using (1.6), (2.120), (2.121) and (2.122), we
get the assertion of Theorem 2. O
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