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Abstract Let � ⊂ R
s be a lattice, obtained from a module in a totally real algebraic

number field. Let G be an axis parallel parallelepiped, and let |G| be a volume of G.
In this paper we prove that

lim sup
|G|→∞

| det �#(� ∩ G) − |G||
lns−1 |G| > 0.

Thus the known estimate det �#(� ∩ G) = |G| + O(lns−1 |G|) is exact. We obtain
also a similar result for the low discrepancy sequence corresponding to �.

Keywords Lattice point problem · Low discrepancy sequences · Totally real
algebraic number field
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1 Introduction

1.1 Lattice Points

Let � ⊂ R
s be a lattice, i.e., a discrete subgroup of R

s with a compact fun-
damental set R

s/�, det � = vol(Rs/�). Let N1, . . . , Ns > 0 be reals, N =
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(N1, . . . , Ns), BN = [0, N1) × · · · × [0, Ns), vol(BN) the volume of BN, t BN the
dilatation of BN by a factor t > 0, t BN + x the translation of t BN by a vector
x ∈ R

s , (x1, . . . , xs) · (y1, . . . , ys) = (x1y1, . . . , xs ys), and let (x1, . . . , xs) · BN =
{(x1, . . . , xs) · (y1, . . . , ys) | (y1, . . . , ys) ∈ BN}. Let

N (BN + x, �) = #(BN + x ∩ �) =
∑

γ∈�

1BN+x(γ ) (1.1)

be the number of points of the lattice � lying inside the parallelepiped BN, where we
denote by1BN+x(γ ) the indicator function of BN+x.We define the errorR(BN+x, �)

by setting
N (BN + x, �) = (det �)−1vol(BN) + R(BN + x, �). (1.2)

Let Nm(x) = x1x2 . . . xs for x = (x1, . . . , xs). The lattice � ⊂ R
s is admissible if

Nm � = inf
γ∈�\{0} |Nm(γ )| > 0.

Let � be an admissible lattice. In 1994, Skriganov [27] proved the following theorem:

Theorem A Let t = (t1, . . . , ts). Then

|R(t · [−1/2, 1/2)s + x, �)| < c0(�) logs−1
2 (2 + |Nm(t)|), (1.3)

where the constant c0(�) depends upon the lattice � only by means of the invariants
det � and Nm �.

In [27, p. 205], Skriganov conjectured that the bound (1.3) is the best possible. In
this paper we prove this conjecture.

Let K be a totally real algebraic number field of degree s ≥ 2, and let σ be
the canonical embedding of K in the Euclidean space R

s , σ : K � ξ → σ(ξ) =
(σ1(ξ), . . . , σs(ξ)) ∈ R

s , where {σ j }sj=1 are s distinct embeddings ofK in the field R

of real numbers. Let NK/Q(ξ) be the norm of ξ ∈ K. By [6, p. 404],

NK/Q(ξ) = σ1(ξ) · · · σs(ξ) and |NK/Q(α)| ≥ 1

for all algebraic integers α ∈ K \ {0}. We see that |Nm(σ (ξ))| = |NK/Q(ξ)|. Let
M be a full Z module in K and let �M be the lattice corresponding to M under
the embedding σ . Let (cM)−1 > 0 be an integer such that (cM)−1γ are algebraic
integers for all γ ∈ M. Hence

Nm �M ≥ csM.

Therefore, �M is an admissible lattice. In the following, we will use notations � =
�M, and N = N1N2 · · · Ns ≥ 2. In Sect. 2 we will prove the following theorem:
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Theorem 1 With the above notations, there exist c1(M) > 0 such that

sup
θ∈[0,1]s

|R(Bθ ·N + x, �M)| ≥ c1(M) logs−1
2 N (1.4)

for all x ∈ R
s .

In [15, Chap. 5], Lang considered the lattice point problem in the adelic setting.
In [15,25], the upper bound for the lattice point remainder problem in parallelotopes
was found. In a forthcoming paper, we will prove that the lower bound (1.4) can be
extended to the adelic case (see [18]). Namely, we will prove that the upper bound in
[25] is exact for the case of totally real algebraic number fields.

1.2 Low Discrepancy Sequences

Let (βk,N )N−1
k=0 be a N -point set in an s-dimensional unit cube [0, 1)s , By = [0, y1) ×

· · · × [0, ys),

�(By, (βk,N )N−1
k=0 ) = #{0 ≤ k < N | βk,N ∈ By} − Ny1 . . . ys . (1.5)

We define the star discrepancy of a N -point set (βk,N )N−1
k=0 as

D∗(N ) = D∗((βk,N )N−1
k=0 ) = sup

0<y1,...,ys≤1

∣∣ 1
N

�(By, (βk,N )N−1
k=0 )

∣∣. (1.6)

In 1954, Roth proved that there exists a constant ċ1 > 0, such that

ND∗((βk,N )N−1
k=0

)
> ċ1(ln N )

s−1
2 ,

for all N -point sets (βk,N )N−1
k=0 .

Definition 1 A sequence of point sets ((βk,N )N−1
k=0 )∞N=1 is of low discrepancy (abbre-

viated l.d.p.s.) if D∗((βk,N )N−1
k=0 ) = O(N−1(ln N )s−1) for N → ∞.

For examples of l.d.p.s. see e.g. in [3,10,27]. Consider a lower bound for l.d.p.s.
According to the well-known conjecture (see, e.g., [3, p. 283]), there exists a constant
ċ2 > 0 such that

ND∗((βk,N )N−1
k=0

)
> ċ2(ln N )s−1 (1.7)

for all N -point sets (βk,N )N−1
k=0 . In 1972, W. Schmidt proved this conjecture for s = 2.

In 1989, Beck [1] proved that ND∗(N ) ≥ ċ ln N (ln ln N )1/8−ε for s = 3 and some
ċ > 0. In 2008, Bilyk et al. (see [4, p. 147], [5, p. 2]) proved in all dimensions s ≥ 3 that
there exists some ċ(s), η > 0 for which the following estimate holds for all N -point

sets: ND∗(N ) > ċ(s)(ln N )
s−1
2 +η.

There exists another conjecture on the lower bound for the discrepancy function:
there exists a constant ċ3 > 0 such that

ND∗((βk,N )N−1
k=0

)
> ċ3(ln N )s/2 (1.8)

123



Discrete Comput Geom (2015) 54:826–870 829

for all N -point sets (βk,N )N−1
k=0 (see [4, p. 147], [5, p. 3] and [8, p. 153]).

Let W = (�M + x) ∩ [0, 1)s−1 × [0,∞). We enumerate W by the sequence
(z1,k(x), z2,k(x)) with z1,k(x) ∈ [0, 1)s−1, z2,k(x) ∈ [0,∞), and z2,i (x) < z2, j (x)
for i < j . In [27], Skriganov proved that the point set ((βk,N (x))N−1

k=0 )with βk,N (x) =
(z1,k(x), z2,k(x)/z2,N (x)) is of low discrepancy (see also [17]). In Sect. 2.10 we will
prove

Theorem 2 With the notations as above, there exist c2(M) such that

N D∗((βk,N (x))N−1
k=0

) ≥ c2(M) logs−1
2 N (1.9)

for all x ∈ R
s .

This result supports conjecture (1.7). In [19,20], we proved that (1.9) is also true
for the Halton sequence, and (t, s)-sequences.

We note that the constant c2 depends on the chosen module M. Hence we get a
lower bound for translations of one concrete lattice. We do not understand if c2(M) is
uniformly bounded from below for all moduleM. However, it seems that conjecture
(1.7) is more likely than conjecture (1.8), because the following result of Beck [2]:

Consider a Kronecker’s lattice {(n, nα1 + m1, . . . , nαs−1 + ms−1)|(n,m1, . . . ,

ms−1) ∈ Z
s} and the corresponding Kronecker’s sequence PN = {({nα1}, . . . ,

{nαs−1}, n/N )}N−1
n=0 , where α = (α1, . . . , αs−1) ∈ R

s−1. Then that for almost all
α ∈ R

s−1, we have that D(PN ) > c(s)(log N )s−1 log log N , with a uniform constant
c(s) depending only on the dimension s.

2 Proof of Theorems

In this paper we consider a fundamental units of the field K and the appropriate
toral automorphisms A1, . . . , As−1. Applying the profound Chevalley’s result [9], we
construct a Hecke character, corresponding to A1, . . . , As−1.

The main idea of this paper is to express the essential part of the normalized dis-
crepancy function as a truncated Lfunction with the above Hecke character. Using the
non-vanishing property of an L-function, we obtain the assertion of Theorem 1.

Let us describe the main steps of the proof of Theorem 1:
In Sect. 2.1, we use the Poisson summation formula and the standard trick of

‘smoothing’. This allows to express the discrepancy functionRθ in terms of absolutely
convergent Fourier’s series. Next we decompose the domain of the summation in three
parts, and we obtain that Rθ = Aθ + Bθ + Cθ . Using the expectation function E ,
we get supθ |Rθ | ≥ |E(Aθ )| − |E(Bθ )| − |E(Cθ )|. Hence, to obtain the assertion of
Theorem 1, it is sufficient to find the lower bound of |E(Aθ )| and the upper bounds
of |E(Bθ )| and |E(Cθ )|.

In Sect. 2.2, we consider the fundamental domain of the field K. We apply [30] to
estimate the error term in the lattice point problem in a compact convex body. We use
these results to compute the difference between an L-function and the corresponding
truncated L-function, and also to estimate the value of the domain of the summation
in the Fourier’s series of Aθ .
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In Sect. 2.3,we use theChevalley theorem [9] to construct a specialHecke character.
InSect. 2.4,we consider the truncated L-functionϑ ,with the aboveHecke character.

Using the estimates of Sect. 2.2 and the non-vanishing property of L-function, we
obtain the lower bound of ϑ .

In Sect. 2.5, we find the lower bound of |E(Aθ )|. First, we decompose the domain of
the summation in seven parts, and we get thatAθ = A0+A1+· · ·+A6. Using results
of Sect. 2.2, we compute |E(A1)| + · · · + |E(A6)|. In addition, we decomposeA0 in
several parts and we select the main part A7(�

⊥ + x). Lemma 12 is the main result
of this subsection. Let �⊥ = AZ

s , Ż p = {(a1, . . . , as)�|ai ∈ {0, 1, . . . , p − 1}, i =
1, . . . , s}, and Λp = AŻs

p, where p is obtained from the Chevalley theorem (see
Theorem C). In Lemma 12, we prove that p−s ∑

b∈Λp
|A7(�

⊥ + b/p)|2 may be
estimated from below as a part of the corresponding L-function. Next, using results
of Sect. 2.4, we get the lower bound of |E(Aθ )|.

In Sect. 2.6, we cite some inequalities from [27].
In Sect. 2.7, we use the dyadic decomposition method (see, e.g., [27]) to obtain the

convenient expressions for E(Bθ ) and E(Cθ ).
In Sect. 2.8, we apply inequalities from Sect. 2.6 to obtain the upper bound estimate

for |E(Bθ )|.
In Sect. 2.9, we apply the Koksma–Hlawka inequality and Theorem A to obtain the

upper bound estimate for |E(Cθ )|.

2.1 Poisson Summation Formula

It is known that the set M⊥ of all β ∈ K, for which TrK/Q(αβ) ∈ Z for all α ∈ M,
is also a full Z module (the dual of the module M) of the field K (see [6, p. 94]).
Recall that the dual lattice �⊥

M consists of all vectors γ ⊥ ∈ R
s such that the inner

product 〈γ ⊥, γ 〉 belongs to Z for each γ ∈ �. Hence �M⊥ = �⊥
M. LetO be the ring

of integers of the field K, and let aM⊥ ⊆ O for some a ∈ Z \ 0. By (1.1), we have
N (BN + x, �M) = N (a−1BN + a−1x, �a−1M). Therefore, to prove Theorem 1 it
suffices consider only the caseM⊥ ⊆ O. We set

p1 = min{b ∈ Z | bO ⊆ M⊥ ⊆ O, b > 0}. (2.1)

We will use the same notations for elements of O and �O. Let DM be the ring
of coefficients of the full module M, UM be the group of units of DM , and let
η1, . . . , ηs−1 be the set of fundamental units of UM. According to the Dirichlet
theorem (see e.g., [6, p. 112]), every unit ε ∈ UM has a unique representation in
the form

ε = (−1)aηa11 · · · ηas−1
s−1 , (2.2)

where a1, . . . , as−1 are rational integers and a ∈ {0, 1}. It is easy to proof (see e.g.
[19, Lemma 1]) that there exists a constant c3 > 1 such that for all N there exists
η(N) ∈ UM with |N ′

i N
−1/s | ∈ [1/c3, c3], where N

′
i = Ni |σi (η(N))|, i = 1, . . . , s,

and N = N1 · · · Ns . Let σ(η(N)) = (σ1(η(N)), . . . , σs(η(N))). We see that σ(η(N)) ·
(θ · BN + x) = θ · BN′ + x1 and
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γ ∈ �M ∩ (θ · BN + x) ⇔ γ · σ(η(N)) ∈ �M ∩ (θ · BN′ + x1)),

with x1 = σ(η(N) · x + σ(η(N)) · N/2 − N
′
/2. Hence

N (θ · BN + x, �M) = N (θ · BN′ + x1, �M).

By (1.2), we have

R(θ · BN + x, �M) = R(θ · BN′ + x1, �M).

Therefore, without loss of generality, we can assume that

Ni N
−1/s ∈ [1/c3, c3], i = 1, . . . , s. (2.3)

Note that in this paper O-constants and constants c1, c2, . . . depend only on M.
We shall need the Poisson summation formula:

det �
∑

γ∈�

f (γ − X) =
∑

γ∈�⊥
f̂ (γ )e(〈γ , x〉), (2.4)

where

f̂ (Y ) =
∫

Rs
f (X)e(〈y, x〉)dx

is the Fourier transform of f (X), and e(x) = exp(2π
√−1x), 〈y, x〉 = y1x1 + · · · +

ys xs . Formula (2.4) holds for functions f (x)with period lattice� if one of the functions
f or f̂ is integrable and belongs to the class C∞ (see e.g. [28, p. 251]).
Let 1̂BN(γ ) be the Fourier transform of the indicator function 1BN(γ ). It is easy to

prove that 1̂BN(0) = N1 · · · Ns and

1̂BN(γ ) =
s∏

i=1

e(Niγi ) − 1

2π
√−1γi

=
s∏

i=1

sin(πNiγi )

πγi
e
( s∑

i=1

Niγi/2
)
for Nm(γ �= 0).

(2.5)
We fix a nonnegative even function ω(x), x ∈ R, of the class C∞, with a support

inside the segment [−1/2, 1/2], and satisfying the condition
∫
R ω(x)dx = 1. We set

Ω(x) = ω(x1) · · · ω(xs), Ωτ(x) = τ−sΩ(τ−1x1, . . . , τ−1xs), τ > 0, and

Ω̂(y) =
∫

Rs
e(〈y, x〉)Ω(x)dx. (2.6)

Notice that the Fourier transform Ω̂τ (y) = Ω̂(τy) of the function Ωτ(y) satisfies the
bound

|Ω̂(τy)| < ċ(s, ω)(1 + τ |y|)−2s . (2.7)

It is easy to see that

Ω̂(y) = Ω̂(0) + O(|y|) = 1 + O(|y|) for |y| → 0. (2.8)
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Lemma 1 There exists a constant c > 0 such that we have for N > c

|R(Bθ ·N + x, �) − R̈(Bθ ·N + x, �)| ≤ 2s,

where

R̈(Bθ ·N + x, �) = (det �)−1
∑

γ∈�⊥\{0}
1̂Bθ ·N(γ )Ω̂(τγ )e(〈γ , x〉), τ = N−2. (2.9)

Proof Let B±τ
θ ·N = [0,max(0, θ1N1±τ))×· · ·×[0,max(0, θs Ns ±τ)), and let 1B(x)

be the indicator function of B. We consider the convolutions of the functions 1B±τ
θ ·N

(γ )

and Ωτ(y):

Ωτ ∗ 1B±τ
θ ·N

(x) =
∫

Rs
Ωτ(x − y)1B±τ

θ ·N
(y)dy. (2.10)

It is obvious that the nonnegative functions (2.10) are of class C∞ and are compactly
supported in τ -neighborhoods of the bodies B±τ

θ ·N, respectively. We obtain

1B−τ
θ ·N

(x) ≤ 1Bθ ·N(x) ≤ 1B+τ
θ ·N

(x), 1B−τ
θ ·N

(x) ≤ Ωτ ∗ 1Bθ ·N(x) ≤ 1B+τ
θ ·N

(x). (2.11)

Replacing x by γ − x in (2.11) and summing these inequalities over γ ∈ � = �M,
we find from (1.1) that

N (B−τ
θ ·N + x, �) ≤ N (Bθ ·N + x, �) ≤ N (B+τ

θ ·N + x, �),

and
N (B−τ

θ ·N + x, �) ≤ Ṅ (Bθ ·N + x, �) ≤ N (B+τ
θ ·N + x, �),

where
Ṅ (Bθ ·N + x, �) =

∑

γ∈�

Ωτ ∗ 1Bθ ·N(γ − x). (2.12)

Hence

−N (B+τ
θ ·N + x, �) + N (B−τ

θ ·N + x, �)

≤ Ṅ (Bθ ·N + x, �) − N (Bθ ·N + x, �) ≤ N (B+τ
θ ·N + x, �) − N (B−τ

θ ·N + x, �).

Thus

|N (Bθ ·N + x, �)− Ṅ (Bθ ·N + x, �)| ≤ N (B+τ
θ ·N + x, �)−N (B−τ

θ ·N + x, v�). (2.13)
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Consider the right side of this inequality. We have that B+τ
θ ·N \ B−τ

θ ·N is the union of
boxes B(i), i = 1, . . . , 2s − 1, where

vol(B(i)) ≤ vol(B+τ
N ) − vol(B−τ

N ) ≤
s∏

i=1

(Ni + τ) −
s∏

i=1

(Ni − τ)

≤ N
( s∏

i=1

(1 + τ) −
s∏

i=1

(1 − τ)
)

< c̈s Nτ = c̈s/N , τ = N−2,

with some c̈s > 0. From (2.1), we get M ⊇ p−1
1 O. Hence |Nm(γ )| ≥ p−s

1 for
γ ∈ �M \0. We see that |Nm(γ 1−γ 2)| ≤ vol(B(i) +x) < p−s

1 for γ 1, γ 2 ∈ B(i) +x
and N > c̈s ps1. Therefore, the box B(i) + x contains at most one point of �M for
N > c̈ ps1. By (2.13), we have

|Ṅ (Bθ ·N + x, �) − N (Bθ ·N + x, �)| ≤ 2s − 1 for N > c̈ ps1. (2.14)

Let

Ṙ(Bθ ·N + x, �) = Ṅ (Bθ ·N + x, �) − vol(Bθ ·N)

det �
. (2.15)

By (2.12), we obtain that Ṅ (Bθ ·N + x, �) is a periodic function of x ∈ R
n with the

period lattice �. Applying the Poisson summation formula to the series (2.12), and
bearing in mind that Ω̂τ (y) = Ω̂(τy), we get from (2.9)

Ṙ(Bθ ·N + x, �) = R̈(Bθ ·N + x, �).

Note that (2.7) ensure the absolute convergence of the series (2.9) over γ ∈ �⊥ \ {0}.
Using (1.2), (2.14) and (2.15) , we obtain the assertion of Lemma 1. ��

Let η(t) = η(|t |), t ∈ R
1 be an even function of the class C∞; moreover, let

η(t) = 0 for |t | ≤ 1, 0 ≤ η(t) ≤ 1 for |t | ≤ 2 and η(t) = 1 for |t | ≥ 2. Let
n = s−1 log2 N , M = [√n] , and

ηM (γ ) = 1 − η(2|Nm(γ )|/M). (2.16)

By (2.5) and (2.9), we have

Ṙ(Bθ ·N + x, �) = (π s det �)−1(A(x, M) + B(x, M)), (2.17)

where

A(x, M) =
∑

γ∈�⊥\0

s∏

i=1

sin(πθi Niγi )
ηM (γ )Ω̂(τγ )e(〈γ , x〉 + ẋ)

Nm(γ )
,

B(x, M) =
∑

γ∈�⊥\0

s∏

i=1

sin(πθi Niγi )
(1 − ηM (γ ))Ω̂(τγ )e(〈γ , x〉 + ẋ)

Nm(γ )
,
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with ẋ = ∑
1≤i≤s θi Niγi/2. Let

E( f ) =
∫

[0,1]s
f (θ)dθ .

By the triangle inequality, we get

π s det � sup
θ∈[0,1]s

|Ṙ(Bθ ·N + x, �)| ≥ |E(A(x, M))| − |E(B(x, M))|. (2.18)

In Sect. 2.5 we will find the lower bound of |E(A(x, M))| and in Sect. 2.9 we will
find the upper bound of |E(B(x, M))|.

2.2 The Logarithmic Space and the Fundamental Domain

We consider Dirichlet’s Unit Theorem (2.2) applied to the ring of integers O. Let
ε1, . . . , εs−1 be the set of fundamental units of UO. We set li (x) = ln |xi |, i =
1, . . . , s, l(x) = (l1(x), . . . , ls(x)), 1 = (1, . . . , 1), where x ∈ R

s and Nm(x) �= 0. By
[6, p. 311], the set of vectors 1, l(ε1), . . . , l(εs−1)) is a basis for R

s . Any vector
l(x) ∈ R

s (x ∈ R
s, Nm(x) �= 0) can be represented in the form

l(x) = ξ1 + ξ1l(ε1) + · · · + ξs−1l(εs−1), (2.19)

where ξ, ξ1, . . . , ξs−1 are real numbers. In the following we will need the next defin-
ition.

Definition 2 [6, p. 312] A subset F of the space R
s is called a fundamental domain

for the field K if it consists of all points x which satisfy the following conditions:
Nm(x) �= 0, in the representation (2.19) the coefficients ξi (i = 1, . . . , s − 1) satisfy
the inequality 0 ≤ ξi < 1, x1 > 0.

Theorem B [6, p. 312] In every class of associate numbers ( �= 0) of the fieldK, there
is one and only one number whose geometric representation in the space R

s lies in
the fundamental domain F .

Lemma A [30, p. 59, Thm. 2, Ref. 3] Let �̇ ⊂ R
k be a lattice, det �̇ = 1, Q ⊂ R

k a
compact convex body and r the radius of its greatest sphere in the interior. Then

vol(Q)
(
1 −

√
k

2r

) ≤ #�̇ ∩ Q ≤ vol(Q)
(
1 +

√
k

2r

)
,

provided r >
√
k/2.

Let �̇ ⊂ R
k be an arbitrary lattice. We derive from Lemma A

sup
x∈Rs

|#�̇ ∩ (tQ + x) − tkvol(Q)/ det �̇| = O(tk−1) for t → ∞. (2.20)

See also [11, pp. 141, 142].
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Lemma 2 Let εkmax = max1≤i≤s |(εk)i | and εkmin = min1≤i≤s |(εk)i |. There exists a
constant c4, c5 > 0, such that

#{k ∈ Z
s−1 | εkmax ≤ et } = c4t

s−1 + O(t s−2) (2.21)

and
#{k ∈ Z

s−1 | εkmin ≥ e−t } = c5t
s−1 + O(t s−2). (2.22)

Proof By (2.19), we have that the left hand sides of (2.21) and (2.22) are equal to

#
{
k ∈ Z

s−1
∣∣

s−1∑

i=1

ki l j (εi ) ≤ t, j = 1, . . . , s
}
,

and

#
{
k ∈ Z

s−1
∣∣

s−1∑

i=1

ki l j (εi ) ≥ −t, j = 1, . . . , s
}
,

respectively. Let

Q1 = {x ∈ R
s−1|ẋ j ≤ 1, j ∈ [1, s]} and Q2 = {x ∈ R

s−1|ẋ j ≥ −1, j ∈ [1, s]},

with ẋ j = x1l j (ε1)+· · ·+xs−1l j (εs−1).We see ẋ1+· · ·+ ẋs = 0. Hence ẋ j ≥ −s+1
for x ∈ Q1 and ẋ j ≤ s − 1 for x ∈ Q2 ( j = 1, . . . , s). By [6, p. 115], we get
det(li (|ε j |)i, j=1,...,s−1) �= 0. Hence, Qi is the compact convex set in R

s−1, i = 1, 2.
Applying (2.20) with k = s − 1, and �̇ = Z

s−1, we obtain the assertion of Lemma 2.
��

Let cl(K) be the ideal class group of K, h = #cl(K), and cl(K) = {C1, . . . ,Ch}.
In the ideal class Ci , we choose an integral ideal ai , i = 1, . . . , h. Let N(a) be the
absolute norm of ideal a. If h = 1, then we set p2 = 1 and �1 = �O. Let h > 1,
i ∈ [1, h],

Mi = {u ∈ O | u ≡ 0 mod ai }, �i = σ(Mi ), and p2 =
h∏

i=1

N(ai ). (2.23)

Lemma 3 Let w ≥ 1, i ∈ [1, h], FM1(ς) = {y ∈ F | |Nm(y)| < M1, sgn(yi ) =
ςi , i = 1, . . . , s}, where sgn(y) = y/|y| for y �= 0 and ς = (ς1, . . . , ςs) ∈ {−1, 1}s .
Then there exists c6,i > 0 such that

sup
x∈Rs

∣∣
∑

γ∈(w�i+x)∩FM1 (ς)

1 − c6,i M1/w
s
∣∣ = O(M1−1/s

1 ) for M1 → ∞.

Proof It is easy to see that FM1(ς) = M1
1/s

F1(ς). By [6, p. 312], the fundamental
domain F is a cone in R

s . Let Ḟ = {y ∈ F | |yi | ≤ y0, sgn(yi ) = ςi , i = 1, . . . , s}
and let F̈ = {y ∈ Ḟ | |Nm(y)| ≥ 1}, where y0 = supy∈F1(ς),i=1,...,s |yi |. We see that
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F1(ς) = Ḟ \ F̈ and Ḟ, F̈ are compact convex sets. Using (2.20) with k = s, �̇ = w�i ,
and t = M1

1/s , we obtain the assertion of Lemma 3. ��

2.3 Construction of a Hecke Character by Using Chevalley’s Theorem

Letm be an integral ideal of the number field K, and let Jm be the group of all ideals
of K which are relatively prime to m. Let S1 = {z ∈ C | |z| = 1}.
Definition 3 [24, p. 470] AHecke character mod m is a character χ : Jm → S1 for
which there exists a pair of characters

χ f : (O/m)∗ → S1, χ∞ : (R∗)s → S1,

such that
χ((a)) = χ f (a)χ∞(a)

for every algebraic integer a ∈ O relatively prime to m.

The character taking the value one for all group elements will be called the trivial
character.

Definition 4 Let A1, . . . , Ad be invertible s × s commuting matrices with integer
entries. A sequence of matrices A1, . . . , Ad is said to be partially hyperbolic if for all
(n1, . . . , nd) ∈ Z

d \ {0} none of the eigenvalues of An1
1 ...And

d are roots of unity.

We need the following variant of Chevalley’s theorem ([9], see also [29]):
Theorem C [13, p. 282, Th. 6.2.6] Let A1, . . . , Ad ∈ GL(s, Z) be commuting

partially hyperbolic matrices with determinants w1, . . . , wd , p(k) the product of the
first k primes numbers relatively prime to w1, . . . , wd . If z, z̃ ∈ Z

s and there are d
sequences { j (k)i , 1 ≤ i ≤ d} of integers such that

A
j (n)
1
1 · · · A j (k)d

d z̃ ≡ z (mod p(k)), k = 1, 2, . . . ,

then there exists a vector ( j (0)1 , . . . , j (0)d ) ∈ Z
s such that

A
j (0)1
1 · · · A j (0)d

d z̃ = z. (2.24)

Let

μ =

⎧
⎪⎨

⎪⎩

1 if s is odd,

2 if s is even and �ε with NK/Q(ε) = −1,

3 if s is even and ∃ε with NK/Q(ε) = −1.

(2.25)

Let μ ∈ {1, 2}. By [6, p. 117], we see that there exist units εi ∈ UO with
NK/Q(εi ) = 1, i = 1, . . . , s − 1, such that every ε ∈ UO can be uniquely repre-
sented as follows:

ε = (−1)aεk11 · · · εks−1
s−1 with (k1, . . . , ks−1) ∈ Z

s−1, a ∈ {0, 1}. (2.26)
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Let μ = 3. By [6, p. 117], there exist units εi ∈ UO with NK/Q(εi ) = 1, i =
1, . . . , s−1 and NK/Q(ε0) = −1, such that every ε ∈ UO can be uniquely represented
as follows:

ε = (−1)a1εa20 ε
k1
1 · · · εks−1

s−1 with (k1, . . . , ks−1) ∈ Z
s−1, a1, a2 ∈ {0, 1}. (2.27)

Consider the case μ = 1. Let Ii = diag((σ j (εi ))1≤ j≤s), i = 1, . . . , s − 1,
�O = σ(O), f1, . . . , fs be a basis of �O, ei = (0, . . . , 1, . . . , 0) ∈ Z

s , i = 1, . . . , s a
basis ofZ

s . Let Y be the s×s matrix with ei Y = fi , i = 1, . . . , s.We haveZ
sY = �O.

Let Ai = Y IiY−1, i = 1, . . . , s − 1. We see Z
s Ai = Z

s (i = 1, . . . , s − 1). Hence,
Ai is the integer matrix with det Ai = det Ii = 1 (i = 1, . . . , s − 1).

Let z̃ = (1, . . . , 1) and z = −z̃. Let h > 1, and let As = p2 I , where I is the
identity matrix. Taking into account that (ε

k1
1 . . . ε

ks−1
s−1 p

ks
2 ) j = 1 for some j ∈ [1, s]

if and only if k1 = · · · = ks = 0, we get that A1, . . . , As are commuting partially
hyperbolic matrices. By Definition 4, −1 is not the eigenvalue of Ak1

1 . . . Aks
s , and

z̃Ak1
1 . . . Aks

s �= z for all (k1, . . . , ks) ∈ Z
s . Applying Theorem D with d = s, we have

that there exists an integer i ≥ 1 such that (p2, p(i)) = 1,

z̃Ak1
1 . . . Aks−1

s−1 �≡ z (mod p(i)) for all (k1, . . . , ks−1) ∈ Z
s−1,

and

(ε
k1
1 ...ε

ks−1
s−1 ) j �≡ −1 (mod p(i)) for all (k1, . . . , ks−1) ∈ Z

s−1, j ∈ [1, s].
(2.28)

We denote this p(i) by p3. We have (p2, p3) = 1. If h = 1, then we apply Theorem D
with d = s − 1.

Let p3 = p3O and P = O/p3. Denote the projection map O → P by π1. Let O∗
be the set of all integers of O which are relatively prime to p3, P

∗ = π1(O∗),

E j = {v ∈ P
∗ | ∃ (k1, . . . , ks−1) ∈ Z

s−1 with v ≡ (−1) jεk11 . . . ε
ks−1
s−1 (mod p3)},

where j = 0, 1, and E = E0 ∪ E1. By (2.28), E0 ∩ E1 = ∅. Let

χ1,p3(v) = (−1) j for v ∈ E j , j = 0, 1. (2.29)

We see that χ1,p3 is the character on group E . We need the following known assertion
(see e.g. [12, p. 63], [14, p. 446, Chap. 8, Sect. 2, Ex. 4]) :

Lemma B Let Ġ be a finite abelian group, Ḣ is a subgroup of Ġ, andχḢ is a character
of Ḣ . Then there exists a character χĠ of Ġ such that χḢ (h) = χĠ(h) for all h ∈ Ḣ .

Applying Lemma B, we can extend the character χ1,p3 to a character χ2,p3 of group
P

∗. Now we extend χ2,p3 to a character χ3,p3 of group O∗ by setting

χ3,p3(v) = χ2,p3(π1(v)) for v ∈ O∗. (2.30)
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Let
χ4,p3(v) = χ3,p3(v)χ∞(v) with χ∞(v) = Nm(v)/|Nm(v)|,

for v ∈ O∗, and let
χ5,p3((v)) = χ4,p3(v). (2.31)

We need to prove that the right hand side of (2.31) does not depend on units ε ∈ UO.
Let ε = ε

k1
1 . . . ε

ks−1
s−1 . By (2.26), (2.29), and (2.30), we haveχ3,p3(ε) = 1, Nm(ε) = 1,

and χ∞(ε) = 1. Therefore

χ4,p3(vε) = χ3,p3(vε)χ∞(vε) = χ3,p3(v)χ3,p3(ε)χ∞(v)χ∞(ε) = χ3,p3(v)χ∞(v).

Now let ε = −1. Bearing in mind that χ3,p3(−1) = −1, Nm(−1) = −1, and
χ∞(−1) = −1, we obtain χ4,p3(−1) = 1. Hence, definition (2.31) is correct. Let Ip3
be the group of all principal ideals of K which are relatively prime to p3. Let

χ6,p3((v1/v2)) = χ5,p3((v1))/χ5,p3((v2)) for v1, v2 ∈ O∗.

Let Pp3 is the group of fractional principal ideals (a) such that a ≡ 1mod p3 and
σi (a) > 0, i = 1, . . . , s. Let π2 : Ip3 → Ip3/Pp3 be the projection map. Bearing
in mind that χ6,p3(a) = 1 for a ∈ Pp3 , we define

χ7,p3(π2(a)) = χ6,p3(a) for a ∈ Ip3 .

By [23, p. 94, Lemma. 3.3], J p3/Pp3 is the finite abelian group. Applying Lemma B,
we extend the character χ7,p3 to a character χ8,p3 of group J p3/Pp3 . We have
χ8,p3(a) = 1 for a ∈ Pp3 , and we set χ9,p3(a) = χ8,p3(π3(a)), where π3 is the
proection map J p3 → J p3/Pp3 . It is easy to verify

χ9,p3((v)) = χ8,p3(π3((v))) = χ7,p3(π3((v))) = χ7,p3(π2((v)))

= χ6,p3((v)) = χ4,p3(v) = χ3,p3(v)χ∞(v)

for a ∈ Ip3 . Thus we have constructed a nontrivial Hecke character.
Case μ = 2. We repeat the construction of the case μ = 1, taking p3 = 1 and

χ4,p3((v)) = Nm(v)/|Nm(v)|.
Case μ = 3. Similarly to the case μ = 1, we have that there exists i > 0 with

ε
k1
1 ...ε

ks−1
s−1 �≡ ε0(mod p(i)) for all (k1, . . . , ks−1) ∈ Z

s−1. (2.32)

We denote this p(i) by p3. Let

E j = {v ∈ P∗ | ∃ (k1, . . . , ks−1) ∈ Z
s−1 with v ≡ ε

j
0ε

k1
1 ...ε

ks−1
s−1 (mod p3O)},

where j = 0, 1, and E = E0 ∪ E1. By (2.32), E0 ∩ E1 = ∅. Let

χ2,p3(v) = (−1) j for v ∈ E j , j = 0, 1.
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Next, we repeat the construction of the case μ = 1, and we verify the correction of
definition (2.31). Thus, we have proved the following lemma:

Lemma 4 Letμ ∈ {1, 2, 3}. There exists p3 = p3(μ) ≥ 1, (p2, p3) = 1, a nontrivial
Hecke character χ̇p3 , and a character χ̈p3 on group (O/p3O)∗ such that

χ̇p3((v)) = χ̃p3(v), with χ̃p3(v) = χ̈p3(v)Nm(v)/|Nm(v)|,

for v ∈ O∗, and χ̈p3(v) = 0 for (v, p3O) �= 1.

2.4 Non-vanishing of L-functions

With every Hecke character χ mod m, we associate its L-function

L(s, χ) =
∑

a

χ(a)

N(a)s
,

where a varies over the integral ideals ofK, andwe putχ(a) = 0whenever (a,m) �= 1.

Theorem C [15, p. 313, Thm. 2] Let χ be a nontrivial Hecke character. Then

L(1, χ) �= 0.

Theorem D [21, p. 128, Thm. 10.1.4] Let (ak)k≥1 be a sequence of complex numbers,
and let

∑
k<x ak = O(xδ), for some δ > 0. Then

∑

n≥1

an/n
s (2.33)

converges for �(s) > δ.

Theorem E [23, p. 464, Prop. I] If the series (2.33) converges at a point s0, then
it converges also in the open half-plane �s > �s0, the convergence being uniform
in every angle arg(s − s0) < c < π/2. Thus (2.33) defines a function regular in
�s > �s0.

Let f1, . . . , fs be a basis of �O, and let f⊥1 , . . . , f⊥s be a dual basis (i.e. 〈fi , f⊥i 〉 = 1,
〈fi , f⊥j 〉 = 0, 1 ≤ i, j ≤ s, i �= j). Let

Λw = {a1f⊥1 + · · · + asf⊥s | 0 ≤ ai ≤ w − 1, i = 1, . . . , s}, (2.34)

and Λ∗
w = {b ∈ Λw | (w,b) = 1}.

Lemma 5 With notations as above,

ρ(M, j) :=
∑

γ∈� j∩F , |Nm(γ )|<M/2

χ̃p3(γ ) = O(M1−1/s), j ∈ [1, h], (2.35)
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and ∑

N(a)<M/2

χ̇p3(a) = O(M1−1/s) (2.36)

for M → ∞, where a varies over the integral ideals of K.

Proof By Lemma 4, we have

ρ(M, j) =
∑

a∈Λ∗
p3

χ̈p3(a)
∑

ςi∈{−1,+1}, i=1,...,s

ς1 · · · ςs ρ̇(a, ς , j),

where
ρ̇(a, ς , j) =

∑

γ∈� j∩F , γ≡a mod p3,
|Nm(γ )|<M/2, sgn(γi )=ςi , i=1,...,s

1.

Using Lemma 3 with M1 = M/2 and w = p3 , we get

ρ̇(a, ς , j) =
∑

γ∈(p3� j+a)∩F , |Nm(γ )|<M/2
sgn(γi )=ςi , i=1,...,s

1 = c6, j M/ps3 + O(M1−1/s).

Therefore

ρ(M, j) =
∑

a∈Λ∗
p3

χ̈p3(a)
∑

ςi∈{−1,+1}, i=1,...,s

ς1 · · · ςs(c6, j M/ps3 + O(M1−1/s))

= O(M1−1/s).

Hence, the assertion (2.35) is proved. The assertion (2.36) can be proved similarly
(see also [7, p. 210, Thm. 1], [22, p. 142, and p.144, Thm 11.1.5]). ��

Lemma 6 There exists M0 > 0, i0 ∈ [1, h], and c7 > 0, such that

|ρ0(M, i0)| ≥ c7 for M > M0 with ρ0(M, i) =
∑

γ∈�i∩F , |Nm(γ )|<M/2

χ̃p3(γ )

|Nm(γ )| .

Proof Let cl(K) = {C1, . . . ,Ch}, ai ∈ Ci be an integral ideal, i = 1, . . . , s, and
let C1 be the class of principal ideals. Consider the inverse ideal class C−1

i . We set
ȧi = {a1, . . . , ah}∩C−1

i . Then for any a ∈ Ci the product aȧi will be a principal ideal:
aȧi = (α), (α ∈ K). By [6, p. 310], we have that the mapping a → (α) establishes a
one to one correspondence between integral ideal a of the classCi and principal ideals
divisible by ȧi . Let

ρ1(M) =
∑

N(a)<M/2

χ̇p3(a)/N(a).
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Similarly to [6, p. 311], we get

ρ1(M) =
∑

1≤i≤h

∑

a∈Ci ,N(a)<M/2

χ̇p3(a)

N(a)
=

∑

1≤i≤h

∑

a∈C1,N(a/ȧi ))<M/2
a≡0 mod ȧi

χ̇p3(a/ȧi )

N(a/ȧi ))
.

Let
ρ2(M, i) =

∑

a∈C1, N(a)<M/2
a≡0 mod ȧi

χ̇p3(a)/N(a).

We see

ρ1(M) =
∑

1≤i≤h

χ̇p3(1/ȧi )

N(1/ȧi )
ρ2(MN(ȧi ), i). (2.37)

By Lemma 4, we obtain χ̃p3(γ )/|Nm(γ )| = χ̇p3((γ ))/N((γ )). Using Theorem B,
we get ρ0(M, i) = ρ2(M, i). From (2.36), Theorem C, Theorem D, and Theorem E,

we derive ρ1(M)
M→∞−→ L(1, χ̇p3) �= 0. By (2.35) and Theorem D, we obtain that

there exists a complex number ρi such that ρ0(M, i)
M→∞−→ ρi , i = 1, . . . , h. Hence,

there exists M0 > 0 such that

|L(1, χ̇p3)|/2 ≤ |ρ1(M)| and |ρi − ρ2(M, i)| ≤ |L(1, χ̇p3)|(8β)−1, (2.38)

with β = ∑
1≤i≤h N(ȧi ) for M ≥ M0. Let ρ = max1≤i≤h |ρi | = |ρi0 |.

Using (2.37), we have

|L(1, χ̇p3)|/2 ≤ |ρ1(M)| ≤ ρβ + ∣∣
∑

1≤i≤h

χ̇p3(1/ȧi )

N(1/ȧi )
(ρi − ρ2(MN(ȧi ), i))

∣∣

≤ ρβ + |L(1, χ̇p3)|/8 for M > M0.

By (2.38), we get for M > M0

ρ ≥ |L(1, χ̇p3)|(4β)−1 and |ρ0(M, i0)| = |ρ2(M, i0)| ≥ |L(1, χ̇p3)|(8β)−1.

Therefore, Lemma 6 is proved. ��
Lemma 7 There exists M2 > 0 such that

|ϑ | ≥ c7/2 for M > M2, where ϑ =
∑

γ∈�i0∩F

χ̈p3(γ )ηM (γ )

Nm(γ )
.

Proof Let η̇M (k) = 1 − η(2|k|/M),

ϑ1 =
∑

γ∈�i0∩F
|Nm(γ )|<M/2

χ̃p3(γ )

|Nm(γ )| and ϑ2 =
∑

γ∈�i0∩F
M/2≤|Nm(γ )|≤M

χ̃p3(γ )η̇M (Nm(γ ))

|Nm(γ )| .
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From (2.16), we get ηM (γ ) = η̇M (Nm(γ )), ηM (γ ) = 1 for |Nm(γ )| ≤ M/2, and
ηM (γ ) = 0 for |Nm(γ )| ≥ M . Using Lemma 4, we derive

ϑ =
∑

γ∈�i0∩F , |Nm(γ )|≤M

χ̃p3(γ )η̇M (Nm(γ ))

|Nm(γ )| and ϑ = ϑ1 + ϑ2. (2.39)

Bearing in mind that Nm(γ ) ∈ Z and Nm(γ ) �= 0, we have

ϑ2 =
∑

M/2≤ṅ≤M

aṅ η̇M (k)

k
with aṅ =

∑

γ∈�i0∩F , |Nm(γ )|=ṅ

χ̃p3(γ ).

Applying Abel’ transformation

∑

m<k≤ṅ

gk fk = gṅ Fṅ −
∑

m<k≤ṅ−1

(gk+1 − gk)Fk, where Fk =
∑

m<i≤k

fi ,

with fk = ak, gk = η̇M (k)/k and Fk = ∑
γ∈�i0∩F , M/2−0.1<|Nm(γ )|≤k χ̃p3(γ ), we

obtain

ϑ2 = η̇M (M)FM/M −
∑

M/2−0.1<k≤M−1

(η̇M (k + 1)/(k + 1) − η̇M (k)/k)Fk . (2.40)

Bearing in mind that 0 ≤ η̇M (x) ≤ 1 and η
′
(x) = O(1), for |x | ≤ 2, we get

|η̇M (k + 1)/(k + 1) − η̇M (k)/k)| ≤ |η̇M (k + 1)/(k + 1) − η̇M (k + 1)/k)|
+ |(η̇M (k + 1) − η̇M (k))/k|

≤ 1/k2 + 2(kM)−1 sup
x∈[0,2]

|η′
(x)| = O(k−2).

Taking into account that Fk = O(M1−1/s) (see (2.35)), we have from (2.40) that
ϑ2 = O(M−1/s). Using Lemma 6 and (2.39), we obtain the assertion of Lemma 7. ��

2.5 The Lower Bound Estimate for E(A(x, M))

Let n = s−1 log2 N with N = N1 · · · Ns , τ = N−2, M = [√n], and

G0 = {γ ∈ �⊥ | |Nm(γ )| > M},
G1 = {γ ∈ �⊥ | |Nm(γ )| ≤ M, max

i
|γi | ≥ 1/τ 2},

G2 = {γ ∈ �⊥ | |Nm(γ )| ≤ M, 1/τ 2 > max
i

|γi | ≥ n/τ },
G3 = {γ ∈ �⊥ | |Nm(γ )| ≤ M, n/τ > max

i
|γi | ≥ n−s/τ },

G4 = {γ ∈ �⊥ \ 0 | |Nm(γ )| ≤ M, max
i

|γi | < n−sτ−1, n−s > N 1/s min
i

|γi |},
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G5 = {γ ∈ �⊥| |Nm(γ )| ≤ M, max
i

|γi | < n−sτ−1, N 1/s min
i

|γi | ∈ [n−s, ns]},
G6 = {γ ∈ �⊥ | |Nm(γ )| ≤ M, max

i
|γi | < n−sτ−1, N 1/s min

i
|γi | > ns}.

(2.41)

We see that

�⊥ \ 0 = G0 ∪ · · · ∪ G6 and Gi ∩ G j = ∅, for i �= j.

Let p = p1 p2 p3, b ∈ �p. By (2.16) and (2.17), we have

A(b/p, M) =
∑

0≤i≤6

Ai (b/p, M) and A0(b/p, M) = 0, (2.42)

where

Ai (b/p, M) =
∑

γ∈Gi

s∏

i=1

sin(πθi Niγi )
ηM (γ )Ω̂(τγ )e(〈γ ,b/p〉 + ẋ)

Nm(γ )
, (2.43)

with ẋ = ∑
1≤i≤s θi Niγi/2.

We will use the following simple decomposition (see notations from Sect. 2.2 and
(2.25)–(2.27)):

Gi =
⋃

1≤ j≤M

⋃

γ 0∈�⊥∩F ,|Nm(γ 0)|∈( j−1, j]
×

⋃

a1,a2=0,1

{
γ ∈ Gi |γ = γ 0(−1)a1εa20 εk, k ∈ Z

s−1}, i ∈ [1, 6], (2.44)

where k = (k1, . . . , ks−1), εk = ε
k1
1 · · · εks−1

s−1 , and ε0 = 1 for μ = 1, 2.

Lemma 8 With notations as above

Ai (b/p, M) = O(ns−3/2 ln n), where M = [√n] and i ∈ [1, 5].

Proof By (2.43), we have

|Ai (b/p, M)| ≤
∑

γ∈Gi

∏

1≤ j≤s

∣∣ sin(πθ j N jγ j )Ω̂(τγ )/Nm(γ )
∣∣. (2.45)

Case i = 1.Applying (2.20),we obtain #{γ ∈ �⊥ : j ≤ |γ | ≤ j+1} = O( j s−1).
By (2.7) we get Ω̂(τγ ) = O((τ |γ |)−2s) for γ ∈ G1. From (2.45) and (2.41), we have

A1(b/p, M) = O
( ∑

γ∈�⊥,maxi∈[1,s] |γi |≥1/τ 2

τ−2s( max
i∈[1,s] |γi |)

−2s)
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= O
( ∑

j≥τ−2

∑

γ∈�⊥
maxi |γi |∈[ j, j+1)

τ−2s( max
i∈[1,s] |γi |)

−2s)

= O
( ∑

j≥τ−2

τ−2s

j s+1

) = O(1).

Case i = 2.By (2.7)weobtain Ω̂(τγ ) = O(n−2s) forγ ∈ G2. By [6, pp. 312, 322],
the points of �O ∩ F can be arranged in a sequence γ̇ (k) so that

|Nm(γ̇ (1))| ≤ |Nm(γ̇ (2))| ≤ · · · and c(1)k ≤ |Nm(γ̇ (k))| ≤ c(2)k, (2.46)

k = 1, 2, . . . for some c(2) > c(1) > 0. Let εkmax = max1≤i≤s |(εk)i | and εkmin =
min1≤i≤s |(εk)i |. Using Lemma 2, we get

#{k ∈ Z
s−1 | εkmax ≤ τ−4} = O(ns−1), where τ = N−2 = e−2sn . (2.47)

Applying (2.44)–(2.47), we have

A2(b/p, M) = O
( ∑

1≤ j≤M

∑

k∈Zs−1, εkmax≤τ−2

n−2s) = O(Mn−2s+s−1) = O(1).

Case i = 3. Using Lemma 2, we obtain

#{k ∈ Z
s−1 | εkmax ∈ [n−s−1/τ, ns+1/τ ]}

= c4(ln
s−1(ns+1/τ) − lns−1(n−s−1/τ)) + O(ns−2)

= O
(| lns−1 τ |((1 + (s + 1) ln n

| ln τ |
)s−1 − (

1 − (s + 1) ln n

| ln τ |
)s−1))

= O(ns−2 ln n). (2.48)

Applying (2.44)–(2.47), we get

A3(b/p, M) = O
( ∑

1≤ j≤M

∑

k∈Zs−1,εkmax∈[n−s−1/τ,ns+1/τ ]
1
) = O(Mns−2 ln n).

Case i = 4. We see min1≤i≤s | sin(πNiγi )| = O(n−s) for γ ∈ G4. Applying
(2.44)–(2.47), we have

|A4(b/p, M)| = O
( ∑

1≤ j≤M

∑

k∈Zs−1, εkmax≤τ−4

n−s) = O(Mn−2).

Case i = 5. Similarly to (2.48), we obtain from Lemma 2 that

{k ∈ Z
s−1 | εkmin ∈ [n−s−1N−1/s, ns+1N−1/s]} = O(ns−2 ln n).
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Therefore

A3(b/p, M) = O
( ∑

1≤ j≤M

∑

k∈Zs−1,εkmin∈[n−s−1N−1/s ,ns+1N−1/s ]
1
) = O(Mns−2 ln n).

Hence, Lemma 8 is proved. ��
Let ς = (ς1, . . . , ςs), 1 = (1, 1, . . . , 1), and

Ă6(b/p, M, ς) = ς1 · · · ςs(2
√−1)−s

∑

γ∈G6

Ω̂(τγ )ηM (γ )e(〈γ ,b/p + θ̇(ς)〉)
Nm(γ )

(2.49)
with θ̇(ς) = (θ̇1(ς), . . . , θ̇s(ς)) and θ̇i (ς) = (1 + ςi )θi Ni/4, i = 1, . . . , s.

By (2.43), we see

A6(b/p, M) =
∑

ς∈{1,−1}s
Ă6(b/p, M, ς). (2.50)

Lemma 9 With notations as above

E(A6(b/p, M)) = Ȧ6(b/p, M,−1) + O(1),

where

Ȧi (b/p, M,−1) = (−2
√−1)−s

∑

γ∈Gi

ηM (γ )e(〈γ ,b/p〉)
Nm(γ )

, i = 1, 2, . . . (2.51)

Proof By (2.49) and (2.50), we have

|E(A6(b/p, M)) − Ă6(b/p, M,−1)|
= O

( ∑

ς∈{1,−1}s
ς �=−1

∑

γ∈G6

∑

1≤i≤s

|E(e(ςiθi Niγi/4))|
|Nm(γ )|

)
.

Bearing in mind that

E(e(θi z)) = e(z) − 1

2π
√−1z

(2.52)

and that |Niγi | ≥ ns/c3 for γ ∈ G6 (see (2.3), and (2.41)), we get

|E(A6(b/p, M)) − Ă6(b/p, M,−1)| = O
( ∑

γ∈G6

n−s |Nm(γ )|−1).

By (2.49) and (2.51), we obtain

|Ă6(b/p, M,−1) − Ȧ6(b/p, M,−1)| = O
( ∑

γ∈G6

|Ω̂(τγ ) − 1|
|Nm(γ )|

)
.
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By (2.8) and (2.41), we see Ω̂(τγ ) = 1 + O(n−s) for γ ∈ G6. From (2.41), (2.44)
and (2.47), we have #G6 = O(Mns−1). Hence

E(A6(b/p, M)) − Ȧ6(b/p, M,−1) = O
( ∑

γ∈G6

n−s |Nm(γ )|−1) = O(1).

Therefore, Lemma 9 is proved. ��
Let

G7 =
⋃

γ 0∈�⊥∩F ,|Nm(γ 0)|≤M

⋃

a1,a2=0,1

⋃

k∈YN

Tγ 0,a1,a2,k, (2.53)

with
YN = {k ∈ Z

s−1 | εkmin ≥ N−1/s}, (2.54)

and
Tγ 0,a1,a2,k = {γ ∈ �⊥ | γ = γ 0(−1)a1εa20 εk}.

We note that #Tγ 0,a1,a2,k ≤ 1 (may be γ 0(−1)a1εa20 εk /∈ �⊥).

Lemma 10 With notations as above

E(A(b/p, M)) = Ȧ7(b/p, M,−1) + O(ns−3/2 ln n), where M = [√n]. (2.55)

Proof By (2.51), we have

|Ȧ6(b/p, M,−1) − Ȧ7(b/p, M,−1)| = O(#(G7 \ G6) + #(G6 \ G7)).

Consider γ ∈ G6 (see (2.41)). Bearing in mind that min1≤i≤s |γi | ≥ ns N−1/s , we get

|γi | = |Nm(γ )|
∏

[1,s]� j �=i

|γ j |−1 ≤ n−s(s−1)N 1+(s−1)/s < n−s/τ, with τ = N−2.

Thus
G6 = {γ ∈ �⊥ | |Nm(γ )| ≤ M, N 1/s min

i
|γi | > ns}.

From (2.53), we obtain G7 ⊇ G6. Bearing in mind that |Nm(γ )| ≥ 1 for γ ∈ �⊥ \ 0,
we have that G6 ⊇ G5, where

G5 =
⋃

γ 0∈�⊥∩F , |Nm(γ 0)|≤M

⋃

a1,a2=0,1

⋃

k∈ẎN

Tγ 0,a1,a2,k,

with
ẎN = {k ∈ Z

s−1 | N 1/sεkmin ≥ n2s}. (2.56)

By Lemma 3, we get #{γ 0 ∈ �⊥ ∩ F , |Nm(γ 0)| ≤ M} = O(M). Therefore

|Ȧ6(b/p, M,−1) − Ȧ7(b/p, M,−1)| = O(M#(YN \ ẎN )).
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Using Lemma 2, we obtain

#(YN \ ẎN ) = {k ∈ Z
s−1 | εkmin ∈ [N−1/s, n2s N−1/s]}

= c5
(
lns−1(N 1/s) − lns−1(n−2s N 1/s)

) + O(ns−2)

= O
(
lns−1 N

((
1 − (

1 − 2s2 log2 n

ln N

)s−1)))

= O(ns−2 ln n), n = s−1 log2 N .

Hence
|Ȧ6(b/p, M,−1) − Ȧ7(b/p, M,−1)| = O(Mns−2 ln n).

Applying Lemmas 8 and 9, we get the assertion of Lemma 10. ��

Let

δw(γ ) =
{
1 if γ ∈ wO,

0 otherwise.

Lemma 11 Let γ ∈ O, then

1

ws

∑

y∈Λw

e(〈γ , y〉/w) = δw(γ ).

Proof It easy to verify that

1

v

∑

0≤k<w

e(kb/w) = δ̇w(b), where δ̇w(b) =
{
1 if b ≡ 0 mod w,

0 otherwise.
(2.57)

Let γ = d1f1 + · · · + dsfs , and y = a1f⊥1 + · · · + asf⊥s (see (2.34)). We have
〈γ , y〉 = a1d1+· · ·+asds . Bearing in mind that γ ∈ wO if and only if di ≡ 0 mod w

(i = 1, . . . , s), we obtain from (2.57) the assertion of Lemma 11. ��

Lemma 12 There exist b ∈ Λp, c8 > 0 and N0 > 0 such that

|E(A(b/p, M))| > c8n
s−1 for N > N0.

Proof We consider the case μ = 1. The proof for the cases μ = 2, 3 is similar.
By (2.51) and Lemma 11, we have

� := 22s

ps
∑

b∈Λp

|Ȧ7(b/p, M,−1)|2 =
∑

γ 1,γ 2∈G7

ηM (γ 1)ηM (γ 2)δp(γ 1 − γ 2)

Nm(γ 1)Nm(γ 2)

=
∑

b∈Λp

∣∣
∑

γ∈G7, γ≡b mod p

ηM (γ )

Nm(γ )

∣∣2. (2.58)
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Bearing in mind that ηM (γ ) = 0 for |Nm(γ )| ≥ M (see (2.16)), we get from (2.53)
that

� =
∑

b∈Λp

∣∣
∑

ς=−1,1

∑

k∈YN

∑

γ∈�⊥∩F , ςεkγ∈�⊥
ςεkγ≡b mod p

ηM (ςεkγ )

Nm(ςεkγ )

∣∣2.

We consider only b = p1b0 ∈ Λp, where b0 ∈ Λp2 p3 and p = p1 p2 p3. By (2.1), we
obtain �p1O ⊆ �⊥ ⊆ �O and �p1O = {γ ∈ �⊥|γ ≡ 0mod p1}. Hence, we can take
�p1O instead of �⊥. We see ςεkγ ∈ �O for all γ ∈ �O, k ∈ Z

s−1 and ς ∈ {−1, 1}.
Thus

� ≥
∑

b∈Λp2 p3

∣∣
∑

ς=−1,1
k∈YN

∑

γ∈�O∩F
ςεkγ≡b mod p2 p3

ηM (p1ςεkγ )

Nm(p1ςεkγ )

∣∣2.

By Lemma 4, (p2, p3) = 1. Hence, there exists w2, w3 ∈ Z such that p2w2 ≡
1 mod p3 and p3w3 ≡ 1 mod p2. It is easy to verify that if ḃ2, b̈2 ∈ Λp2 (see (2.34)),
ḃ3, b̈3 ∈ Λp3 , and (ḃ2, ḃ3) �= (b̈2, b̈3), then

ḃ2 p3w3 + ḃ3 p2w2 �≡ b̈2 p3w3 + b̈3 p2w2 mod p2 p3.

Therefore

Λp2 p3 = {b ∈ Λp2 p3 | ∃ b2 ∈ Λp2 , b3 ∈ Λp3 with

b ≡ b2 p3w3 + b3 p2w2 mod p2 p3}.

Thus

� ≥
∑

b2∈Λp2

∑

b3∈Λp3

∣∣
∑

ς=−1,1
k∈YN

∑

γ∈�O∩F
ςεkγ≡b2 p3w3+b3 p2w2 mod p2 p3

ηM (p1γ )

Nm(p1ςγ )

∣∣2

≥
∑

b2∈Λp2

∑

b3∈Λp3

∣∣χ̈p3(b3)
∑

ς=−1,1
k∈YN

∑

γ∈�O∩F
ςεkγ≡b2 p3w3+b3 p2w2 mod p2 p3

ηM (p1γ )

Nm(p1ςγ )

∣∣2

=
∑

b2∈Λp2

∑

b3∈Λp3

∣∣
∑

ς=−1,1
k∈YN

∑

γ∈�O∩F
ςεkγ≡b2 p3w3+b3 p2w2 mod p2 p3

χ̈p3(ςεkγ )ηM (p1γ )

Nm(p1ςγ )

∣∣2.

Using the Cauchy–Schwartz inequality, we have

ps3�≥
∑

b2∈Λp2

∣∣ ∑

b3∈Λp3

∑

ς=−1,1
k∈YN

∑

γ∈�O∩F
ςεkγ≡b2 p3w3+b3 p2w2 mod p2 p3

χ̈p3(ςεkγ )ηM (p1γ )

ps1Nm(ςγ )

∣∣2.
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We see that ςεkγ ≡ b2 p3w3 ≡ b2 mod p2 if and only if there exists b3 ∈ Λp3 such
that ςεkγ ≡ b2 p3w3 + b3 p2w2 mod p2 p3. Hence

p2s1 ps3� ≥
∑

b2∈Λp2

∣∣
∑

ς=−1,1
k∈YN

∑

γ∈�O∩F
ςεkγ≡b2 mod p2

χ̈p3(ςεkγ )ηM (p1γ )

Nm(ςγ )

∣∣2. (2.59)

By (2.23), we get �i0 = ςεk�i0 for all k ∈ Z
s−1, ς ∈ {−1, 1}, and there exists

Φi0 ⊆ Λp2 with

�i0 =
⋃

b∈Φi0

(p2�O + b), where (p2�O + b1) ∩ (p2�O + b2) = ∅, for b1 �= b2.

We consider in (2.59) only b2 ∈ Φi0 . Applying the Cauchy–Schwartz inequality, we
obtain

p2s1 ps2 p
s
3� ≥ ∣∣

∑

b2∈Φi0

∑

ς=−1,1
k∈YN

∑

γ∈�O∩F
ςεkγ≡b2 mod p2

χ̈p3(ςεkγ )ηM (p1γ )

Nm(ςγ )

∣∣2

= ∣∣
∑

ς=−1,1
k∈YN

∑

γ∈�i0∩F

χ̈p3(ςεkγ )ηM (p1γ )

Nm(ςγ )

∣∣2.

Using Lemma 4, we get

χ̈p3(ςεkγ )
|Nm(γ )|
Nm(ςγ )

= χ̈p3(ςεkγ )
Nm(ςεkγ )

|Nm(ςεkγ )|
= χ̇p3((ςεkγ )) = χ̇p3((γ )) = χ̈p3(γ )

|Nm(γ )|
Nm(γ )

.

Hence

p2s1 ps2 p
s
3� ≥ ∣∣

∑

ς=−1,1
k∈YN

∑

γ∈�i0∩F

χ̈p3(γ )ηM (p1γ )

Nm(γ )

∣∣2.

Bearing in mind that ηM (p1γ ) = ηM/ps1
(γ ) (see (2.16)), we obtain

p2s1 ps2 p
s
3� ≥ 4#Y2

N

∣∣
∑

γ∈�i0∩F

χ̈p3(γ )ηM/ps1
(γ )

|Nm(γ )|
∣∣2.

Applying Lemma 2, we have from (2.54) that #YN ≥ 0.5c5(n/s)s−1 for N ≥ Ṅ0 with
some Ṅ0 > 1, and n = s−1 log2 N . By Lemma 7 and (2.58), we obtain
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sup
b∈Λp

|Ȧ7(b/p, M,−1)| ≥ 2−s�1/2

≥ c7(2p
2
1 p2 p3)

−s#YN ≥ 0.5c5c7(2p
2
1 p2 p3s)

−sns−1,

withM = [√n] = [√log2 N ] ≥ M2+log2 Ṅ0. Using Lemma 10, we get the assertion
of Lemma 12. ��

2.6 Auxiliary Lemmas

We need the following notations and results from [27]:

Lemma C [27, Lemma 3.2] Let �̇ ⊂ R
s be an admissible lattice. Then

sup
x∈Rs

∑

γ∈�̇

∏

1≤i≤s

(1 + |γi − xi |)−2s ≤ H�̇

where the constant H�̇ depends upon the lattice �̇ only by means of the invariants
det �̇ and Nm �̇.

Let f (t), t ∈ R, be a function of the classC∞; moreover let f (t) and all derivatives
f (k) belong to L1(R). We consider the following integrals for τ̇ > 0:

I (τ̇ , ξ) =
∫ ∞

−∞
η(t)ω̂(τ̇ t)e(−ξ t)

t
dt, J f (τ̇ , ξ) =

∫ ∞

−∞
f (t)ω̂(τ̇ t)e(−ξ t)dt. (2.60)

Lemma D [27, Lemma 4.2] For all α > 0 and β > 0, there exists a constant c̆(α,β) >

0 such that

max(|I (τ̇ , ξ)|, |J f (τ̇ , ξ)|) < c̆(α,β)(1 + τ̇ )−α(1 + |ξ |)−β.

Let m(t), t ∈ R, be an even non negative function of the class C∞; moreover
m(t) = 0 for |t | ≤ 1, m(t) = 0 for |t | ≥ 4, and

+∞∑

q=−∞
m(2−q t) = 1. (2.61)

For examples of such functions see e.g. [27, Ref. 5.16]. Let ṗ = ( ṗ1, . . . , ṗs),
ṗi > 0, i = 1, . . . , s, a > 0, x0 = γ0 = 1,

Ŵa,i (ṗ, x) = ω̂( ṗ1x1)η(ax1)

x1

s∏

j=2

ω̂( ṗ j x j )m(x j )

x j

1

xi
for Nm x �= 0, (2.62)

and Ŵa,i (ṗ, x) = 0 for Nm(x) = 0, i = 0, 1, . . . , s. Let

W̆a,i (�̇, ṗ, x) =
∑

γ∈�̇⊥\0
Ŵa,i (ṗ, γ )e(〈γ , x〉). (2.63)
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By (2.6) and (2.7), we see that the series (2.63) converge absolutely, and Ŵa,i (ṗ, x)
belongs to the class C∞. Therefore, we can use Poisson’s summation formula (2.4):

W̆a,i (�̇, ṗ, x) = det �̇
∑

γ∈�̇

Wa,i (ṗ, γ − x), (2.64)

where Ŵa,i (ṗ, x) and Wa,i (ṗ, x) are related by the Fourier transform. Using (2.62),
we derive

Wa,i (ṗ, x) =
∏

j∈{1,...,s}\{i}
w

(1)
1 ( ṗ j , x j )

∏

j∈{1,...,s}∩{i}
w

(2)
j ( ṗ j , x j ),

where co-factors can be described as follows (see also [27, Ref. 6.14–6.17]):
If j = 1 and i �= 1, then

w
(1)
1 (τ, ξ) =

∫ ∞

−∞
1

t
η(at)ω̂(τ t)e(−ξ t)dt = I (a−1τ, a−1ξ). (2.65)

Note that here we used formula (2.60). If j = 1 and i = 1, then

w
(2)
1 (τ, ξ) =

∫ ∞

−∞
1

t2
η(at)ω̂(τ t)e(−ξ t)dt = aJ f1(a

−1τ, a−1ξ).

Note that here we used formula (2.60) with f1(t) = η(t)/t2. If j ≥ 2, then

w
(l)
j (τ, ξ) =

∫ ∞

−∞
1

t l
m(t)ω̂(τ t)e(−ξ t)dt = J f2(τ, ξ). (2.66)

Here we used formula (2.60) with f2(t) = m(t)/t l j = 2, . . . , s, l = 1, 2.
Applying Lemma D, we obtain for 0 < a ≤ 1 that

|w(l)
1 (τ, ξ)| < c̆(2s,2s)(1+a−1|ξ |)−2s and |w(l)

j (τ, ξ)| < c̆(2s,2s)(1+|ξ |)−2s, (2.67)

with j = 2, . . . , s, and l = 1, 2. Now, using (2.64) and Lemma C, we get (see also
[27, Ref. 6.18, 6.19, 3.7, 3.10, 3,13]):

Lemma E Let �̇ ⊂ R
s be an admissible lattice, and 0 < a ≤ 1 . Then

sup
x∈Rs

|W̆a,i (�̇, ṗ, x)| ≤ c̆(2s,2s) det �̇H�̇ .
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2.7 Dyadic Decomposition of B(b/ p, M)

Using the definition of the function m(x) (see (2.61)), we set

M(x) =
s∏

j=2

m(x j ). (2.68)

Let 2q = (2q1, . . . , 2qs ), and

ψq(γ ) = M(2−q · γ )Ω̂(τγ )/Nm(γ ),

Bq(M) = Bq(b/p, M)

=
∑

γ∈�⊥\0

s∏

i=1

sin(πθi Niγi )(1 − ηM (γ ))ψq(γ ))e(〈γ ,b/p〉 + ẋ),

(2.69)

with ẋ = ∑
1≤i≤s θi Niγi/2.

By (2.17) and (2.61), we have

B(b/p, M) =
∑

Q∈L
Bq(M), (2.70)

with L = {q = (q1, . . . , qs) ∈ Z
s | q1 + · · · + qs = 0}.

Let

B̃q(M) =
∑

γ∈�⊥\0

s∏

i=1

sin(πθi Niγi )η(γ12
−q1/M)ψq(γ )e(〈γ ,b/p〉 + ẋ), (2.71)

and

Cq(M) =
∑

γ∈�⊥\0

s∏

i=1

sin(πθi Niγi )(1 − ηM (γ ))

×(1 − η(γ12
−q1/M))ψq(γ )e(〈γ ,b/p〉 + ẋ).

According to (2.16), we get ηM (γ ) = 1 − η(2|Nm(γ )|/M), η(x) = 0 for |x | ≤ 1,
η(x) = η(−x) and η(x) = 1 for |x | ≥ 2. Let η(γ12−q1/M)m(γ22−q2) · · ·m(γs2−qs )

�= 0, then |Nm(γ )| ≥ M (see (2.61)), and

(1 − ηM (γ ))η(γ12
−q1/M) = η(2|Nm(γ )|/M)η(γ12

−q1/M) = η(γ12
−q1/M).

Hence
Bq(M) = B̃q(M) + Cq(M). (2.72)
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Let n = s−1 log2 N , τ = N−2 and

G1 = {q ∈ L | max
i=1,...,s

qi ≥ − log2 τ + log2 n},
G2 = {q ∈ L \ G1 | min

i=2,...,s
qi ≤ −n − 1/2 log2 n},

G3 = {q ∈ L | − n − 1/2 log2 n < min
i=2,...,s

qi , max
i=1,...,s

qi < − log2 τ + log2 n},
G4 = {q ∈ G3 | q1 ≥ −n + s log2 n},
G5 = {q ∈ G3 | − n − s log2 n ≤ q1 < −n + s log2 n},
G6 = {q ∈ G3 | q1 < −n − s log2 n}. (2.73)

We see

L = G1 ∪ G2 ∪ G3, G3 = G4 ∪ G5 ∪ G6 and Gi ∩ G j = ∅, for i �= j (2.74)

and i, j ∈ [1, 3] or i, j ∈ [4, 6]. Let

Bi (M) =
∑

q∈Gi

Bq(M). (2.75)

By (2.70), we obtain

B(b/p, M) = B1(M) + B2(M) + B3(M). (2.76)

Let
B̃3(M) =

∑

q∈G3

B̃q(M), C̃3(M) =
∑

q∈G3

Cq(M). (2.77)

Applying (2.72) and (2.75), we get

B3(M) = B̃3(M) + C̃3(M). (2.78)

By (2.7), we obtain the absolute convergence of the following series

∑

γ∈�⊥\0
|Ω̂(τγ )/Nm(γ )|.

Hence, the series (2.71), (2.75) and (2.77) converges absolutely.
Let

B̆q(M, ς) =
∑

γ∈�⊥\0
η(γ12

−q1/M)ψq(γ )e(〈γ ,b/p + θ̇(ς)〉) (2.79)
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with θ̇(ς) = (θ̇1(ς), . . . , θ̇s(ς)) and θ̇i (ς) = (1 + ςi )θi Ni/4, i = 1, . . . , s. By
(2.71), we have

B̃q(M) =
∑

ς∈{1,−1}s
ς1 · · · ςs(2

√−1)−sB̆q(M, ς). (2.80)

Let ς2 = −1 = −(1, 1, . . . , 1), ς3 = 1̇ = (1,−1, . . . ,−1), and let

B̃3,1(M) =
∑

q∈G3

∑

ς∈{1,−1}s
ς �=ς2,ς3

ς1 · · · ςs(2
√−1)−sB̆q(M, ς), (2.81)

B̃i, j (M) = (−1)s+ j (2
√−1)−s

∑

q∈Gi

B̆q(M, ς j ), i = 3, 4, 5, 6, j = 2, 3.

(2.82)

Using (2.77) and (2.80), we derive

B̃3(M) = B̃3,1(M) + B̃3,2(M) + B̃3,3(M).

Bearing in mind (2.74), we obtain

B̃3(M) = B̃3,1(M) +
∑

i=4,5,6

∑

j=2,3

B̃i, j (M). (2.83)

Let

B̃6, j,k(M) = (−1)s+ j (2
√−1)−s

∑

q∈G6

B̆(k)
q (M, ς j ), j = 2, 3, k = 1, 2, (2.84)

where

B̆(1)
q (M, ς) =

∑

γ∈�⊥\0
η(γ12

−q1/M)ψq(γ )η(2n+log2 nγ1)e(〈γ ,b/p + θ̇(ς)〉)

and

B̆(2)
q (M, ς) =

∑

γ∈�⊥\0
η(γ12

−q1/M)ψq(γ )(1 − η(2n+log2 nγ1))e(〈γ ,b/p + θ̇(ς)〉).

From (2.79), (2.82) and (2.84) , we get

B̆q(M, ς) = B̆(1)
q (M, ς) + B̆(2)

q (M, ς) and B̃6, j (M) = B̃6, j,1(M) + B̃6, j,2(M).

So, we proved the following lemma:

123



Discrete Comput Geom (2015) 54:826–870 855

Lemma 13 With notations as above, we get from (2.76), (2.78) and (2.83)

B(b/p, M) = B̄(M) + C̃3(M), (2.85)

where
B̄(M) = B1(M) + B2(M) + B̃3(M) (2.86)

and

B̃3(M) = B̃3,1(M) +
∑

j=2,3

(B̃4, j (M) + B̃5, j (M) + B̃6, j,1(M) + B̃6, j,2(M)). (2.87)

2.8 The Upper Bound Estimate for E(B̄(M))

Lemma 14 With notations as above

B1(M) = O(1).

Proof Let q ∈ G1, and let j = qi0 = max1≤i≤s qi , i0 ∈ [1, . . . , s]. By (2.73), we have
j ≥ − log2 τ + log2 n. Using (2.69), we obtain

|Bq(M)| ≤
∑

γ∈�⊥\0

∣∣
s∏

i=1

sin(πθi Niγi )
M(2−q · γ )Ω̂(τγ )

Nm(γ )

∣∣. (2.88)

From (2.68) and (2.61), we get

|Bq(M)| ≤ ρ1 + ρ2 with ρi =
∑

γ∈Xi

|M(γ )Ω̂(τ2q · γ )|
|Nm(γ )| , (2.89)

where

X1 = {γ ∈ 2−q · �⊥ \ 0 | |γ1| ≤ 24s j , |γi | ∈ [1, 4], i = 2, . . . , s},

and
X2 = {γ ∈ 2−q · �⊥ \ 0 | |γ1| > 24s j , |γi | ∈ [1, 4], i = 2, . . . , s}.

We consider the admissible lattice 2−q · �⊥, where Nm(�⊥) ≥ 1. Using Theorem A,
we obtain that there exists a constant c9 = c9(�⊥) such that

#{γ ∈ 2−q · �⊥ | |γi | ≤ 4, i = 2, . . . , s, 24(s−1)|γ1| ∈ [k, 2k]} ≤ c9k, (2.90)

where k = 1, 2, . . . ..
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Let i0 = 1. We see that τ2q1 = τ2 j ≥ 2log2 n = n. By (2.7), (2.88) and (2.90), we
get

Bq(M) = O
( ∑

k≥0

∑

γ∈2−q·�⊥\0, 1≤|γi |≤4, i≥2
24(s−1)|γ1|∈[2k ,2k+1]

|ω̂(τ2q1γ1)|
|Nm(γ )|

) = O
( ∑

k≥0

(1 + τ2q1+k)−2s).

Hence
Bq(M) = O((τ2 j )−2s). (2.91)

Let i0 ≥ 2. Bearing in mind (2.7) and (2.90), we have

ρ1 = O
( ∑

0≤k≤4s( j+1)

∑

γ∈2−q·�⊥\0, 1≤|γi |≤4, i≥2
24(s−1)|γ1|∈[2k ,2k+1]

|ω̂(τ2qi0 γqi0 )|
|Nm(γ )|

)

= O
( ∑

0≤k≤4s( j+1)

(1 + τ2qi0 )−2s).

Hence
ρ1 = O( j (1 + τ2 j )−2s). (2.92)

Taking into account that q1 = −(q2 +· · ·+qs) ≥ −(s−1) j and τ2 j ≥ n, we obtain

ρ2 = O
( ∑

k≥4s j

∑

γ∈2−q·�⊥\0, 1≤|γi |≤4, i≥2
24(s−1)|γ1|∈[2k ,2k+1]

|ω̂(τ2q1γq1)ω̂(τ2qi0 γqi0 )|
|Nm(γ )|

)

= O
( ∑

k≥4s j

(1 + τ2q1+k)−2s(1 + τ2qi0 )−2s) = O
(
(1 + τ2qi0 )−2s).

Therefore
ρ2 = O((1 + τ2 j )−2s). (2.93)

Thus
Bq(M) = O( j (τ2 j )−2s). (2.94)

From (2.20), we have

∑

q∈Zs , q1+···+qs=0, maxi qi= j

1 = O( j s−2). (2.95)

By (2.73), (2.75), (2.94) and (2.91), we get

B1(M) =
∑

q∈G1

Bq(M) = O
( ∑

j≥− log2 τ+log2 n

∑

q∈L,maxi qi= j

j (τ2 j )−2s)

= O
( ∑

j≥− log2 τ+log2 n

j s(τ2 j )−2s) = O(ns(n)−2s) = O(1).
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Hence, Lemma 14 is proved. ��

Lemma 15 With notations as above

|B2(M)| + |B̃6,2,2(M) + B̃6,3,2(M)| = O(ns−3/2).

Proof We consider B2(M) (see (2.69), (2.73) and (2.75)). Let q ∈ G2, and let j =
−qi0 = min2≤i≤s qi , i0 ∈ [2, . . . , s]. We see j ≥ n+1/2 log2 n and | sin(πNi0γi0)| ≤
πNi02

− j+2 for m(2−qi0 γi0) �= 0. By (2.88) and (2.89), we obtain

Bq(M) = O(ρ1 + ρ2) with ρi =
∑

q∈Xi

|N 1/s2− j
M(γ )Ω̂(τ2q · γ )|
|Nm(γ )| .

Similarly to (2.92), (2.93), we get

ρ1 = O
( ∑

0≤k≤4s( j+1)

∑

γ∈2−q·�⊥\0, 1≤|γi |≤4, i≥2
24(s−1)|γ1|∈[2k ,2k+1]

N 1/s2− j

|Nm(γ )|
)

= O
( ∑

0≤k≤4s( j+1)

N 1/s2− j ) = O( j N 1/s2− j ).

We see

ρ2 = O
( ∑

k≥4s j

∑

γ∈2−q·�⊥\0, 1≤|γi |≤4, i≥2
24(s−1)|γ1|∈[2k ,2k+1]

N 1/s2− j |ω̂(τ2q1γq1)|
|Nm(γ )|

)
.

We have max1≤i≤s qi ≤ − log2 τ + log2 n for q ∈ G2. Hence q1 = −(q2 + ...+qs) ≥
(s − 1)(log2 τ − log2 n) and τ2q1 ≥ τ sn−s+1 = 2−2nsn−s+1 > 2−2s j . Thus

ρ2 = O
(
N 1/s2− j

∑

k≥4s j

(1 + τ2q1+k)−2s)

= O
(
N 1/s2− j

∑

k≥4s j

2−2s(k−2s j)) = O(N 1/s2− j ).

Bearing in mind (2.95), we derive

B2(M) =
∑

q∈G2

Bq(M) = O
( ∑

j≥n+1/2 log2 n

∑

q∈L,min2≤i≤s qi=− j

j N 1/s2− j )

= O
( ∑

j≥n+1/2 log2 n

j s−1N 1/s2− j ) = O(ns−3/2).
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Consider ρ := B̆(2)
q (M, 1̇) + B̆(2)

q (M,−1). By (2.69) and (2.84), we have

ρ = O
( ∑

γ∈�⊥\0
| sin(πθ1N1γ1)η(γ12

−q1/M)M(2−q · γ )Ω̂(τγ )/Nm(γ )

×(1 − η(2n+log2 nγ1))e(〈γ ,b/p〉)|)

= O
( ∑

γ∈2−q�̇⊥\0
| sin(πθ1N12

q1γ1)(1 − η(2q1+n+log2 nγ1))M(γ )/Nm(γ )|).

Applying (2.16), (2.68) and (2.90), we obtain

ρ = O
( ∑

γ∈2−q�⊥\0, |γ1|≤2−q1−n−log2 n+4

|N12
q1γ1M(γ )/Nm(γ )|) = O(1/n).

= O
( ∑

γ∈2−q·�⊥\0, 1≤|γi |≤4, i≥2
|γ1|≤2−q1−n−log2 n+4

N12
q1

) = O(N12
q12−q1−n−log2 n+4) = O(1/n).

We get from (2.73) that
#G3 = O(ns−1). (2.96)

By (2.73) and (2.84), we get B̃6,2,2(M) + B̃6,3,2(M) = (ns−2).
Hence, Lemma 15 is proved. ��

Lemma 16 With notations as above

|E(B̃3,1(M))| + |E(B̃4,3(M))| + |B̃5,2(M)| + |B̃5,3(M)| = O(ns−3/2).

Proof By (2.69) and (2.79), we have

B̆q(M, ς) =
∑

γ∈2−q·�⊥\0
η(γ1/M)ψq(2

q · γ )e(〈γ , x〉)

=
∑

γ∈2−q·�⊥\0

ω̂(2q1τγ1)η(γ1/M)

γ1

s∏

j=2

ω̂(2q j τγ j )m(γ j )

γ j
e(〈γ , x〉),

(2.97)

with x = 2q · (b/p + θ̇(ς)) and θ̇i (ς) = (1 + ςi )θi Ni/4, i = 1, . . . , s.
Applying (2.64) and Lemma E with �̇ = 2−q�, i = 0, and ṗ = τ2q, we get

B̆q(M, ς) = O(1).

Using (2.73), we obtain #G5 = O(ns−2 log2 n).
By (2.82) , we get

B̃5,i (M) = O
( ∑

q∈G5

|B̆q(M, ς)|) = O(ns−2 log2 n), i = 2, 3. (2.98)
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Consider E(B̃3,1(M)) and E(B̃4,3(M)). Let

Ei ( f ) =
∫ 1

0
f (θ)dθi .

Let ς �= −1. Then there exists i0 = i0(ς) ∈ [1, s] with ςi0 = 1.
By (2.52) and (2.97), we have

Ei0(B̃q(M, ς)) =
∑

γ∈2−q·�⊥\0

e(Ni02
qi0 γi0/2) − 1

π
√−1Ni02

qi0 γi0

ω̂(2q1τγ1)η(γ1/M)

γ1

×
s∏

j=2

ω̂(2q j τγ j )m(γ j )

γ j
e(〈γ , x〉),

with some x ∈ R
s . Hence

Ei0(B̆q(M, ς)) = O
(
N−1
i0

2−qi0 sup
x∈Rs

∣∣
∑

γ∈2−q·�⊥\0
B̂q(M, γ , i0)e(〈γ , x〉)∣∣),

where

B̂q(M, γ , i0) = ω̂(2q1τγ1)η(γ1/M)

γ1

s∏

j=2

ω̂(2q j τγ j )m(γ j )

γ j

1

γi0
.

Applying (2.64) and Lemma E with �̇ = 2−q�, and ṗ = τ2q, we obtain

E(B̆q(M, ς)) = E(Ei0(B̆q(M, ς))) = O(N−1
i0

2−qi0 ). (2.99)

By (2.81), we have i0(ς) ≥ 2 and

E(B̃3,1(M)) = O
( ∑

ς∈{1,−1}s
ς �=−1,1̇

∑

q∈G3

N−1
i0(ς)2

−qi0(ς)
)
.

Using (2.73), we get #{q ∈ G3 | qi0 = j} = O(ns−2) and j ≥ −n − 1/2 log2 n.
Hence

E(B̃3,1(M)) = O
(
ns−2

∑

j≥−n−1/2 log2 n

N−1/s2− j ) = O(ns−3/2). (2.100)

From (2.73), we get q1 ≥ −n+s log2 n for q ∈ G4. Applying (2.82), (2.96) and (2.99)
with i0(ς) = 1, we obtain

E(B̃4,3(M)) = O
( ∑

q∈G4

N−1
1 2−q1

)
= O

(
ns−1

∑

q1≥−n+s log2 n

N−1/s2−q1
) = O(1).

By (2.98) and (2.100), Lemma 16 is proved. ��
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Lemma 17 With notations as above

B̃4,2(M) = O(ns−3/2).

Proof By (2.97), we have

B̆q(M,−1) =
∑

γ∈2−q·�⊥\0

ω̂(2q1τγ1)η(γ1/M)

γ1

s∏

j=2

ω̂(2q j τγ j )m(γ j )

γ j
e(〈γ , 2q · b/p〉).

From (2.65), we derive that I (d, v) = 0 for v = 0. Hence w
(1)
1 (τ, 0) = 0. Now

applying (2.64)–(2.67) with �̇⊥ = 2−q · �⊥, i = 0 and a = M−1, we get

|B̆q(M,−1)| ≤ c̆(2s,2s) det �
∑

γ∈2q·�, γ1 �=(b/p)1

(1 + M |γ1 − 2q1(b/p)1|)−2s

×
s∏

i=2

(1 + |γi − 2qi (b/p)i |)−2s .

Bearing in mind (2.1), we get p1�O ⊆ �⊥ ⊆ �O. Taking into account that p =
p1 p2 p3 and b ∈ �O, we obtain

|B̆q(M,−1)| ≤ c̆(2s,2s) det �p
2s2

∑

γ∈p2q·�\0
(1+M |γ1|)−2s

s∏

i=2

(1+|γi |)−2s . (2.101)

We have
|B̆q(M,−1)| ≤ c̆(2s,2s) det �p

2s2(a1 + a2), (2.102)

where

a1 =
∑

γ∈p2q·�\0,max |γi |≤M1/s

(1 + M |γ1|)−2s
s∏

i=2

(1 + |γi |)−2s,

and

a2 =
∑

γ∈p2q·�\0,max |γi |>M1/s

(1 + M |γ1|)−2s
s∏

i=2

(1 + |γi |)−2s .

We see that |γ1| ≥ M−(s−1)/s for max1≤i≤s |γi | ≤ M1/s . Applying Theorem A, we
have

a1 ≤ M−2
∑

γ∈p2q·�\0,max |γi |≤M1/s

1 = O(M−1),

and

a2 ≤
∑

j≥M1/s

∑

γ∈p2q·�\0
max |γi |∈[ j, j+1)

j−2s = O
( ∑

j≥M1/s

j−s) = O(M−(s−1)/s). (2.103)
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Taking into account that #G3 = O(ns−1) (see (2.96)), we get from (2.102) and (2.82)
that

B̃4,2(M) = O
( ∑

q∈G4

B̆q(M,−1)
) = O

( ∑

q∈G3

M−1/2) = O(M−1/2ns−1).

Hence, Lemma 17 is proved. ��
Lemma 18 With notations as above

B̃6,2,1(M) + B̃6,3,1(M) = O(ns−3/2), M = [√n].

Proof Let M1 = 2−q1−n−log2 n . By (2.73), we get M1 ≥ n ≥ 2M for q ∈ G6 and
n ≥ 4. From (2.16), we have η(γ1/M)η(γ1/M1) = η(γ1/M1). Using (2.69), (2.79)
and (2.84), we derive similarly to (2.97) that

B̆(1)
q (M, ς j ) =

∑

γ∈2q·�\0

ω̂(2q1τγ1)η(γ1/M1)

γ1

×
s∏

i=2

ω̂(2q j τγ j )m(γ j )

γ j
e(〈γ , 2q · (b/p+( j − 2)θ1N1(1, 0, . . . , 0))〉)

with j = 2, 3, ς2 = −1 and ς3 = 1̇.
By (2.66), we obtain that, J f2(τ, v) = 0 with f2(t) = m(t)/t for v = 0 . Hence

w
(1)
2 (τ, 0) = 0. Now applying (2.64)–(2.67) with �̇⊥ = 2−q · �⊥, i = 0 and a =

M−1
1 = 2q1+n+log2 n , we get analogously to (2.101)

|B̆(1)
q (M, ς j )| ≤ c̆(2s,2s) det �p

2s2
∑

γ∈p2q·�\0
(1+ M1|γ1 − x( j)|)−2s

s∏

i=2

(1+ |γi |)−2s,

with x( j) = ( j − 2)pθ12q1N1. We have

|B̆(1)
q (M, ς j )| ≤ c̆(2s,2s) det �p

2s2(a3 + a4), (2.104)

where

a3 =
∑

γ∈p2q·�\0, max |γi |≤M1/s

(1 + M1|γ1 − x( j)|)−2s
s∏

i=2

(1 + |γi |)−2s,

and

a4 =
∑

γ∈p2q·�,max |γi |>M1/s

(1 + M1|γ1 − x( j)|)−2s
s∏

i=2

(1 + |γi |)−2s .
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We see that |γ1| ≥ M−(s−1)/s formax1≤i≤s |γi | ≤ M1/s . Bearing inmind that |x( j)| ≤
c3 pn−s forq ∈ G6,we obtain |γ1| ≥ 2|x( j)| forM = [√n] and N > 8psc3.Applying
Theorem A, we get

a3 ≤ 22sM−2s
1 M2(s−1)

∑

γ∈p2q·�, max |γi |≤M1/s

1 = O(M−1).

Similarly to (2.103), we have

a4 ≤
∑

j≥M1/s

∑

γ∈p2q·�\0
max |γi |∈[ j, j+1)

j−2s = O
( ∑

j≥M1/s

j−s) = O(M−(s−1)/s).

By (2.73) and (2.96), we obtain #G6 ≤ #G3 = O(ns−1). We get from (2.84) and
(2.104) that

B̃6,2,1(M) + B̃6,3,1(M) = O
( ∑

q∈G6, j=2,3

B̆(1)
q (M, ς j )

) = O(M−1/2ns−1).

Hence, Lemma 18 is proved. ��
Using (2.87), (2.86) and Lemmas 14–18, we obtain

Corollary 1 With notations as above

E(B̄(M)) = O(ns−5/4), M = [√n].

2.9 The Upper Bound Estimate for E( ˜C3(M)) and Koksma–Hlawka Inequality

Let

G7 = {q ∈ G3 | − log2 τ − s log2 n ≤ max
i=1,...,s

qi < − log2 τ + log2 n}.
G8 = {q ∈ G3 \ G7 | q1 < −n − 1/2 log2 n},
G9 = {q ∈ G3 \ G7 | q1 ≥ −n − 1/2 log2 n}, (2.105)

and let
C̃i (M) =

∑

q∈Gi

Cq(M), i = 7, 8, 9.

It is easy to see that

G3 = G7 ∪ G8 ∪ G9, and Gi ∩ G j = ∅, for i �= j.

Hence
C̃3(M) = C̃7(M) + C̃8(M) + C̃9(M). (2.106)

123



Discrete Comput Geom (2015) 54:826–870 863

From (2.71), we have similarly to (2.79) that

Cq(M) =
∑

ς∈{1,−1}s
ς1 · · · ςs(2

√−1)−s C̆q(M, ς), (2.107)

where

C̆q(M, ς) =
∑

γ∈�⊥\0
ψq(γ )(1 − ηM (γ ))(1 − η(γ12

−q1/M))e(〈γ ,b/p + θ̇(ς)〉),

with θ̇i (ς) = (1 + ςi )θi Ni/4, i = 1, . . . , s.
By (2.107) and (2.105), we get

C̃9(M) = C̃10(M) + C̃11(M), (2.108)

where
C̃10(M) =

∑

q∈G9

∑

ς∈{1,−1}s
ς �=−1

ς1 · · · ςs(2
√−1)−s C̆q(M, ς), (2.109)

and
C̃11(M) = (−1)s(2

√−1)−s
∑

q∈G9

C̆q(M,−1). (2.110)

Lemma 19 With notations as above

E(C̃i (M)) = O(ns−3/2), i = 7, 8, 10, M = [√n].

Proof Let γ ∈ 2−q · �⊥ \ 0. By (2.16), (2.61) and (2.68), we have (1 − ηM (γ ))(1 −
η(γ1/M))M(γ ) �= 0 only if 2−2s+3M ≤ |γ1| ≤ 2M, |γi | ∈ [1, 4], i = 2, . . . , s.
From (2.71), we derive

Cq(M) = O
( ∑

γ∈X

∣∣
s∏

i=1

sin(πθi Ni2
qi γi )

M(γ )Ω̂(τ2q · γ )

Nm(γ )

∣∣) (2.111)

where

X = {γ ∈ 2−q · �⊥ \ 0 | 2−2s+3M ≤ |γ1| ≤ 2M, |γi | ∈ [1, 4], i = 2, . . . , s}.

Bearing in mind (2.90), we get Cq(M) = O(1).
Using (2.20), (2.73) and (2.105), we obtain #G7 = O(ns−2 log2 n). Apply-

ing(2.105), we get

C̃7(M) =
∑

q∈G7

Cq(M) = O(ns−2 log2 n). (2.112)
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Consider C̃8(M). Let γ ∈ X . Then | sin(πθ1N12q1γ1)| ≤ πMN121+q1 .
By (2.111), we have

Cq(M) = O
( ∑

γ∈X

|MN 1/s2q1Ω̂(τ2q · γ )|
|Nm(γ )|

) = O(MN 1/s2q1).

Using (2.20) and (2.105), we derive #{q ∈ G8|q1 = d} = O(ns−2). Hence

C̃8(M) =
∑

q∈G8

Cq(M) = O
( ∑

j≥n+0.5 log2 n

∑

q∈G8, q1=− j

MN 1/s2− j )

= O
(
ns−2M

∑

j≥n+0.5 log2 n

2n− j ) = O(ns−2). (2.113)

Consider C̃10(M). From (2.109), we get that there exists i0 = i0(ς) ∈ [1, s] with
ςi0 = 1. By (2.52), (2.69) and (2.107), we have

Ei0(C̆q(M, ς)) =
∑

γ∈�⊥\0
Ċq(M, γ )

e(Niγi0/2) − 1

π
√−1Ni0γi0

e(〈γ , x〉)

with some x ∈ R
s , where

Ċq(M, γ ) = (1 − ηM (γ ))(1 − η(γ12
−q1/M))Ω̂(τ · γ )M(2−qγ )/Nm(γ ).

Hence
Ei0(C̆q(M, ς)) = O

(
N−1
i0

2−qi0
∑

γ∈2−q·�⊥\0
|C̈q(M, γ , i0)|

)
,

with

C̈q(M, γ , i0) = (1 − ηM (γ ))(1 − η(γ1/M))

γ1

s∏

j=2

m(γ j )

γ j

1

γi0
.

Applying (2.111), we obtain maxγ∈X ,i∈[1,s] |1/γi | = O(1).
By (2.16) and (2.90), we have

E(C̆q(M, ς)) = E(Ei0(C̆q(M, ς)))

= O
(
N−1
i0

2−qi0
∑

γ∈X
1/|Nm(γ )|)

= O(N−1
i0

2−qi0 ).
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Similarly to (2.99)–(2.100), we get from (2.105) and (2.73), that

E(C̃10(M)) = O
( ∑

ς∈{1,−1}s
ς �=−1

∑

q∈G9

N−1
i0(ς)2

−qi0(ς)
)

= O
( ∑

1≤i≤s

∑

j≤n+0.5 log2 n

∑

q∈G9,qi=− j

2−n+ j )

= O
(
ns−2

∑

j≤1/2 log2 n

2 j ) = O(ns−3/2).

Using (2.112) and (2.113), we obtain the assertion of Lemma 19. ��
Lemma 20 With notations as above

E(C̃3(M)) = C̃12(M) + O(ns−3/2), M = [√n],

where

C̃12(M) = (−1)s(2
√−1)−s

∑

q∈G9

∑

γ 0∈�p

e(〈γ 0,b/p〉)Čq(γ 0), (2.114)

with

Čq(γ 0) = M−1
∑

γ∈�M,q(γ 0)

g(γ ), g(x) = η(2Nm(x))(1 − η(x1)))M(x)/Nm(x),

and
�M,q(γ 0) = (p2−q · �⊥ + γ 0) · (1/M, 1, 1, . . . , 1).

Proof By (2.106), (2.108) and Lemma 19, it is enough to prove that

C̃11(M) = C̃12(M) + O(ns−3/2).

Consider C̆q(M,−1). Let

C̄q(M,−1) =
∑

γ∈�⊥\0
(1 − ηM (γ ))e(〈γ ,b/p〉))

×η(2−q1γ1/M)M(2−q · γ )/Nm(γ ).

By (2.107), we have

|C̆q(M,−1) − C̄q(M,−1)| ≤
∑

γ∈�⊥\0
|(1 − ηM (γ ))η(2−q1γ1/M)M(2−q · γ )|

×|(Ω̂(τγ ) − 1)/Nm(γ )|.
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We examine the case (1− η(γ12−q1/M))M(2−qγ ) �= 0. By (2.16) and (2.61), we get
|γ1| ≤ M2q1+1 and |γi | ≤ 2qi+2, i ≥ 2.

Hence, we obtain from (2.73) and (2.105), that |τγi | ≤ 4n−s+1/2, i ≥ 1 forq ∈ G9.
Applying (2.8), we get Ω̂(τγ ) = 1 + O(n−s+1/2) for q ∈ G9. Bearing in mind

(2.90), we have

C̆q(M,−1) = C̄q(M,−1) + O(n−1). (2.115)

Taking into account that η(0) = 0 (see (2.16)), we get

C̄q(M,−1) =
∑

γ 0∈�p

e(〈γ 0,b/p〉)Ćq(γ 0),

with

Ćq(γ 0) =
∑

γ∈2−q(p�⊥+γ 0)

η(2|Nm(γ )|/M)(1 − η(γ1/M))M(γ )/Nm(γ ).

It is easy to verify that Ćq(γ 0) = Čq(γ 0). By (2.110) and (2.114), we obtain

C̃11(M) = (−1)s(2
√−1)−s

∑

q∈G9

( ∑

γ 0∈�p

e(〈γ 0,b/p〉)C̆q(γ 0) + O(n−1)
)

= C̃12(M) + O(ns−2).

Hence, Lemma 20 is proved. ��
We consider Koksma–Hlawka inequality (see e.g. [10, pp. 10, 11]):

Definition 5 Let a function f : [0, 1]s → R have continuous partial derivative
∂ l f (Fl )/∂xi1 · · · ∂xil on on the s− l dimensional face Fl , defined by xi1 = · · · = xil =
1, and let

V (s−l)( f Fl ) =
∫

Fl

∣∣ ∂ l f (Fl )

∂xi1 · · · ∂xi1
∣∣dxi1 · · · dxil .

Then the number
V ( f ) =

∑

0≤l<s

∑

Fl

V (s−l)( f Fl )

is called a Hardy and Krause variation.

Theorem F (Koksma–Hlawka) Let f be of bounded variation on [0, 1]s in the sense
of Hardy and Krause. Let ((βk,K )K−1

k=0 ) be a K -point set in an s-dimensional unit cube
[0, 1)s . Then we have

∣∣ 1
K

∑

0≤k≤K−1

f (βk,K ) −
∫

[0,1]s
f (x)dx

∣∣ ≤ V ( f )D((βk,K )K−1
k=0 ).
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Lemma 21 With notations as above

E(C̃3(M)) = O(ns−5/4), M = [√n].

Proof By (2.114) g(x) = η(2Nm(x))(1 − η(x1)))M(x)/Nm(x). We have that g is
the odd function, with respect to each coordinate, and g(x) = 0 for x /∈ [−2, 2] ×
[−4, 4]s−1. Hence ∫

[−2,2]×[−4,4]s−1
g(x)dx = 0.

Let f (x) = g((4x1 − 2, 8x2 − 4, . . . , 8xs − 4)). It is easy to verify that f (x) = 0 for
x /∈ [0, 1]s , and

∫

[0,1]s
f (x)dx =

∫

[−2,2]×[−4,4]s−1
g(x)dx = 0.

We see that f is of bounded variation on [0, 1]s in the sense of Hardy and Krause. Let
�̈(γ 0) = {((γ1 + 2)/4, (γ2 + 4)/8, . . . , (γs + 4)/8) | γ ∈ �M,q(γ 0)}.

Using (2.114), we obtain

Čq(γ 0) = M−1
∑

γ∈�̈(γ 0)

f (γ ).

Let H = �̈(γ 0) ∩ [0, 1)s , and K = #H . Applying Theorem A, we get K ∈
[c1M, c2M] for some c1, c2 > 0.We enumerate the set H by a sequence ((βk,K )K−1

k=0 ).
By Theorem A, we have D((βk,K )K−1

k=0 ) = O(M−1 lns−1 M).

Using Theorem F, we obtain Čq(γ 0) = O(M−1 lns−1 M).
Bearing in mind that #G3 = O(ns−1) (see (2.96)), we derive from (2.114) that

C̃12(M) = O(ns−1M−1 lns−1 M).
Applying Lemma 20, we obtain the assertion of the Lemma 21. ��

Now using (2.85), Corollary 1 and Lemma 21, we get

Corollary 2 With notations as above

E(B(b/p, M)) = O(ns−5/4), M = [√n].

Let N = (N1, . . . , Ns), N = N1 · · · Ns , n = s−1 log2 N , c9 = 0.25(π s det �)−1c8
and M = [√n]. From Lemma 12, Corollary 2 and (2.18), we obtain that there exist
N0 > 0, and b ∈ �p such that

sup
θ∈[0,1]s

|E(R)(Bθ ·N + b/p, �)| ≥ c9n
s−1 for N > N0. (2.116)
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2.10 End of Proof

End of the proof of Theorem 1.
We set R̃(z, y) = R(By−z + z, �), where yi ≥ zi (i = 1, . . . , s) (see (1.2)). Let

us introduce the difference operator �̇ai ,hi : R
s → R, defined by the formula

�̇ai ,hi R̃(z, y) = R̃(z, (y1, . . . , yi−1, hi , yi+1, . . . , ys))

−R̃(z, (y1, . . . , yi−1, ai , yi+1, . . . , ys)).

Similarly to [26, p. 160, Ref. 7], we derive

�̇a1,h1 · · · �̇as ,hs R̃(z, y) = R̃(a,h), (2.117)

where hi ≥ ai ≥ zi (i = 1, . . . , s). Let f1, . . . , fs be a basis of �. We have that
F = {ρ1f1 +· · ·+ρsfs | (ρ1, . . . , ρs) ∈ [0, 1)s} is the fundamental set of �. It is easy
to see thatR(BN+x, �) = R(BN+x+γ , �) for all γ ∈ �. Hence, we can assume in
Theorem 1 that x ∈ F . Similarly, we can assume in Corollary 2 that b/p ∈ F . We get
that there exists γ 0 ∈ � with |γ 0| ≤ 4maxi |fi | and xi < (b/p)i + γ0,i , i = 1, . . . , s.
Let b1 = b+ pγ 0. By (2.116), we have that there exists θ ∈ [0, 1]s and b ∈ �p such
that

|R̃(b1/p,b1/p + θ · N)| ≥ c9n
s−1. (2.118)

Let S = {y | yi = (b/ p)i , (b/ p)i + θi Ni , i = 1, . . . , s}. We see #S = 2s . From
(2.117), we obtain that R̃(b1/p,b1/p + θ · N) is the sum of 2s numbers ±R̃(x, y j ),
where y j ∈ S. By (2.118), we get

|R(By−x + x, �)| = |R̃(x, y)| ≥ 2−sc9n
s−1 for some y ∈ S.

Therefore, Theorem 1 is proved. ��

Proof of Theorem 2 We follow [17, p. 86] and [19, p. 1]. Let n ≥ 1, N ∈ [2n, 2n+1),
y = (y1, . . . , ys) and � = �M. By (1.2) and (1.5), we have

N�(By, (βk,N (x))N−1
k=0 ) = ϕ1 − y1 · · · ysϕ2, (2.119)

where

ϕ1 = N (B(y1,...,ys−1,ys z2,N (x)) + x, �) and ϕ2 = N = N (B(1,...,1,z2,N (x)) + x, �).

Let

α1 = N (B(y1,...,ys−1,ys N det �) + x, �) and α2 = N (B(1,...,1,N det �) + x, �).
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Applying Theorem A, we get

z2,N (x)(det �)−1−N = O(ns−1), ϕ2−α2 = z2,N (x)(det �)−1−N+O(logs−1
2 n),

and
ϕ1 − α1 = y1...ys(z2,N (x)(det �)−1 − N ) + O(logs−1

2 n).

From (2.119), we derive

N�(By, (βk,N (x))N−1
k=0 ) = α1 − y1 · · · ys−1α2 + O(logs−1

2 n) (2.120)

By (1.2), we obtain

α1 − y1 · · · ys−1α2 = β1 − y1 · · · ys−1β2 (2.121)

with

β1 = R(B(y1,...,ys−1,ys N det �) + x, �) and β2 = R(B(1,...,1,N det �) + x, �).

Let y0 = 0.125min(1, 1/ det �, (c1(M)/c0(�))1/(s−1)), θ = (θ1, . . . , θs), yi = y0θi ,
i = 1, . . . , s − 1, and ys = θs . Using Theorem A, we get

|y1 · · · ysR(B(1,...,1,N det �) + x, �)| ≤ ys−1
0 c0(�) logs−1

2 (2 + N det �)

≤ (2y0)
s−1c0(�) logs−1

2 N

≤ 0.25c1(M)ns−1 for N > det � + 2.

(2.122)

Applying Theorem 1, we have

sup
θ∈[0,1)s

|R(B(θ1y0,...,θs−1y0,θs N det �) + x, �)|

≥ c1(M) logs−1
2 (ys−1

0 det �N )

≥ c1(M)ns−1(1 + n−1(s − 1) log2(y
s−1
0 det �)) ≥ 0.5c1(M)ns−1

for n > 10(s − 1)| log2(ys−1
0 det �)|. Using (1.6), (2.120), (2.121) and (2.122), we

get the assertion of Theorem 2. ��
Acknowledgments I amvery grateful to the referee formany corrections and suggestionswhich improved
this paper.
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