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1 Introduction

Let P , Q be two d-dimensional polytopes, or simply d-polytopes, in the Euclidean
d-dimensional space E

d . Their Minkowski sum, P + Q, which is again a d-polytope
in E

d , is defined as the set {p +q | p ∈ P, q ∈ Q}. Minkowski sums are fundamental
structures in both Mathematics and Computer Science. They appear in a variety of
different subjects includingCombinatorialGeometry, ComputationalGeometry, Com-
puter Algebra, Computer-Aided Design & Solid Modeling, Motion Planning, Assem-
bly Planning, Robotics (see [6,25] and the references therein), and, more recently,
Game Theory [22], Computational Biology [21], and Operations Research [27].

Despite their apparent importance, little is known about the worst-case combinato-
rial complexity, i.e., the total number of faces, of Minkowski sums in dimensions four
and higher. In two dimensions, the worst-case complexity of Minkowski sums is well
understood. Given two convex polygons P and Q with n and m vertices, respectively,
the maximum number of vertices and edges of P + Q is n + m [4]. This result can
be immediately generalized (e.g., by induction) to any number of summands. If P is
convex and Q is non-convex (or vice versa), the worst-case complexity of P + Q is
Θ(nm), while if both P and Q are non-convex the complexity of their Minkowski
sum can be as high as Θ(n2m2) [4]. When P and Q are 3-polytopes (embedded in
the 3-dimensional Euclidean space), the worst-case complexity of P + Q is Θ(nm),
if both P and Q are convex, and Θ(n3m3), if both P and Q are non-convex (e.g., see
[5]). For the intermediate cases, i.e., if only one of P and Q is convex, see [24].

Given two convex d-polytopes P1 and P2 in E
d , d ≥ 2, with n1 and n2 vertices,

respectively, we can easily get a straightforward upper bound of O((n1 + n2)
� d+1

2 �)
on the complexity of P1 + P2 by means of the following reduction: embed P1 and P2
in the hyperplanes {x1 = 0} and {x1 = 1} of E

d+1, respectively; then the weighted
Minkowski sum (1−λ)P1+λP2 = {(1−λ)p1+λp2 | p1 ∈ P1, p2 ∈ P2}, λ ∈ (0, 1),
of P1 and P2 is the intersection of the convex hull P of P1 and P2 with the hyperplane
{x1 = λ}. The embedding and reduction described above are essentially what are
known as the Cayley embedding and Cayley trick, respectively, whereas the (d + 1)-
polytope P is called the Cayley polytope of P1 and P2 [11]. From this reduction it is
obvious that the worst-case complexity of (1−λ)P1 +λP2 is bounded from above by

the complexity of the Cayley polytope, which is in O((n1 + n2)
� d+1

2 �). Furthermore,
the complexity of the weighted Minkowski sum of P1 and P2 is independent of λ, in
the sense that, for any value of λ ∈ (0, 1), the polytopes we get by intersecting P with
{x1 = λ} are combinatorially equivalent. In fact, since P1+P2 is nothing but 12 P1+ 1

2 P2
scaled by a factor of 2, the complexity of the weighted Minkowski sum of two convex
polytopes is the same as the complexity of their unweighted Minkowski sum. The
“obvious” upper bound for the complexity of the Minkowski sum stemming from the
complexity of the Cayley polytope is tight in even dimensions. In odd dimensions,
d ≥ 3, however, this upper bound may not be tight; in this case, the worst-case

complexity of P1+ P2 is inΘ(n1n
� d
2 �

2 +n2n
� d
2 �

1 ) (cf. [13]), which is a refinement over
of the “obvious” upper bound when n1 and n2 asymptotically differ. In terms of exact
bounds on the number of faces of the Minkowski sum of two polytopes, results are
known only when the two summands are convex. Besides the trivial bound for convex
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polygons (2-polytopes), mentioned in the previous paragraph, the first result of this
nature was shown by Gritzmann and Sturmfels [10]: given r polytopes P1, P2, . . . , Pr

inE
d , with a total of n non-parallel edges, the number of l-faces fl(P1+ P2+· · ·+ Pr )

of P1 + P2 + · · · + Pr is bounded from above by 2
(n

l

) ∑d−1−l
j=0

(n−l−1
j

)
. This bound

is attained when the polytopes Pi are zonotopes, and their generating edges are in
general position.

Regarding bounds as a function of the number of vertices or facets of the summands,
Fukuda and Weibel [7] have shown that, given two 3-polytopes P1 and P2 in E

3, the
number of k-faces of P1 + P2, 0 ≤ k ≤ 2, is bounded from above as follows:

f0(P1 + P2) ≤ n1n2,

f1(P1 + P2) ≤ 2n1n2 + n1 + n2 − 8,

f2(P1 + P2) ≤ n1n2 + n1 + n2 − 6,

(1)

where n j is the number of vertices of Pj , j = 1, 2. Weibel [25] has also derived
similar expressions in terms of the number of facets m j of Pj , j = 1, 2, namely

f0(P1 + P2) ≤ 4m1m2 − 8m1 − 8m2 + 16,

f1(P1 + P2) ≤ 8m1m2 − 17m1 − 17m2 + 40,

f2(P1 + P2) ≤ 4m1m2 − 9m1 − 9m2 + 26.

All these bounds are tight. Fogel et al. [5] have further generalized some of these
bounds in the case of r summands. More precisely, they have shown that given r
3-polytopes P1, P2, . . . , Pr in E

3, where Pj has m j ≥ d + 1 facets, the number of
facets of the Minkowski sum P1 + P2 + · · · + Pr is bounded from above by

∑

1≤i< j≤r

(2mi − 5)(2m j − 5) +
r∑

i=1

mi +
(

r

2

)
,

and this bound is tight.
In dimensions four and higher, there are no results that relate the worst-case number

of k-faces of the Minkowski sum of two or more convex polytopes with the number
of facets of the summands. There are, however, bounds on the number of k-faces of
the Minkowski sum of convex polytopes, as a function of the number of vertices of
the summands. Fukuda and Weibel [7] have shown that the number of vertices of the
Minkowski sum of r d-polytopes P1, . . . , Pr , where r ≤ d −1 and d ≥ 2, is bounded
fromabove by

∏r
i=1 ni , where ni is the number of vertices of Pi , and this bound is tight.

On the other hand, for r ≥ d, this bound cannot be attained: Sanyal [23] has shown
that for r ≥ d, f0(P1 + · · · + Pr ) is bounded from above by (1 − 1

(d+1)d )
∏r

i=1 ni ,

which is, clearly, strictly smaller than
∏r

i=1 ni . For higher-dimensional faces, i.e., for
k ≥ 1, Fukuda and Weibel [7] have proven what they call the trivial upper bound,
namely that the number of k-faces of the Minkowski sum of r d-polytopes is bounded
as follows:
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fk(P1 + P2 + · · · + Pr ) ≤
∑

1≤si ≤ni
s1+...+sr =k+r

r∏

i=1

(
ni

si

)
, 0 ≤ k ≤ d − 1, (2)

where ni is the number of vertices of Pi , and the si ’s take integral values. Furthermore,
it is shown in [7] that these bounds are tight for d ≥ 4, r ≤ � d

2 �, and for all k with
0 ≤ k ≤ � d

2 � − r , i.e., for the cases where both the number of summands and the
dimension of the faces considered are small. The above-mentioned ranges for the
parameters d, r , and k for which the trivial upper bound is tight are not the best
possible: Karavelas and Tzanaki [15] have shown that the trivial upper bound is tight
for d ≥ 3, 2 ≤ r ≤ d − 1 and for all 0 ≤ k ≤ � d+r−1

2 � − r , and these ranges are
maximal. This result immediately implies a tight worst-case asymptotic bound on the

complexity of the Minkowski sum of r n-vertex d-polytopes, namely Θ(n� d+r−1
2 �).

We end our discussion of the previous work related to this paper by some results
presented in Weibel [26]. In this paper, Weibel considers the case where the number
of summands r is at least as big as the dimension of the polytopes. In this setting, he
gives a relation between the number of k-faces of the Minkowski sum of r polytopes,
r ≥ d ≥ 2, and the number of k-faces of the Minkowski sum of subsets of the original
set of r polytopes that are of size at most d −1. Inmore detail, if we have r d-polytopes
P1, P2, . . . , Pr in E

d , where r ≥ d, that are in general position, then the following
relation holds for any k with 0 ≤ k ≤ d − 1:

fk(P1 + P2 + · · · + Pr ) = α +
d−1∑

j=1

(−1)d−1− j
(

r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

( fk(PS) − α)

≤
∑

S∈Cr
d−1

fk(PS), (3)

where Cr
j is the family of subsets of {1, 2, . . . , r} of cardinality j , PS is theMinkowski

sum of the polytopes in S, and, finally, α = 2 if k = 0 and d is odd, α = 0, otherwise.
Weibel used this relation to derive tight upper bounds on the number of vertices of the
Minkowski sum of r d-polytopes in E

d , when r ≥ d. In particular, the following tight
upper bound holds (cf. [26, Thm. 3]):

f0(P1 + P2 + · · · + Pr ) ≤ α +
d−1∑

j=1

(−1)d−1− j
(

r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

( ∏

i∈S

f0(Pi ) − α
)
,

where Cr
j and α are defined as for relation (3).

In this paper, we extend previous results on the exact maximum number of faces of
the Minkowski sum of two convex d-polytopes.1 More precisely, we show that given
two d-polytopes P1 and P2 inE

d with n1 ≥ d+1 and n2 ≥ d+1 vertices, respectively,

1 In the rest of the paper, all polytopes are considered to be convex.
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themaximumnumber of k-faces of theMinkowski sum P1+P2 is bounded from above
as follows:

fk−1(P1 + P2) ≤ fk(Cd+1(n1 + n2))

−
� d+1

2 �∑

i=0

(
d + 1 − i

k + 1 − i

)((
n1 − d − 2 + i

i

)
+

(
n2 − d − 2 + i

i

))
,

where 1 ≤ k ≤ d, and Cd(n) stands for the cyclic d-polytope with n vertices. The
expressions above are shown to be tight for any d ≥ 2 and for all 1 ≤ k ≤ d, and
match with the corresponding expressions for two and three dimensions (cf. rel. (1)),
as well as the expressions in (2) for r = 2 and for all 0 ≤ k ≤ � d

2 � − 2.
To prove the upper bounds, we use the Cayley embedding already described above.

Given the d-polytopes P1 and P2 in E
d , we embed P1 and P2 in the hyperplanes

{x1 = 0} and {x1 = 1}ofEd+1.We consider theCayley polytope P = C Hd+1(P1, P2)

of P1 and P2 and argue that, for the purposes of the worst-case upper bounds, it suffices
to consider the case where P is simplicial, except possibly for its two facets P1 and
P2. We concentrate on the set F of faces of P that are neither faces of P1 nor faces of
P2. The reason that we focus onF is that there is a bijection between the k-faces ofF
and the (k − 1)-faces of P1 + P2, 1 ≤ k ≤ d, and, thus, deriving upper bounds of the
number of (k − 1)-faces of P1 + P2 reduces to deriving upper bounds for the number
of k-faces of F . We then proceed in a manner analogous to that used by McMullen
[20] to prove the Upper Bound Theorem for polytopes.

We consider the f -vector f (F) of F , and from this we define the h-vector h(F)

of F and continue by

(i) deriving Dehn–Sommerville-like equations for F , expressed in terms of the ele-
ments of h(F) and the g-vectors of the boundary complexes of P1 and P2, and

(ii) establishing a recurrence relation for the elements of h(F).

From the latter, we inductively compute upper bounds on the elements of h(F), which
we combine with the Dehn–Sommerville-like equations for F , to get refined upper
bounds for the “left-most half” of the elements of h(F), i.e., for the values hk(F)with
k > � d+1

2 �. We then establish our upper bounds by computing f (F) from h(F).
To prove the tightness of our upper bounds, we distinguish between even and odd

dimensions. In even dimensions d ≥ 2, we show that the k-faces of the Minkowski
sum of any two cyclic d-polytopes with n1 and n2 vertices, respectively, whose vertex
sets are distinct, attain the upper bounds we have proved. In odd dimensions d ≥ 3,
the construction that establishes the tightness of our bounds is more intricate. We
consider the (d − 1)-dimensional moment curve γ (t) = (t, t2, t3, . . . , td−1), t > 0,
and define two vertex sets V1 and V2 with n1 and n2 vertices on γ (t), respectively. For
i = 1, 2, we define Pi as the convex hull in E

d of the vertices in Vi . We embed P1, P2
in E

d+1 so that they lie in two affinely independent hyperplanes of E
d+1 and then

appropriately perturb their vertices so that they become combinatorially equivalent to
d-dimensional cyclic polytopes. We next argue that, by the way we have chosen V1
and V2, the number of k-faces of the Minkowski sum P1 + P2 attains its maximum
possible value. At a very high/qualitative level, the appropriate choice we refer to
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above amounts to choosing V1 and V2 so that the parameter values on γ (t) of the
vertices in V1 and V2 lie within two disjoint intervals of R that are sufficiently away
from each other.

The structure of the rest of the paper is as follows: In Sect. 2 we formally give
various definitions and recall a version of the Upper Bound Theorem for polytopes
that will be useful later in the paper. In Sect. 3 we define what we call bineighborly
polytopal complexes and prove some properties associated with them. The reason why
we introduce this new notion is the fact that the tightness of our upper bounds is shown
to be equivalent to requiring that the Cayley polytope of P1 and P2 is bineighborly.
In Sect. 4 we prove our upper bounds on the number of faces of the Minkowski sum
of two polytopes. In Sect. 5 we describe our worst-case constructions and show that
these constructions attain the upper bounds proved in Sect. 4. We conclude the paper
with Sect. 6, where we summarize our results, and state open problems and directions
for future work.

2 Definitions and Preliminaries

A convex polytope, or simply polytope, P in E
d is the convex hull of a finite set

of points V in E
d . The minimal subset V ′ of V for which the convex hull of V ′ is

P is called the vertex set of P . A polytope P can equivalently be described as the
intersection of all the closed halfspaces containing V . A face of P is the intersection
of P with a hyperplane H for which the polytope is contained in one of the two closed
halfspaces delimited by H . Such a hyperplane is called a supporting hyperplane of
P. The dimension of a face of P is the dimension of its affine hull. A k-face of P is
a k-dimensional face of P . We consider the polytope itself as a trivial d-dimensional
face; all the other faces are called proper faces. We use the term d-polytope to refer to
a polytope the trivial face of which is d-dimensional. For a d-polytope P , the 0-faces
of P are its vertices, the 1-faces of P are its edges, the (d − 2)-faces of P are called
ridges, while the (d − 1)-faces are called facets. For 0 ≤ k ≤ d we denote by fk(P)

the number of k-faces of P . Note that every k-face F of P is also a k-polytope whose
faces are all the faces of P contained in F . A k-simplex in E

d , k ≤ d, is the convex
hull of any k + 1 affinely independent points in E

d . A polytope is called simplicial if
all its proper faces are simplices. Equivalently, P is simplicial if for every vertex v of
P and every face F ⊂ P , v does not belong to the affine hull of the vertices in F \ {v}.

A polytopal complex C is a finite collection of polytopes in E
d such that (i) ∅ ∈ C;

(ii) if P ∈ C, then all the faces of P are also in C; and (iii) the intersection P ∩ Q for
two polytopes P and Q in C is a face of both P and Q. The dimension dim(C) of C
is the largest dimension of a polytope in C. A polytopal complex is called pure if all
its maximal (with respect to inclusion) faces have the same dimension. In this case
the maximal faces are called the facets of C. We use the term d-complex to refer to a
polytopal complex whose maximal faces are d-dimensional (i.e., the dimension of C
is d). A polytopal complex is called simplicial if all its faces are simplices. Finally,
a polytopal complex C′ is called a subcomplex of a polytopal complex C if all faces of
C′ are also faces of C.
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One important class of polytopal complexes arises frompolytopes.More precisely, a
d-polytope P , together with all its faces, including the empty face, forms a d-complex,
denoted by C(P). The only maximal face of C(P), which is clearly the only facet of
C(P), is the polytope P itself. Moreover, all proper faces of P form a pure (d − 1)-
complex, called the boundary complex C(∂ P), or simply ∂ P of P . The facets of ∂ P are
just the facets of P, and the dimensionof ∂ P is clearly dim(∂ P) = dim(P)−1 = d−1.

Given a d-polytope P in E
d , consider a facet F of P and call H the supporting

hyperplane of F (with respect to P). For an arbitrary point p in E
d , we say that p

is beyond (resp., beneath) the facet F of P , if p lies in the open halfspace of H that
does not contain P (resp., contains the interior of P). Furthermore, we say that an
arbitrary point v′ is beyond the vertex v of P if for every facet F of P containing v,
v′ is beyond F , while for every facet F of P not containing v, v′ is beneath F . For
a vertex v of P , the star of v, denoted by star(v, P), is the polytopal complex of all
faces of P that contain v, and their faces. The link of v, denoted by link(v, P) or P/v,
is the subcomplex of star(v, P) consisting of all the faces of star(v, P) that do not
contain v.

Definition 1 ([28, Rem. 8.3]) Let C be a pure simplicial polytopal d-complex. A
shelling S(C) of C is a linear ordering F1, F2, . . . , Fs of the facets of C such that, for
all 1 < j ≤ s, the intersection Fj ∩ (

⋃ j−1
i=1 Fi ) of the facet Fj with the previous facets

is non-empty and pure (d − 1)-dimensional. In other words, for every i < j , there
exists some � < j such that the intersection Fi ∩ Fj is contained in F� ∩ Fj and such
that F� ∩ Fj is a facet of Fj .

The shelling definition above is the specialization, to simplicial complexes, of the
shelling definition for general polytopal complexes (cf. [28, Def. 8.1]). We refrained
from stating the general definition, as in the sequel of the paper we will only consider
shellings of simplicial polytopal complexes. A polytopal complex that has a shelling
is called shellable, while not all polytopal complexes are shellable. It was a major
result in polytopal theory that the boundary complex of a polytope is always shellable
(cf. [2]).

Consider a pure shellable simplicial polytopal complex C and let S(C) =
{F1, . . . , Fs} be a shelling order of its facets. The restriction R(Fj ) of a facet Fj

is the set of all vertices v ∈ Fj such that Fj \ {v} is contained in one of the ear-
lier facets.2 The main observation here is that when we construct C according to the
shelling S(C), the new faces at the j-th step of the shelling are exactly the vertex sets
G with R(Fj ) ⊆ G ⊆ Fj (cf. [28, Sect. 8.3]). Moreover, notice that R(F1) = ∅ and
R(Fi ) �= R(Fj ) for all i �= j .

The f -vector f (P) = ( f−1(P), f0(P), . . . , fd−1(P)) of a d-polytope P (or its
boundary complex ∂ P) is defined as the (d + 1)-dimensional vector consisting of the
numbers fk(P) of k-faces of P , −1 ≤ k ≤ d − 1, where f−1(P) = 1 refers to the
empty set. The h-vector h(P) = (h0(P), h1(P), . . . , hd(P)) of a d-polytope P (or
its boundary complex ∂ P) is defined as the (d + 1)-dimensional vector, where

2 For simplicial faces, we identify the face with its defining vertex set.
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hk(P) :=
k∑

i=0

(−1)k−i
(

d − i

d − k

)
fi−1(P), 0 ≤ k ≤ d. (4)

It is easy to verify from the defining equations of the hk(P)’s that the elements of
f (P) determine the elements of h(P) and vice versa (see also [28, Sect. 8.3] and
below). In particular, the elements of f (P) can be written in terms of the elements of
h(P) as follows:

fk−1(P) =
k∑

i=0

(
d − i

k − i

)
hi (P), 0 ≤ k ≤ d. (5)

For simplicial polytopes, the number hk(P) counts the number of facets of P in a
shelling of ∂ P , whose restriction has size k; this number is independent of the particular
shelling chosen (cf. [28,Thm. 8.19]).Moreover, the elements of f (P) (or, equivalently,
h(P)) are not linearly independent; they satisfy the so-calledDehn–Sommerville equa-
tions, which can be written in a very concise form as hk(P) = hd−k(P), 0 ≤ k ≤ d.
An important implication of the existence of the Dehn–Sommerville equations is that
if we know the face numbers fk(P) for all 0 ≤ k ≤ � d

2 � − 1, we can determine the
remaining face numbers fk(P) for all � d

2 � ≤ k ≤ d − 1 (cf. relations (4) and (5)).
Both the f -vector and h-vector of a simplicial d-polytope are related to the so-called

g-vector. For a simpliciald-polytope P , its g-vector is the (� d
2 �+1)-dimensional vector

g(P) = (g0(P), g1(P), . . . , g� d
2 �(P)), where g0(P) = 1 and gk(P) = hk(P) −

hk−1(P), 1 ≤ k ≤ � d
2 � (see also [28, Sect. 8.6]). Using the convention that hd+1(P) =

0, we can actually extend the definition of gk(P) for all 0 ≤ k ≤ d + 1, while using
the Dehn–Sommerville equations for P yields gd+1−k(P) = −gk(P), 0 ≤ k ≤ d +1.
We can then express f (P) in terms of g(P) as follows:

fk−1(P) =
� d
2 �∑

j=0

g j (P)

((
d + 1 − j

d + 1 − k

)
−

(
j

d + 1 − k

))
, 0 ≤ k ≤ d + 1.

As a final note for this section, the Upper Bound Theorem for polytopes can be
expressed in terms of their g-vector:

Corollary 2 [28, Cor. 8.38] We consider simplicial d-polytopes P of fixed dimension
d and fixed number of vertices n = g1(P)+ d + 1. f (P) is component-wise maximal
if and only if all the components of g(P) are maximal, with

gk(P) =
(

g1(P) + k − 1

k

)
=

(
n − d − 2 + k

k

)
, (6)

for 0 ≤ k ≤ � d
2 �. Also, fk−1(P) is maximal if and only if gi (P) is maximal for all i

with i ≤ min{k, � d
2 �}.
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The relation between the f -vector and h-vector of a polytopal complex is better
manipulated using generating functions. For a pure simplicial (d − 1)-complex C, its
f -polynomial and h-polynomial, respectively, are defined as

f(C; t) =
d∑

i=0

fi−1td−i = fd + fd−1t + · · · + f−1td , (7)

h(C; t) =
d∑

i=0

hi t
d−i = hd + hd−1t + · · · + h0td . (8)

The relation between the f -vector and h-vector (cf. relations (4) and (5)) can then be
expressed as

f(C; t) = h(C; t + 1) (9)

or equivalently as
h(C; t) = f(C; t − 1). (10)

If P is a simplicial d-polytope, then its boundary complex ∂ P is a simplicial (d−1)-
complex. We can therefore use relations (9) and (10) to define f(∂ P; t) and h(∂ P; t).
Furthermore, we may define the g-polynomial g(∂ P; t) of P as

g(∂ P; t) :=
d∑

i=0

gi t
d+1−i = gdt + gd−1t2 + · · · + g0td+1. (11)

The relation between the g- and h-vector of ∂ P can be expressed in terms of generating
polynomials as

g(∂ P; t) = (t − 1)h(∂ P; t). (12)

Furthermore, the Dehn–Sommerville equations for a simplicial d-polytope are cap-
tured in the following reciprocal relation:

td h(∂ P; 1
t ) = h(∂ P; t). (13)

We end this section with a technical lemma. Its proof may be found in Appendix.

Lemma 3 For any d-polytope P

d h(∂ P; t) + (1 − t)h′(∂ P; t) =
∑

v∈ vert(P)

h(∂ P/v; t), (14)

where vert(P) is the vertex set of P (or ∂ P), and h′(·; t) denotes the derivative of
h(·; t) with respect to t .
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3 Bineighborly Polytopal Complexes

Let C be a d-complex with vertex set V . Let {V1, V2} be a partition of V and define
C1 (resp., C2) to be the subcomplex of C consisting of all the faces of C whose vertices
are vertices in V1 (resp., V2). We start with a useful definition:

Definition 4 Let C be a d-complex. We say that C is (k, V1)-bineighborly if we can
partition the vertex set V of C into two non-empty subsets V1 and V2 = V \ V1 such
that for every ∅ ⊂ S j ⊆ Vj , j = 1, 2, with |S1| + |S2| ≤ k, the union S1 ∪ S2 is the
vertex set of a (|S1| + |S2| − 1)-face of C.
We introduce the notion of bineighborly polytopal complexes because they play an
important role when considering the maximum complexity of the Minkowski sum
of two d-polytopes P1 and P2. As we will see in the upcoming section, the number
of (k − 1)-faces of P1 + P2 is maximal for all 1 ≤ k ≤ l, l ≤ � d−1

2 �, if and only
if the Cayley polytope P of P1 and P2 is (l + 1, V1)-bineighborly, where V1 stands
for the vertex set of P1. Even more interestingly, in any odd dimension d ≥ 3, the
number of k-faces of P1 + P2 is maximized for all 0 ≤ k ≤ d − 1, if and only if P is
(� d+1

2 �, V1)-bineighborly. In the rest of this section we highlight some properties of
bineighborly polytopal complexes that will be useful in the upcoming sections.

A direct consequence of our definition is the following: suppose that C is a (l, V1)-
bineighborly polytopal complex, and let F be a k-face of C, 1 ≤ k < l, such that at
least one vertex of F is in V1 and at least one vertex of F is in V2; then F is a k-simplex.
Another immediate consequence of Definition 4 is that a k-neighborly d-complex is
also (k, V ′)-bineighborly for every non-empty subset V ′ of its vertex set:

Corollary 5 Let C be a k-neighborly d-complex, with vertex set V . Then, for every
V ′, with ∅ ⊂ V ′ ⊂ V , C is (k, V ′)-bineighborly.

It is easy to see that if a d-complex C is (k, V1)-bineighborly, then it is (k − 1)-
neighborly, as the following straightforward lemma suggests.

Lemma 6 Let C be a (k, V1)-bineighborly d-complex, k ≥ 2. Then C is (k − 1)-
neighborly.

Proof Let S ⊆ V be of size k − 1. Choose v ∈ V \ S such that (S ∪ {v}) ∩ Vi �= ∅ for
i = 1, 2, and let S′ = S ∪ {v}. Since C is (k, V1)-bineighborly, S′ is the vertex set of
a (k − 1)-face of C and, as argued above, a (k − 1)-simplex. Clearly, S is the vertex
set of a (k − 2)-face of S′ and hence an element of C. ��

The following lemma is in some sense the converse of Lemma 6.

Lemma 7 Let C be a (k, V1)-bineighborly d-complex and let its two subcomplexes
C1 and C2 be k-neighborly. Then C is also k-neighborly.

Proof Let S be a non-empty subset of V of size k. Consider the following, mutually
exclusive cases:

(i) S consists of vertices of both V1 and V2. Then, since C is (k, V1)-bineighborly, S
defines a (k − 1)-face of C.
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(ii) S consists of vertices of Vj only, j = 1, 2. Since C j is k-neighborly, S defines a
(k − 1)-face of C j . However, C j is a subcomplex of C, which further implies that
S is also a face of C.

Hence, for every vertex subset S of V of size k, S defines a (k − 1)-face of C, i.e., C
is k-neighborly. ��

Consider again a d-complex C with vertex set V = V1 ∪ V2, where V1 ∩ V2 = ∅.
Let B be the set of faces of C that are not faces of either C1 or C2. The following lemma
gives tight upper bounds for the number of faces in B. In what follows, we denote by
n j the cardinality of Vj , j = 1, 2.

Lemma 8 The number of (k − 1)-faces of B is bounded from above as follows:

fk−1(B) ≤
k−1∑

j=1

( n1
j

)( n2
k − j

)
=

( n1 + n2
k

)
−

( n1
k

)
−

( n2
k

)
, 1 ≤ k ≤ d, (15)

where equality holds if and only if C is (k, V1)-bineighborly.

Proof For the purposes of proving an upper bound for elements of the f -vector of B,
it suffices to consider the case where C1 and C2 are in general position with respect to
each other, in which case B is simplicial.

Under the assumption that B is simplicial, we can identify each face of B with
its uniquely defined vertex set. Consider a (k − 1)-face F of B. The face F is a
(k − 1)-simplex and, seen as a vertex set, it is neither a subset of V1 nor V2. Clearly,
the number #kB of vertex sets of cardinality k of B, which are neither subsets of V1
nor V2, is bounded by above by the number #k(V1, V2) of k-element subsets of V not
fully contained in either V1 or V2; this is precisely the right-hand side of (15). Finally,
notice that #kB is equal to #k(V1, V2) if and only if for every non-empty subset S1 of
V1 and every non-empty subset S2 of V2, where |S1| + |S2| = k, the set S1 ∪ S2 is the
vertex set of a (k − 1)-face of C. In other words, equality in (15) can only hold if and
only if C is (k, V1)-bineighborly. ��

4 Upper Bounds

Let P1 and P2 be two d-polytopes in E
d , with n1 and n2 vertices, respectively.

Let us consider the Cayley embedding of P1 and P2, i.e., we embed P1 (resp., P2)
in the hyperplane �1 (resp., �2) of E

d+1 with equation {x1 = 0} (resp., {x1 = 1}).
Then the Minkowski sum P1 + P2 (scaled by a factor of 2) is the d-polytope we get
when intersecting the Cayley polytope P = C Hd+1(P1, P2) of P1 and P2 with the
hyperplane �̃ with equation {x1 = 1

2 } (see Fig. 1). This immediately implies that the
k-faces of the Minkowski sum P1 + P2 correspond bijectively to the (k + 1)-faces of
P not contained in either P1 or P2.

Karavelas and Tzanaki [13, Lem. 2] have shown that the vertices of P1 and P2 can
be perturbed in such a way that
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P1

P2

1

2

P

F

Fig. 1 The d-polytopes P1 and P2 are embedded in the hyperplanes �1 = {x1 = 0} and �2 = {x1 = 1}
of Ed+1. The polytope P̃ is the intersection of the Cayley polytope of P1 and P2 with the hyperplane
�̃ = {x1 = 1

2 }

(i) the vertices of P ′
1 and P ′

2 remain in �1 and �2, respectively, and both P ′
1 and P ′

2
are simplicial;

(ii) the Cayley polytope P ′ of P ′
1 and P ′

2 is also simplicial, except possibly the facets
P ′
1 and P ′

2; and
(iii) the number of vertices of P ′

1 and P ′
2 is the same as the number of vertices of P1

and P2, respectively, whereas fk(P) ≤ fk(P ′) for all k ≥ 1,

where P ′
1 and P ′

2 are the polytopes in �1 and �2 we get after perturbing the vertices
of P1 and P2, respectively. In view of this result, it suffices to consider the case where
both P1, P2, as well as their Cayley polytope P , are simplicial complexes, except
possibly the facets P1 and P2 of P .

In the rest of this section, we consider that this is the case: P is considered sim-
plicial, with the possible exception of its two facets P1 and P2. Let F be the set of
proper faces of P having non-empty intersection with �̃. Note that P̃ = P ∩ �̃ is a
d-polytope, which is, in general, non-simplicial, and whose proper non-trivial faces
are intersections of the form F ∩�̃where F ∈ F . As we have already observed above,
P̃ is combinatorially equivalent to the Minkowski sum P1 + P2. Furthermore,

fk−1(P1 + P2) = fk−1(P̃) = fk(F), 1 ≤ k ≤ d. (16)

The remainder of this section is devoted to deriving upper bounds for fk(F), which,
by relation (16), become upper bounds for fk−1(P1 + P2).

Let K be the polytopal complex whose faces are all the faces of F , as well as the
faces of P that are subfaces of faces in F . Clearly, the d-faces of K are exactly the
d-faces of F , and thus,K is a pure simplicial d-complex, with the d-faces of F being
the facets of K. Moreover, the set of k-faces of K is the disjoint union of the sets of
k-faces of F , ∂ P1 and ∂ P2. This implies
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P1

P2

1

2

P̃
˜

F

y1

y2

a1

b1

Fig. 2 The polytope Q is created by adding two vertices y1 and y2. The vertex y1 (resp., y2) is below P1
(resp., above P2) and is visible by the vertices of P1 (resp., P2) only

fk(K) = fk(F) + fk(∂ P1) + fk(∂ P2), −1 ≤ k ≤ d, (17)

where fd(∂ Pj ) = 0, j = 1, 2. Since K, ∂ P1, and ∂ P2 are complexes, we have, by
definition, that f−1(K) = f−1(∂ P1) = f−1(∂ P2) = 1. In order for relation (17) to
be valid for k = −1, we conventionally set f−1(F) = −1. We next express (17) in
terms of generating functions:

f(K; t) =
d+1∑

i=0

fi−1(K)td+1−i

=
d+1∑

i=0

fi−1(F)td+1−i +
d+1∑

i=0

fi−1(∂ P1)t
d+1−i +

d+1∑

i=0

fi−1(∂ P2)t
d+1−i

= f(F; t) + t
d∑

i=0

fi−1(∂ P1)t
d−i + t

d∑

i=0

fi (∂ P2)t
d−i

= f(F; t) + t f(∂ P1; t) + t f(∂ P2; t), (18)

where we used that dim(K) = dim(F) = d, dim(∂ Pi ) = d − 1, and fd(∂ P1) =
fd(∂ P2) = 0.
For i = 1, 2, let yi be a point beyond the facet Pi of P , and beneath every other

facet of P (see Fig. 2). We call Q the (d + 1)-polytope we get by taking the stellar
subdivisions of P with y1 and y2, respectively (cf. [28, Problem 3.0]). Notice that since
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the facets P1 and P2 are disjoint, the order in which we perform the stellar subdivisions
does not matter. The boundary complex ∂ Q is then the disjoint union of the set of

(i) faces in the star S1 of y1, faces in the star S2 of y2, and
(ii) faces in F .

This implies that

fk(∂ Q) = fk(F) + fk(S1) + fk(S2), 0 ≤ k ≤ d, (19)

where f0(F) = 0. Since Si = star(yi , ∂ Pi ), we can further write

fk(S j ) = fk(∂ Pj ) + fk−1(∂ Pj ), 0 ≤ k ≤ d, i = 1, 2, (20)

where f−1(∂ Pj ) = 1 and fd(∂ Pj ) = 0. Combining relations (19) and (20), we get

fk(∂ Q) = fk(F)+ fk(∂ P1)+ fk−1(∂ P1)+ fk(∂ P2)+ fk−1(∂ P2), 0 ≤ k ≤ d. (21)

As for (17), we now express (21) in terms of generating functions (recall that
dim(F) = dim(∂ Q) = d and dim(∂ Pi ) = d − 1):

f(∂ Q; t) = f(F; t) + (t + 1)f(∂ P1; t) + (t + 1)f(∂ P1; t). (22)

We call K j , j = 1, 2, the subcomplex of ∂ Q consisting of faces of K or faces of
S j . K j is a pure simplicial d-complex, the facets of which are either facets of S j or
K. Furthermore, K j is shellable. To see this, first notice that ∂ Q is shellable (Q is a
polytope). Consider a line shelling (cf. [28, Sect. 8.2]) F1, F2, . . . , Fs of ∂ Q that shells
star(y2, ∂ Q) last, and let Fλ+1, Fλ+2, . . . , Fs be the facets of ∂ Q that correspond toS2.
Trivially, the subcomplex of ∂ Q, the facets of which are F1, F2, . . . , Fλ, is shellable;
however, this subcomplex is nothing but K1. The argument for K2 is analogous.

The k-faces of K j , j = 1, 2, are either k-faces of K or k-faces of the star S j of y j

that contain y j . The latter faces are in one-to-one correspondencewith the (k−1)-faces
of ∂ Pj , i.e., we get

fk(K j ) = fk(K) + fk−1(∂ Pj ). (23)

Expressing (23) in terms of generating functions, we get

f(K j ; t) = f(K; t) + f(∂ Pj ; t). (24)

Notice that Q is a simplicial (d + 1)-polytope, while K, K1, and K2 are simplicial
d-complexes; hence their h-vectors are well defined.We define the f -vector ofF to be
the (d +2)-vector f (F)=( f−1(F), f0(F), . . . , fd(F)), recalling that f−1(F)=−1.
From f (F) we can also define the (d + 2)-vector h(F) = (h0(F), h1(F), . . . ,

hd+1(F)), where

hk(F) =
k∑

i=0

(−1)k−i
(

d + 1 − i

d + 1 − k

)
fi−1(F), 0 ≤ k ≤ d + 1. (25)
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We naturally call this vector the h-vector of F (see also relation (4)). As for polytopal
complexes and polytopes, the f -vector of F defines the h-vector of F and vice versa
(cf. (4) and (5)).

The next lemma associates the elements of h(∂ Q), h(K), h(K1), h(K2), h(F),
h(∂ P1), and h(∂ P2) via generating functions. The last among the relations in the
lemma can be thought of as the analogue of the Dehn–Sommerville equations for F .

Lemma 9

h(Q; t) = h(F; t) + th(P1; t) + th(P2; t), (26)

h(K; t) = h(F; t) + g(P1; t) + g(P2; t), (27)

h(K j ; t) = h(K; t) + h(Pj ; t), j = 1, 2, (28)

td+1h(F; 1
t ) = h(F; t) + g(∂ P1; t) + g(∂ P2; t). (29)

Proof Using (22) we have

h(∂ Q; t) = f(∂ Q; t − 1)

= f(F; t − 1) + tf(∂ P1; t − 1) + tf(∂ P1; t − 1)

= h(F; t) + th(∂ P1; t) + th(∂ P1; t).

Using (12) and (18), we arrive at the following:

h(K; t) = f(K; t − 1)

= f(F; t − 1) + (t − 1)f(∂ P1; t − 1) + (t − 1)f(∂ P2; t − 1)

= h(F; t) + (t − 1)h(∂ P1; t) + (t − 1)h(∂ P2; t)

= h(F; t) + g(∂ P1; t) + g(∂ P2; t).

Similarly, from (24) we get

h(K j ; t) = f(K j ; t − 1) = f(K; t − 1) + f(∂ Pj ; t − 1) = h(K; t) + h(∂ Pj ; t).

To prove (29) recall the Dehn–Sommerville equations (13) for the (d +1)-polytope
∂ Q and the d-polytopes ∂ Pi , i = 1, 2:

td+1h(∂ Q; 1
t ) = h(∂ Q; t) (30)

and

tdh(∂ Pi ; 1
t ) = h(∂ Pi ; t).
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Substituting 1
t for t in (26) and multiplying both sides with td+1, we get

td+1h(∂ Q; 1
t ) = td+1h(F; 1

t ) + td+1

t h(∂ P1; 1
t ) + td+1

t h(∂ P2; 1
t )

= td+1h(F; 1
t ) + tdh(∂ P1; 1

t ) + tdh(∂ P2; 1
t )

= td+1h(F; 1
t ) + h(∂ P1; t) + h(∂ P2; t). (31)

Using (26) and (30), relation (31) becomes

td+1h(F; 1
t ) + h(∂ P1; t) + h(∂ P2; t) = h(F; t) + t h(∂ P1; t) + t h(∂ P2; t),

or equivalently

td+1h(F; 1
t ) = h(F; t) + (t − 1)h(∂ P1; t) + (t − 1)h(∂ P2; t)

= h(F; t) + g(∂ P1; t) + g(∂ P2; t),

which completes our proof. ��
Definition 10 Let p(t) = ∑d

i=0 pi t i and q(t) = ∑d
i=0 qi t i be two polynomial

functions of degree at most d. We will write p(t) � q(t) if and only if p(t) is
coefficient-wise lesser than or equal to q(t), i.e., pi ≤ qi , 0 ≤ i ≤ d.

Lemma 11 For j = 1, 2 and all v ∈ Vj , we have

t h(K/v; t) − t g(∂ Pj/v; t) � h(K; t) − g(∂ Pj ; t). (32)

Proof We are going to prove our claim for j = 1; the case j = 2 is entirely analogous.
To prove relation (32), we rewrite it in terms of the elements of the h- and g-vectors
involved. More precisely, it suffices to show that, for all 0 ≤ k ≤ d + 1,

hk(K/v) − gk(∂ P1/v) ≤ hk(K) − gk(∂ P1). (33)

First, notice that for k = 0 the statement of lemma is trivial since K/v, ∂ P1/v,K
and ∂ P1 are simplicial complexes and, thus, h0(K/v) = g0(∂ P1/v) = h0(K) =
g0(∂ P1) = 1. Thus, in what follows we will assume that k > 0.

Fix a vertex v ∈ V1. Call X1 the set of faces of K that are not faces of ∂ P1, i.e.,
X1 = K\∂ P1. It is easy to verify thatX1 is also the set of faces ofK1 that are not faces
of S1, i.e., X1 = K1 \ S1. Similarly, the faces in X1/v is the set of faces K/v which
are not faces in ∂ P1/v, or, equivalently, the set of faces of K1/v that are not faces of
S1/v, i.e., X1/v = (K1/v) \ (S1/v) (see also the left two subfigures in Fig. 3). Hence
we have

fk(X1) = fk(K) − fk(∂ P1) = fk(K1) − fk(S1), −1 ≤ k ≤ d − 1,

and

fk(X1/v) = fk(K/v) − fk(∂ P1/v) = fk(K1/v) − fk(S1/v), −1 ≤ k ≤ d − 2.
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Rewriting these equations in terms of generating functions, we obtain

f(X1; t) = f(K; t) − t f(∂ P1; t) = f(K1; t) − f(S1; t)

and
f(X1/v; t) = f(K/v; t) − t f(∂ P1/v; t) = f(K1/v; t) − f(S1/v; t).

Using (10), we further deduce that

h(X1; t) = h(K; t) − (t − 1)h(∂ P1; t) = h(K; t) − g(∂ P1; t)

= h(K1; t) − h(S1; t) (34)

and

h(X1/v; t) = h(K/v; t) − (t − 1)h(∂ P1/v; t) = h(K/v; t) − g(∂ P1/v; t)

= h(K1/v; t) − h(S1/v; t).

Consider now a shelling S(∂ Q) of ∂ Q that shells the star of y1 first and the star
of y2 last. Such a shelling does exist since y1 and y2 are not visible from each other:
y j is beyond the facet Pj of C, j = 1, 2, while P1 and P2 are parallel to each other
(the purple numbers in the top-left subfigure of Fig. 3 indicate such a shelling). The
shelling S(∂ Q) gives a shelling S(K1) for K1 (we just have to discard the facets at
the end of S(∂ Q) that are facets in S2), which shells the star of y1 in ∂ Q first. In turn,
S(K1) induces a shelling S(K1/v) for K1/v, which shells the star of y1 in K1/v first
(this induced shelling is shown for the star of v in ∂ Q in the top-right subfigure of
Fig. 3).3

Let us now consider the dual graph G�(∂ Q) of ∂ Q, oriented4 according to the
shelling S(∂ Q), as well as the dual graph G�(∂ Q/v) of ∂ Q/v, also oriented according
to the shelling S(∂ Q/v) (these graphs are shown in red in the top two subfigures of
Fig. 3). We will denote by V �(Y) the vertices of G�(∂ Q) that are the duals of the
facets in ∂ Q that belong to Y , where Y stands for a subset of the set of proper faces
of ∂ Q; for simplicity we will abbreviate V �(∂ Q) to V �.

3 For these particular shellings, hk (X1) and hk (X1/v) have a geometric interpretation: hk (X1) (resp.,
hk (X1/v)) counts the number of restrictions of size k of the facets ofK1 (resp.,K1/v) inX1 (resp.,X1/v)
in the shelling S(K1) (resp., S(K1/v)) of K1 (resp., K1/v).
To see this, rewrite relation (34) in its element-wise form:

hk (K1) = hk (X1) + hk (S1),

and recall that S(K1) shells S1 first. Since the shellings of K1 and S1 coincide as long as we shell S1,
we get a contribution of one to both hk (K1) and hk (S1) for every restriction of S(K1) of size k. After
the shelling S(K1) has left S1, a restriction of size k of the shelling contributes one to hk (K1) and, thus,
necessarily, to hk (X1). But these restrictions are precisely the restrictions corresponding to the facets of
X1 in the shelling S(K1). The argumentation for hk (X1/v) is entirely similar.
4 Given two facets Fi and Fj in the shelling S(∂ Q) (resp., S(∂ Q/v)) of ∂ Q (resp., ∂ Q/v) that share a

ridge, the edge connecting Fi and Fj in the dual graph G�(∂ Q) (resp., G�(∂ Q/v)) is oriented from Fi to
Fj if and only if i < j .
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Fig. 3 Top left The complex ∂ Q from Fig. 2, cut along the edges y1a1–a1b1–b1y2 and embedded in
the plane. The colored edges are identified. The vertex v is shown in orange. The purple numbers refer
to a shelling of ∂ Q that shells star(y1, ∂ Q) first and star(y2, ∂ Q) last. The directed graph in red is the
dual graph G�(∂ Q) of ∂ Q whose edge orientations correspond to the shelling of ∂ Q indicated in the
figure. Top right The complex star(v, ∂ Q). The purple numbers refer to the shelling order of star(v, ∂ Q)

induced by the shelling in the figure to the left (with the numbers in parenthesis being the order of the
corresponding facets in the shelling of ∂ Q). The directed graph in red is the dual graph G�(star(v, ∂ Q))

of star(v, ∂ Q) that corresponds to the shelling of star(v, ∂ Q) shown in the figure; observe that G�(∂ Q/v)

is the subgraph of G�(∂ Q) corresponding to the vertices of G�(star(v, ∂ Q)) that are duals of facets in
star(v, ∂ Q). Bottom left The set of faces X1 of ∂ Q, along with the portion of G�(∂ Q) that corresponds to
the vertices that are duals of facets of X1. Bottom right The set of faces star(v,X1) of star(v, ∂ Q), along
with the portion of G�(star(v, ∂ Q)) that corresponds to the vertices that are duals of facets of star(v,X1).
For the particular example shown: h(∂ Q) = (1, 16, 16, 1), h(∂ Q/v) = (1, 4, 1), h(X1) = (0, 8, 9, 0), and
h(X1/v) = (0, 3, 1)

Since S(∂ Q/v) is induced from S(∂ Q), G�(∂ Q/v) is isomorphic to the subgraph
of G�(∂ Q) defined over V �(star(v, ∂ Q)). Moreover, hk(∂ Q) counts the number of
vertices of V � of in-degree equal to k [12], while hk(S1) counts the number of vertices
of V �(S1) of in-degree k in G�(∂ Q) (for the particular shelling S(∂ Q) of ∂ Q that
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we have chosen). Consequently, hk(X1) counts the number of vertices of V �(X1)

of in-degree k in G�(∂ Q); in an analogous manner, we can conclude that hk(X1/v)

counts the number of vertices of V �(star(v,X1))with in-degree k inG�(∂ Q/v) (refer
to the bottom two subfigures of Fig. 3 to verify these facts for the particular example
shown in the figure). Since, however,G�(∂ Q/v) is a subgraph ofG�(∂ Q), the number
of vertices of V �(star(v,X1)) with in-degree k cannot exceed the number of vertices
of V �(X1) with in-degree k. Hence, hk(X1/v) ≤ hk(X1), which is precisely relation
(33). ��

Using Lemma 11, we can now derive the following generating function inequality,
which is essential in our upper bound proof.

Lemma 12 The following inequality holds:

t (1− t)h′(F; t) � [n1+n2− t (d +1)]h(F; t)+n1 g(∂ P2; t)+n2 g(∂ P1; t). (35)

Proof Let us denote by V the vertex set of ∂ Q and by Vj the vertex set of ∂ Pj ,
j = 1, 2.
Applying Lemma 3 to Q, P1, and P2, we get the following relations:

(d + 1)h(∂ Q; t) + (1 − t)h′(∂ Q; t) =
∑

v∈V

h(∂ Q/v; t), (36)

d h(∂ Pj ; t) + (1 − t)h′(∂ Pj ; t) =
∑

v∈Vj

h(∂ Pj/v; t), j = 1, 2. (37)

Recall that the link of y j in ∂ Q is ∂ Pj , j = 1, 2, and observe that the link of v ∈ Vj

in ∂ Q coincides with K j/v. Expanding relation (36) by means of relation (26), we
deduce

(d + 1)
[
h(F; t) + t

2∑

j=1

h(∂ Pj ; t)
]

+ (1 − t)
[
h′(F; t) +

2∑

j=1

[h(∂ Pj ; t) + th′(∂ Pj ; t)]
]

= (d + 1)h(F; t) + (1 − t)h′(F; t) + t[d h(∂ P1; t) + (1 − t)h′(∂ P1; t)]
+ t[d h(∂ P2; t) + (1 − t)h′(∂ P2; t)] + h(∂ P1; t) + h(∂ P2; t)

=
∑

v∈V

h(∂ Q/v; t) = h(∂ Q/y1; t) + h(∂ Q/y2; t) +
∑

v∈V1∪V2

h(∂ Q/v; t)

= h(∂ P1; t) + h(∂ P2; t) +
∑

v∈V1

h(K1/v; t) +
∑

v∈V2

h(K2/v; t).
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Utilizing relations (37), the above equation is equivalent to

(d + 1)h(F; t) + (1 − t)h′(F; t) =
2∑

j=1

∑

v∈Vj

[h(K j/v; t) − t h(∂ Pj/v; t)]. (38)

Using an analogous argumentation to that used for deriving relation (24), we deduce
that, for any v ∈ Vj , j = 1, 2, we have

f(K j/v; t) = f(K/v; t) + f(∂ Pj/v; t).

Using relation (10), we readily get

h(K j/v; t) = h(K/v; t) + h(∂ Pj/v; t).

Substituting in (38), we finally get

(d + 1)h(F; t) + (1 − t)h′(F; t)

=
2∑

j=1

∑

v∈Vj

[h(K/v; t) + h(∂ Pj/v; t) − th(∂ Pj/v; t)]

=
2∑

j=1

∑

v∈Vj

[h(K/v; t) − g(∂ Pj/v; t)]. (39)

Thus, by applying Lemma 11 and using relation (28), we get for every vertex v ∈ V1

t
∑

v∈V1

[h(K/v; t) − g(∂ P1/v; t)] �
∑

v∈V1

[h(K; t) − g(∂ P1; t)]

= n1 [h(F; t) + g(∂ P2; t)],

Similarly, by applying Lemma 11 and using relation (28), we get for every vertex
v ∈ V2

t
∑

v∈V2

[h(K/v; t) − g(∂ P2/v; t)] �
∑

v∈V2

[h(K; t) − g(∂ P2; t)]

= n2 [h(F; t) + g(∂ P1; t)].

We thus arrive at the following inequality, for 0 ≤ k ≤ d,

t (d + 1)h(F; t) + t (1 − t)h′(F; t)

� (n1 + n2)h(F; t) + n1 g(∂ P2; t) + n2 g(∂ P1; t), (40)

which gives the inequality in the statement of the lemma. ��
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Corollary 13 For all 0 ≤ k ≤ d,

hk+1(F) ≤ n1 + n2 − d − 1 + k

k + 1
hk(F) + n1

k + 1
gk(∂ P2) + n2

k + 1
gk(∂ P1). (41)

Proof Expanding the generating functions in relation (40), we have

t
d+1∑

k=0

(d + 1)hk(F) td+1−k + t (1 − t)
d+1∑

k=0

(d + 1 − k)hk(F) td−k

� (n1 + n2)

d+1∑

k=0

hk(F) td+1−k + n1

d+1∑

k=0

gk(∂ P2) td+1−k + n2

d+1∑

k=0

gk(∂ P1) td+1−k,

or, equivalently,

d+1∑

k=0

(d + 1 − k)hk(F) td+1−k +
d+1∑

k=0

khk(F) td+2−k

� (n1 + n2)

d+1∑

k=0

hk(F) td+1−k + n1

d+1∑

k=0

gk(∂ P2) td+1−k + n2

d+1∑

k=0

gk(∂ P1) td+1−k .

Setting λ = k − 1 in the second sum of the left-hand side, we get

d∑

λ=−1

(λ + 1)hλ+1(F) td+1−λ � (n1 + n2 − d − 1 + k)

d+1∑

k=0

hk(F) td+1−k

+ n1

d+1∑

k=0

gk(∂ P2) td+1−k + n2

d+1∑

k=0

gk(∂ P1) td+1−k .

Equating terms of equal power of t , we get the following relation for all 0 ≤ k ≤ d:

(k + 1)hk+1(F) ≤ (n1 + n2 − d − 1 + k)hk(F) + n1gk(∂ P2) + n2gk(∂ P1),

which gives relation (41). ��
Using the recurrence relation from Corollary 13, we get the following bounds on

the elements of h(F).

Lemma 14 For all 0 ≤ k ≤ d + 1,

hk(F) ≤
(

n1 + n2 − d − 2 + k

k

)
−

(
n1 − d − 2 + k

k

)
−

(
n2 − d − 2 + k

k

)
. (42)

Equality holds for all k with 0 ≤ k ≤ l if and only if l ≤ � d+1
2 � and P is (l, V1)-

bineighborly.

123



Discrete Comput Geom (2016) 55:748–785 769

Proof We show the desired bound by induction on k. Clearly, the bound holds (as
equality) for k = 0, since

h0(F) = −1 = 1 − 1 − 1

=
(

n1 + n2 − d − 2 + 0

0

)
−

(
n1 − d − 2 + 0

0

)
−

(
n2 − d − 2 + 0

0

)
.

(43)

Suppose now that the bound holds for hk(F), where k ≥ 0. Using the recurrence
relation (41), in conjunction with the upper bounds for the elements of the g-vector of
a polytope from Corollary 2, and since for k ≥ 0, n1 + n2 − d − 1+ k ≥ d + 1 > 0,
we have

hk+1(F)

≤ n1 + n2 − d − 1 + k

k + 1
hk(F) + n1

k + 1
gk(∂ P2) + n2

k + 1
gk(∂ P1)

≤ n1 + n2 − d − 1 + k

k + 1

×
[( n1 + n2 − d − 2 + k

k

)
−

( n1 − d − 2 + k
k

)
−

( n2 − d − 2 + k
k

)]

+ n1

k + 1

( n2 − d − 2 + k
k

)
+ n2

k + 1

( n1 − d − 2 + k
k

)

= n1 + n2 − d − 1 + k

k + 1

( n1 + n2 − d − 2 + k
k

)

− n1 − d − 1 + k

k + 1

( n1 − d − 2 + k
k

)
− n2 − d − 1 + k

k + 1

( n2 − d − 2 + k
k

)

=
( n1 + n2 − d − 1 + k

k + 1

)
−

( n1 − d − 1 + k
k + 1

)
−

( n2 − d − 1 + k
k + 1

)
. (44)

Let us now turn to our equality claim. The claim for l = 0 is obvious (cf. (43)), so
we assume below that l ≥ 1.

Suppose first that P is (l, V1)-bineighborly. Then, we have

fi−1(F) =
(

n1 + n2

i

)
−

(
n1

i

)
−

(
n2

i

)
, 0 ≤ i ≤ l. (45)

Substituting fi−1(F) from (45) in the defining (25) for h(F), we get, for all 0 ≤ k ≤ l

hk(F) =
k∑

i=0

(−1)k−i
(

d + 1 − i

d + 1 − k

)
fi−1(F)

=
k∑

i=0

(−1)k−i
(

d + 1 − i

d + 1 − k

)((
n1 + n2

i

)
−

(
n1

i

)
−

(
n2

i

))
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=
k∑

i=0

(−1)k−i
(

d + 1 − i

d + 1 − k

)(
n1 + n2

i

)
−

k∑

i=0

(−1)k−i
(

d + 1 − i

d + 1 − k

)(
n1

i

)

−
k∑

i=0

(−1)k−i
(

d + 1 − i

d + 1 − k

)(
n2

i

)

=
(

n1 + n2 − d − 2 + k

k

)
−

(
n2 − d − 2 + k

k

)
−

(
n2 − d − 2 + k

k

)
,

where for the last equality we used the fact that
(d+1−i

d+1−k

) = 0 for i > k, in conjunction
with the following combinatorial identity (cf. [9, Eq. (5.25)], [28, Exer. 8.20]):

∑

0≤k≤l

(
l − k

m

)(
s

k − n

)
(−1)k = (−1)l+m

(
s − m − 1

l − m − n

)
.

In the equation above we set k ← i , l ← d + 1, m ← d + 1 − k, n ← 0, while s
stands for either n1 + n2, n1 or n2. We thus conclude that (42) holds as equality for
all 0 ≤ k ≤ l.

Suppose now that inequality (42) holds as equality for all 0 ≤ k ≤ l. Solving (25)
in terms of f (F) (cf. also (5)) and substituting hi (F), 0 ≤ i ≤ l, from (42), we get

fl−1(F)

=
d+1∑

i=0

(
d + 1 − i

l − i

)
hi (F)

=
d+1∑

i=0

(
d + 1 − i

l − i

)((
n1 + n2 − d − 2 + i

i

)
−

(
n1 − d − 2 + i

i

)
−

(
n2 − d − 2 + i

i

))

=
d+1∑

i=0

(
d+1 − i

l − i

)(
n1+n2 − d − 2+i

i

)
−

d+1∑

i=0

(
d + 1 − i

l − i

)(
n1 − d − 2 + i

i

)

−
d+1∑

i=0

(
d + 1 − i

l − i

)(
n2 − d − 2 + i

i

)

=
d+1∑

i=0

(
d+1 − i

d+1 − l

)(
n1+n2 − d − 2 + i

n1+n2 − d − 2

)
−

d+1∑

i=0

(
d + 1 − i

d + 1 − l

)(
n1 − d − 2 + i

n1 − d − 2

)

−
d+1∑

i=0

(
d + 1 − i

d + 1 − l

)(
n2 − d − 2 + i

n2 − d − 2

)
(46)

=
(

(d + 1) + (n1 + n2 − d − 2) + 1
(d + 1 − l) + (n1 + n2 − d − 2) + 1

)

−
(

(d + 1)+ (n1 − d − 2)+ 1
(d + 1− l)+ (n1 − d − 2)+ 1

)
−

(
(d + 1)+ (n2 − d − 2)+ 1

(d + 1− l)+ (n2 − d − 2)+ 1

)
(47)
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=
( n1 + n2

n1 + n2 − l

)
−

( n1
n1 − l

)
−

( n2
n2 − l

)

=
( n1 + n2

l

)
−

( n1
l

)
−

( n2
l

)
,

where, in order to get from (46) to (47), we used the combinatorial identity (cf.
[9, Eq. (5.26)]):

∑

0≤k≤l

( l − k
m

)(q + k
n

)
=

( l + q + 1
m + n + 1

)
,

with k ← i , l ← d + 1, m ← d + 1 − k, q ← s − d − 2, n ← s − d − 2, and s
stands for either n1 + n2, n1 or n2. Hence, P is (l, V1)-bineighborly. ��

Using the Dehn–Sommerville-like relations (49), in conjunction with the bounds
from the previous lemma, we derive alternative bounds for hk(F), which are of interest
since they refine the bounds for hk(F) from Lemma 14 for large values of k, namely
for k > � d+1

2 �. More precisely:

Lemma 15 For all 0 ≤ k ≤ d + 1,

hd+1−k(F) ≤
( n1 + n2 − d − 2 + k

k

)
. (48)

Equality holds for all k with 0 ≤ k ≤ l if and only if l ≤ � d
2 � and P is l-neighborly.

Proof The Dehn–Sommerville-like relation (29) corresponds to the following equal-
ities for the elements of h(F):

hd+1−k(F) = hk(F) + gk(∂ P1) + gk(∂ P2), 0 ≤ k ≤ d + 1. (49)

The upper bound claim in (48) is then a direct consequence of relation (49), the upper
bounds from Lemma 14, and the Upper Bound Theorem for polytopes as stated in
Corollary 2.

The rest of the proof deals with the equality claim. In view of the Dehn–
Sommerville-like equations hd+1−k(F) = hk(F)+gk(∂ P1)+gk(∂ P2), the inequality
(48) holds as equality for all 0 ≤ k ≤ l, where l ≤ � d

2 �, if and only if the following
two conditions hold:

(i) inequality (42) holds as equality for all 0 ≤ k ≤ l ≤ � d
2 �,

(ii) for j = 1, 2 and all 0 ≤ k ≤ l ≤ � d
2 �, we have gk(∂ Pj ) = (n j −d−2+k

k

)
.

The first condition holds true if and only if P is (l, V1)-bineighborly, while the second
condition holds true if and only if Pj , j = 1, 2, is l-neighborly. Therefore, inequality
(48) holds as equality for all 0 ≤ k ≤ l if and only if l ≤ � d

2 �, P is (l, V1)-bineighborly
and both P1, P2 are l-neighborly. In view of Lemma 7, we conclude that equality in
(48) holds for all 0 ≤ k ≤ l if and only if l ≤ � d

2 � and P is l-neighborly. ��
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We are now ready to compute upper bounds for the face numbers of F . Using
relation (9) , in conjunction with the bounds on the elements of h(F) from Lemmas
14 and 15, we get, for 0 ≤ k ≤ d + 1:

fk−1(F)

=
� d+1

2 �∑

i=0

( d + 1 − i
k − i

)
hi (F) +

d+1∑

i=� d+1
2 �+1

( d + 1 − i
k − i

)
hi (F)

=
� d+1

2 �∑

i=0

( d + 1 − i
k − i

)
hi (F) +

� d
2 �∑

i=0

( i
k − d − 1 + i

)
hd+1−i (F)

≤
� d+1

2 �∑

i=0

(
d + 1 − i

k − i

)((
n1 + n2 − d − 2 + i

i

)
−

2∑

j=1

(
n j − d − 2 + i

i

))

+
� d
2 �∑

i=0

( i
k − d − 1 + i

)( n1 + n2 − d − 2 + i
i

)

=
� d+1

2 �∑

i=0

( d + 1 − i
k − i

)( n1 + n2 − d − 2 + i
i

)

+
� d
2 �∑

i=0

( i
k − d − 1 + i

)( n1 + n2 − d − 2 + i
i

)

−
� d+1

2 �∑

i=0

( d + 1 − i
k − i

) 2∑

j=1

( n j − d − 2 + i
i

)
(50)

=
d+1
2∑

i=0

∗
((

d + 1 − i

k − i

)
+

(
i

k − d − 1 + i

))(
n1 + n2 − d − 2 + i

i

)

−
� d+1

2 �∑

i=0

( d + 1 − i
k − i

) 2∑

j=1

( n j − d − 2 + i
i

)
(51)

= fk−1(Cd+1(n1 + n2)) −
� d+1

2 �∑

i=0

( d + 1 − i
k − i

) 2∑

j=1

( n j − d − 2 + i
i

)
,

where Cd(n) stands for the cyclic d-polytope with n vertices, and
∑ δ

2
i=0

∗
Ti denotes

the sum of the elements T0, T1, . . . , T� δ
2 � where the last term is halved if δ is even; in

order to get from (50) to (51), we used an identity proved in Appendix. The following
lemma summarizes our results.
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Lemma 16 For all 0 ≤ k ≤ d + 1

fk−1(F) ≤ fk−1(Cd+1(n1 + n2))

−
� d+1

2 �∑

i=0

(
d + 1 − i

k − i

)((
n1 − d − 2 + i

i

)
+

(
n2 − d − 2 + i

i

))
,

where Cd(n) stands for the cyclic d-polytope with n vertices. Furthermore:

(i) Equality holds for all 0 ≤ k ≤ l if and only if l ≤ � d+1
2 � and P is (l, V1)-

bineighborly.
(ii) For d ≥ 2 even, equality holds for all 0 ≤ k ≤ d + 1 if and only if P is

� d
2 �-neighborly.

(iii) For d ≥ 3 odd, equality holds for all 0 ≤ k ≤ d + 1 if and only if P is
(� d+1

2 �, V1)-bineighborly.

Since fk−1(P1 + P2) = fk(F) for all 1 ≤ k ≤ d, we arrive at the central theorem
of this section, stating upper bounds for the face numbers of the Minkowski sum of
two d-polytopes.

Theorem 17 Let P1 and P2 be two d-polytopes in E
d , d ≥ 2, with n1 ≥ d + 1 and

n2 ≥ d + 1 vertices, respectively. Let also P be the Cayley polytope of P1 and P2 in
E

d+1. Then, for 1 ≤ k ≤ d, we have

fk−1(P1 + P2) ≤ fk(Cd+1(n1 + n2))

−
� d+1

2 �∑

i=0

(
d + 1 − i

k + 1 − i

)((
n1 − d − 2 + i

i

)
+

(
n2 − d − 2 + i

i

))
.

Furthermore:

(i) Equality holds for all 1 ≤ k ≤ l if and only if l ≤ � d−1
2 � and P is (l + 1, V1)-

bineighborly.
(ii) For d ≥ 2 even, equality holds for all1 ≤ k ≤ d if and only if P is � d

2 �-neighborly.
(iii) For d ≥ 3 odd, equality holds for all 1 ≤ k ≤ d if and only if P is (� d+1

2 �, V1)-
bineighborly.

5 Tightness of the Upper Bounds

In the previous section we proved upper bounds on the face numbers of theMinkowski
sum P1+P2 of two polytopes P1 and P2, andwe provided necessary and sufficient con-
ditions for these bounds to hold. However, there is one remaining important question:
Are these bounds tight? In this section we give a positive answer to this question.

We recall, from the introductory section, the already known results, and discuss
how they are related to the results in this paper. It is already known (e.g., cf. [4])
that the maximum number of vertices/edges of the Minkowski sum of two polygons
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(i.e., 2-polytopes) is the sum of the vertices/edges of the summands. These match our
expressions for d = 2 in Theorem 17. Fukuda andWeibel [7] have shown tight expres-
sions for the number of k-faces, 0 ≤ k ≤ 2, of the Minkowski sum of two 3-polytopes
P1 and P2, as a function of the number of vertices of P1 and P2. These maximal values
are given in relations (1) and match our expressions for d = 3 in Theorem 17. In the
same paper, Fukuda and Weibel have shown that given r d-polytopes P1, P2, . . . , Pr ,
the number of k-faces of P1 + P2 + . . . + Pr is bounded from above as per relation
(2). These bounds have been shown to be tight for d ≥ 4, r ≤ � d

2 �, and for all k with
0 ≤ k ≤ � d

2 � − r . For r = 2, the upper bounds in (2) reduce to

fk(P1 + P2) ≤
k+1∑

j=1

( n1
j

)( n2
k + 2 − j

)
, 0 ≤ k ≤ d − 1, (52)

and are tight for all k, with 0 ≤ k ≤ � d
2 � − 2. According to Fukuda and Weibel [7],

these upper bounds are attained when considering two cyclic d-polytopes P1 and P2,
with n1 and n2 vertices, respectively, with disjoint vertex sets. As we show below, this
construction gives, in fact, tight bounds on the number of k-faces of the Minkowski
sum for all 0 ≤ k ≤ d − 1, when the dimension d is even.

Theorem 18 Let d ≥ 2 and d is even. Consider two cyclic d-polytopes P1 and P2
with disjoint vertex sets on the d-dimensional moment curve, and let n j be the number
of vertices of Pj , j = 1, 2. Then, for all 1 ≤ k ≤ d,

fk−1(P1 + P2) = fk(Cd+1(n1 + n2))

−
� d+1

2 �∑

i=0

(
d + 1 − i

k + 1 − i

)((
n1 − d − 2 + i

i

)
+

(
n2 − d − 2 + i

i

))
,

where Cd(n) stands for the cyclic d-polytope with n vertices.

Proof Let V1 and V2 be two disjoint sets of points on the d-dimensional moment
curve of cardinality n1 and n2, respectively. Let P1 and P2 be the corresponding cyclic
d-polytopes, and call P their Cayley polytope in E

d+1. As in the previous section, we
define F as the set of proper faces of P whose vertex set has non-empty intersection
with both V1 and V2. We then get

f� d
2 �−1(F) = f� d

2 �−2(P1 + P2) =
� d
2 �−1∑

j=1

( n1
j

)( n2

� d
2 � − j

)

=
( n1 + n2

� d
2 �

)
−

( n1

� d
2 �

)
−

( n2

� d
2 �

)
,

which, by Lemma 8, implies that P is (� d
2 �, V1)-bineighborly. Using Lemma 7, in

conjunction with the fact that both P1 and P2 are � d
2 �-neighborly, we further conclude
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that P is � d
2 �-neighborly. Hence, by Theorem 17, our upper bounds in Theorem 17

are attained for all face numbers of P1 + P2. ��
If d ≥ 5 and d is odd, however, the construction in [7] gives tight bounds for

fk(P1 + P2) for all 0 ≤ k ≤ � d
2 � − 2, which according to Theorem 17 are not

sufficient to establish that the bounds are tight for the face numbers of all dimensions.
To establish the tightness of the bounds in Theorem 17 for all the face numbers of all
dimensions, we need to construct two d-polytopes P1 and P2, with n1 and n2 vertices,
respectively, such that

f� d
2 �(F) = f� d

2 �−1(P1 + P2) =
( n1 + n2

� d+1
2 �

)
−

( n1

� d+1
2 �

)
−

( n2

� d+1
2 �

)
,

or, equivalently, construct two d-polytopes P1 and P2 such that P is (� d+1
2 �, V1)-

bineighborly.
The rest of this section is devoted to this construction. Before getting into the

technical details, we outline our approach. In what follows d ≥ 3 and d is odd.
We denote by γ (t), t > 0, the (d − 1)-dimensional moment curve, i.e., γ (t) =
(t, t2, . . . , td−1), and we define two additional curves γ1(t; ζ ) and γ2(t; ζ ) in E

d+1,
as follows:

γ1(t; ζ ) = (0, t, ζ td , t2, t3, . . . , td−1),

γ2(t; ζ ) = (1, ζ td , t, t2, t3, . . . , td−1),
t > 0, ζ ≥ 0. (53)

Notice that γ1(t; ζ ) and γ2(t; ζ ), with ζ > 0, are d-dimensional moment-like curves,5

embedded in the hyperplanes {x1 = 0} and {x1 = 1}, respectively. Choose n1+n2 real
numbers αi , i = 1, . . . , n1, and βi , i = 1, . . . , n2, such that 0 < α1 < α2 < · · · < αn1
and 0 < β1 < β2 < · · · < βn2 . Let τ be a strictly positive parameter determined below,
and let U1 and U2 be the (d − 1)-dimensional point sets:

U1 = {γ1(α1τ), γ1(α2τ), . . . , γ1(αn1τ)},
U2 = {γ2(β1), γ2(β2), . . . , γ2(βn2)},

(54)

where γ j (·) is used to denote γ j (·; 0), for simplicity. Notice that U1 andU2 consist of
points on themoment curve γ (t), embedded in the (d−1)-subspaces {x1 = 0, x3 = 0}
and {x1 = 1, x2 = 0}ofEd+1, respectively.Call Q j the cyclic (d−1)-polytope defined
as the convex hull of the points in U j , j = 1, 2. We first show that, for sufficiently
small τ , any subset U of � d+1

2 � vertices of U1 ∪ U2 such that U ∩ U j �= ∅, j = 1, 2,
defines a � d

2 �-face of Q = C Hd+1({Q1, Q2}); in other words, we show that, for
sufficiently small τ , the (d + 1)-polytope Q is (� d+1

2 �, U1)-bineighborly. We then
appropriately perturb U1 and U2 (by considering a positive value for ζ ) so that they
become d-dimensional. Let V1, V2 be the perturbed vertex sets, and P1, P2 be the
resulting d-polytopes (Vj is the vertex set of Pj ). The final step of our construction

5 They are images of moment curves under invertible linear transformations.
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amounts to considering the Cayley polytope P of P1 and P2, and arguing that, if the
perturbation parameter ζ is sufficiently small, then P is (� d+1

2 �, V1)-bineighborly. In
view of Theorem 17, this establishes the tightness of our bounds for all face numbers
of P1 + P2.

We start off with a technical lemma. Its proof may be found in Appendix.

Lemma 19 Fix two integers k, � ≥ 2. Let Dk,�(τ ) be the (k+�)×(k+�) determinant:

Dk,�(τ ) =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

1 1 · · · 1 0 0 · · · 0
x1τ x2τ · · · xkτ 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1
0 0 · · · 0 y1 y2 · · · y�

x21τ
2 x22τ

2 · · · x2k τ 2 y21 y22 · · · y2�
x31τ

3 x32τ
3 · · · x3k τ 3 y31 y32 · · · y3�

...
...

...
...

...
...

xm
1 τm xm

2 τm · · · xm
k τm ym

1 ym
2 · · · ym

�

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

, m = k + � − 3,

where 0 < x1 < x2 < · · · < xk , 0 < y1 < y2 < · · · < y�, and τ > 0. Then,
there exists some τ0 > 0 (that depends on the xi ’s, the yi ’s, k, and �) such that for all
τ ∈ (0, τ0), the determinant Dk,�(τ ) is strictly positive.

We now formally proceed with our construction. As described above, consider the
vertex setsU1 andU2 (cf. (54)) and call Q j the cyclic (d −1)-polytope with vertex set
U j , j = 1, 2. As in the previous section, call �̃ the hyperplane of E

d+1 with equation
{x1 = λ}, λ ∈ (0, 1). Let Q = C Hd+1({Q1, Q2}), and let FQ be the set of proper
faces of Q with non-empty intersection with �̃, i.e., FQ consists of all the proper
faces of Q, the vertex set of which has non-empty intersection with both U1 and U2.
The following lemma establishes the first step toward our construction.

Lemma 20 There exists a sufficiently small positive value τ  for τ such that the
(d + 1)-polytope Q is (� d+1

2 �, U1)-bineighborly.

Proof Let ti = αiτ , tεi = (αi +ε)τ , 1 ≤ i ≤ n1, and si = βi , sε
i = βi +ε, 1 ≤ i ≤ n2,

where ε > 0 is chosen such that αi +ε < αi+1, for all 1 ≤ i < n1, and βi +ε < βi+1,
for all 1 ≤ i < n2.

Choose a subset U of U1 ∪ U2 of size � d+1
2 � such that U ∩ U j �= ∅, j = 1, 2.

We denote by μ (resp., ν) the cardinality of U ∩ U1 (resp., U ∩ U2), and, clearly,
μ + ν = � d+1

2 �. Let γ1(ti1), γ1(ti2), . . . , γ1(tiμ) be the vertices in U ∩ U1, where
i1 < i2 < . . . < iμ, and analogously, let γ2(s j1), γ2(s j2), . . . , γ2(s jν ) be the vertices
in U ∩ U2, where j1 < j2 < · · · < jν . Let x = (x1, x2, . . . , xd+1) and define the
(d + 2) × (d + 2) determinant HU (x) as follows:

HU (x)

= −
∣
∣∣∣
1 1 1 · · · 1 1 1 1 · · · 1 1
x γ1(ti1) γ1(t

ε
i1
) · · · γ1(tiμ) γ1(t

ε
iμ

) γ2(s j1) γ2(s
ε
j1
) · · · γ2(s jν ) γ2(s

ε
jν
)

∣
∣∣∣. (55)
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The equation HU (x) = 0 is the equation of a hyperplane in E
d+1 that passes through

the points in U .
Consider first the case u ∈ U1 \ U . Then, u = γ1(t) = (0, t, 0, t2, t3, . . . , td−1),

t = ατ , for some α /∈ {αi1 , αi2 , . . . , αiμ}, in which case HU (u) becomes

HU (u)

= −
∣
∣∣
∣

1 1 1 · · · 1 1 1 1 · · · 1 1
γ1(t) γ1(ti1 ) γ1(t

ε
i1
) · · · γ1(tiμ) γ1(t

ε
iμ

) γ2(s j1 ) γ2(s
ε
j1
) · · · γ2(s jν ) γ2(s

ε
jν
)

∣
∣∣
∣

=

∣∣
∣
∣∣
∣∣
∣∣
∣∣
∣
∣∣
∣∣
∣∣
∣

1 1 1 · · · 1 1 1 1 · · · 1 1
t ti1 tεi1 · · · tiμ tεiμ 0 0 · · · 0 0

0 0 0 · · · 0 0 1 1 · · · 1 1
0 0 0 · · · 0 0 s j1 sε

j1
· · · s jν sε

jν
t2 t2i1 (tεi1 )

2 · · · t2iμ (tεiμ)2 s2j1 (sε
j1
)2 · · · s2jν (sε

jν
)2

t3 t3i1 (tεi1 )
3 · · · t3iμ (tεiμ)3 s3j1 (sε

j1
)3 · · · s3jν (sε

jν
)3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

td−1 td−1
i1

(tεi1 )
d−1 · · · td−1

iμ
(tεiμ)d−1 sd−1

j1
(sε

j1
)d−1 · · · sd−1

jν
(sε

jν
)d−1

∣∣
∣
∣∣
∣∣
∣∣
∣∣
∣
∣∣
∣∣
∣∣
∣

.

Observe now that we can transform HU (u) in the form of the determinant Dk,�(τ ) of
Lemma 19, where k = 2μ + 1 and � = 2ν, by means of the following determinant
transformations:

(i) Subtract the third row of HU (u) from the first.
(ii) Shift the first column of HU (u) to the right so that all columns of HU (u) are

arranged in increasing order according to their parameter. Clearly, this can be
done with an even number of column swaps.

The case u ∈ U2 \ U is entirely analogous.
We thus conclude that, for any specific choice of U , and for any specific point

u ∈ (U1 ∪ U2) \ U , there exists some τ0 > 0 (cf. Lemma 19) that depends on u and
U and such that for all τ ∈ (0, τ0), HU (u) > 0. Since the number of all such choices
is finite, it suffices to consider a value τ  for τ that is small enough so that all possible
determinants HU (u) are strictly positive. For this specific choice of τ , every subset of
U of U1 ∪ U2, where |U | = � d+1

2 �, U ∩ U j �= ∅, j = 1, 2, defines a � d
2 �-face of Q,

which means that Q is (� d+1
2 �, U1)-bineighborly. ��

We are now ready to perform the last step of our construction. In the remainder of
this section we assume that τ is equal to τ  so that the polytopes Q1, Q2 constructed
above have all the properties mentioned in the proof of Lemma 20. We consider the
vertex sets U1, U2 of the polytopes Q1, Q2, respectively, and perturb them to get the
vertex sets V1 and V2. We do this by considering vertices on the curves γ1(t; ζ ) and
γ2(t; ζ ), with ζ > 0 instead of the curves γ1(t) and γ2(t) (cf. (53)). More precisely,
define the sets V1 and V2 as

V1 = {γ1(α1τ
; ζ ), γ1(α2τ

; ζ ), . . . , γ1(αn1τ
; ζ )}, and

V2 = {γ2(β1; ζ ), γ2(β2; ζ ), . . . , γ2(βn2; ζ )}, (56)
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where ζ > 0. Let Pj be the convex hull of the vertices in Vj , j = 1, 2, and notice
that Pj is a � d

2 �-neighborly d-polytope. Let P be the Cayley polytope of P1 and P2,
and let FP be the set of proper faces of P , the vertex set of which has non-empty
intersection with both V1 and V2. The following lemma establishes the final step of
our construction. In view of Theorem 17, it also establishes the tightness of our bounds
for all face numbers of P1 + P2.

Lemma 21 There exists a sufficiently small positive value ζ  for ζ such that the
(d + 1)-polytope P is (� d+1

2 �, V1)-bineighborly.

Proof Similarly to what we have done in the proof of Lemma 20, let ti = αiτ
,

tεi = (αi + ε)τ , 1 ≤ i ≤ n1, and si = βi , sε
i = βi + ε, 1 ≤ i ≤ n2, where ε > 0

is chosen such that αi + ε < αi+1, for all 1 ≤ i < n1, and βi + ε < βi+1, for all
1 ≤ i < n2.

Choose V , a subset of V1∪V2 of size � d+1
2 �, such that V ∩Vj �= ∅, j = 1, 2. Denote

by μ (resp., ν) the cardinality of V ∩ V1 (resp., V ∩ V2). Considering ζ as a small
positive parameter, let γ1(ti1; ζ ), γ1(ti2; ζ ), . . . , γ1(tiμ; ζ ) be the vertices in V ∩ V1,
where i1 < i2 < · · · < iμ, and analogously, let γ2(s j1; ζ ), γ2(s j2; ζ ), . . . , γ2(s jν ; ζ )

be the vertices in V ∩ V2, where j1 < j2 < · · · < jν . Let x = (x1, x2, . . . , xd+1) and
define the (d + 2) × (d + 2) determinant FV (x; ζ ) as

FV (x; ζ ) = −
∣∣
∣∣∣
1 1 1 · · · 1 1 1 · · · 1
x γ1(ti1 ; ζ ) γ1(t

ε
i1

; ζ ) · · · γ1(t
ε
iμ

; ζ ) γ2(s j1 ; ζ ) γ2(s
ε
j1

; ζ ) · · · γ2(s
ε
jν

; ζ )

∣∣
∣∣∣
.

(57)
The equation FV (x; ζ ) = 0 is the equation of a hyperplane inE

d+1 that passes through
the points in V . We claim that for all vertices v ∈ (V1∪V2)\V , we have FV (v; ζ ) > 0
for sufficiently small ζ .

To prove our claim, observe that

lim
ζ→0+ FV (v; ζ ) = FU (u; 0) = HU (u), (58)

where u = limζ→0+ v is the projection of v ∈ Vi \ V on the curve γ i (t; 0), i = 1, 2,
and HU (u) is the determinant in relation (55) in the proof of Lemma 20, which is
positive due to the way we have chosen τ . Clearly, FV (v; ζ ) is a polynomial function
in ζ . Since HU (u) > 0, relation (58) implies that there exists some ζ0 > 0 depending
on v and V such that, for all ζ ∈ (0, ζ0), FV (v; ζ ) > 0.

We choose a value ζ  for ζ that is small enough so that, for any V ⊆ V1 ∪ V2 with
V ∩ Vj �= ∅, j = 1, 2, and for all v ∈ (V1 ∪ V2) \ V , the determinant FV (v; ζ )

is strictly positive. Since the number of such determinants is finite, we conclude that
for ζ equal to ζ , every subset V of V1 ∪ V2, where |V | = � d+1

2 � and V ∩ Vj �= ∅,
j = 1, 2, defines a face of P; this means that P is (� d+1

2 �, V1)-bineighborly. ��
We are now ready to state the second main theorem of this section that concerns

the tightness of our upper bounds on the number of k-faces of the Minkowski sum of
two d-polytopes for all 0 ≤ k ≤ d − 1 and for all odd dimensions d ≥ 3.
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Theorem 22 Let d ≥ 3 and d is odd. There exist two � d
2 �-neighborly d-polytopes P1

and P2 with n1 and n2 vertices, respectively, such that, for all 1 ≤ k ≤ d,

fk−1(P1 + P2) = fk(Cd+1(n1 + n2))

−
� d+1

2 �∑

i=0

(
d + 1 − i

k + 1 − i

)((
n1 − d − 2 + i

i

)
+

(
n2 − d − 2 + i

i

))
,

where Cd(n) stands for the cyclic d-polytope with n vertices.

6 Summary and Open Problems

In this paper we have computed the maximum number of k-faces, fk(P1 + P2), 0 ≤
k ≤ d − 1, of the Minkowski sum of two d-polytopes P1 and P2 as a function of
the number of vertices n1 and n2 of these two polytopes. In even dimensions d ≥ 2,
these maximal values are attained if P1 and P2 are cyclic d-polytopes with disjoint
vertex sets. In odd dimensions d ≥ 3, the construction that achieves the upper bounds
is more intricate. Denoting by γ1(t; ζ ) and γ2(t; ζ ) the d-dimensional moment-like
curves (t, ζ td , t2, t3, . . . , td−1) and (ζ td , t, t2, t3, . . . , td−1), where t > 0 and ζ > 0,
we have shown that thesemaximumvalues are attained if P1 and P2 are the d-polytopes
with vertex sets V1 = {γ1(αiτ

; ζ ) | i = 1, . . . , n1} and V2 = {γ2(β j ; ζ ) | j =
1, . . . , n2}, respectively, where 0 < α1 < α2 < · · · < αn1 , 0 < β1 < β2 < · · · < βn2 ,
and τ , ζ  are appropriately chosen, sufficiently small, positive parameters.

The obvious next step is to extend the results in this paper for the Minkowski sum
of r d-polytopes in E

d for r ≥ 3 and d ≥ 4. The case r = 3 and d ≥ 2 has already
been resolved by the authors of this paper in collaboration with Konaxis [18,19], while
recently Adiprasito and Sanyal [1] have resolved the general problem for any r, d ≥ 2,
as well as for summands of different dimensions. The Adiprasito and Sanyal approach
uses tools from Combinatorial Commutative Algebra, through a newly developed
powerful theory called the relative Reisner–Stanley theory for simplicial complexes.
An alternative proof for the case r < d that is based on geometric arguments has very
recently been proposed by the authors of this paper in [16,17].

A related problem is to express the number of k-faces of the Minkowski sum of
r d-polytopes in terms of the number of facets of these polytopes. Results in this
direction are known for d = 2 and d = 3 only (see the introductory section and [5]
for the 3-dimensional case). We would like to derive such expressions for any d ≥ 4
and any number r of summands.
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Appendix

Proof of Lemma 3

Proof McMullen [20] in his original proof of the Upper Bound Theorem for polytopes
proved that for any d-polytope P the following relation holds:

(k + 1)hk+1(∂ P) + (d − k)hk(∂ P) =
∑

v∈ vert(P)

hk(∂ P/v), 0 ≤ k ≤ d − 1. (59)

Multiplying both sides of (59) by td−k−1 and summing over all 0 ≤ k ≤ d, we get

d∑

k=0

(k + 1)hk+1(∂ P)td−k−1 +
d∑

k=0

(d − k)hk(∂ P)td−k−1

=
d∑

k=0

∑

v∈ vert(P)

hk(∂ P/v)td−k−1. (60)

For the right-hand side of (60), we have

d∑

k=0

∑

v∈ vert(P)

hk(∂ P/v)td−k−1 =
∑

v∈ vert(P)

d∑

k=0

hk(∂ P/v)td−1−k

=
∑

v∈ vert(P)

h(∂ P/v; t), (61)

whereas for the left-hand side of (60), we get

d∑

k=0

(k + 1)hk+1(∂ P)td−k−1 +
d∑

k=0

(d − k)hk(∂ P)td−k−1

=
d∑

k=0

khk(∂ P)td−k +
d∑

k=0

(d − k)hk(∂ P)td−k−1

= d
d∑

k=0

hk(∂ P)td−k + (1 − t)
d∑

k=0

(d − k)hk(∂ P)td−k−1

= d h(∂ P; t) + (1 − t)h′(∂ P; t). (62)

Substituting in (60), from (61) and (62), we recover the relation in the statement of
the lemma. ��
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Proof of an Identity

In this section we prove the following identity, used in Sect. 4, to prove the upper
bound for fk−1(F) (see relations (50) and (51)).

Lemma 23 For any d ≥ 2 and any sequence of numbers αi , where 0 ≤ i ≤ � d+1
2 �,

we have

� d+1
2 �∑

i=0

( d + 1 − i
k − i

)
αi +

� d
2 �∑

i=0

( i
k − d − 1 + i

)
αi

=
d+1
2∑

i=0

∗(( d + 1 − i
k − i

)
+

( i
k − d − 1 + i

))
αi .

Proof Westart by recalling the definition of the symbol
∑ δ

2
i=0

∗
Ti . This symbol denotes

the sum of the elements T0, T1, . . . , T� δ
2 �, where the last term is halved if δ is even.

More precisely:

δ
2∑

i=0

∗
Ti =

{
T0 + T1 + · · · + T� δ

2 �−1 + 1
2T� δ

2 � if δ is even,

T0 + T1 + · · · + T� δ
2 �−1 + T� δ

2 � if δ is odd.

Let us now first consider the case d odd. In this case d + 1 is even, and we have

� d+1
2 �∑

i=0

( d + 1 − i
k − i

)
αi +

� d
2 �∑

i=0

( i
k − d − 1 + i

)
αi

=
� d+1

2 �∑

i=0

( d + 1 − i
k − i

)
αi +

� d+1
2 �−1∑

i=0

( i
k − d − 1 + i

)
αi

=
� d+1

2 �−1∑

i=0

((
d + 1 − i

k − i

)
+

(
i

k − d − 1 + i

))
αi +

(
d + 1 − � d+1

2 �
k − � d+1

2 �
)

α� d+1
2 �

=
� d+1

2 �−1∑

i=0

((
d + 1 − i

k − i

)
+

(
i

k − d − 1 + i

))
αi

+ 1
2

((
d + 1 − � d+1

2 �
k − � d+1

2 �
)

+
( � d+1

2 �
k − d − 1 + � d+1

2 �
))

α� d+1
2 �

=
d+1
2∑

i=0

∗
((

d + 1 − i

k − i

)
+

(
i

k − d − 1 + i

))
αi .
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The case d even is even simpler to prove. In this case d + 1 is odd; hence

� d+1
2 �∑

i=0

( d + 1 − i
k − i

)
αi +

� d
2 �∑

i=0

( i
k − d − 1 + i

)
αi

=
� d+1

2 �∑

i=0

( d + 1 − i
k − i

)
αi +

� d+1
2 �∑

i=0

( i
k − d − 1 + i

)
αi

=
� d+1

2 �∑

i=0

(( d + 1 − i
k − i

)
+

( i
k − d − 1 + i

))
αi

=
d+1
2∑

i=0

∗(( d + 1 − i
k − i

)
+

( i
k − d − 1 + i

))
αi

This completes the proof. ��

Proof of Lemma 19

Before proceeding with the proof of Lemma 19, we need to introduce Vandermonde
and generalizedVandermonde determinants.Given a vector of n ≥ 2 real numbers x =
(x1, x2, . . . , xn), the Vandermonde determinant VD(x) of x is the n × n determinant

VD(x) =

∣∣∣∣∣
∣∣∣∣∣∣

1 1 · · · 1
x1 x2 · · · xn

x21 x22 · · · x2n
...

...
...

xn−1
1 xn−1

2 · · · xn−1
n

∣∣∣∣∣
∣∣∣∣∣∣

=
∏

1≤i< j≤n

(x j − xi ).

From the above expression, it is readily seen that if the elements of x are in strictly
increasing order, then VD(x) > 0. A generalization of the Vandermonde determinant
is the generalizedVandermonde determinant: if, in addition to x, we specify a vector of
exponents μ = (μ1, μ2, . . . , μn), where we require that 0 ≤ μ1 < μ2 < · · · < μn ,
we can define the generalized Vandermonde determinant GVD(x;μ) as the n × n
determinant:

GVD(x;μ) =

∣∣
∣∣∣∣∣∣
∣∣∣∣∣

xμ1
1 xμ1

2 · · · xμ1
n

xμ2
1 xμ2

2 · · · xμ2
n

xμ3
1 xμ3

2 · · · xμ3
n

...
...

...

xμn
1 xμn

2 · · · xμn
n

∣∣
∣∣∣∣∣∣
∣∣∣∣∣

.

It is a well-known fact that, if the elements of x are in strictly increasing order, then
GVD(x;μ) > 0 (for example, see [8] for a proof of this fact).
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To prove Lemma 19 we exploit the Cauchy–Binet formula (cf. [3]). Let M be a
n × n square matrix factorized into a product L R of an n × m and an m × n matrix L
and R respectively, with m ≥ n. If J is a subset of {1, 2, . . . , m} of size n, we denote
by L [n],J the n × n matrix whose columns are the columns of L at indices from J
and by RJ,[n] the n × n matrix whose rows are the rows of R at indices from J. The
Cauchy–Binet theorem states that

det(M) = det(L R) =
∑

J∈([m]
n )

det(L [n],J ) det(RJ,[n]), (63)

where
([m]

n

)
denotes the set of subsets of [m] of size n.

Proof The determinant Dk,l(τ ) is clearly a polynomial function of τ . To prove our
lemma, it suffices to show that the coefficient of the minimum exponent of τ in Dk,l(τ )

is strictly positive.
In order to apply the Cauchy–Binet formula in our case, we factorize the matrix

�k,l(τ ), corresponding to the determinant Dk,l(τ ), into the product of an (m + 3) ×
2(m + 1) and a 2(m + 1) × (k + l) matrix L and R, respectively, as follows (recall
that m + 3 = k + l):

�k,l (τ )

= L R =

⎛

⎜⎜
⎜
⎝

I2 0 0 0

0 0 I2 0

0 Im−1 0 Im−1

⎞

⎟⎟
⎟
⎠

⎛

⎝
VD(τ x) 0

0 VD( y)

⎞

⎠

=

1

2

3

4

5

6

.

.

.

m+3

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

1 2 3 4 · · · m+1
︷ ︸︸ ︷
1 0 0 0 · · · 0

1̂ 2̂ 3̂ 4̂ · · · m̂+1
︷ ︸︸ ︷
0 0 0 0 · · · 0

0 1 0 0 · · · 0 0 0 0 0 · · · 0

0 0 0 0 · · · 0 1 0 0 0 · · · 0

0 0 0 0 · · · 0 0 1 0 0 · · · 0

0 0 1 0 · · · 0 0 0 1 0 · · · 0

0 0 0 1 · · · 0 0 0 0 1 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 0 · · · 1 0 0 0 0 · · · 1

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

1 1 · · · 1 0 0 · · · 0

x1τ x2τ · · · xkτ 0 0 · · · 0

x21τ2 x22τ2 · · · x2k τ2 0 0 · · · 0

x31τ3 x32τ3 · · · x3k τ3 0 0 · · · 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

xm
1 τm xm

2 τm · · · xm
k τm 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1

0 0 · · · 0 y1 y2 · · · y�

0 0 · · · 0 y21 y22 · · · y2
�

0 0 · · · 0 y31 y32 · · · y3
�.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 0 ym
1 ym

2 · · · ym
�

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

. (64)

The numbers over and sideways of L indicate the columnand row indices, respectively,
with k̂ := k+m+1.Wepartition the index set J into J1∪J2 where J1 ⊆ {1, . . . , m+1}
and J2 ⊆ {̂1, 2̂, . . . , m̂ + 1}. Notice that a term det(L [m+3],J ) det(RJ,[k+l]) in the
Cauchy–Binet expansion of Dk,l(τ ) vanishes in the following two cases:

(i) i ∈ J1 and ı̂ ∈ J2 for some 3 ≤ i ≤ m + 1; in this case the i-th and ı̂-th columns
of L [m+3],J are identical, and thus det(L [m+3],J ) = 0.
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(ii) |J1| �= k or |J2| �= l; in this case RJ,[k+l] is a block-diagonal square matrix with
non-square non-zero blocks. The determinant of such a matrix is always zero.6

Furthermore, notice that for any non-vanishing term in the Cauchy–Binet expansion
of Dk,l(τ ), we have

det(RJ,[k+l]) = GVD(τ x;μ1)GVD( y;μ2),

τ x = (τ x1, . . . , τ xk),

y = (y1, . . . , yl),

where μ1 (resp., μ2) is the vector consisting of the elements in {i − 1 | i ∈ J1} (resp.,
{i − (m + 1) − 1 | i ∈ J2}) ordered increasingly. The parameter τ appears only in
GVD(τ x;μ1) and can be factored out (see 64). We thus have

det(RJ,[k+l]) = τ M(J ) GVD(x;μ1)GVD( y;μ2) > 0, M(J ) =
∑

i∈J1

(i − 1),

since GVD(x;μ1) and GVD( y;μ2) are positive due to the way we have chosen x
and y.

Among all possible index sets J = J1 ∪ J2 for which the product det(L [m+3],J )

det(RJ,[k+l]) does not vanish, we have to find the index set that gives the minimum
exponent for τ . Recall that, in view of condition (ii), the size of J1 is k and the size of
J2 is l. The minimum exponent M(J ) is then attained when J1 = J 

1 := {1, . . . , k}.
In view of condition (i), we have J2 ⊆ {̂1, 2̂, . . . , m̂ + 1} \ {̂3, . . . , k̂}, which leaves
no other choice but J2 = J 

2 := {̂1, 2̂, k̂ + 1, . . . , m̂ + 1}.
For J  = J 

1 ∪ J 
2 , the matrix L [m+3],J is

L [m+3],J  =

⎛

⎜
⎜
⎝

I2 0 0 0
0 0 I2 0
0 Ik 0 0
0 0 0 Il

⎞

⎟
⎟
⎠.

Clearly, L [m+3],J  becomes the identity matrix after 2k row swaps. Hence
det(L [m+3],J  ) = 1, which further implies that

sign(Dk,l(τ )) = sign(RJ ,[k+l]) > 0.

��
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