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Abstract We show that m points and n two-dimensional algebraic surfaces in R
4

can have at most O(mk/(2k−1)n(2k−2)/(2k−1) + m + n) incidences, provided that the
algebraic surfaces behave like pseudoflats with k degrees of freedom, and that m ≤
n(2k+2)/3k . As a special case, we obtain a Szemerédi–Trotter type theorem for 2-planes
in R

4, provided m ≤ n and the planes intersect transversely. As a further special
case, we obtain a Szemerédi–Trotter type theorem for complex lines in C

2 with no
restrictions on m and n (this theorem was originally proved by Tóth using a different
method). As a third special case, we obtain a Szemerédi–Trotter type theorem for
complex unit circles inC2.We obtain our results by combining several tools, including
a two-level analogue of the discrete polynomial partitioning theorem and the crossing
lemma.
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1 Introduction

In [9], Erdős asked howmany incidences could occur between a collection ofm points
and n lines in the plane. The correct asymptotic bound was found by Szemerédi and
Trotter in [27]. They proved what is now known as the Szemerédi–Trotter theorem.

Theorem 1.1 (Szemerédi–Trotter) The number of incidences between m points and
n lines in R2 is O(m2/3n2/3 +m + n). This bound is tight (up to the implicit constant
in the O(·) notation).

This theorem has seen a number of additional proofs, including one by Székely
[26] which used the crossing lemma (see [1,16]). In [20], Pach and Sharir built off
Székely’s ideas and proved aSzemerédi–Trotter type theorem for curveswith k degrees
of freedom.

Definition 1.1 Let P ⊂ R
2 be a set of points and let � be a set of simple open plane

curves. We say the collection (P, �) has k degrees of freedom and multiplicity type
C0 if the following conditions hold:

• For any k distinct points from P , there are at most C0 curves from � passing
through all of them.

• Any pair of curves from � intersect in at most C0 points.

Theorem 1.2 (Pach and Sharir [20]) Let P be a collection of m points and let � be
a collection of n simple open plane curves. Suppose that (P, �) has k degrees of
freedom and multiplicity type C0. Then the number of incidences between the points
and curves is

O
(
m

k
2k−1 n

2k−2
2k−1 + m + n

)
.

The implicit constant depends only on k and C0.

Similar bounds had previously been known in the special case that the curves in
� were real algebraic curves of bounded degree [5,19]. In this paper we will discuss
a variant of the above theorems that applies to certain families of points and two-
dimensional algebraic surfaces in R

4. First, we will need several definitions.

Definition 1.2 Let S be a collection of two-dimensional real algebraic surfaces in R4

and letC0 ≥ 1, k ≥ 1 be integers.We say thatS is aC0-good collection of pseudoflats
with k degrees of freedom if the following conditions are satisfied:

(i) Every surface in S is smooth (i.e., it is a two-dimensional manifold) and can be
defined by a (single) polynomial of degree at most C0.

(ii) If S, S′ ∈ S, then |S ∩ S′| ≤ C0.
(iii) If p1, . . . , pk ∈ R

4 are distinct points, then at most C0 surfaces from S contain
each of the points p1, . . . , pk .

Given a collection of pointsP ⊂ R
4 and a collection of surfaces S inR4, we define

the set of incidences between P and S to be

I(P,S) = {(p, S) ∈ P × S : p ∈ S}.
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Definition 1.3 LetP be a collection of points, letS be a collection of two-dimensional
real algebraic surfaces in R4, and let I ⊂ I(P,S). We say that I is a good collection
of incidences if whenever (p, S), (p, S′) ∈ I , we have that Tp(S) ∩ Tp(S′) = p, i.e.,
whenever two surfaces are incident to a common point, their tangent planes intersect
transversely.

We are now ready to state our results.

Theorem 1.3 (Point-surface incidences in R
4) Let P ⊂ R

4 be a collection of m
points. Let S be a C0-good collection of pseudoflats with k degrees of freedom. Let
n = |S|, and suppose m ≤ n(2k+2)/3k . Let I ⊂ I(P,S) be a good collection of
incidences. Then

|I | ≤ C1
(
m

k
2k−1 n

2k−2
2k−1 + m + n

)
. (1.1)

The constant C1 depends only on C0 and k.

Remark 1.1 The requirement that m ≤ n(2k+2)/3k is a limitation arising from our
proof techniques. We conjecture that the inequality holds for allm and n. Form ≥ n2,
the inequality is trivial. In Sect. 10, we will discuss progress toward weakening the
above restriction on m and n.

Corollary 1.1 (The k = 2 case) Let P ⊂ R
4 be a collection of m points. Let S be a

C0-good collection of pseudoflats with 2 degrees of freedom. Let n = |S|, and suppose
m ≤ n. Let I ⊂ I(P,S) be a good collection of incidences. Then

|I | = O(m2/3n2/3 + m + n). (1.2)

The implicit constant depends only on C0.

Corollary 1.2 (2-planes in R
4) Let P ⊂ R

4 be a collection of m points and let S be
a collection of n 2-planes in R

4 such that any two planes meet in at most one point.
Suppose that m ≤ n. Then the number of point-plane incidences is

O(m2/3n2/3 + m + n). (1.3)

We can use Corollary 1.2 to recover the Szemerédi–Trotter theorem for complex
lines inC2, whichwas originally proved by Tóth in [29]. Note that by point-line duality
inC2, we can always assume that the number of lines is at least as great as the number
of points. Thus we have:

Corollary 1.3 (complex lines) Let P be a collection of m points and let S be a
collection of n (complex) lines in C

2. Then the number of point-line incidences is

O(m2/3n2/3 + m + n). (1.4)

As another corollary, we obtain a Szemerédi–Trotter type theorem for complex unit
circles in the complex plane. If z = (z1, z2) ∈ C

2, we can define the complex unit
circle centered at z to be the setCz = {(w1, w2) ∈ C

2 : (z1−w1)
2+ (z2−w2)

2 = 1}.
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If we identifyC2 withR4, thenCz becomes a smooth two-dimensional surface defined
by a single polynomial of degree 4. If S is a collection of such surfaces, then S is a 4-
good collection of pseudoflats with 2 degrees of freedom. If P ⊂ R

4 is a collection of
points, then we can partition I(P,S) into O(1) collections I1, . . . , IO(1) so that each
is a good collection of incidences (see [23, Cor. 2.7] for details). Finally, if P ⊂ C

2

is a collection of points and S ⊂ C
2 is a collection of (complex) unit circles, then

by point-unit circle duality we can always assume that |P| ≤ |S|. Thus we can apply
Theorem 1.3 to each of the collections I1, . . . , IO(1) to conclude the following:

Corollary 1.4 (Complex unit circles) Let P ⊂ C
2 be a collection of m points, and

let S be a collection of n complex unit circles in C
2. Then the number of point-circle

incidences is O(m2/3n2/3 + m + n).

1.1 Previous Work

In [29], Tóth extended Szemerédi and Trotter’s original proof to the complex plane.
Tóth’s result is specific to complex lines, so it does not (for example) apply to complex
unit circles. Solymosi and Tardos [24] gave a simpler proof of the same bound in the
special case where the point set is a Cartesian product of the form A × B ⊂ C

2.
Edelsbrunner and Sharir [6] obtained incidence results for certain configurations of

points and codimension-one hyperplanes inR4, and Łaba and Solymosi [15] obtained
incidence bounds for points and a general class of two-dimensional surfaces in R

3,
provided the points satisfied a certain homogeneity condition.

Elekes and Tóth [8] and later Solymosi and Tóth [25] obtained incidence results
between points and hyperplanes in R

d , again provided the points satisfied various
non-degeneracy and homogeneity conditions.

In [23], Solymosi and Tao used the discrete polynomial partitioning theorem
(this is [11, Thm. 4.1], also Theorem 2.2) to obtain bounds for the number of
incidences between points and bounded-degree algebraic surfaces satisfying certain
non-degeneracy and pseudoflat conditions (i.e., they behaved similarly to hyper-
planes). Aside from an ε loss in the exponent, Solymosi and Tao’s result resolved
a conjecture of Tóth on the number of incidences between points and d-flats in R

2d

(Tóth conjectured that Solymosi and Tao’s result should hold without the ε loss in the
exponent [28, Conj. 3]). The discrete polynomial partitioning theorem was also used
by the author in [30] to obtain incidence results between points and two-dimensional
surfaces inR3 (with no homogeneity condition), and by Kaplan et al. in [13] to obtain
similar bounds on the number of incidences between points and spheres in R3.

1.2 Proof Sketch

Tokeep the proof sketch simple,we shall assume that the surfaces inS are 2-planes, and
that every pair of 2-planes is either disjoint or intersect transversely. The actual proof of
the theorem (presented in the following sections) will notmake these assumptions. The
basic idea is as follows. By the assumption that 2-planes must intersect transversely,
there can be at most one 2-plane passing through any pair of points. Thus we can
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use the Cauchy–Schwarz inequality to obtain a rudimentary bound on the cardinality
of any collection of point-surface incidences. We will call this the Cauchy–Schwarz
bound.

Using the discrete polynomial partitioning theorem, we find a polynomial P of
controlled degree (the degree will be a suitable power of m and n) so that R4\ZR(P)

is a union of open cells, such that each cell contains roughly the same number of
points from P , and no surface from S enters too many cells (here ZR(P) is the set
of points in R4 at which P vanishes). We can then apply the Cauchy–Schwarz bound
within each cell. This allows us to count the incidences occurring between surfaces
and points in P\ZR(P). In order to count the remaining incidences, we perform a
second-level polynomial partitioning decomposition on the variety ZR(P). This gives
us a polynomial Q which cuts ZR(P) into a collection of three-dimensional cells,
which are open in the relative (Euclidean) topology of ZR(P). We then apply the
Cauchy–Schwarz bound to each of these three-dimensional cells. The only incidences
left to count are those between surfaces in S and points in P ∩ ZR(P) ∩ ZR(Q).

We can choose P and Q in such a way that ZR(P) ∩ ZR(Q) is a two-dimensional
variety in R

4. Let S be a 2-plane from S. Then S will intersect ZR(P) ∩ ZR(Q) in
a union of isolated points (proper intersections) and one-dimensional curves (non-
proper intersections); the case where S meets ZR(P) ∩ ZR(Q) in a two-dimensional
variety can be dealt with easily. The number of isolated points in the intersection can
be bounded by the degrees of the polynomials P and Q (we are working overR,where
Bézout’s theorem need not hold, so we need to be a bit careful). Thus the number of
incidences between points p ∈ P ∩ ZR(P) ∩ ZR(Q) and surfaces S ∈ S such that p
is an isolated point of S ∩ ZR(P) ∩ ZR(Q) can be bounded.

The only remaining task is to bound the number of incidences between points of
P ∩ ZR(P) ∩ ZR(Q) and one-dimensional curves arising from the intersection of
ZR(P) ∩ ZR(Q) and surfaces S ∈ S. To simplify the exposition, we will pretend (in
this sketch only!) that ZR(P)∩ZR(Q) is a disjoint union of N 2-planes, i.e., ZR(P)∩
ZR(Q) = �1 � · · · � �N . Then for each plane �i , �i ∩ S = LS,i is a line on �i .
It remains to count the number of incidences between P ∩ �i and {LS,i }S∈S . The
Szemerédi–Trotter theorem for lines in R

2 would give us the bound

I (P ∩ �i , {LS,i }S∈S) = O(|P ∩ �i |2/3|S|2/3 + |P ∩ �i | + |S|). (1.5)

However, if we sum (1.5) over the N values of i , we have only bounded the number
of incidences by

O(N 1/3|P|2/3|S|2/3 + |P| + |S|). (1.6)

Since N can be quite large (for example, if |P| = |S|, then N could be as large as
|P|1/3), this is not sufficient. Instead, recall Székely’s proof in [26] of the Szemerédi–
Trotter theorem, which uses the crossing lemma (the crossing lemma and all other
graph-related results are introduced in Sect. 8). Loosely speaking, we consider the
graph drawing Hi on �i whose vertices are the points of P ∩�i , and two vertices are
connected by an edge if there is a line from {Li,S}S∈S passing through the two points,
and the two points are adjacent on the line (i.e., there are no points in between them).
Then the number of edges of the graph is comparable to the number of incidences
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between points and lines, and this is bounded by C(Hi )
1/3V 2/3

i , where C(Hi ) is the
number of times two edges cross in the drawing Hi , and Vi is the number of vertices
of Hi . Thus in place of (1.5), we have

I (P ∩ �i , {LS,i }S∈S) = O(|P ∩ �i |2/3|C(Hi )|1/3 + |P ∩ �i | + |S|). (1.7)

The key insight is that ∑

i

|C(Hi )| ≤ |S|2. (1.8)

Indeed, every pair of 2-planes S, S′ ∈ S can intersect in atmost one point, and sincewe
assumed the planes {�i } composing ZR(P) ∩ ZR(Q) were disjoint, the intersection
point of S ∩ S′ can occur on �i for at most one index i . Thus we have

∑

i

I (P ∩ �i , {LS,i }S∈S)

= O
( ∑

i

(|P ∩ �i |2/3|C(Hi )|1/3 + |P ∩ �i | + |S|))

= O
(( ∑

i

|P ∩ �i |
)2/3( ∑

i

|C(Hi )|
)1/3 +

∑

i

|P ∩ �i | +
∑

i

|S|)

= O(|P|2/3|S|2/3 + |P| + N |S|)
= O(m2/3n2/3 + m + Nn). (1.9)

This is a much better bound than (1.6), and it gives us the desired bound on the
number of incidences between surfaces in S and points lying on ZR(P) ∩ ZR(Q).

Unfortunately, the assumption that ZR(P) ∩ ZR(Q) is a disjoint union of 2-planes
need not be true, and dealing with this difficulty will occupy the bulk of the paper. To
handle this, we must cut ZR(P) ∩ ZR(Q) into pieces, each of which behaves like a
2-plane (more accurately, each piece is homeomorphic to an open set in R

2), and we
need to prove a more general form of the (planar) Szemerédi–Trotter theorem which
gives an incidence bound for an arrangement of points of curves based on the number
of curve crossings, rather than the number of curves.

1.3 Major Tools and Techniques

We will give a brief overview of the main tools that will be used in the proof of Theo-
rem 1.3. First, we will require some results from real algebraic geometry. Specifically,
we will make use of Barone and Basu’s refined bounds on the number of sign condi-
tions of a real algebraic variety. This will be discussed further in Sect. 2.1. Polynomial
partitionings will also play a central role. Thesewere first developed byGuth andKatz,
and later extended by Kaplan, Matoušek, Safernova, and Sharir, and by the author.
These partitionings will be discussed in Sect. 2.3.

We will use some results from algebraic geometry and intersection theory. These
will be discussed in Sect. 4. We will also require some elementary results from dif-
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ferential geometry. This will be discussed in Sect. 6. Finally, we will make use of the
crossing lemma from topological graph theory. This will be discussed in Sect. 8.

1.4 Notation

Throughout this paper, C,C1,C2, . . . will denote large constants, and c, c1, c2, . . .
will denote small (positive) constants.

Definition 1.4 We will say that A � B or A = O(B) if A ≤ CB for some constant
C that depends only on C0 and k from the statement of Theorem 1.3, and possibly
the ambient dimension d (in the statement of Theorem 1.3 we have d = 4. However
we will sometimes state results in greater generality). Sometimes the constant C will
appear to depend on other parameters as well. However, these additional parameters
will ultimately only depend on C0 and k. If A � B and B � A, we say A ≈ B or
A = �(B).

2 Preliminaries: Real Algebraic Geometry and Polynomial Partitions

2.1 Real Algebraic Geometry

2.1.1 Ideals and Varieties

Unless otherwise noted, all polynomialswill be (affine) real polynomials, i.e., elements
ofR[x1, . . . , xd ]. In the first sections of this paper we will deal mainly with real affine
varieties; in later sections we will be concerned with both real and complex varieties.
Definitions and standard results about real algebraic varieties can be found in [3,4].

Definition 2.1 A(real) algebraic variety Z ⊂R
d is a set of the form Z =⋂�

i=1{Pi =0},
where P1, . . . , P� ∈ R[x1, . . . , xd ] are polynomials. Note that we do not require
varieties to be irreducible.

Definition 2.2 If J ⊂ R[x1, . . . , xd ] is an ideal, we define

ZR(J ) = {x ∈ R
d : f (x) = 0 for all f ∈ J }.

By abuse of notation, if P ∈ R[x1, . . . , xd ], then we define ZR(P) = ZR((P)), where
(P) is the ideal generated by P . Sometimes we will also need to work over C. We
define ZC(J ) analogously, with Cd in place of Rd .

Definition 2.3 If Z ⊂ R
d is a variety, we define

I(Z) = {P ∈ R[x1, . . . , xd ] : P(x) = 0 for all x ∈ Z}.

2.1.2 Smooth Points and Dimension of a Real Variety

Definition 2.4 Let Z ⊂ R
d be a real algebraic variety, and let z ∈ Z . We define the

dimension dimR,z(Z) of Z at z as in [4, Def. 2.8.11]. Informally, if dimR,z(Z) = e,
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then we can find a homeomorphism from a small (Euclidean) neighborhood of z ∈ Z
to the e-dimensional cube (0, 1)e. We define

dimR(Z) = sup
z∈Z

dimR,z(Z).

To avoid confusion, if Z ⊂ C
d is a (complex) variety, we will denote the (complex)

dimension of Z by dimC(Z).

Definition 2.5 We define the smooth locus Zsmooth as in [4, Sect. 3.3] (to be more
precise, we say a point z is in Zsmooth if z is smooth in dimension e = dimR(Z)).
Informally, if I(Z) = ( f1, . . . , f�) ⊂ R[x1, . . . , xd ] and e = dimR(Z), then z ∈ Z is
a smooth point of Z if

rank

⎡

⎢
⎣

∇ f1
...

∇ fn

⎤

⎥
⎦ = d − e.

Here and throughout this paper, if f ∈ R[x1, . . . , xd ], then ∇ f is the vector-valued
function (

d f
dx1

, . . . ,
d f
dxd

). If f ∈ C[x1, . . . , xd ], we can define ∇ f similarly.

If z ∈ Z is a smooth point, then Z is an e-dimensional real manifold in a small
(Euclidean) neighborhood of z. However the converse need not hold.

2.1.3 Real Ideals

Ideals and varieties over R can have some rather pathological properties. Luckily,
there is a class of ideals over R that behave more sanely. Confusingly, these ideals are
called real ideals.

Definition 2.6 An ideal J ⊂ R[x1, . . . , xd ] is real if for every sequence a1, . . . , a� ∈
R[x1, . . . , xd ], a21 + · · · + a2� ∈ J implies a j ∈ J for each j = 1, . . . , �.

The following proposition shows that real principal prime ideals and their correspond-
ing real varieties have some of the nice properties of ideals and varieties defined over
C.

Proposition 2.1 (see [4, Sect. 4.5]) Let (P) ⊂ R[x1, . . . , xd ] be a principal prime
ideal. Then the following are equivalent:

(i) (P) is real.
(ii) (P) = I(Z(P)).
(iii) dimR(Z(P)) = d − 1.
(iv) ∇P does not vanish identically on Z(P).
(v) The sign of P changes somewhere on R

d .

Remark 2.1 In [4], Proposition 2.1 is stated in themore general language of real closed
fields. However, R is an example (indeed, the motivating example) of a real closed
field, so the proposition applies to ideals in R[x1, . . . , xd ].
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While not every polynomial P ∈ R[x1, . . . , xd ] is a product of irreducible polyno-
mials that generate real ideals, the following lemma shows that for our applications,
we can always modify our polynomials to ensure that this is the case.

Lemma 2.1 Let P ∈ R[x1, . . . , xd ] be a real polynomial. Then there exists a non-zero
real polynomial P̃ such that deg P̃ ≤ deg P, ZR(P) ⊂ ZR(P̃), and the irreducible
components of P̃ generate real ideals.

Proof We will prove the statement by induction on deg P . If deg P = 1, then P
is irreducible and (P) is real. Now suppose the statement has been proved for all
polynomials of degree ≤ D. Let P be a polynomial of degree D + 1 and factor
P = P1 . . . Pa . If all the irreducible factors of P generate real ideals, we are done. If
not, then without loss of generality we can assume that (P1) does not generate a real
ideal. In particular, deg P1 ≥ 2. Let v be a generic (with respect to P) real vector.1 Then
v · ∇P1 is a non-zero polynomial of degree deg(P1) − 1, and by Proposition 2.1(iv),
ZR(P1) ⊂ ZR(v ·∇P1). Let P ′ = (v ·∇P1)P2 · · · Pa . Then deg P ′ ≤ D andZR(P) ⊂
ZR(P ′). We can now apply the induction hypothesis to P ′ to find a polynomial P̃ so
that deg(P) ≤ deg(P ′) ≤ deg(P̃), and ZR(P) ⊂ ZR(P ′) ⊂ ZR(P̃). ��
Remark 2.2 Examining the above proof, we see that if P ∈ R[x1, . . . , xd ] is a square-
free polynomial whose irreducible components generate real ideals, and if v ∈ R

d is
a generic vector, then ZR(P)sing ⊂ ZR(P) ∩ ZR(v · ∇P).

If deg P = 1, then ZR(P) is smooth, so this statement is not very interesting. If
deg P ≥ 2, then v ·∇P is not the zero polynomial, and P and v ·∇P have no common
components (over R). Since P and v · ∇P are real polynomials, this also implies
that P and v · ∇P have no common components over C. In particular, this means the
variety ZC(P) ∩ ZC(v · ∇P) has codimension two. Complex algebraic varieties will
be discussed further in Sect. 4.1.2.

2.1.4 Sign Conditions

Several of the results we will cite refer to strict sign conditions or realizations of
realizable strict sign conditions. While we will not use sign conditions in our proof
directly, it is useful to understand how they relate to the objects we will be studying.

Definition 2.7 Let Q ⊂ R[x1, . . . , xd ] be a collection of non-zero real polynomials.
A strict sign condition on Q is a map σ : Q → {±1}. If Q ∈ Q, we will denote the
evaluation of σ at Q by σQ .

If Z ⊂ R
d is a variety and σ is a strict sign condition onQ, then we can define the

realization of σ on Z by

Reali(σ,Q, Z) = {x ∈ Z : Q(x)σQ > 0 for all Q ∈ Q}. (2.1)

1 Over R one must be very careful with the phrase “generic,” but informally, a generic vector is any vector
that does not lie in a certain bad set that has smaller dimension than the entire vector space. Often the bad
set will not be defined explicitly, but will be determined from the list of properties we wish the generic
vector to have. A precise definition of a generic real vector is given in Sect. 4.2.
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We define
�Q,Z = {σ : Reali(σ,Q, Z) 
= ∅}, (2.2)

and
Reali(Q, Z) = {Reali(σ,Q, Z) : σ ∈ �Q,Z }. (2.3)

We call Reali(Q, Z) the collection of realizations of realizable strict sign conditions
of Q on Z . Note that if some Q ∈ Q vanishes identically on Z , then �Q,Z = ∅ and
thus Reali(Q, Z) = ∅.

The key observation is that ifQ is a collection of non-zero real polynomials, Q0 =∏
Q∈Q Q, and if Z ⊂ R

d is a variety, then every connected component of Z\ZR(Q)

is contained in some set from Reali(Q, Z).

Remark 2.3 The above observation has two implications: First, the number of con-
nected components of Z\ZR(Q) bounds the number of sets in Reali(Q, Z). Second,
suppose that P ⊂ Z is a collection of points, and at most C points from P lie in
any set from Reali(Q, Z). Then at most C points lie in any connected component of
Z\ZR(Q).

2.2 The Topology of Real Varieties: Milnor–Thom Type Theorems

In the proof below, we will find a polynomial whose zero-set partitions Euclidean
space into open cells, and we will apply a rudimentary incidence bound to bound the
number of incidences inside each cell. To apply this rudimentary bound, we will need
to control how many surfaces from S enter each cell. The theorems in this section will
give us the tools to do this.

Theorem 2.1 (Barone and Basu [2, Thm. 5], special case) Let Q1, . . . , Q� ∈
R[x1, . . . , xd ]. Let Di = deg(Qi ). For i = 1, . . . , �, let Qi = {Q1, . . . , Qi }, and let
Vi = ⋂i

j=1 ZR(Q j ). Suppose that dimR(Vi ) ≤ ei for each index i (by convention,

V0 = R
d , and e0 = d). Let P ∈ R[x1, . . . , xd ], and let D = deg P.

Suppose that

2 ≤ D1 ≤ D2 ≤ 1
d+1D3 ≤ 1

(d+1)2
D4 ≤ · · · ≤ 1

(d+1)�−2 D� ≤ D (2.4)

and that � ≤ d. Then the number of (Euclidean) connected components of the set

{x ∈ V� : P(x) > 0}

is bounded by

CDe�
�∏

j=1

D
ej−1−e j
j , (2.5)

where the constant C depends only on d.
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Remark 2.4 The bound (2.5) is a special case of the bound from [2, Thm. 5]. In [2],
(2.5) appears as the inequality preceding Remark 1.13.

In [2], Barone and Basu consider a family of polynomials, while in our formulation
the family is just the singleton {P}. Furthermore, Barone and Basu bound the number
of connected components of all sign conditions of this family of polynomials on
the variety V�, while we are only interested in the sign condition P > 0. Finally,
Barone and Basu state their result for semialgebraically connected components over
a real closed field. Since we are only interested in results over R, we can restrict our
attention to Euclidean connected components.

We will always be interested in the case d = 4. We shall record three special cases
that will be of particular interest to us.

Corollary 2.1 Let f, P ∈ R[x1, . . . , x4]. Suppose that
(i) dimR(ZR( f )) = 2.
(ii) dimR(ZR( f ) ∩ ZR(P)) = 1.

Then

• The number of connected components of {x ∈ ZR( f ) : P(x) > 0} is O((deg P)2).
• The number of connected components of ZR( f ) ∩ ZR(P) is O((deg P)2).

The implicit constants depend only on deg f .

Corollary 2.2 Let f, P, Q ∈ R[x1, . . . , x4]. Suppose that f and P satisfy Properties
(i) and (ii) from Corollary 2.1, and that deg P ≤ C deg Q. Then

• The number of connected components of

{x ∈ ZR( f ) ∩ ZR(P) : Q(x) > 0}

is O
(
(deg P)(deg Q)

)
.

• The number of isolated points of

ZR( f ) ∩ ZR(P) ∩ ZR(Q)

is O
(
(deg P)(deg Q)

)
.

Again, the implicit constant depends only on deg f and the constant C.

Remark 2.5 Corollary 2.1 (resp. Corollary 2.2) is only meaningful if the degree of
P (resp. P and Q) is much larger than the degree of f . In practice, the degree of f
will be bounded by quantities that depend only on the constants C0 and k from the
statement of Theorem 1.3, while the degrees of P and Q will grow as the quantities
m and n from the statement of Theorem 1.3 become larger.

123



524 Discrete Comput Geom (2015) 54:513–572

2.3 Polynomial Partitioning Type Theorems

In [11], Guth and Katz proved the following theorem.

Theorem 2.2 (Discrete polynomial partitioning theorem) Let P be a set of m points
in Rd and let D ≥ 1 be an integer. Then there is a polynomial P of degree at most D
with the following property: Rd\ZR(P) is the union of O(Dd) open connected sets
(cells), and each cell contains ≤ m/Dd points of P .

After applying Lemma 2.1, we can ensure that the irreducible components of P
generate real ideals:

Corollary 2.3 Let P be a set of m points in R
d and let D ≥ 1 be an integer. Then

there is a polynomial P of degree at most D with the following property: Rd\ZR(P)

is the union of O(Dd) open connected sets (cells), and each cell contains ≤ m/Dd

points of P . Furthermore, each irreducible component of P generates a real ideal.

Example 2.1 Consider the following collection of 72 points:

P =
3⋃

j=1

{(± j,± j,± j,± j)} ∪
3⋃

j=1

{(0,± j,± j,± j)}, (2.6)

and let D = 2. Then the degree four polynomial

P(x1, x2, x3, x4) = x1x2x3x4

cuts R4 into 16 open cells 	1, . . . , 	16 (the cells are unbounded, but this is fine) plus
the set

ZR(P) =
4⋃

i=1

{xi = 0}.

We can verify that the polynomials x1, . . . , x4 generate real ideals, so P is a product of
irreducible polynomials, each of which generates a real ideal.We have |	i ∩P| = 3 ≤
|P|/D4 for each i = 1, . . . , 16. Thus P satisfies the requirements of Corollary 2.3
(Corollary 2.3 only specifies the degree of P up to an implicit constant, so we cannot
verify that the degree is correct). Finally, note that we have |Z ∩ P| = 16.

Example 2.2 Let P ⊂ R
4 be a large collection of points that lie in general position on

the 2-plane {x1 = x2 = 0}, and let D be much smaller than |P|1/4. Then we can verify
that the polynomial P(x1, x2, x3, x4) = x1 satisfies the requirements of Corollary 2.3;
ZR(P) cuts R4 into the two cells, 	1 = {x1 > 0} and 	2 = {x1 < 0}. We have
	1 ∩ P = ∅ and 	2 ∩ P = ∅. This phenomenon is unavoidable: any polynomial P
satisfying the requirements of Corollary 2.3 must contain a factor that vanishes on the
2-plane {x1 = x2 = 0} (provided the points of P are in general position). Thus we
must have P ⊂ ZR(P), so each of the cells of the decomposition R\ZR(P) will be
empty.
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This example is interesting for the following reason. Let (P1,L1) be a collection of
m points and n lines in R2 that determine �(m2/3n2/3 +m + n) incidences. Consider
(P1,L1) as a collection of complex points and complex lines in C

2. Now, identify
C
2 with R

4, and let (P,S) be the corresponding collection of points and 2-planes in
R
4. Then all of the points of P will lie on a common 2-plane, so the situation will

resemble this example.

Theorem 2.2 will be used to obtain the first-level decomposition of the point set P .
However, as seen in the above examples, many points may lie on the boundaryZR(P),

and we will need to bound the number of incidences between surfaces in S and points
on ZR(P). To do this, we shall perform a second discrete polynomial partitioning
decomposition on the algebraic variety ZR(P).

Theorem 2.3 (Polynomial partitioning decomposition on a hypersurface) Let P be a
collection of points inRd lying on the setZR(P),where P is an irreducible polynomial
of degree D that generates a real ideal. Let E ≥ cD. Then there exists a polynomial
Q ∈ R[x1, . . . , xd ] with the following properties:

(i) deg Q ≤ CE.
(ii) Q does not vanish identically onZR(P). In particular, dimR(ZR(P)∩ZR(Q)) ≤

d − 2.
(iii) The set ZR(P)\ZR(Q) is a union of O(DEd−1) connected components (cells).

Each cell contains at most C|P |
DEd−1 points from P .

(iv) Each irreducible component of Q generates a real ideal.

The constant C depends only on c and the dimension d.

Theorem 2.3 is proved in [30, Sect. A.3]. The theorem is stated in terms of realiza-
tions of strict sign conditions (discussed in Sect. 2.1.4) rather than cells. The version
stated in [30, Sect. A.3] bounds the number of points that can lie in any realization
of a realizable strict sign condition on ZR(P). However, as noted in Remark 2.3, the
version stated above follows immediately.

We can continue Examples 2.1 and 2.2.

Example 2.1′ Let P, D, P, and Z be as in Example 2.1. Then P1(x1, x2, x3, x4) = x1
is the only irreducible component of P whose zero-set contains points from P . Let
E = 2 and letQ = {x2, x3, x4}. Then ZR(P1)\ZR(Q) consists of the 8 octants ofR3,
where we identify R3 with the hyperplane {x1 = 0} in R4. Each of these components
contains 2 points from P ∩ ZR(P1), and

P ∩ ZR(P1) ∩
4⋃

j=2

{x j = 0} = ∅,

i.e., every point of P either lies in some cell of R4\ZR(P1) or some connected com-
ponent of ZR(P1)\ZR(Q).

Example 2.2′ Let P, D, and P be as in Example 2.2, and let E be much smaller than
|P|1/3. Let Q = {x2}. Then ZR(P)\ZR(Q) consists of the sets {x1 = 0, x2 > 0}
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and {x1 = 0, x2 < 0}. Neither of these sets contains any points from P ∩ ZR(P);
indeed, P ⊂ {x1 = x2 = 0} = ZR(P) ∩ ZR(Q). Thus Q satisfies the requirements
of Theorem 2.3, but none of the points of P lie in any cell of R4\ZR(P) nor in any
connected component of ZR(P)\ZR(Q). Sections 4–9 will be devoted to dealing with
this type of situation.

3 Proof of Theorem 1.3 Step 1: Cell Partitionings

3.1 Initial Reductions

Let P,S be as in the statement of Theorem 1.3. First, it suffices to prove Theorem 1.3
in the special case where all the surfaces S ∈ S are irreducible. If the surfaces are
reducible, then each S ∈ S can be written as S = S1 ∪ S2 ∪ · · · ∪ SC(S), where
C(S) ≤ C0 and each Si is a smooth irreducible two-dimensional surface. Since S is
smooth, the surfaces {S1, . . . , SC(S)} are disjoint.

Now, for each i = 1, . . . ,C0, let Si = {Si : S ∈ S and C(S) ≤ i}. Then Si is
a C0-good collection of pseudoflats, and Ii = I ∩ I(P,Si ) is a good collection of
incidences. We can then consider each collection (P,Si , Ii ) in turn.

Henceforth, we shall assume that all surfaces in S are irreducible. We will prove
Theorem 1.3 by induction on m + n. In contrast to the proof of Solymosi and Tao in
[23], the use of induction will not introduce an ε loss in the exponent. The induction is
merely used to streamline the argument by controlling a few minor terms in one of the
bounds in Sect. 3.4. These terms can also be controlled through a lengthier argument
that does not involve induction. An analogue of this lengthier argument appears around
Eq. (2.9) in [30].

The base case where m + n is small is obvious, provided we choose the constant
C1 from Theorem 1.3 to be larger than mn.

We will frequently make use of the following classical theorem of Kővari, Sós, and
Turán from [14]:

Theorem 3.1 Let s, t be fixed positive integers, and let G be a bipartite graph with
one vertex set of size a and one vertex set of size b. Suppose that G contains no
induced subgraph isomorphic to Ks,t . Then G has at most O(ba1−1/s + a) edges.
Symmetrically, G has at most O(ab1−1/t + b) edges. Here the implicit constants
depend only on s and t.

From this theorem, we have that

|I(P,S)| � mn1−1/k + n, (3.1)

|I(P,S)| � m1/2n + m. (3.2)

In particular, we can assume

n < c1m
k, m < c1n

2, (3.3)
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where c1 is a small constant that we are free to determine later; we canmake c1 smaller
by making the constant C1 from Theorem 1.3 larger. If (3.3) failed, then Theorem 1.3
would follow immediately from (3.1) or (3.2). The bounds (3.3) imply that

n ≤ c2m
k

2k−1 n
2k−2
2k−1 , m ≤ c2m

k
2k−1 n

2k−2
2k−1 , (3.4)

where c2 can bemade arbitrarily small bymaking the constant c1 from (3.3) sufficiently
small. These inequalities will be useful for closing the induction.

3.2 First Polynomial Partition

Let

D = m
k

4k−2 n− 1
4k−2 . (3.5)

By (3.3), D satisfies the inequalities

C2 < D < c3m
1/4, (3.6)

where we canmake the constantC2 arbitrarily large and c3 arbitrarily small bymaking
the constant c1 in (3.3) smaller.

Let P be a polynomial of degree at most D such that ZR(P) cuts R4 into O(D4)

cells {	i }, each containing O(m/D4) points, as given byCorollary 2.3.We can assume
that P is square-free and its irreducible components generate real ideals. Let ni be the
number of surfaces in S that meet the i th cell.

Lemma 3.1 ∑
ni � D2n, (3.7)

where the sum is taken over all cells in the decomposition.

Proof We will show that each surface in S enters O(D2) cells. Let S ∈ S, let fS be
a polynomial so that S = ZR( fS), and let P be the partitioning polynomial described
above. We can assume that dimR(S∩ZR(P2)) ≤ 1, since otherwise S enters no cells.
The polynomials fS and P2 satisfy the requirements of Corollary 2.1, so the number
of connected components of S∩{P2 > 0} is O(D2). Thus S enters O(D2) connected
components of R4\ZR(P), i.e., S enters O(D2) cells. ��

Applying Theorem 3.1 inside each cell, we obtain

|I ∩ I(P\ZR(P),S)| �
∑

i

|P ∩ 	i |n1−1/k
i +

∑

i

ni

�
∑

i

m
D4 n

1−1/k
i + D2n

� m
D4

( ∑

i

1
)1/k( ∑

i

ni
)1−1/k + D2n
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� m
D4 D

4/k(D2n)1−1/k + D2n

� m
k

2k−1 n
2k−2
2k−1 . (3.8)

Here we used Hölder’s inequality on the third line, Lemma 3.1 on the fourth line (plus
the fact that there are O(D4) cells), and the definition of D from (3.5) on the final
line.

Recall from Definition 1.4 that the implicit constants above depend only on C0
and k from the statement of Theorem 1.3. Thus, if we select C1 in the statement of
Theorem 1.3 sufficiently large (depending on C0 and k), we have

|I ∩ I(P\ZR(P),S)| ≤ C1
100

(
m

k
2k−1 n

2k−2
2k−1 + m + n

)
. (3.9)

3.3 Boundary Incidences of the First Partition

Write
S = S1 � S2, (3.10)

where S1 is the set of surfaces that are contained in ZR(P), and S2 is the set of
surfaces that properly intersect ZR(P) (since each surface is irreducible, the latter
type of intersection must have dimension at most 1).

Lemma 3.2
|I ∩ I(P ∩ ZR(P)smooth,S1)| ≤ m. (3.11)

Proof Let p ∈ P ∩ ZR(P)smooth, and let H = Tp(ZR(P)). Suppose there exist
surfaces S1, S2 ∈ S1 with (p, S1), (p, S2) ∈ I . By Property (i) from Definition 1.2, p
is a smooth point of S andof S′. Since S ⊂ ZR(P),wehaveTp(S) ⊂ Tp(ZR(P)) = �.
Similarly, Tp(S′) ⊂ �. On the other hand, from the definition of a good collection of
incidences (Definition 1.3), we have that Tp(S)∩Tp(S′) = p.Thus we have two affine
2-planes, Tp(S) and Tp(S′) which meet only at the point p, but both are contained in
the affine 3-plane �. This cannot occur. Thus for each point p ∈ P ∩ ZR(P)smooth,

there exists at most one surface S ∈ S1 with (p, S) ∈ I (P ∩ ZR(P)smooth,S1). ��
It remains to consider incidences between surfaces and points lying on ZR(P)sing.

By (3.6), we can assume deg P ≥ 2. Let v be a generic (with respect to P) vector
and let R = v · ∇P . By Remark 2.2, R is not the zero polynomial, ZR(P)sing ⊂
ZR(P) ∩ ZR(R), and dimC(ZC(P) ∩ ZC(R)) = 2.

Let S ′
1 ⊂ S1 be those surfaces contained in ZR(P)sing. If S ∈ S ′

1 and S∗ is
the complexification of S (the smallest complex variety in C

4 that contains S), then
S∗ ⊂ ZC(P) ∩ ZC(R). Since dimC(ZC(P) ∩ ZC(R)) = 2, we must have that S∗ is a
union of irreducible components ofZC(P)∩ZC(R). Furthermore, if S1, . . . , S� ∈ S ′

1,
then S∗

1 ∪ · · · ∪ S∗
� must contain at least � irreducible components. But by Bézout’s

theorem (discussed further in Sect. 4.5, or [12, Chap. 18]),ZC(P)∩ZC(R) can contain
at most (deg P)(deg R) � D2 irreducible components. We conclude that

|S ′
1| � D2. (3.12)
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Applying Theorem 3.1 and (3.6), we have

|I ∩ I(P ∩ ZR(P)sing,S ′
1)| � D2m1/2 + m � m.

Thus if we choose the constant C1 sufficiently large depending on C0 and k from the
statement of Theorem 1.3, we have

|I ∩ I(P ∩ ZR(P)sing,S ′
1)| ≤ C1

100

(
m

k
2k−1 n

2k−2
2k−1 + m + n

)
. (3.13)

Let S ′
2 ⊂ S1 be those surfaces (contained in ZR(P)) that are not contained in

ZR(R). We must now bound |I ∩I(P ∩ZR(P),S2)| and |I ∩I(P ∩ZR(R),S ′
2)|. By

Lemma 2.1, we can assume that the irreducible components of R generate real ideals.
But note that both ZR(P) and ZR(R) are the zero-set of polynomials of degree O(D),
and thus the two collections of incidences can be dealt with in the same fashion. In
the arguments below, we will prove that

|I ∩ I(P ∩ ZR(P),S2)| ≤ C1
10

(
m

k
2k−1 n

2k−2
2k−1 + m + n

)
. (3.14)

An identical argument shows that

|I ∩ I(P ∩ ZR(R),S ′
2)| ≤ C1

10

(
m

k
2k−1 n

2k−2
2k−1 + m + n

)
. (3.15)

Once we have established these inequalities, we can combine the bounds (3.9), (3.11),
(3.13), (3.14), and (3.15) to close the induction.

3.4 Second Polynomial Partitioning Decomposition

We shall now establish inequality (3.14). Factor P into its irreducible components,
P = P1 · · · P�, and let Di = deg(Pi ). Let

Pi = (P ∩ ZR(Pi ))\
⋃

j<i

P j ,

so P1, . . . ,P� are disjoint and
⋃Pi = P ∩ ZR(P).

Let

A0 = {
i : |Pi |k ≤ c4nD

4k−2
i

}
, A1 = {1, . . . , �}\A0. (3.16)

The (small) constant c4 will be chosen later.
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3.4.1 Incidences on Varieties in A0

We have

∣
∣

⋃

j∈A0

P j
∣
∣ ≤ c1/k4

∑

j∈A0

n1/k D
4k−2
k

j

≤ c1/k4 n1/k D
4k−2
k

≤ c1/k4 m, (3.17)

We will select c4 so that c4 << 1. By the induction hypothesis (discussed in Sect. 3.1),
we conclude that

∣∣I ∩ I( ⋃

j∈A0

P j ,S
)∣∣ ≤ C1

(
c

1
2k−1
4 m

k
2k−1 n

2k−2
2k−1 + C3c

1/k
4 m + n

)
. (3.18)

Select the constant c1 from (3.3) sufficiently small so that

n ≤ 1
200m

k
2k−1 n

2k−2
2k−1 ,

and select the constant c4 from (3.16) sufficiently small. Then from (3.4) we obtain

∣∣I ∩ I( ⋃

j∈A0

P j ,S
)∣∣ ≤ C1

100

(
m

k
2k−1 n

2k−2
2k−1 + m + n

)
. (3.19)

3.4.2 Incidences on Varieties in A1

For each i ∈ A1, define

Ei = |Pi |
k

3k−2 n− 1
3k−2 D

− k
3k−2

i . (3.20)

Note that with this choice of Ei , we have

Ei ≥ c
1

3k−2
4 Di , (3.21)

where c4 is the constant from (3.16).
By (3.5), (3.20), and Hölder’s inequality,

n
∑

j∈A1

Dj E j ≤ m
k

2k−1 n
2k−2
2k−1 . (3.22)

This fact will be used frequently.
Apply Theorem 2.3 to the surface ZR(Pi ) and the point set Pi with the parameter

Ei [here wemake use of (3.21)], and let Qi be the resulting polynomial. Qi has degree
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O(Ei ), where the implicit constant depends only on c4, and the set ZR(Pi )\ZR(Qi ) is
a union of O(Di E3

i ) cells; each cell contains O(|Pi |/(Di E3
i )) points from Pi . Again,

the implicit constant depends only on c4 from (3.16), which in turn ultimately depends
only on C0 and k from the statement of Theorem 1.3.

Let ni, j be the number of surfaces inS2 thatmeet the j th cell fromZR(Pi )\ZR(Qi ).

Lemma 3.3 For each index i , we have

∑

j

ni, j � nDi Ei , (3.23)

where the sum is taken over all cells in ZR(Pi )\ZR(Qi ).

Proof We will prove that each surface in S2 enters O(Di Ei ) cells. Let S ∈ S,

and let fS be a polynomial so that S = ZR( fS). Since S ∈ S2, we have that
dimR(S∩ZR(Pi )) ≤ 1. Thus we can apply Corollary 2.2 to conclude that the number
of connected components of S ∩ ZR(Pi ) ∩ {Q2

i > 0} is O(Di Ei ). This implies that
S enters O(Di Ei ) cells, where the implicit constants depend only on C0 from the
statement of Theorem 1.3. ��

We shall now bound the number of incidences that occur in the cells 	i, j . Recall
that at the moment, i is fixed. We have

|I ∩ I(Pi\ZR(Qi ),S2)| �
∑

j

|Pi ∩ 	i, j |n1−1/k
i, j +

∑

j

ni, j

�
( ∑

j

( |Pi |
Di E3

i

)k)1/k(∑

j

ni, j
)1−1/k + Di Ein

� (Di E
3
i |Pi |k D−k

i E−3k
i )1/k(Di Ein)1−1/k + Di Ein

� |Pi |n1−1/k

E2−2/k
i

+ Di Ein. (3.24)

Summing over all indices i ∈ A1 and using (3.5), (3.20), and Hölder’s inequality,
we obtain

∑

i∈A1

|I ∩ I(Pi\ZR(Qi ),S2)| �
∑

i∈A1

|Pi |n1−1/k

E2−2/k
i

+
∑

i∈A1

Di Ein

�
∑

i∈A1

n
3k−3
3k−2 |Pi |

k
3k−2 D

2k−2
3k−2
i + m

k
2k−1 n

2k−2
2k−1

� n
3k−3
3k−2m

k
3k−2 D

2k−2
3k−2 + m

k
2k−1 n

2k−2
2k−1

� m
k

2k−1 n
2k−2
2k−1 . (3.25)
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Combining (3.19) and (3.25), and selecting C1 sufficiently large depending on C0
and k from the statement of Theorem 1.3, we obtain

|I ∩ I(P ∩ Z ,S2)| ≤ C1

50

(
m

k
2k−1 n

2k−2
2k−1 + m + n

)

+
∑

i∈A1

|I ∩ I(Pi ∩ ZR(Qi ),S2)|. (3.26)

It remains to bound the second term in (3.26).

4 A Foray into Algebraic Geometry

4.1 (Some More) Real Algebraic Geometry

4.1.1 Semialgebraic Sets

A semialgebraic set is a finite union of sets of the form

�⋂

j=1

ZR(R j ) ∩
�′⋂

j=1

{x ∈ R
d : R′

j (x) > 0},

where R1, . . . , R� and R′
1, . . . , R

′
�′ are real polynomials.

Later in our arguments we will need to consider (real) algebraic curves with finitely
many points deleted. These objects are semialgebraic sets.

4.1.2 Real and Complex Varieties

If Z ⊂ C
d is a complex variety, let

Z(R) = {(x1, . . . , xd) ∈ Z : Im(xi ) = 0 for each i = 1, . . . , d}.

Thus Z(R) is the set of real points of Z . Generally, we will be interested in varieties
Z ⊂ C

d that can be defined by real polynomials. Conversely, if Z ⊂ R
d is a real

variety, let Z∗ be the smallest complex variety containing Z , i.e., Z∗ is the closure of
Z (after Z has been embedded into C

d ) in the Zariski topology on C
d . Observe that

if Z(R) is Zariski dense in Z , then Z(R)∗ = Z ; we will only use this observation in
the special case where Z is irreducible.

4.1.3 The Zariski Tangent Space of a Variety

Definition 4.1 Let Z ⊂ C
d be a variety. We define the Zariski tangent space of Z at

the point z to be

Tz(Z) = {v ∈ C
d : ∇ f (v) = 0 for all f ∈ I (Z)}. (4.1)
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If I (Z) = ( f1, . . . , f�), then we can replace the condition “ f (v) = 0 for all
f ∈ I (Z)” with the equivalent condition “ f1(v) = 0, . . . , f�(z) = 0.”
If dim(Tz(Z)) = dim(Z), we say that z is a smooth point of Z . Otherwise, it is

a singular point. z ∈ Z is a smooth point if and only if Z is a dim(Z)-dimensional
complex manifold in a (Euclidean) neighborhood of z, see [18, Chap. 1] for further
details.

4.1.4 Points Where Real and Complex Dimensions do not Agree

We will be interested in a variant of the following question. Let Z ⊂ C
d be a variety

that can be written as an intersection of d-dimC(Z) hypersurfaces, each defined by a
real polynomial, and let z ∈ Z(R). Suppose that dimz,R(Z(R)) < dimC Z . Must z be
a singular point of Z? In this section, we will show that at least in some special cases,
the answer is yes. We will rely on a similar result about curves, which is proved in [7,
Sect. 6].

Lemma 4.1 Let ζ ⊂ C
3 be a space curve (a one-dimensional complex variety).

Suppose that ζ = ZC(P1) ∩ ZC(P2), where P1, P2 are real polynomials. Let O ∈
O(3;R) be a generic (with respect to P1 and P2) rotation (see Sect. 4.2 for the
definition of a generic rotation) and let ζ ′ = O(ζ ). Let π : C3 → C

2 be the projection
in the x3-direction. If z ∈ ζ ′(R) is an isolated point, then π(z) is an isolated point of
(π(ζ ′))(R).

Proof The main tool we will use is Lemma 6.2 from [7]. Let ζ ⊂ C
3 be a space curve.

We say that ζ is in generic position with respect to the projection to the (x1, x2)-plane
if it satisfies the conditions from [7, Def. 4.1]. Rather than stating the definition of
generic position here (it is quite technical), we will only state the properties we need.

First, by [7, Sect. 5.4], any curve γ ⊂ C
3 may be put in generic position after

applying a generic orthogonal transformation2 O ∈ O(3;R). Informally, a curve is
in generic position if no coincidences happen when the curve ζ is projected onto the
x1, x2, or x3 axes (for example, it would be bad if two distinct singular points of ζ

projected to the same point).
In [7], El Kahoui also defines what he calls an event point for the (real) curve ζ(R).

This includes objects such as critical points of ζ . Again, we do not need a precise
definition; the only property we will use is that the set of event points is finite, and
thus they will not be relevant to our argument.

Let ζ ⊂ C
3 be a space curve in general position that is defined by real polynomials,

and letπ : C3 → C
2 be the projection onto the (x1, x2)-plane. Define αζ = (π(ζ ))(R)

(while in general the projection of a space curve to the plane need not be a plane curve,
after applying a generic orthogonal transformation we can ensure that this is the case).

Lemma 6.2(i) from [7] relates the properties of ζ(R) and αζ . In the terminology
used here, [7, Lemma 6.2(i)] says the following: if I ⊂ R is an interval that does not
contain the x-coordinate of any event point, and if β ⊂ αζ is a simple open smooth
real curve (in this case not an algebraic curve, but a smooth subset of an algebraic

2 In [7, Sect. 5.4], El Kahoui actually considers a generic affine transformation rather than a generic
orthogonal transformation, but the same argument applies.
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curve that is homeomorphic to (0, 1)), then there is a simple open smooth real curve
β ′ ⊂ ζ(R) whose projection to the (x1, x2)-plane is β.

We can now prove Lemma 4.1. Let z ∈ ζ ′(R) be an isolated point. Suppose that x =
π(z) is not isolated. Since O was a generic rotation, we can assume thatπ−1(x) = {z}.
For any ε > 0, we can find a simple open smooth real curve β ⊂ π(ζ ′)(R) such that
dist(x, β) < ε and the projection of β to the x1-axis does not contain any event points.
We can now apply lemma 6.2(i) from [7] to conclude that there is a curve β ′ ⊂ ζ ′(R)

whose projection to the (x1, x2)-plane is β.
This means that for every ε > 0 there is a curve β ′ ⊂ ζ(R) whose projection

is ε-close to π(z). Since ζ(R) is closed (in the Euclidean topology) and z is an iso-
lated point of ζ(R), we conclude that the pre-image π−1(x) contains at least two
points. But we assumed that this was not the case. This contradiction establishes the
lemma. ��
Corollary 4.1 Let P1, P2 ∈ R[x1, . . . , x4], and let Z = ZC(P1) ∩ ZC(P2). Suppose
that dimC(Z) = 2. If z ∈ Z(R) satisfies dimz,R(Z(R)) ≤ 1, then z is a singular point
of Z.

Proof Suppose z is a smooth point of Z ; we will obtain a contradiction. Let H ⊂
C
4 be a generic real 3-plane passing through z, i.e., H is the zero-set of a linear

polynomial inR[x1, . . . , x4]. Then H∩Z is a complex one-dimensional variety (i.e., a
curve), z is a smooth point of H ∩ Z , and if we identify H with C

3, we can write
H ∩ Z = ZC(P ′

1) ∩ ZC(P ′
2), where P ′

1, P
′
2 ∈ R[x1, x2, x3]. Furthermore, since

dimz,R(Z(R)) ≤ 1, we have dimz,R((H ∩ Z)(R)) = 0, i.e., z is an isolated point
of (H ∩ Z)(R). Thus we can apply Lemma 4.1 to conclude that z is a singular point
of H ∩ Z . This contradicts the assumption that z was a smooth point of H ∩ Z . We
conclude that z is a singular point of Z . ��

4.2 Generic Points

Often in our arguments we will consider properties that hold at most places on an
algebraic variety. In this section we will make the notion of “most places” precise.
Specifically, we will introduce the notion of a generic point. We will begin with a
motivating example.

Example 4.1 Let Z ⊂ C
4 be an irreducible hypersurface and let P, S be the set of

points and pseudoflats from Theorem 1.3. Then a generic point of Z does not lie in P
and does not intersect any pseudoflat from S.

Definition 4.2 Let Z be an irreducible complex variety and letM be a finite collection
of polynomials, none of which vanish on Z . We say that a point z ∈ Z is generic with
respect to M if none of the polynomials in M vanish on z. In particular, for Z and
M fixed, the set of generic points is Zariski dense in Z . In practice, the collectionM
of polynomials will be apparent from context, so we will abuse notation and make
statements such as “a generic point of Z has the following properties.” Here the set of
polynomials M should be inferred from the properties we have specified.
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In general, the set of polynomialsMwill depend on the variety Z , the set of points
and pseudoflats fromTheorem1.3 aswell as any intermediate objects that have already
been constructed, and whatever property is currently under consideration.

If Z(R) is Zariski dense in Z , then we define a generic real point of Z(R) to be
a point z ∈ Z(R) for which no polynomial in M vanishes. In particular, if Z(R) is
dense in Z , then the set of generic real points is non-empty.

The setC4 will be of particular interest, andwewill consider it as both a vector space
and a complex variety. In our arguments below, we will refer to generic vectors in C4

or R4. This means that the vector is generic with respect to all of the objects defined
previously—this includes the points P , surfaces S, the partitioning polynomials P
and {Qi }, and any previously defined vectors, etc.

We will also be interested in several other generic objects:

• Generic k-planes. These are generic elements of the Grassmannian Gr(k, d;C) or
Gr(k, d;R). They will be discussed further in Sect. 6.1.

• Generic (real) rotations. These are generic elements of the orthogonal group
O(d;R) (this group has the structure of a real variety).

• Generic projections. These are projections of the form O−1◦π◦O,whereπ : Cd →
C
d ′
is the projection to the first d ′ coordinates, and O is a generic rotation.

4.3 Resultants and Projections

Given two polynomials f, g ∈ C[x1, . . . , xd ], we define the resultant res( f, g) ∈
C[x1, . . . , xd−1] to be the resultant of f and g in the xd -variable, i.e., we consider f
and g to be polynomials in xd with coefficients in the ring C[x1, . . . , xd−1], and we
take the (classical) resultant of these two polynomials. If f and g have real coefficients,
then res( f, g) also has real coefficients.

If f ∈ C[x1, . . . , xd ], we say that f is xd -monic if the coefficient of xdeg f
d is non-

zero. If f is xd -monic, f and g intersect properly (i.e., if dimC(ZC( f ) ∩ ZC(g)) =
d − 2), and if πd : Cd → C

d−1 is the projection to the first (d − 1)-coordinates, then

πd(ZC( f ) ∩ ZC(g)) ⊂ ZC(res( f, g)).

See for example Sect. 2C from [18]. In particular, if f and g have real coefficients, f
is xd -monic, and if dimC(ZC( f ) ∩ ZC(g)) = d − 2, then

πd(ZR( f ) ∩ ZR(g)) ⊂ ZR(res( f, g)), (4.2)

and ZR(res( f, g)) is a variety of dimension at most d − 2.
Note, however, that if we only require that dimR(ZR( f ) ∩ ZR(g)) = d − 2, then

ZR(res( f, g))may be all ofRd−1. For example, if f = g and dimR(ZR( f )) = d −2,
then dimR(ZR( f ) ∩ ZR(g)) = d − 2, but res( f, g) is the zero polynomial.

While not every polynomial f ∈ C[x1, . . . , xd ] is xd -monic, we can usually fix
this problem by pre-composing f with a generic orthogonal transformation. More
precisely, if f ∈ C[x1, . . . , xd ] and if O ∈ O(d;C) is a generic rotation, then f ◦ O
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is xd -monic. The same statement holds if f ∈ R[x1, . . . , xd ] and O is a generic real
rotation.

4.3.1 Projections and Degree

If Z ⊂ C
d is an irreducible variety of dimension ≤ d − 2, and π : Cd → C

d−1 is
a generic projection, then deg(π(Z)) = deg(Z), where · denotes closure in the
Zariski topology. This follows from the definition of degree given in Sect. 4.5.

4.4 Singular Points of Transverse Intersections

Let f, g ∈ C[x1, x2, x3] be square-free polynomials. If z ∈ ZC( f )∩ZC(g), we define
the intersection multiplicity of ZC( f ) ∩ ZC(g) at z to be the intersection multiplicity
of the plane curves (ZC( f ) ∩ H) ∩ (ZC(g) ∩ H) in H , where H is a generic plane
passing through z. The intersection multiplicity of plane curves in C

2 is a classical
subject and has many equivalent definitions. See [18, Sect. 5.1] for further discussion.
We will need the following properties of intersection multiplicity:

• If z is a smooth point ofZC( f )∩ZC(g) and if
(∇ f (z)
∇g(z)

)
has rank 2, then the intersection

multiplicity of ZC( f )∩ZC(g) at z is 1; this is because ZC( f ), ZC(g), and H form
a transverse complete intersection at z.

• f and g are square-free, z ∈ ZC( f ) ∩ ZC(g), and if z is a singular point of ZC( f ),
then the intersection multiplicity of ZC( f ) ∩ ZC(g) at z is strictly greater than 1.

Lemma 4.2 Let Y, Z be two-dimensional varieties in C
3 and let ζ ⊂ Y ∩ Z be an

irreducible component. Suppose that Y is smooth, and suppose that Y and Z intersect
transversely on ζ (i.e., Z is smooth at a generic point of γ , and Y and Z intersect
transversely at a generic point of ζ ). Then if z ∈ ζ is a singular point of Z, z must
also be a singular point of Y ∩ Z.

Proof First, if z lies on more than one component of Y ∩ Z , then z is a singular point
of Y ∩ Z , so we are done. Thus we may assume that z only lies on the component
ζ . Let Z = ZC( f ), Y = ZC(g) with f and g square-free. Since Y and Z intersect
transversely along ζ , each generic point x ∈ ζ ⊂ Y ∩ Z has multiplicity 1. However,
since z is a singular point of Z , ∇ f (z) = 0, so

(∇ f (z)
∇g(z)

)
has rank ≤ 1. Thus z is a

singular point of ζ . ��

4.5 Degree and Bézout’s Theorem

Definition 4.3 Let Z ⊂ C
d be a pure-dimensional variety (i.e., all of its irreducible

components have the same dimension).We define the degree of Z to be |Z∩H |, where
H is a generic linear space of dimension d-dimC(Z). This definition is independent of
the choice of (generic) hyperplane; see [12,Chap. 18] for further details. In particular, if
Z = ZC( f ), then deg Z ≤ deg f . If Z ⊂ C

d is a hypersurface (a (d−1)-dimensional
variety), we can write Z = ZC( f ) for some f ∈ C[x1, . . . , xd ]with deg f = deg(Z).
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Wewill make frequent use of Bézout’s theorem, which gives us quantitative control
on the complexity of the intersection of two varieties. There are many variants of this
theorem. We will state a version below that is sufficient for our needs.

Proposition 4.1 (Bézout’s theorem for properly intersecting varieties )Let Y, Z ⊂ C
d

be pure-dimensional varieties, and suppose that

dimC(Y ∩ Z) = dim Y + dim Z − d. (4.3)

Then
deg(Y ∩ Z) ≤ deg(Y ) deg(Z). (4.4)

In particular, if (4.3) holds and if dim Y + dim Z = d, then Y ∩ Z is a finite set, and
it has cardinality at most deg(Y ) deg(Z).

Remark 4.1 The proposition above is Example 12.3.1 from [10], which is itself a
special case of Theorem 12.3. In Example 12.3.1, the LHS of (4.4) is replaced by the
sum of the degrees of the irreducible components of Y ∩ Z . However, our definition
of degree (Definition 4.3) allows for a variety to have several irreducible components,
so (4.4) coincidences with the statement in [10].

We will also need a version of Bézout’s theorem when the varieties do not intersect
properly. For simplicity, we will only state a special case.

Proposition 4.2 (Bézout’s theorem for non-properly intersecting varieties; special
case) Let Y, Z ⊂ C

d be pure-dimensional varieties. Then the number of isolated
points of Y ∩ Z is at most deg(Y ) deg(Z).

This is another special case of Example 12.3.1 from [10]. In [10], Fulton defines
a distinguished component of the intersection Y ∩ Z , and then proceeds to bound
the number of distinguished components. Isolated points of Y ∩ Z are distinguished
components of the intersection, so the bound applies here.

Finally, we will need a version of Bézout’s theorem with multiplicities for plane
curves. This is also a corollary of Example 12.3.1 from [10]. We will first introduce
the notion of multiplicity of a plane curve at a point and multiplicity of an intersection
of plane curves.

Definition 4.4 Let ζ ⊂ C
2 be an algebraic curve and let z ∈ C

2. We define the
multiplicity of ζ at z, multz(ζ ), to be the order of vanishing of f at z, where f is the
unique (up to scalar multiples) square-free polynomial such that ζ = ZC( f ).

Definition 4.5 Let ζ, ζ ′ ⊂ C
2 be algebraic plane curves that have no common com-

ponents, and let z ∈ ζ ∩ ζ ′. Then there is a number mz = multz(ζ ∩ ζ ′) with the
following property. For all sufficiently small open Euclidean neighborhoodsU of z, z
is the unique point in U ∩ ζ ∩ ζ ′. For each such neighborhood U , there is a number
ε > 0 so that if v is a generic vector in C

2 with |v| ≤ ε, then U ∩ (ζ + v) ∩ ζ ′ is a
union of mz points. In short, if we shift ζ by a small generic vector v, then the point
z ∈ ζ ∩ ζ ′ splits into multz(ζ ∩ ζ ′) distinct points.
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Proposition 4.3 (Bézout’s theorem with multiplicity for plane curves) Let ζ, ζ ′ be
plane curves with no common components. Then

∑

z∈ζ∩ζ ′
multz(ζ ∩ ζ ′) ≤ (deg ζ )(deg ζ ′).

4.6 Controlling the Singular Locus of a Surface

Lemma 4.3 Let P, Q ∈ C[x1, . . . , x4] be polynomials, and suppose that ZC(P) ∩
ZC(Q) is a complete intersection. Then there is a curve γ of degree
O((deg P)2(deg Q)2) so that (ZC(P) ∩ ZC(Q))sing ⊂ γ .

Proof This is a special case of the general fact that if Z ⊂ C
d is an irreducible

variety, then there is a variety of degree O((deg Z)2) and dimension < dim Z that
contains Zsing. However, there do not appear to be any easy references to this fact in
the literature, so we will briefly sketch the proof of Lemma 4.3 here.

After a generic change of coordinates, we can assume that P and Q are x4-monic,
and thus π(ZC(P) ∩ ZC(Q)) ⊂ ZC(res(P, Q)). Recall from Sect. 4.1.3 that the
singular points ofZC(P)∩ZC(Q) are precisely those points at whichZC(P)∩ZC(Q)

fails to be a complexmanifold. Thusπ((ZC(P)∩ZC(Q))sing) ⊂ (ZC(res(P, Q)))sing.
But ZC(res(P, Q)) is a surface in C3 of degree at most (deg P)(deg Q), and thus we
can write ZC(P) ∩ ZC(Q) = ZC( f ), where f ∈ C[x1, x2, x3] is a square-free
polynomial of degree at most (deg P)(deg Q).

We can now find a polynomial g ∈ C[x1, x2, x3] so that ZC( f ) ∩ ZC(g) is a
complete intersection, andZC( f )sing ⊂ ZC( f )∩ZC(g). Briefly,we do this as follows.
Let v ∈ C

3 be a generic vector, and let g = v · ∇ f . Then (ZC( f ))sing ⊂ ZC( f ) ∩
ZC(g). Furthermore, ZC( f ) ∩ ZC(g) is a complete intersection; if this were not the
case, then g must vanish identically on some irreducible component of f . But since v

was chosen generically, this implies that ∇ f vanishes identically on some irreducible
component of f , and this contradicts the assumption that f was square-free.

Let g′(x1, x2, x3, x4) = g(x1, x2, x3) and let γ = ZC(g′)∩ZC(P)∩ZC(Q). Then
(ZC(P) ⊂ ZC(Q))sing ⊂ γ , and γ is a curve of degree O((deg P)2(deg Q)2). ��

4.7 Branches of Algebraic Curves

Frequently,wewill need to bound the number of point-surface incidences I ⊂ I(P,S)

when the points lie on a one-dimensional algebraic curve ζ , and the surfaces meet that
curve in a one-dimensional intersection (which need not be all of ζ , since generally
ζ will not be irreducible). The idea is that if a point p ∈ P lies in ζsmooth, then there
can be at most one surface S ∈ S that is incident to p and for which S ∩ ζ contains
an irreducible component of ζ containing p. However, if p ∈ ζsing, then potentially
many surfaces S ∈ S can have this property. We need to bound how many surfaces
there can be. This is controlled by the number of branches of ζ at the point p. We
recall [17, Lemma 3.3]:
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Lemma 4.4 Let z be a non-isolated point of a real or complex one-dimensional vari-
ety V . Then a suitably chosen (Euclidean) neighborhood of z in V is the union of
finitely many branches which intersect only at z. Each branch is homeomorphic to a
(Euclidean) open interval of real numbers (if V is a real variety) or a (Euclidean)
open disk of complex numbers (if V is a complex variety).

Definition 4.6 For z ∈ ζ , let Gz(ζ ) be the number of branches of ζ through z. For
example, if z is a smooth point of ζ , then Gz(ζ ) = 1.

Lemma 4.5 Let ζ ⊂ C
d be an algebraic curve. Suppose z ∈ ζ(R) is a non-isolated

point. Then the number of real branches of ζ(R) through z is at most the number of
complex branches of ζ through z.

See e.g. [17, p. 29].

Lemma 4.6 Let ζ ⊂ C
d be an algebraic curve. Then

∑

z∈ζsing

Gz(ζ ) ≤ (deg ζ )2. (4.5)

Proof The main observation is that if π : Cd → C
2 is a generic projection, then

Gz(ζ ) ≤ Gπ(z)(π(ζ )). Thus it suffices to prove the result for plane curves. However,
if ζ is a plane curve, thenGz(ζ ) ≤ multz(ζ ), wheremultz(ζ ) is given byDefinition 4.4.
We have that ∑

z∈ζsing

multz(ζ ) ≤ (deg ζ )2.

See, i.e., [21, (7) on page 54] for a discussion of this formula. Equation (7) on p. 54
of [21] defines the genus of an irreducible complex plane curve ζ to be

1
2 (deg ζ )(deg ζ − 1) − 1

2

∑
multz(ζ )(multz(ζ ) − 1),

where the sum is taken over all multiple points of the curve. Since the genus is non-
negative, this implies

∑
multz(ζ )(multz(ζ ) − 1) ≤ (deg ζ )(deg ζ − 1),

so in particular ∑
multz(ζ ) ≤ (deg ζ )2.

It remains to extend this result to reducible curves. But this follows from Bézout’s
theorem for plane curves (Proposition 4.3). Factor ζ = ζ1 ∪ · · · ∪ ζ� into irreducible
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components. If z ∈ ζ , then multz(ζ ) = ∑�
i=1 multz(ζi ). We have

∑

z∈ζ : multz(ζ )≥2

multz(ζ ) ≤
∑

i<i ′

∑

z∈ζi∩ζi ′
multz(ζi ∩ ζi ′) +

∑

i

∑

z∈ζi : multz(ζi )≥2

multz(ζi )

≤
∑

i<i ′
(deg ζi )(deg ζi ′) +

∑

i

(deg ζi )
2

≤ (deg ζ )2.

��
Later in our proof wewill be given a collection of Euclidean connected components

of real algebraic curves and a collection of bad points on these curves. We will need
to remove these bad points to obtain a (possibly larger) collection of curves. The
following observation bounds the number of additional connected components that
are created in this process. In essence, it says that when you remove a point from an
interval, you are left with two connected components.

Lemma 4.7 (Real branches and connected components) Let ζ ⊂ C
d be an algebraic

curve and letα ⊂ ζ(R) be a semialgebraic set. Suppose that z ∈ α and dimR,z(α) = 1.
Then

b0(α\z) ≤ b0(α) + 2Gz(α) ≤ b0(α) + 2Gz(ζ ), (4.6)

where b0(X) is the number of Euclidean connected components of the set X.

4.8 Incidences on Algebraic Curves

The following lemma will be used frequently to bound the number of incidences
occurring on various bad sets.

Lemma 4.8 (Incidences on a curve) Let ζ ⊂ C
4 be an algebraic curve. Let P ⊂ R

4

be a collection of points, and suppose P ⊂ ζ(R). Let S be a C0-good collection of
pseudoflats (in R4), and let I ⊂ I(P,S) be a good collection of incidences. Let

I ′ = {(p, S) ∈ I : p lies on a one-dimensional component of S∗ ∩ ζ,

and p is a smooth point of this component}.

Then
|I ′| ≤ |P| + (deg ζ )2. (4.7)

Proof If p ∈ ζ is a smooth point, then p can be incident to at most one surface in S.
Otherwise, there can be at most Gζ (p) surfaces S ∈ S with (p, S) ∈ I . The result
now follows from Lemma 4.6. ��

We are now ready to return to the task of bounding incidences on the surfaces
ZR(Pi ) ∩ ZR(Qi ).
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5 Proof of Theorem 1.3 Step Two: Incidences on a Surface in R
4

Let
I0 = I ∩

⋃

i

I(Pi ∩ ZR(Qi ),S2).

The goal of the following sections is to bound |I0|. The basic idea is that problems
occur when surfaces S ∈ S2 intersect ZR(Pi ) ∩ ZR(Qi ) in one-dimensional curves,
and many points lie on these curves. We will first deal with the incidences where this
does not occur. Let

I ′
0 = {(p, S) ∈ I0 : p is an isolated point of

S ∩ ZR(Pi ) ∩ ZR(Qi ) for some index i},
I ∗
0 = I0\I ′

0.

By Corollary 2.2,

|I ′
0| � n

�∑

i=1

Di Ei � m
k

2k−1 n
2k−2
2k−1 . (5.1)

The real difficulty will be to bound |I ∗
0 |.

For each i = 1, . . . , �, let Vi = ZC(Pi ) ∩ ZC(Qi ), and let V = ⋃
i Vi . For each

S ∈ S2, S∗ ∩ V is a union of isolated points and irreducible one-dimensional varieties
(scheme-theoretically, S∗ ∩ V may contain curves with embedded points, but we are
only looking at the intersection set-theoretically).

If γ is an irreducible one-dimensional variety from the above decomposition, we
define i(γ ) to be the smallest index i so that γ ⊂ Vi . For each i = 1, . . . , �, define

�S,i = {γ an irreducible component of S∗ ∩ V, i(γ ) = i},
�∗
S,i = {γ ∈ �S,i : dimR(γ (R)) = 1}.

Recall that we have partitioned the points P ∩ V in a similar fashion into the sets
{Pi }. Thus, if (p, S) ∈ I ∗

0 and p ∈ Pi , then at least one of the following two things
must happen:

• There exists γ ∈ �∗
S,i so that p ∈ γ .

• There exists an index j > i and some γ ∈ �∗
S, j so that p ∈ γ . In addition, γ ∩ Vi

is a discrete set.

We will now describe several different types of incidences, and bound each type in
turn
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5.1 Different Types of Curves and Incidences

Let

�
(1)
S,i = {γ ∈ �∗

S,i : γ ⊂ (Vi )sing},
�

(2)
S,i = {γ ∈ �∗

S,i\�(1)
S,i : Tx (Vi ) = Tx (S) for a generic point x of γ },

�
(3)
S,i = �∗

S,i\(�(1)
S,i ∪ �

(2)
S,i ).

We will now define several types of incidences. Let

αS =
⋃

i

⋃

γ∈�∗
S,i

γ. (5.2)

Note that if (p, S) ∈ I ∗
0 and p ∈ (αS)smooth, then there is a unique index j and a

unique curve γ ∈ �∗
S, j that contains p. If it is clear from context, we will simply call

this curve γ . Define

I1 = {(p, S) ∈ I ∗
0 : p ∈ (αS)sing},

I2 = {(p, S) ∈ I ∗
0 \I1 : p ∈ Pi , γ ∈ �∗

S, j for some j > i},
I3 = {(p, S) ∈ I ∗

0 \I1 : p ∈ Pi , γ ∈ �
(1)
S,i },

I4 = {(p, S) ∈ I ∗
0 \I1 : p ∈ Pi , γ ∈ �

(2)
S,i },

I5 = {(p, S) ∈ I ∗
0 \I1 : p ∈ Pi , γ ∈ �

(3)
S,i , p ∈ (Vi )sing},

I6 = {(p, S) ∈ I ∗
0 \I1 : p ∈ Pi , γ ∈ �

(3)
S,i , p ∈ (Vi )smooth}.

The above definitions make reference to an index i . What we mean by this is that the
condition must hold for some index i .

We will now bound the incidences I1, . . . , I5. Bounding I6 will require significant
new tools, so this will be done in Sect. 7.

5.2 Bounding I1, I2, I3: Counting Singular Points on Algebraic Curves

We will begin with I1. For each S ∈ S2, αS is an algebraic curve of degree
O(

∑�
i=1 Di ) = O(D). Thus it has at most O(D2) singular points, so

|I1| � nD2 � m
k

2k−1 n
2k−2
2k−1 . (5.3)

Next, wewill see that I2 is empty. Fix S ∈ S2. Let p ∈ Pi and suppose the following
conditions hold:

• p lies on only one irreducible component (i.e., one curve) γ of S∗ ∩ V .

• p is a smooth point of γ .
• γ ∈ �∗

S, j for some j > i .
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Then p is an isolated point of S∗ ∩ Vj , so (p, S) ∈ I ′
0. In particular, this implies that

(p, S) /∈ I2. We conclude that
|I2| = 0. (5.4)

We will now bound I3. For each index i , use Lemma 4.3 to find a curve ζi of degree
O((Di Ei )

2) that contains (Vi )sing. Apply Lemma 4.8 to bound

|I3| ≤
∑

i

(|Pi | +
∑

i

(deg ζi )
2)

� m +
∑

i

(Di Ei )
4

≤ m + (∑

i

Di Ei
)4

� m + m
k

2k−1 n
2k−2
2k−1 . (5.5)

In the second last line we used the observation that Di Ei ≥ 0 for each index i . In the
last line we used the assumption that m ≤ n(2k+2)/3k . Thus we have

|I3| � m
k

2k−1 n
2k−2
2k−1 + m. (5.6)

Remark 5.1 (5.5) and (5.9) are the only two places where we use the assumption that
m ≤ n(2k+2)/3k . Thus, if these two arguments could be avoided, we could remove the
restriction thatm ≤ n(2k+2)/3k in the statement of Theorem 1.3. This will be discussed
further in Sect. 10.1.

5.3 Bounding I4: Tangential Surface Intersections

Lemma 5.1 Let W ⊂ C
d be an irreducible variety, and let R ∈ C[x1, . . . , xd ] be a

non-zero polynomial. Suppose that R vanishes on W. Then there exists a polynomial
R̃ with the following properties:

(1) deg R̃ ≤ deg R.
(2) R̃ vanishes on W.
(3) ∇ R̃ does not vanish identically on W.

Proof (sketch) The proof follows similar ideas to the proof of Lemma 2.1, so for
brevity we will only sketch it here. For each variety W , we will prove the result by
induction on deg R. If deg R = 1, then ∇R is non-zero everywhere, so we are done.
Now suppose the result has been proved for all polynomials of degree at most D, and
let R be a polynomial of degree D + 1. Suppose ∇ R̃ vanishes identically on W . Let
v be a generic vector. Then R′ = v · ∇R is not the zero polynomial, and R′ vanishes
identically on W . We can thus apply the induction hypothesis to R′. ��
Lemma 5.2 For each index i = 1, . . . , �, we have the bound

|{(p, S) ∈ I4 : p ∈ Pi }| � nDi Ei + D4
i E

2
i + |Pi |. (5.7)
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Proof Let {Vi, j } be the irreducible components of Vi . For each index j , let Pi, j be
the points of Pi lying in Vi, j that have not already been placed in some previous Pi, j ′

with j ′ < j . Similarly, for each curve γ ∈ �
(2)
S,i , let j (γ ) be the smallest index so that

γ ⊂ Vi, j . Define

�
(2)
S,i, j = {γ ∈ �

(2)
S,i : j (γ ) = j}.

We will divide the incidences of I4 into several types. Define

I ′
4 = {(p, S) ∈ I4 : p ∈ (Vi )smooth}.

From tangent space considerations (see Lemma 3.2) we have |I ′
4| ≤ |Pi |. If p ∈ Pi ,

and (p, S) ∈ I4\I ′
4, then p is incident to precisely one curve γ ∈ �

(2)
S,i . Define

I ′′
4 = {(p, S) ∈ I4 : p ∈ (Vi )sing, p ∈ Pi, j , γ ∈ �

(2)
S,i, j },

I ′′′
4 = {(p, S) ∈ I4 : p ∈ (Vi )sing, p ∈ Pi, j , γ ∈ �

(2)
S,i, j ′ for some j ′ > j}.

Wewill first consider I ′′′
4 . If (p, γ ) ∈ I ′′′

4 , then p is an isolated point of S∗ ∩Vi, j (if
not, then the incidence p would have been counted in I1). Applying Proposition 4.2,
we have

|I ′′′
4 | ≤

∑

S∈S2

∑

j

(number of isolated points of S∗ ∩ Vi, j ) ≤ nDi Ei . (5.8)

It remains to count I ′′
4 . Fix j . Let P̃i, j be the polynomial obtained by applying

Lemma 5.1 to the polynomial Pi and the variety Vi, j . Let ζi, j = ZC(P̃i, j ) ∩ Vi, j .
If p ∈ Vi, j\ζi, j and if (p, S) ∈ I ′′

4 , then TpS must lie in Tp(ZC(P̃i, j )), which is a
three-dimensional vector space. Thus, for each point p ∈ Vi, j\ζi, j , there can be at
most one S ∈ S2 with (p, S) ∈ I ′′

4 , so the total number of incidences of this type is at
most |Pi |.

Finally, ζi, j is a curve of degree O(D2
i Ei ), so by Lemma 4.8, the total number

of incidences (p, S) ∈ I ′′
4 with p ∈ ζi, j is O(D4

i E
2
i + |Pi |). We conclude that

|I ′′
4 | � D4

i E
2
i + |Pi |. ��

Summing the bound (5.7) over all indices i and using the assumption (from the
statement of Theorem 1.3) that m ≤ n(2k+2)/3k , we obtain the bound

|I4| � m
k

2k−1 n
2k−2
2k−1 + m. (5.9)

5.4 Bounding I5: Transverse Surface Intersections

Lemma 5.3 Let Y ⊂ C
4 be a smooth bounded-degree two-dimensional variety, and

let W ⊂ C
4 be a two-dimensional variety. Let � be the set of irreducible one-
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dimensional components of Y ∩ W. Let

�′ ⊂ {γ ∈ � : z ∈ Wsmooth and Tz(Y ) 
= Tz(W ) for generic z ∈ γ }.

Then ∑

γ∈�′
|γ ∩ Wsing| ≤ C

(
degW + ( ∑

γ∈�

(deg γ )
)2)

, (5.10)

where the constant C depends only on deg Y .

Proof Let v ∈ C
4 be a generic vector and let πv : C4 → C

3 be the projection in the
direction v. Let

Y † = π−1
v (πv(Y )).

Then since v was chosen generically with respect to Y , Y † is a smooth three-
dimensional variety of degree deg(Y ). Furthermore, Y † ∩ W is a one-dimensional
curve, and each γ ∈ � is a (irreducible) component of Y † ∩ W . Let ζ be the
union of all irreducible components of Y † ∩ W that are not contained in Y . We have
deg ζ ≤ deg(Y † ∩ W ) ≤ C degW , where the constant C depends only on deg Y .

Let γ ∈ �′, and let z ∈ γ ∩ Wsing. Then πv(z) ∈ πv(Y †) = πv(Y ) and z ∈
πv(Wsing) ⊂ πv(W )sing. Note as well that πv(Y ) and πv(W ) intersect transversely at
a generic point of πv(γ ). Thus by Lemma 4.2, we have that π(z) is a singular point
of πv(Y ) ∩ πv(W ). But this implies that z is a singular point of Y † ∩W . In particular,
at least one of the following three things must occur:

z ∈ ζ ∩ Y, (5.11)

or
z ∈ γsing, (5.12)

or
z ∈

⋃

γ ′∈�, γ ′ 
=γ

γ ∩ γ ′. (5.13)

Now, considering all γ ∈ �′, we conclude there can be O(W ) points of the form
(5.11), at most

∑
γ∈�′(deg γ )2 points of the form (5.12), and at most (

∑
γ∈�(deg γ ))2

points of the form (5.13). This establishes (5.10). ��
Applying Lemma 5.10 to the sets {Vi } and bounded-degree smooth surfaces

{S∗ : S ∈ S2}, with �′ = �
(3)
S,i , we conclude that

|I5| � n
∑

i

Di Ei + n
∑

i

D2
i

� m
k

2k−1 n
2k−2
2k−1 . (5.14)

It remains to bound |I6|. Doing so will require several new tools, which we will
discuss in the next section.
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6 Interlude: The Gauss Map of a Variety

6.1 Grassmannians and the Gauss Map

Let F = R or C. If v1, . . . , vk ∈ Fd are vectors, let 〈v1, . . . , vk〉 ⊂ Fd be the
vector space spanned by v1, . . . , vk . In practice, the vectors v1, . . . , vk will be linearly
independent. Let Gr(k, d; F) be the Grassmannian of k-dimensional vector subspaces
of Fd . We will identify elements of Gr(k, d; F) with planes in Fd passing through
the origin, and we will usually use the variable � for these planes.

Gr(k, d;C) has the structure of a projective variety (see, i.e., [12, Chap. 6]).
Gr(k, d; F) is a smooth variety and also a smooth (real or complex) manifold. If
� ∈ Gr(k, d; F), then T� Gr(k, d; F) is the tangent plane to Gr(k, d; F) at �, and
T Gr(k, d; F) is the tangent bundle.

If �,�′ are vector spaces, let �+�′ denote the sum of the two vector spaces. We
have

dimF (� + �′) = dim(�) + dimF (�′) − dimF (� ∩ �′).

Definition 6.1 If �′ ∈ Gr(d − k, d; F), let

A�′ = {� ∈ Gr(k, d; F) : dimF (� + �′) < d}. (6.1)

A�′ is a codimension-one subvariety of Gr(k, d; F).

6.1.1 Orientation

When working over R, we will frequently consider pairs of vector spaces (�,�′)
with � ∈ Gr(k, d;R) and �′ ∈ Gr(d − k, d,R). If � = 〈v1, . . . , vk〉 and �′ =
〈vk+1, . . . , vd〉, where v1, . . . , vk and vk+1, . . . , vd are orthogonal unit vectors, then
dimR(� + �′) < d if and only if det(v1, . . . , vd) = 0. If dimR(� + �′) = d, we
wish to make sense of the expression det(�,�′).

A reasonable first definition would be to define det(�,�′) = det(v1, . . . , vd).
While the magnitude | det(�,�′)| is well defined, the sign is not—if we permute two
vectors from {v1, . . . , vk} or {vk+1, . . . , vd}, then the sign of the above determinant
changes.

Ideally, we would like to find continuous functions v1(�), . . . , vk(�) and
vk+1(�

′), . . . , vd(�′) so that we can define

det(�,�′) = det(v1(�), . . . , vk(�), vk+1(�
′), vd(�′)). (6.2)

While we cannot do this globally, we can do so locally.

Lemma 6.1 Fix �0 ∈ Gr(k, d;R) and �′
0 ∈ Gr(d − k, d,R). Then there exist

small neighborhoods U ⊂ Gr(k, d;R) and U ′ ⊂ Gr(d − k, d;R) of � and �′,
respectively, and functions v1, . . . , vk : U → R

d , vk+1, . . . , vd : U ′ → R
d so that

v1(�), . . . , vk(�) and vk+1(�
′), . . . , vd(�′) are orthogonal unit vectors, and

� = 〈v1(�), . . . , vk(�)〉, �′ = 〈vk+1(�
′), . . . , vd(�′)〉.
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We can nowmake sense of the expression (6.2). This observation will be used in the
next lemma, which is an analogue of the intermediate value theorem. In this lemma it
is essential that we work over R.

Lemma 6.2 (Intermediate value theorem) Let�0 ∈ Gr(k, d;R) and�′
0 ∈ Gr(d−k,

d;R). Then we can find a neighborhood U ⊂ Gr(k, d;R) of �0 so that the following
holds. If η : [0, 1] → U is continuous, and if

(det(η(0),�′))(det(η(1),�′)) < 0,

then there exists t ∈ (0, 1) so that η(t) ∈ A�′ .

Proof Let U be the neighborhood of �0 from Lemma 6.1, and let v1(�), . . . , vk(�)

and vk+1(�
′), . . . , vd(�′) be the corresponding unit vectors. Then the function

f (t) = det(v1(η(t)), . . . , vk(η(t)), vk+1(�
′
0), . . . , vd(�

′
0)) (6.3)

is continuous, and f (0) f (1) < 0. So by the intermediate value theorem, we can find
t ∈ (0, 1) with f (t) = 0. But this implies that η(t) ∈ A�′

0
. ��

6.1.2 The Gauss Map and Gauss Image of a Variety

In this section we will define the Gauss map and discuss a few of its properties. Further
information can be found in [12, Chap. 15].

Definition 6.2 Let Z ⊂ C
d be a k-dimensional variety. For each point z ∈ Zsmooth,

we define the Gauss map

G(z; Z) = Tz(Z) ∈ Gr(k, d;C), (6.4)

and the extended Gauss map

G†(z; Z) = (z, Tz(Z)) ∈ C
d × Gr(k, d;C). (6.5)

Following notation from [12], we define F(Z) to be the Zariski closure of
G(Zsmooth; Z), and we define F†(Z) to be the Zariski closure of G†(Zsmooth; Z).

6.1.3 Some Transversality Arguments

Let Z ⊂ C
d be a k-dimensional variety, and let ζ ⊂ Z be an irreducible curve, with

ζ 
⊂ Zsing. We will be interested in the tangent planes to Z at points z ∈ ζ . To make
this more precise, define

GZ ,ζ = G(ζ ∩ Zsmooth; Z).

The idea is that GZ ,ζ is the closure of the set of k-planes tangent to Z at some point
z ∈ ζ ∩ Zsmooth. GZ ,ζ is a variety of dimension at most one.
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Lemma 6.3 Let � ∈ Gr(k, d;C), and let v ∈ T�(Gr(k, d;C)) be generic (with
respect to �). Then the variety

X�,v := {�′ ∈ Gr(d − k, d;C) : � ∈ (A�′)smooth, v ∈ T�(A�′)}

is a subvariety of Gr(d − k, k;C) of codimension ≥ 2.

Proof This is simply the observation that the requirements� ∈ A�′ and v ∈ T�(A�′)
are independent constraints on �′.

More precisely, note that {�′ ∈ Gr(d − k, d;C) : � ∈ A�′ } is a codimension-one
subvariety of Gr(d − k, k;C) (indeed, it is isomorphic to A�) that contains X�,v .
Suppose there is some irreducible component Z ⊂ {�′ ∈ Gr(d−k, d;C) : � ∈ A�′ }
that is contained in X�,v . In particular, this would imply that the set {�′ ∈ Z : � ∈
(A�′)smooth} is Zariski dense in Z .

If Z is contained in X�,v , this implies that for a generic choice of v ∈
T�(Gr(k, d;C)), we have v ∈ T�(A�′) for a dense set of�′ ∈ Z . This implies that for
a dense set of�′ ∈ Z , v ∈ T�(A�′) for generic (and thus every) v ∈ T�(Gr(k, d;C)).
But, if �′ is a smooth point of Z , then the tangent plane T�(Z) has codimension-one
in T�A�′ .

We conclude that no irreducible components of {�′ ∈ Gr(d − k, d;C) : � ∈ A�′ }
can be contained in X�,v . Thus the codimension of X�,v in Gr(d − k, k;C) is at least
two. ��
Lemma 6.4 Let Z ⊂ C

d be a k-dimensional variety, and let ζ ⊂ Z be an irreducible
curve, with ζ 
⊂ Zsing. If we select a generic (with respect to Z and ζ ) element �′ ∈
Gr(d − k, d,C), then for all pairs (z,�) with z ∈ ζsmooth ∩ Zsmooth, (z,�) ∈ F†(Z),
and � ∈ A�′ , we have that � is a smooth point of A�′ , and GZ ,ζ is transverse to A�′
at �.

Proof The idea is the following. For each point z ∈ ζ ∩ Zsmooth, there is a unique
tangent plane Tz(Z) ∈ Gr(k, d;C). The set of all such points forms a curve α in
Gr(k, d;C) (technically, we need to take the closure of this curve in the Zariski topol-
ogy). Now, given a (d − k)-plane �′ ∈ Gr(d − k, d;C), we can ask: does the variety
A�′ meet the curveα tangentially?Wewill show that for generic�′ ∈ Gr(d−k, d;C),
the answer is no. The reason is that for each point � ∈ α, the set of planes
�′ ∈ Gr(d−k, d;C) that hit the point� and that are tangent to α at� are contained in
a codimension-two subvariety of Gr(d − k, d;C). Since α is one-dimensional, the set
of planes �′ that are tangent at some point � ∈ α is contained in a codimension-one
variety. This means that generically, this does not happen.

Now for the details. Let

M = {((�, v),�′) ∈ (T Gr(k, d;C)) × Gr(d − k, d;C) :
� ∈ GZ ,ζ , v ∈ T�(GZ ,ζ ),� ∈ (A�′)smooth, v ∈ T�(A�′)}. (6.6)

We wish to show that dim M ≤ dim(Gr(d − k, d;C)) − 1. By Lemma 6.3, for each
(�, v) ∈ (T Gr(k, d;C)) with � ∈ GZ ,ζ and v ∈ T�(GZ ,ζ ), the set of �′ so that
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((�, v),�′) ∈ M is contained in a variety of dimension dim(Gr(d − k, d;C)) − 2,
i.e., each fiber of the projection map M → T Gr(k, d;C) has dimension at most
dim(Gr(d − k, d;C)) − 2. But since GZ ,ζ has dimension at most one, the image of
the map M → T Gr(k, d;C) has dimension at most 1, so M has dimension at most
dim(Gr(d − k, d;C)) − 1.

Thus if we consider the projection M → Gr(d − k, d;C), the image of this pro-
jection is contained in a proper subvariety of Gr(d − k, d;C), i.e., a generic element
�′ ∈ Gr(d − k, d;C) is not contained in the image of the projection.

All that remains is to show that for generic �′, � is a smooth point of A�′ for all
(z,�) with z ∈ ζsmooth ∩ Zsmooth, (z,�) ∈ F†(Z), and � ∈ A�′ . But if we define

M1 = {((�, v),�′) ∈ (T Gr(k, d;C)) × Gr(d − k, d;C) :
� ∈ GZ ,ζ , v ∈ T�(GZ ,ζ ),� ∈ (A�′)sing}, (6.7)

then since dim(A�′)sing ≤ dim(d − k, d;C) − 2, a similar argument shows that a
generic element �′ ∈ Gr(d − k, d;C) is not contained in the image of the projection
M1 → Gr(d − k, d;C). ��
Lemma 6.5 Let Z ⊂ C

d be a k-dimensional variety defined by real polynomials, and
let ζ ⊂ Z be an irreducible curve defined by real polynomials. Suppose that Z(R)

is k-dimensional, ζ(R) is one-dimensional, and that ζ is not contained in Zsing. Let
�′ ∈ Gr(d − k, d,R) be chosen generically with respect to Z and ζ .

Let z ∈ ζ(R)smooth ∩ Z(R)smooth and suppose that Tz(Z) ∈ A�′ . Then for all ε > 0
we can find an interval I ⊂ ζ centered at z with the following two properties: (1) I has
arclength ≤ ε. (2) If z1, z2 are the two endpoints of I , and if �1 = Tz1(Z(R)), �2 =
Tz2(Z(R)), then

(det(�1,�
′))(det(�2,�

′)) < 0. (6.8)

Remark 6.1 See Sect. 6.1.1 for a discussion of the definition of det. In this context,
the determinant is only defined up to a choice of sign. However, the statement that two
determinants have opposite sign is well defined regardless of the orientation chosen
(again, in a small neighborhood of a point � ∈ Gr(k, d;R)).

Proof of Lemma 6.5 In brief, the proof consists of the following observation. If U ⊂
R

� is an open set and A ⊂ U is a smooth manifold such that U\A contains two
connected components, and if α ⊂ U is a smooth curve that meets A transversely
at the point x ∈ α ∩ A, then α must enter both connected components of U\A.
Furthermore, we can find points x1, x2 ∈ α arbitrarily close to x such that x1, x2 lie
in separate connected components of U\A.

Now for the proof. Let �0 = Tz(Z). By Lemma 6.4, �′ is a smooth point of
A(�′)∗ , and G(ζ, Z) is transverse to A(�′)∗ at �′ (recall that �′ is a real (d − k)-
plane, and (�′)∗ is its complexification). Since ζ(R) is one-dimensional and �′ was
chosen generically, we can assume that z is a smooth point of ζ , and thus ζ(R) is a
one-dimensional smooth manifold in a (Euclidean) neighborhood of z.

Weconclude thatG(ζ(R), Z(R)) is a smooth curve inGr(k, d;R) in a neighborhood
of the (real) k-plane �0(R) ∈ Gr(k, d;R), and this curve is transverse to A�′(R) at
the point �0(R). Use Lemma 6.1 to choose a small neighborhood U of �0(R), and
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functions v1(�), . . . , vk(�) : U → R
d so that � = span{v1(�), . . . , vk(�)}. This

allows us to define det(�,�′) for all � ∈ U .
Now, after possibly shrinking U , A�′ ∩ U is a smooth manifold, and A�′ ∩ U

cuts Gr(k, d;R) ∩U into two connected regions: one where det(�,�′) > 0 and one
where det(�,�′) < 0. Select two points z1, z2 ∈ γ (R) so that Tz1(γ (R), Z(R)) ∈ U ,
Tz2(γ (R), Z(R)) ∈ U, and with Tz1(γ (R), Z(R)) and Tz2(γ (R), Z(R)) in opposite
regions. Since G(ζ(R), Z(R)) is transverse to A�′ ⊂ Gr(k, d;R) at �0(R), (6.8)
holds with this choice of z1, z2. ��

6.1.4 Complex Varieties and Some Perturbative Arguments

Definition 6.3 If k < d and πv : Fd → Fd−1 is a projection in the direction v, let

π̃ : {� ∈ Gr(k, d; F) : v /∈ �} → Gr(k, d − 1; F)

be the associated map on the Grassmannian.

We end with the following observation. Let Z ⊂ C
4 be a two-dimensional variety

and let πv : C4 → C
3 be a projection. If z ∈ Zsmooth, � ∈ G(z; Z), and v /∈ �, then

π̃(�) is two-dimensional and π̃(�) ∈ G(z;π(Z)).

6.2 Perturbations and the Gauss Map

In this section we will prove a technical lemma that will be useful when we have
to cut the surfaces Vj (R) into pieces. In the next section we will be confronted
with an irreducible two-dimensional variety W that is a component of the intersec-
tion ZC(R1) ∩ ZC(R2). We will need to understand smooth points z ∈ Wsmooth
where the tangent plane TzW has certain properties. Ideally, TzW would be given
by the two-dimensional vector space orthogonal to 〈∇R1(z),∇R2(z)〉. However, if
〈∇R1(z),∇R2(z)〉 is instead a zero- or one-dimensional vector space, then this will
not work. Instead, we will consider 〈∇R1(z′),∇R2(z′)〉, where z′ is a point close to
z. If we set things up carefully, then we can recover information about TzW from
〈∇R1(z′),∇R2(z′)〉. This is made precise in Corollary 6.1.

Definition 6.4 For R ∈ C[x1, . . . , x4] and z0 ∈ C
4, define Rz0 = R(z) − R(z0). In

particular, ZC(R(z0)) = ZC(R(z) − R(z0)). This is the level set of R passing through
the point z0.

The following lemma is rather technical; the reader may wish to first look at Corol-
lary 6.1, which may provide some motivation.

Lemma 6.6 Let R1, R2 ∈ C[x1, . . . , x4], and let W be an irreducible component of
ZC(R1)∩ ZC(R2) and let v, v1 ∈ C

4 be generic vectors (see Remark 6.2). Then there
exists a curve ζ ⊂ W so that the following conditions hold:

• deg(ζ ) � (deg R1 + deg R1) degW.

• For all z ∈ Wsmooth\ζ, v1 /∈ Tz(W ).
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• If π̃ = π̃v1 : Gr(2, 4;C) → Gr(2, 3;C) is the corresponding map on the Grass-
mannian, z ∈ Wsmooth\ζ , and if U ⊂ C is a sufficiently small neighborhood of 0,
then the map

ρπ,z : U → Gr(2, 3;C),

t �→ π̃(Tz+tv(ZC(R(z+tv)
1 ) ∩ ZC(R(z+tv1)

2 ))) (6.9)

is continuous on U.

Remark 6.2 When we say that v is generic with respect to R1, R2,W , we mean that
given any R1, R2,W , there is a Zariski open set O ⊂ C

4 so that the lemma holds for
any v, v1 ∈ O .

Remark 6.3 Heuristically, Lemma 6.6 says that the tangent plane to the level set of R1
and R2 passing through z ∈ W is similar to that of the level set of R1 and R2 passing
through z + tv, provided |t | is small and z does not lie on a small bad set. More
precisely, Lemma 6.6 says that the (generic) projections of the two tangent planes into
C
3 are similar. Corollary 6.1 will let us recover the result about tangent planes in C4.

Remark 6.4 Let us understand the map ρπ,z . For t ∈ C, let z′ = z + tv. Let

W ′ = ZC(R(z+tv)
1 ) ∩ ZC(R(z+tv)

2 ).

This is the intersection of the level sets of R1 and R2 that pass through z′. Then the
image of t under the above map is the projection of Tz′(W ′) to C

3 (the projection is
given by π ).

Proof of Lemma 6.6 Let L ⊂ C
4 be a 3-plane orthogonal to v, and let

B ′
1 =

{
z ∈ L : rank

(
π(∇R1(z + tv))

π(∇R2(z + tv))

)
≤ 1 for all t ∈ C

}
.

First, consider the set

{
z ∈ C

4 : rank

(
π(∇R1(z))

π(∇R2(z))

)
≤ 1

}
. (6.10)

If v1 (and thus π ) is chosen generically3 with respect to R1 and R2, then (6.10) is not
all ofC4. Indeed, it is a proper algebraic variety of dimension at most three and degree
O(deg R1 + deg R2). In particular, the intersection of (6.10) with a generic (with
respect to R1, R2, v1 and v) translate of L has dimension at most two. This implies
that B ′

1 is contained in a two-dimensional variety B ′′
1 of degree O(deg R1 + deg R2)

(to obtain such a variety, simply intersect the set (6.10) with a generic translate of L).

3 More precisely, for every choice of R1 and R2, there is a dense Zariski open subset of C4 so that if v1
lies in this open subset then the desired property holds.
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Let B ′′′
1 = π−1

v (πv(B ′′
1 )) be the extension of B ′′

1 in the direction v. So B ′′′
1 is a

three-dimensional variety of degree O(deg R1 + deg R2). Let B1 = B ′′′
1 ∩W . We can

assume that dimC(B1) ≤ 1. Indeed, if dimC(B1) = 2, then B1 = W , and this would
imply that (6.10) = C

4, and we have already shown that this is not the case.
Let z ∈ Wsmooth\B1. Then for any t 
= 0 in a sufficiently small (Euclidean) neigh-

borhood of 0, we have π(∇R1(z + tv)) × π(∇R2(z + tv)) 
= 0. Note that since
π(∇R1(z + tv)) and π(∇R2(z + tv)) are vectors in C

3, the cross product is well
defined.

Thus, we can define

λ(z, t) = π(∇R1(z + tv)) × π(∇R2(z + tv))

|π(∇R1(z + tv)) × π(∇R2(z + tv))| .

Note that if z ∈ W\B1, then |π(∇R1(z + tv)) × π(∇R2(z + tv))| does not vanish
identically in t . Write

π(∇R1(z + tv) × π(∇R2(z + tv)) = (v1(z, t), v2(z, t), v3(z, t)).

We can expand v j (z, t) = ∑
t iθi, j (z). For each j = 1, 2, 3, let i j be the minimum

index so that θi, j (z) does not vanish identically on W . For notational convenience,
we will assume that i1 = min(i1, i2, i3) (if not, then just permute the indices). Let
B2 = W ∩ ZC(θi1). Note that deg(θi1) � deg R1 + deg R2.

Let v†j (z, t) = t−i1(z, t), and let

λ(z, t)† = (v
†
1(z, t), v

†
2(z, t), v

†
3(z, t))(|v†1(z, t)|2 + |v†2(z, t)|2 + |v†3(z, t)|2

)1/2 .

Define ζ = B1 ∪ B2 and let W ′ = Wsmooth\ζ . If z ∈ W ′, then the denominator
of λ†(z, t) does not vanish when t = 0, so in particular λ†(z, t) is a smooth function
of t in a neighborhood of 0. Furthermore, for t 
= 0, λ†(z, t) = λ(z, t), and for all t
(in a neighborhood of 0), λ†(z, t) is the normal vector to the 2-plane π̃(ρz(t)). This
implies that π̃ρz(t) is continuous for t in a neighborhood of t = 0, as desired. ��

Corollary 6.1 Let R1, R2 ∈ C[x1, . . . , x4], and let W be an irreducible component
of ZC(R1) ∩ ZC(R2). Let v ∈ C

4 be a generic vector (as described in Remark 6.2).
Then there exists a curve ζ (depending only on W and v) with

deg(ζ ) � (deg R1 + deg R2) degW

so that if z ∈ Wsmooth\ζ and if U ⊂ C is a sufficiently small neighborhood of 0, then
the map

ρz : t �→ Tz+tv(ZC(R(z+tv)
1 ) ∩ ZC(R(z+tv)

2 )) (6.11)

is continuous on U.
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Proof Let v1, v2, v3, v4 be generic vectors, and apply Lemma 6.6 to the collection
{R1, R2,W, v, vi }, i = 1, 2, 3, 4. Let U1,U2,U3,U4 ⊂ C be the resulting open
neighborhoods of 0, and let ζ1, ζ2, ζ3, ζ4 ⊂ W be the resulting curves. Let U =
U1 ∩U2 ∩U3 ∩U4 and let ζ = ζ1 ∪ ζ2 ∪ ζ3 ∪ ζ4.

By Lemma 6.6 the maps

t �→ π̃vi (Tz+tv(ZC(R(z+tv)
1 ) ∩ ZC(R(z+tv1)

2 ))), i = 1, 2, 3, 4, (6.12)

are continuous for t ∈ U and z ∈ W\ζ . However, the map

ψ : Gr(2, 4;C) → (Gr(2, 3;C))4,

� �→ (π̃v1(�), . . . , π̃v4(�))

has full rank at every point �0 for which (�0 + 〈v1〉) ∩ (�0 + 〈v2〉) ∩ (�0 + 〈v3〉) ∩
(�0 + 〈v4〉) = �0. Since v1, v2, v3, v4 were chosen generically, this condition will
hold at every point. This implies that the map

t �→ Tz+tv(ZC(R(z+tv)
1 ) ∩ ZC(R(z+tv1)

2 )) (6.13)

is continuous for t ∈ U and z ∈ W\ζ . ��

7 Bounding I6: Cutting a Variety into Open Regions

In order to bound the incidences in I6, we will cut each surface Vi (R) and each curve
{γ (R) : γ ∈ �

(3)
S,i } into pieces. On each piece of Vi (R), we will have an arrangement of

points and curves. In later sections, we will apply the crossing lemma to each of these
arrangements to bound the number of point-curve incidences in terms of the number
of curve–curve crossings, plus an error term.

7.1 Defining Some Bad Points on the Curves

In this section we will define various bad points on the curves in �
(3)
S,i . After these

points are removed, the real locus of γ will consist of a collection of simple open
curves, which will be amenable to crossing lemma type arguments. First, we must
deal with a small technical annoyance.

7.1.1 Incidences Occurring on the Bad Sets ζ

Fix a generic vector v ∈ C
4. For each index i = 1, . . . , � and each irreducible

component W ⊂ Vi , let ζW be the bad set obtained by applying Corollary 6.1 to W ,
using the generic vector v. Let

ζi =
⋃

W

ζW , (7.1)
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where the union is taken over all irreducible components W ⊂ Vi , and let

I7 = {(p, S) : γ ⊂ ζi }.

By Corollary 6.1, ζi has degree
∑

W O(Di + Ei ) degW = O(Di E2
i ). Thus if we

define
ζ =

⋃

i

ζi ,

then deg ζ = O(
∑

i (Di E2
i )). By Lemma 4.8,

|I7| � m
k

2k−1 n
2k−2
2k−1 + m. (7.2)

The idea is that we will decompose each variety Vi (R)smooth into a disjoint col-
lection of pieces, each of which is homeomorphic to an open subset of R2. With a
few exceptions, incidences between points on Vi (R)smooth and curves lying in �

(3)
S,i

will be counted using the crossing lemma. By Vi (R)smooth, we will mean points of
Vi (R) that are smooth in dimension 2. If dimR(Vi (R)) < 2, then by Corollary 4.1,
Vi (R) ⊂ (Vi )sing, and all incidences on Vi have already been counted.

Select a generic (real) 2-plane �′ ∈ Gr(2, 4;R). For each index i , define

Bi = {z ∈ (Vi )smooth : Tz(Vi ) ∈ A�′ }. (7.3)

For each γ ∈ �
(3)
S,i , we will define various types of bad points. For S ∈ S2, define

αS,i =
⋃

γ∈�
(3)
S,i

γ. (7.4)

Define

�γ,sing = γ ∩ (αS,i )sing, (7.5)

�γ,shared = {z ∈ γ : z is an isolated point of γ ∩ Vi ′ for some i ′ 
= i}, (7.6)

�γ,dir = {z ∈ γsmooth : Tz(γ ) · v1 = 0}, (7.7)

�γ,singPt = γsmooth ∩ (Vi )sing, (7.8)

�γ,vertPt = γsmooth ∩ Bi . (7.9)

In (7.7), v1 is a generic unit vector. By generic, we mean that v1 and �′ are generic
with respect to the collection S2, the points P , and the polynomials {Pj } and {Q j }.

Finally, define
�γ,badPt = (7.5) ∪ · · · ∪ (7.9). (7.10)

7.2 Bounding the Sets (7.5), . . . , (7.9)

We first record the following corollary of Lemma 4.6
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Corollary 7.1 For each S ∈ S2 and each index i ,

∑

z∈αS,i

Gz(αS,i ) � D2
i , (7.11)

∑

γ∈�
(3)
S,i

∑

z∈γsing

Gz(γ ) � D2
i . (7.12)

Lemma 7.1 For each γ ∈ �
(3)
S,i ,

|�γ,shared| � deg γ
∑

i

(Di + Ei ). (7.13)

Proof If x ∈ �γ,shared, then x is an isolated intersection point of γ ∩ ZC(Pi ′) or
γ ∩ ZC(Qi ′) for some i ′ 
= i . By Bézout’s theorem (Proposition 4.1), the number of
times this can occur is bounded by the RHS of (7.13). ��
Lemma 7.2 For each S ∈ S2 and each γ ∈ �

(3)
S,i ,

|�γ,dir| � deg(γ )2. (7.14)

Proof After a rotation, we can assume that v1 = (1, 0, 0, 0). Let γ ′ = π(γ ), where
π is the projection onto the (x1, x2)-plane. Note that deg γ ′ = deg γ . Since v1 was
chosen generically, z ∈ �γ,dir if and only if z ∈ γ ′

smooth and Tπ(z)(π(γ ′)) ·π(v1) = 0.
Let fγ ′ be a square-free polynomial such that Z( fγ ′) = γ ′. We have deg fγ ′ ≤
deg γ ′ = deg γ . Then

{z ∈ γsmooth : Tπ(z)(π(γ )) · π(v1) = 0} ⊂ γ ′ ∩ ZC(π(v1) · ∇ fγ ′).

The latter set has cardinality O(deg(γ )2). ��
Lemma 7.3 For each S ∈ S2 and each index i ,

∑

γ∈�
(3)
S,i

|�γ,singPt| � Di Ei +
∑

γ∈�
(3)
S,i

(deg γ )2. (7.15)

Proof Factor Vi into irreducible components Wi, j . Recall that if γ ∈ �
(3)
S,i , then a

generic point x ∈ γ lies in (Vi )smooth, so in particular, γ is contained in Wi, j for
precisely one index j . Furthermore, we have Tx (S∗) 
= Tx (Vi ) at a generic point
x ∈ γ . If x ∈ �γ,singPt has not already been placed in�γ,sing, then x is a smooth point
of γ . We can now apply the argument used to bound |I5| (Sect. 5.4) to conclude that
for each index j ,

∑

γ∈�
(3)
S,i ,

γ⊂Wj

|�γ,singPt| � degWi, j +
∑

γ∈�
(3)
S,i ,

γ⊂Wj

(deg γ )2. (7.16)
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Summing (7.16) over all irreducible components of Vi yields (7.3). ��

Lemma 7.4 For each γ ∈ �
(3)
S,i ,

|�γ,vertPt| � deg(γ )Ei . (7.17)

Proof Let W ⊂ Vi be the (unique) irreducible component of Vi that contains γ . For
each z0 ∈ �γ,vertPt, we can select a small interval βz0 ⊂ γ (R) that contains z0, so that
the intervals {βz0}z0∈�γ,vertPt are disjoint.

By Lemma 6.5, we can assume (after shrinking βz0 if necessary) that for each
interval βz0 , we have

(det(Tz′0(W (R)),�′))(det(Tz′′0 (W (R)),�′)) < −ε1, (7.18)

where z′0 and z′′0 are the two endpoints of the curve βz0 , and �′ is the 2-plane from
(7.3). Here ε1 > 0 is some sufficiently small constant, depending on W, γ, and �′.

By Corollary 6.1, we have that if we select ε2 > 0 sufficiently small depending on
ε1, then if we let β̃z0 = βz0 + ε2v (here v is the vector from Sect. 7.1.1), and define
z̃′0 = z′0 + ε2v, z̃′′0 = z′′0 + ε2v, then

(det(Tz̃′0(W (R)),�′))(det(Tz̃′′0 (W (R)),�′)) < 0. (7.19)

Fix vectors v3, v4 so that �′ = 〈v3, v4〉. Define the function

�(z) = det

⎡

⎢⎢
⎣

∇Pj

∇Q j

v3
v4

⎤

⎥⎥
⎦ (z).

Now, if ε2 > 0 is selected generically (and still selected sufficiently small, depend-
ing on ε1), the curve γ + ε2v does not lie in ZC(�). This means that

|(γ + ε2v) ∩ ZC(�)| ≤ (deg γ )(deg�) � (deg γ )Ei . (7.20)

On the other hand, Lemma 6.2 implies that at least one intersection point of (γ +
ε2v) ∩ ZC(�) must occur inside every interval of the form β̃z0 , z0 ∈ �γ,vertPt. This
gives us the bound (7.17). ��

Combining the previous lemmas, we obtain the following result:

Proposition 7.1 For each S ∈ S2 and index i, we have the bound

∑

γ∈�
(3)
S,i

|�γ,badPt| � Di Ei . (7.21)
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Proof First, note that ∑

γ∈�
(3)
S,i

deg γ � Di .

Now we combine the bounds from Corollary 7.12 and Lemmas 7.1, 7.2, 7.3, and 7.4,
to obtain (7.21). ��

Combining the bounds from this section and using (3.22), we obtain the following
bounds, which we will record as a lemma.

Lemma 7.5 We have the bounds

∑

i

∑

S∈S2

∑

γ∈�
(3)
S,i

|�γ,badPt| � m
k

2k−1 n
2k−2
2k−1 , (7.22)

∑

i

∑

S∈S2

∑

z∈(αS,i )sing

Gz(α) � m
k

2k−1 n
2k−2
2k−1 . (7.23)

7.3 Cutting the Curves in �
(3)
S,i

Fix a surface S ∈ S2 and an index i . For each γ ∈ �
(3)
S,i , consider the set

Piecesγ = {β ⊂ R
4 : β is a connected component of γ (R)\�γ,badPt}. (7.24)

Lemma 7.6 If β ∈ Piecesγ , then β is a point or a simple open curve (homeomorphic
to (0, 1)).

Proof Suppose β ∈ Piecesγ is not a point. Since β does not contain any singular
points, β is a smooth one-dimensional manifold. Thus β is either a simple open curve
or is homeomorphic to a circle. However, if β is homeomorphic to a circle, then it
must contain a point z ∈ β where Tz · v1 = 0, where v1 is the vector from (7.7). Since
we removed all points of this form, no curve β ∈ Piecesγ may be homeomorphic to
a circle. ��

By Corollary 2.1,

∑

S∈S2

∑

i

∑

γ∈�
(3)
S,i

b0(γ (R)) � n
∑

i

D2
i � m

k
2k−1 n

2k−2
2k−1 , (7.25)

where b0(γ (R)) is the number of Euclidean connected components of γ (R). We need
to bound the size of Piecesγ . By Lemma 4.7, each time we remove a point z ∈ �γ,sing,
we increase the number of connected components by at most 2Gz(γ ). Each time we
remove a point, we are left with a (new) semialgebraic set (indeed, this is just the
previous semialgebraic set with one point removed). Thus we can apply the lemma
iteratively, removing one point from �γ,sing at a time. By (7.12), removing all the
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points �γ,sing increases the number of connected components in (7.25) by at most
O(mk/(2k−1)n(2k−2)/(2k−1)).

If we remove a point z /∈ �γ,sing from a curve γ (R), we increase the number
of connected components by at most one. Thus if we remove all the points from
�γ,badPt\�γ,sing as γ ranges over all curves in

⋃
S∈S2

⋃
i �

(3)
S,i , we increase the number

of connected components in (7.25) by at most O(mk/(2k−1)n(2k−2)/(2k−1)).
We conclude that

∑

S∈S2

∑

j

∑

γ∈�S, j

|Piecesγ | � m
k

2k−1 n
2k−2
2k−1 . (7.26)

7.4 Cutting the Surfaces Vi (R)

For each index i , let

Yi =
{
A ⊂ R

4 : A is a connected component of Vi (R)\((Vi )sing ∪ Bi ∪ ζi
)}

, (7.27)

where Bi is the set from (7.3), and ζi is the set from (7.1).

Lemma 7.7 The sets A ∈ Yi are two-dimensional smooth manifolds.

Proof By Corollary 4.1, if z ∈ Vi (R)\(Vi )sing, then dimR,z(Vi (R)) = 2. Since
z ∈ (Vi )smooth, this also implies that z is a smooth point of Vi (R) (in dimension
2). Thus Vi (R)\(Vi )sing is a two-dimensional smooth manifold. Since Bi (R) ∪ ζi (R)

are algebraic curves (possibly with zero-dimensional components), Vi (R)\((Vi )sing ∪
Bi ∪ ζi

)
is also a two-dimensional smooth manifold, and thus so are its connected

components. ��
Lemma 7.8 Let A ∈ Yi , and let π : R4 → R

2 be the projection in the direction �′
(i.e., the direction that maps �′ to the vector space 0). Here �′ is the (real) 2-plane
from (7.3). Then the restriction of π to A is a diffeomorphism, and π(A) is an open
subset of R2.

Proof The main thing to show is that π is injective. Suppose there exists two points
x, x ′ ∈ A such that π(x) = π(x ′). Let η ⊂ A be a smooth curve connecting x and
x ′, and let η(t) be the parametrization of this curve by arclength, normalized so that
η(0) = x and η(1) = x ′. For each t ∈ [0, 1], let r(t) = dist(η(t), x + �′)2, where
x + �′ is the affine 2-plane obtained by translating � by the (vector) x ∈ R

4, and
dist(η(t), x+�′) is the (Euclidean) distance between the point η(t) and the set x+�′.

r(t) is smooth and r(0) = r(1) = 0. Thus there exists some t0 ∈ (0, 1) so that
d
dt r(t)|t=t0 = 0. This implies that the curve η has tangent vector w ∈ �′ at the
point r(t0). However, at every point z ∈ A we have that Tz(A) ∩ �′ = 0. This is a
contradiction. Thus π is injective.

We can see that the map π is a local diffeomorphism whenever the Jacobian matrix
ofπ has full rank. However, this occurs precisely at points x ∈ Awith Tz(A)∩�′ = 0.
By the definition of A, this happens at every point.
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Since π is injective and is everywhere a local diffeomorphism, we conclude that π
is a diffeomorphism. ��

7.5 Combining Yi and Piecesγ

Lemma 7.9 If γ ∈ �
(3)
S,i , and if β ∈ Piecesγ , then β is entirely contained in a single

set A ⊂ Yi , and this set A is unique.

Proof Recall that every set β ∈ Piecesγ is connected (in the Euclidean topology), and
each set β is contained in some set Vi . Thus if β meets two sets A, A′ ∈ Yi , then by
(7.27), β must intersect a point from (Vi )sing ∪ Bi ∪ ζi . However, every point from
β ∩ (Vi )sing ∪ Bi ∪ ζi also lies in �γ,badPt (where γ is the algebraic curve associated
to β). By definition, β contains no points from this set. ��
Definition 7.1 If β ∈ Piecesγ , define shrink(β) to be the curve obtained by shrinking
β by a small amount. More precisely, since β is a simple open curve, there is a
homeomorphism η : (0, 1) → β. Define shrink(β) = ι((ε, 1 − ε)), where ε > 0 is
a very small quantity. Specifically, we choose ε so that the following two properties
hold:

• If p ∈ P and p is an interior point of β, then p is an interior point of shrink(β).
• If two curves β, β ′ are disjoint, then shrink(β) and shrink(β ′) have disjoint (Euclid-
ean) closures.

For each i = 1, . . . , �, and for each A ∈ Yi , define

LA =
⋃

S∈S2

⋃

γ∈�
(3)
S,i

{shrink(β) : β ∈ Piecesγ , and β ⊂ A}, (7.28)

and define
PA = Pi ∩ A, (7.29)

where Vi is the (unique) variety such that Vi (R) contains A.
The sets {PA} are disjoint as A ranges over the sets in Yi and as i = 1, . . . , �.

Furthermore, if (p, S) ∈ I7\I8, then p lies in some set PA.
To bound the number of incidences in I7\I8, wewill need to use the crossing lemma.

If A ∈ Yi , define
crossings(A) =

∑

β,β ′∈LA
β 
=β ′

|β ∩ β ′|.

Lemma 7.10 (Bounding the number of crossings)

�∑

i=1

∑

A∈Y j

crossings(A) ≤ C0n
2, (7.30)

where C0 is the constant from Property (ii) of Definition 1.2.
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Proof First, note that
∑

S 
=S′ |S ∩ S′| ≤ C0n2. The entire point is to show that if
z ∈ S∩ S′, then there is at most one pair β, β ′ with β ⊂ S, β ′ ⊂ S′ so that z ∈ β ∩β ′.
We also need to observe that if both β and β ′ are contained in the same surface S,
then β ∩ β ′ = ∅. This is because any point z ∈ β ∩ β ′ is a singular point of S∗ ∩ Vi
for some index i , so this point lies in �γ,badPt ∩ �γ ′,badPt, where γ, γ ′ are the (not
necessarily distinct) curves associated to β and β ′, respectively. Thus points of this
form were removed in a previous step.

For contradiction, suppose there existed some indices i1, i2, some A1 ∈ Yi1, A2 ∈
Yi2 , and some curve segments β1, β

′
1 ∈ LA1 , β2, β

′
2 ∈ LA2 so that β1, β2 ⊂ S,

β ′
1, β

′
2 ⊂ S′, and (β1 ∩ β ′

1) ∩ (β2 ∩ β ′
2) 
= ∅.

First, we must have i1 
= i2. Indeed, if i1 = i2 = i , then β1 ∩ β2 is a singular point
of S∗ ∩ Vi , and by (7.24), neither β1 nor β2 can contain any points of this type. Next,
we can assume that β 
⊂ ( ⋃

i (Vi )sing
)
, since all irreducible components of S∗ ∩⋃

i Vi
that were contained in

( ⋃
i (Vi )sing

)
were already removed. In particular, since i1 
= i2,

we must have that β1 ∩ Vi2 is a discrete set, where γ1 is the curve associated to β1.
But every point in this intersection was already removed when we removed the set
�γ,shared. Thus no points of this type may exist in any curve segment β. ��
Lemma 7.11 Fix an A ∈ Yi , and let p1, . . . , pk ∈ A. Then at most C0 curves β ∈ LA

can contain the points p1, . . . , pk, where C0 is the quantity from the statement of
Theorem 1.3.

Proof First, if two curves β, β ′ ∈ LA both contain p1, then β, β ′ must come from
distinct surfaces S, S′. Otherwise p1 would lie in the sets�γ,sing, �γ ′,sing (where γ, γ ′
are the curves associated to β, β ′, respectively). However, β cannot contain any point
from �γ,sing, and similarly for β ′.

Since every curve that contains the points p1, . . . , pk must come from a distinct
surface S ∈ S2, by Property (iii) from Definition 1.2, at most C0 curves can contain
the points p1, . . . , pk . ��

Wemust nowdevelop the tools needed to apply the crossing lemma to the collections
of curves and points on the open regions A ∈ Yi .

8 The Final Interlude: Some Graph Theory

In [26], Székely provided a simple proof of the Szemerédi–Trotter theorem using the
crossing lemma from topological graph theory. In brief, the crossing lemma states
that a graph drawing either contains very few edges, or it must have many crossings
(points where two edges cross). Székely showed how a point-line arrangement could
be converted into a graph drawing, where the number of point-line incidences was
bounded by the number of edges. On the other hand, since every two lines cross at
most once, Székely was able to bound the number of crossings in the graph drawing.
This led to a bound on the number of incidences.

We wish to do something similar, but in our case we do not have a single graph but
many, and the crossings are spread out amongst all of the graphs. We need to obtain
an incidence bound across all of these graphs. This will be done in Lemma 8.2.
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8.1 Graphs and Graph Drawings

Definition 8.1 We define a generalized undirected graph drawing to be a triple H =
(P, �, E). Here P ⊂ R

2 is a finite collection of points (also called vertices); � is a
finite set of bounded simple open curves, with |γ ∩ γ ′| finite for every pair of distinct
curves γ, γ ′; and E is a set of pairs of the form ({p, q}, γ ), where p, q are distinct
points in P and γ ∈ �. If p, q are vertices of a graph drawing H , we define

edgemult(p, q) = |{γ ∈ � : ({p, q}, γ ) ∈ E}|.

Informally, this is the number of edges between p and q.

Definition 8.2 We say that the undirected drawing H is proper if the following prop-
erties hold:

• No point of P lies in the relative interior of any curve in �.
• ({p, q}, γ ) ∈ E if and only if the endpoints of γ are the points p and q.

Thus a proper undirected graph drawing is a special type of generalized undirected
graph drawing.

Definition 8.3 Let G = (V ′, E ′) be an undirected multigraph. Thus V ′ is a set of
vertices and E ′ is a multiset of pairs of distinct vertices from V ′. Let H = (P, �, E)

be a (generalized) undirected graph drawing. We say that G is associated to H (or H
is associated to G) if there is a bijection from P to V ′ so that for every pair of vertices
p, q ∈ P , edgemult(p, q) is equal to the number of edges between p and q in G.
Given a graph drawing H , there is always a unique multigraph G associated to H .

Definition 8.4 We define a generalized directed graph drawing to be a triple H =
(P, �, E). Here P ⊂ R

2 is a finite collection of points (also called vertices); � is a
finite set of bounded simple open curves, with |γ ∩ γ ′| finite for every pair of distinct
curves γ, γ ′; and E is a set of pairs of the form (p, q, γ ), where p, q are distinct

points in P and γ ∈ �. If a triple (p, q, γ ) is in E , we say that p
γ→ q, i.e., there is a

directed edge from p to q along γ (note that p and q need not be the endpoints of γ ).
The collection of all directed edges from p to q is denoted by p → q, and the number
of edges is denoted by edgemult(p → q).

Definition 8.5 We say that a directed graph drawing is proper if the following prop-
erties hold:

• No point of P lies in the relative interior of any curve in �.

• If p
γ→ q, then p and q are the endpoints of γ . Conversely, if p, q are the endpoints

of γ , then precisely one of p
γ→ q or q

γ→ p must hold.

The intuition is that generalized graph drawings are allowed to have multiple edges
stacked on top of each other, while proper graph drawings do not permit this.
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8.2 Crossings and Graph Drawings

Definition 8.6 If H is a generalized (directed or undirected) graph drawing, we define
the number of crossings in H ,

C(H) =
∑

γ,γ ′∈�

γ 
=γ ′

|γ ∩ γ ′|.

Since the intersection of any two curves is a discrete set, C(H) is finite.

Let G be an undirected multigraph. We define V(G) to be the number of vertices
of G and E(G) to be the number of edges.

Theorem 8.1 (Ajtai et al. [1]; Leighton [16]; Székely [26]) Let H be a proper undi-
rected graph drawing and let G be the multigraph associated to H. Suppose G has
maximum edge multiplicity M. If E(G) ≥ 5V(G), then

C(H) ≥ E(G)3

100MV(G)2
. (8.1)

8.3 Bounding Incidences by Crossings

Theorem 8.2 Let U ⊂ R
2 be open. Let P ⊂ R

2 be a set of points, and let � ⊂ R
2

be a set of simple open curves with k degrees of freedom (relative to P), i.e., for any k
points of P , there are at most C0 curves from � that contain all k points, and any two
curves intersect in at most C0 points. Then

I(P, �) � |P|
k

2k−1
( ∑

γ,γ ′∈�

γ 
=γ ′

|γ ∩ γ ′|)
k−1
2k−1 + |P| + |�|. (8.2)

The implicit constant depends only on k and C0.

The proof of Theorem 8.2 is much easier for the k = 2 case (it is a variant of
Székely’s proof in [26]), so we will provide a proof of this case first. The proof for
general k also works for k = 2.

Proof of Lemma 8.2, k=2 case Replace each curve γ ∈ � with a slightly shrunk curve
γ ′ (in the sense of Definition 7.1), so that ∂(γ ′) does not meet any point from P
nor any curve from �. If �′ denotes the set of shrunk curves, then |I(P, �′)| ≥
|I(P, �)| − 2|�|. Delete from �′ those curves that are incident to fewer than 2 points
fromP , and denote the resulting set of curves�′′. Then |I(P, �′′)| ≥ |I(P, �)|−4|�|.

Let G be the undirected multigraph whose vertex set is P , and where two vertices
are connected by an edge if the two corresponding points are joined by a curve from�′′,
and the two vertices are consecutive on this curve. Let H be the (proper, undirected)
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drawing of G given by the points P ⊂ R
2 and the curve segments joining consecutive

edges from curves γ ∈ �′′.
The multigraph G need not be a graph, since two vertices can be connected by

several edges. However, the maximum edge multiplicity of G is bounded by the
constant C0 from the statement of Lemma 8.2. Furthermore, E(G) ≥ 1

2 |I(P, �′′)|, so
by Theorem 8.1,

|I(P, �)| � |P|2/3C(H)1/3 + |P| + 4|�|
� |P|2/3(

∑

γ,γ ′∈�

γ 
=γ ′

|γ ∩ γ ′|)1/3 + |P| + |�|.

��
We will now prove Lemma 8.2 for general k. The proof is very similar to

Pach and Sharir’s proof in [20] of a Szemerédi–Trotter type theorem for curves
with k degrees of freedom. However, the main term in Pach and Sharir’s bound is
|P|k/(2k−1)|�|(2k−2)/(2k−1) rather than

|P|
k

2k−1
(∑

|γ ∩ γ ′|)
k−1
2k−1 ,

and the former could potentially be much larger. This fact forces us to modify Pach
and Sharir’s proof.

Proof of Lemma 8.2, general case First, either

I(P, �) ≤ 100k|�| (8.3)

or
I(P, �) > 100k|�|. (8.4)

If (8.3) holds, then the theorem follows immediately. Thus for the remainder of the
proof we will assume that (8.4) holds

Let �′ ⊂ � be the set of curves that are incident to ≥ 2k points from P . By (8.4),

I(P, �′) > 1
2I(P, �),

so it suffices to consider curves in �′. If p ∈ P, let dp = |{γ ∈ �′ : p ∈ γ }|. We will
call this the degree of p. Let

P ′ =
{
p ∈ P : dp ≥ I(P, �′)

2|P|
}
.

Then
I(P ′, �′) ≥ 1

2I(P, �′) ≥ 1
4I(P, �). (8.5)
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For p ∈ P ′, γ ∈ �′, and p ∈ γ , let

Sp,γ = {q ∈ P ′ : q ∈ γ, q 
= p, dq ≥ dp}.

Let H = (P ′, �′, E) be a generalized directed graph drawing, where the triple
(p, q, γ ) is in E if the following conditions hold:

• p ∈ P ′, γ ∈ �′, p ∈ γ, q ∈ Sp,γ .

• |Sp,γ | ≥ k.
• q is one of the k closest points to p of the point set Sp,γ (i.e., the curve segment of

γ connecting p and q passes through at most k − 1 points from Sp,γ ).

Note that H might not be a proper directed graph drawing since several edges may
be drawn over the same curve segment.

Lemma 8.1
E(H) ≥ I(P ′, �′) − k|�′|. (8.6)

Proof Let p ∈ P ′, γ ∈ �′ with p ∈ γ . Then either there is an edge p
γ→ q for some

q ∈ Sp,γ , or p ∈ Xγ , where Xγ is the set of the k highest degree points on γ . The
lemma now follows from the observation that |Xγ | ≤ k. ��

Lemma 8.1 and (8.4) imply that

E(H) ≥ 1
2I(P ′, �′) ≥ 1

8I(P, �). (8.7)

Note that a given segment of a curve γ ∈ � may be part of several distinct edges,
i.e., our graph drawing H may not be proper (in the sense of Definition 8.5). However,
the following lemma controls the extent to which this occurs.

Lemma 8.2 Let γ ∈ �′, and let x be a point on γ . Then the number of pairs (p, q) ∈
(P ′)2 such that the arc p

γ→ q contains x is at most 10k2.

Proof Since γ is a simple open curve, γ \x consists of two connected pieces, whichwe
will call the right and left pieces. This establishes a global notion of right and left on
the curve γ . We will now prove the lemma. Suppose there were more than 10k2 pairs

(p, q) ∈ (P ′)2 with x contained in the arc p
γ→ q. Then without loss of generality,

there are more than 5k2 arcs of the form p
γ→ q where p is right of x and q is left of

x . Since each point p ∈ P ′ ∩ γ has at most k curves of the form p
γ→ q that exit it,

there exists a set of ≥ 5k distinct points to the right of x , so that each of these points

contains at least one arc of the form p
γ→ q that contains x . Denote this set of points

by P1. Let P2 ⊂ P1 be the 2k right-most points from this collection, and let p∗ ∈ P2
be the point with lowest degree. Then the arc from p∗ to x passes over at least 3k
points of P ′, but there are at least 2k − 1 > k points of P ′ on the arc γ with distance
≤ 2k. Each of these points lies in Sp∗,γ . This is a contradiction, since by definition p∗
is connected to the k closest points on γ with degree ≥ dp∗ . ��

123



Discrete Comput Geom (2015) 54:513–572 565

Let H ′ be the generalized directed graph drawing obtained by starting with H and

deleting all edges of the form p
γ→ q where p ∈ Xγ (recall from above that Xγ is the

set of k points on γ that have the highest multiplicity). Then since every curve in �′
is incident to at least 2k edges, E(H ′) ≥ 1

2E(H) ≥ 1
16I(P, �).

Now, let H ′′ be the generalized directed graph drawing obtained by starting with

H ′ and deleting all edges of the form p
γ→ q whenever

edgemult(p → q) > Ad
k−2
k−1
p . (8.8)

Here A is a large constant (depending only on k) to be determined later. We will call

H ′′ the pruned version of H ′. If an edge p
γ→ q is present in H ′ but not in H ′′, we

will say the edge p
γ→ q has been pruned.

Lemma 8.3 (Pach and Sharir)

E(H ′′) ≥ 1

2k
E(H ′) ≥ 1

32k
I(P, �). (8.9)

Proof The proof of this lemma is nearly identical to the arguments of Pach and Sharir
in [20, p. 124]. For the reader’s convenience, we reproduce it here. For p, q ∈ P ′,
let Ep(q) be the set of all edges of H ′ that connect p to q, i.e., all edges of the form

p
γ→ q, for γ ∈ �′. By the definition of H , we have

∑
q∈P ′ |Ep(q)| ≤ 2(k − 1)dp.

Let Ep,q be the set of edges of the form p
γ→ r , where γ is a curve for which

p
γ→ q is an edge of H ′.
Let

Rp =
{
q ∈ P ′ : |Ep(q)| > Ad

k−2
k−1
p

}
,

so

|Rp| ≤ 2kdp
(
Ad

k−2
k−1
p

)−1 ≤ 2k A−1d
1

k−1
p .

If Rp = ∅, there is nothing to prove. Otherwise, consider in turn each vertex q ∈ Rp

and each curve γ that contains an edge p
γ→ q from Ep(q). By the definition of H ′,

γ must contain at least k − 1 edges that lie in the set Ep,q . We want to charge p
γ→ q

to one of these edges; we can do this as long as one of these edges is still present in
the set H ′′ (i.e., we can do this as long as one of these edges has not been pruned).

We say that p
γ→ q is good if there exists at least one edge from Ep,q in the

generalized directed graph drawing H ′′ (i.e., if at least one edge from Ep,q survives

the pruning process). If p
γ→ q is not good, we say it is bad.

If p
γ→ q is bad, then the curve γ passes through p and through at least k − 1

distinct points of Rp, and in this case γ contains at most 2(k − 1) bad edges. But,
there are ≤ C0 curves passing through p and any fixed set of k − 1 points of Rp. Thus
the number of bad edges is at most
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2(k − 1)C0

( |Rp|
k − 1

)
<

2C0(k − 1)|Rp|k−1

(k − 1)!

<
2C0

(k − 1)!
(
2k

A

)k−1

dp. (8.10)

If we select A sufficiently large, then

2C0

(k − 1)!
(
2k

A

)k−1

dp <
1

2
(k − 1)dp,

and thus more than half of the edges in Ep are good, and each of them can charge one
of the surviving edges in H ′′. This implies that at least 1

2k dp of the edges exiting p
survive in H ′′. Since this holds true for all edges in H ′′, Lemma 8.3 follows. ��

For each triple (p, q, γ ) ∈ E in the pruned graph drawing H ′′, let γp,q ⊂ γ be
the simple open curve connecting p to q. Define �0 = {γp,q : (p, q, γ ) ∈ E}. Let
�1 be obtained by perturbing each curve in γ0 slightly so that the endpoints remain
unchanged, but every two curves in �0 intersect in a finite set. Let H ′′′ = (P ′, �1, E0)

be the directed graph drawing where (p, q, γ ) ∈ E0 if and only if p and q are
the endpoints of γ . Then H ′′′ is a proper directed graph drawing (in the sense of
Definition 8.5). For every pair of distinct points p, q ∈ P ′, edgemult(p → q) in H ′′
is equal to edgemult(p → q) in H ′′′. Furthermore, by Lemma 8.2,

C(H ′′′) < 100k4C(H ′′).

We will now perform a diadic decomposition of vertices in the graph H ′′′. For
j = 0, . . . , �log2 m�, let Hj be the proper undirected graph drawing with vertex set

{
p ∈ P ′ : dp ≥ 2 j I(P, �)

2m

}
.

If p ∈ P ′ and
2 j I(P, �)

2m
≤ dp < 2 j+1 I(P, �)

2m
,

then all of the multi-edges p → q from H ′′′ are added to Hj , but we add them as
undirected edges. These are the only edges of Hj . Let m j be the number of vertices
of Hj . Since

2 j I(P, �)

2m
m j ≤ I(P, �),

we have
m j ≤ 2− j+1m. (8.11)

We have the following:

• Each multi-edge of Hj has edge multiplicity ≤
(
2 j+1 I(P,�)

2m

) k−2
k−1

.
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• Each multi-edge p → q in H ′′′ appears as a multi-edge in some Hj , so

E(H ′′′) ≤
∑

j

E(Hj ). (8.12)

• C(Hj ) ≤ C(H ′′′) ≤ 100k4C(H).

Let G j be the undirected multigraph associated to Hj . Let

J1 =
{
j ∈ {0, . . . , �log2 m�} : E(G j ) ≤ 100m j

(
2 j+1 I(P, �)

2m

) k−2
k−1

}
,

and let J2 = {0, . . . , �log2 m�}\J1. By (8.9) and (8.12), either

I(P ′, �) ≤ 1

64k

∑

j∈J1

E(G j ) (8.13)

or

I(P ′, �) ≤ 1

64k

∑

j∈J2

E(G j ). (8.14)

If (8.13) holds, then

∑

j∈J1

E(G j ) � m
1

k−1 I(P, �)
k−2
k−1

�log2 m�∑

j=0

2− j/k

� m
1

k−1 I(P, �)
k−2
k−1

(recall that the � notation hides an implicit constant that is allowed to depend on k).
Thus if (8.13) holds, then

|I(P, �)| � |P|, (8.15)

which proves Lemma 8.2.
Alternately, if (8.14) holds, then we can apply the crossing lemma to each j ∈ J2

to conclude

C(Hj ) � E(G j )
3

m2
j

(
2 j+1 I(P,�)

2m

) k−2
k−1

, (8.16)

and thus

E(G j ) � (C(Hj ))
1/3m

k
3(k−1) I(P, �)

k−2
3(k−1) 2

− jk
3(k−1)

� (C(Hj ))
1/3m

k
3(k−1) I(P, �)

k−2
3(k−1) , (8.17)

where the implicit constant does not depend on j (i.e., it is an absolute constant). Thus
we have
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I(P, �) �
∑

j∈J2

E(G j )

�
∑

j∈J2

(C(Hj ))
1/3m

k
3(k−1) I(P, �)

k−2
3(k−1)

� (C(H))1/3m
k

3(k−1) I(P, �)
k−2

3(k−1) . (8.18)

By Lemma 8.2, we have
C(H) �

∑

γ,γ ′∈�

γ 
=γ ′

|γ ∩ γ ′|.

Thus if (8.14) holds, then

|I(P, �)| � |P|
k

2k−1
( ∑

γ,γ ′∈�

γ 
=γ ′

|γ ∩ γ ′|
) k−1
2k−1

. (8.19)

Combining the bounds (8.3), (8.15), and (8.19), we conclude

I(P, �) � |P|
k

2k−1
( ∑

γ,γ ′∈�

γ 
=γ ′

|γ ∩ γ ′|
) k−1
2k−1 + |P| + |�|.

��

9 Bounding I6

To bound |I6\I7|, we will apply Theorem 8.2 to each collection (A,PA,LA) for each
A ∈ ⋃

i Yi . We conclude that

|I6\I7| �
�∑

i=1

∑

A∈Yi

|{(p, β) ∈ PA ∩ LA : p ∈ β}|

�
�∑

i=1

∑

A∈Yi

(|PA|
k

2k−1 crossings(A)
k−1
2k−1 + |PA| + |LA|)

�
( �∑

i=1

∑

A∈Yi

|PA|)
k

2k−1
( �∑

i=1

∑

A∈Yi

crossings(A)
) k−1
2k−1 + |P| +

�∑

i=1

∑

A∈Yi

|LA|

� m
k

2k−1 n
2k−2
2k−1 + m, (9.1)
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where in the second last line we used Lemma 7.10. Combining (7.2), (9.1), and the
bounds on I1, . . . , I6 from Sects. 5.2–5.4, we obtain the bound

∑

i∈A1

|I ∩ I(Pi ∩ Wi ,S2)| � m
k

2k−1 n
2k−2
2k−1 + m + n, (9.2)

where the implicit constant depends only on C0 and k (indeed, each implicit constant
only depended on previously defined implicit constants, and ultimately these only
depended on C0 and k). This is precisely the second term in (3.26), which we sought
to control. Altogether, we conclude that

|I ∩ I(P ∩ Z ,S2)| ≤ C1

10

(
m

k
2k−1 n

2k−2
2k−1 + m + n

)
, (9.3)

provided we choose C1 sufficiently large depending only on the constants C0 and k
from the statement of Theorem 1.3. This (at last!) concludes the proof of Theorem 1.3.

10 Open Problems and Future Work

There are a number of natural extensions and generalizations of Theorem 1.3.

10.1 Removing the Restriction on m and n

The requirement that m ≤ n(2k+2)/3k is likely not necessary; we pose the following
conjecture.

Conjecture 10.1 Theorem 1.3 holds for all values of m and n.

If m ≥ n2, then Theorem 1.3 follows from the Kővari–Sós–Turán theorem (The-
orem 3.1). Thus the critical range is n(2k+2)/3k < m < n2. The author believes that
using the same techniques as in Sect. 3.1 of [22], it would be possible to obtain the
following partial progress toward Conjecture 10.1.

Conjecture 10.2 Let P ⊂ R
4 be a collection of m points. Let S be a C0-good collec-

tion of pseudoflats with k degrees of freedom, with |S| = n, and suppose m ≤ n2−ε.
Let I ⊂ I(P,S) be a good collection of incidences. Then

|I | ≤ C1
(
m

k
2k−1 n

2k−2
2k−1 + m + n

)
. (10.1)

The constant C1 depends only on C0, k, and ε.

Roughly speaking, Conjecture 10.2 should be provable as follows. In proving
Theorem 1.3, we construct partitioning polynomials {Pi }, {Qi } of degrees Di , Ei ,
respectively. As discussed in Remark 5.1, we need the bound

∑

i

(Di Ei )
4 � m

k
2k−1 n

2k−2
2k−1 . (10.2)
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Here, the numbers {Di } are essentially arbitrary positive integers satisfying∑
Di = D

(D is specified in (3.5)), and Ei is given by (3.20). Ifm ≤ n(2k+2)/3k , then (10.2) holds,
while if m > n(2k+2)/3k , then (10.2) may fail.

However, one can get around this problem by using partitioning polynomials of
lower degree (i.e., making Di and Ei smaller), so (10.2) holds even when m >

n(2k+2)/3k . Let α = logm/ log n. The idea is to prove the theorem by induction on α,
startingwith the base case α ≤ 2k+2

3k ,which has already been handled by Theorem 1.3.
Now, suppose the theorem has already been proved for all α < α0, and let P,S be

collections of points and surfaceswith |P| = m, |S| = n. Suppose that logm/ log n ≤
α0 + f (α0). The function f (t) will be determined later; the key property is that f (t)
is continuous on [ 2k+2

3k , 2] and f (t) > 0 for x < 2.
Let D′ be a small power of D (D′ = D1/10 say). Instead of performing a partition

using a polynomial of degree D, use a polynomial of degree D′. A certain number
of points and surfaces will enter each of the cells. There will be too many points
and surfaces to apply the Kővari-Sós-Turán theorem directly. Luckily, however, if m′
points and n′ surfaces enter the cell, then logm′/ log n′ ≤ α0 (provided the function
f (t) is chosen appropriately) so the induction hypothesis can be applied to bound the
number of incidences inside each cell.

We must now bound the number of incidences occurring on the boundary of the
partition. Define E ′

i to be a small power of Ei . The incidences inside the second-level
cells can again be bounded using the induction hypothesis.

It remains to bound the incidences occurring on the boundary of the secondpartition.
Here we exploit the fact that D′

i and E ′
i are much smaller than Di and Ei . In particular,

the analogue of (10.2) will hold with D′
i and E ′

i in place of Di and Ei . This allows us
to close the induction.

Analyzing the induction, we see that for any ε > 0, if P,S are collections of
points and surfaces with |P| = m, |S| = n, and if m ≤ n2−ε, then we only apply
the induction step Oε(1) times before we are reduced to the base case α ≤ 2k+2

3 .
Each time we apply the induction step, we obtain an additional multiplicative constant
in our bound. However, since we only perform this induction Oε(1) times, the total
contribution is still (a multiplicative) constant.

However, proving the above result would lengthen the exposition significantly and
does not introduce any new ideas, so we prefer to state it as a conjecture rather than
include the argument in this manuscript.

10.2 Higher Dimensions

ExtendingTheorem1.3 to dimensions higher than 4 appears to require some significant
new ideas. In particular, if one tried to follow a similar proof strategy to prove an
incidence theorem for 3-flats in R

6, one would need some sort of analogue of the
crossing lemma for two-dimensional surfaces in R

4. The author is not aware of any
statement of this type. It seems reasonable to conjecture that any proof of a Szeméredi–
Trotter type theorem for 3-flats in R

6 will require a different proof strategy.
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