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Abstract We give a combinatorial characterization of generic frameworks that are
minimally rigid under the additional constraint of maintaining symmetry with respect
to a finite order rotation or a reflection. To establish these results, we develop a new
technique for deriving linear representations of sparsity matroids on colored graphs
and extend the direction networkmethodof proving rigidity characterizations to handle
reflections.
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1 Introduction

A �-framework is a planar structure made of fixed-length bars connected by universal
joints with full rotational freedom. Additionally, the bars and joints are symmetric
with respect to the action of a point group �. The allowed motions preserve the length
and connectivity of the bars and symmetry with respect to the same group �. This
model is very similar in spirit to that of the periodic frameworks, introduced in [4],
that have recently received a lot of attention, motivated mainly by applications to
zeolites [22,25]; see [16] for a discussion of the history.
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When all the allowed motions are Euclidean isometries, a framework is rigid and
otherwise it is flexible. In this paper, we give a combinatorial characterization of
minimally rigid, generic �-frameworks when � is either a finite group of rotations or
a 2-element group generated by a reflection. Thus, � ⊂ O(2) and acts linearly on R

2

in the natural way. To minimize notation, we call these cone frameworks and reflection
frameworks, respectively. Since these � are isomorphic to some Z/kZ for an integer
k ≥ 2, we also make this identification from now on.

1.1 The Algebraic Setup and Combinatorial Model

Formally, a �-framework is given by a triple (G̃, ϕ, �̃), where G̃ is a finite graph, ϕ

is a �-action on G̃ that is free on the vertices and edges, and �̃ = (�i j )i j∈E(G̃)
is a

vector of positive edge lengths assigned to the edges of G̃. A realization G̃(p) is an
assignment of points p = (pi )i∈V (G̃)

such that

‖p j − pi‖2 = �2i j for all edges i j ∈ E(G̃), (1)

pϕ(γ )·i = γ · pi for all γ ∈ Z/kZ and i ∈ V (G̃). (2)

The set of all realizations is defined to be the realization space R(G̃, ϕ, �̃). Since
we require symmetry with respect to a fixed subgroup � ⊂ Euc(2) and not all rigid
motions of the points preserve the symmetry, the correct notion of configuration space
isC(G̃, ϕ, �̃) = R(G̃, ϕ, �̃)/Cent(�), where Cent(�) is the centralizer of� in Euc(2).
A realization is rigid if it is isolated in the configuration space and otherwise flexible.
A realization is minimally rigid if it is rigid but ceases to be so after removing any
�-orbit of edges from G̃. This definition of rigidity corresponds to the intuitive one
given above, since a result ofMilnor [20, Lem. 3.1] implies that if a point is not isolated
in the configuration space, there is a smooth path through it. An equivalent formulation
of rigidity is that the only continuous length-preserving, symmetry-preservingmotions
are “trivial”. In this case, the trivial motions are precisely Cent(�) which is one-
dimensional for both rotational and reflective symmetries.

As the combinatorial model for cone and reflection frameworks, it will be more
convenient to use colored graphs. Similarly [2,16,33], we define a colored graph1

(G, γ ) to be a finite, directed graph G, with an assignment γ = (γi j )i j∈E(G) of an
element of a group � to each edge. A straightforward specialization of covering space
theory (see, e.g., [14, Sect. 9]) associates (G̃, ϕ) with a colored graph (G, γ ): G is
the quotient of G̃ by �, and the colors encode the covering map G̃ → G via a natural
map ρ : π1(G, b) → �. In this setting, the choice of base vertex does not matter,
and indeed, we may define ρ : H1(G, Z) → Z/kZ and obtain the same theory. See
Sect. 2.1 for the definition of ρ via the colors.

Remark For our main theorems, we require that the symmetry group acts freely on
vertices and edges. Removing this restriction, one can realize, in the case of rotational

1 Colored graphs in this sense are also called “gain graphs” in the literature, e.g. [36].
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symmetry, a framework where the group acts with a fixed vertex and with inverted
edges. In this case, it is easy to reduce problems of rigidity for non-free actions to free
actions, and we do so in Sect. 4.3. In the case of reflection symmetry, we can similarly
extend our rigidity results to actions with inverted edges (but not fixed vertices or
edges) by reducing to free actions. See the last remark in Sect. 6.2.

1.2 Main Theorems

We can now state themain results of this paper. The cone-Laman and reflection-Laman
graphs appearing in the statement are defined in Sect. 2.

Theorem 1 A generic rotation framework is minimally rigid if and only if its associ-
ated colored graph is cone-Laman.

Theorem 2 A generic reflection framework is minimally rigid if and only if its asso-
ciated colored graph is reflection-Laman.

Genericity has its standard meaning from algebraic geometry: the set of non-generic
realizations G(p) is a proper algebraic subset of the potential choices for p. Whether a
graph is cone-Laman and reflection-Laman can be checked by efficient combinatorial
algorithms [1], making Theorems 1 and 2 good characterizations as well as entirely
analogous to the Maxwell–Laman Theorem [12,19], which gives the combinatorial
characterization for generic bar-joint frameworks in the plane.

Remark The approach to genericity is the one from [31]. We choose it because it
is more computationally effective than ones based on algebraic independence and
is also less technical. Since genericity is a Zariski-open condition, standard results
imply that the non-generic set of p has measure zero; for a generic p, there is an open
neighborhood U � p that contains only generic points; every generic p is a regular
point of the rigidity map that sends p to the edge lengths in G(p) (or, indeed, any other
polynomial map); the rank of the linear system for infinitesimal motions (described
below) is maximal over all choices of p. Some of these are sometimes taken to be
defining properties of the generic set in the literature. The relevant algebraic geometry
facts are collected in [11, Appendix A].

1.3 Infinitesimal Rigidity and Direction Networks

As in all known proofs of “Maxwell-Laman-type” theorems such as Theorems 1 and
2, we give a combinatorial characterization of a linearization of the problem known as
generic infinitesimal rigidity. Given a realization G̃(p), a set of vectors v = (vi )i∈V (G̃)

is an infinitesimal motion of G̃(p) if it satisfies

〈
p j − pi , v j − vi

〉 = 0 for all edges i j ∈ E(G̃). (3)

vϕ(γ )·i = γ · vi for all γ ∈ Z/kZ (4)

The system (3)–(4) arises by computing the formal differential of (1)–(2). Geomet-
rically, infinitesimal motions preserve the edge lengths to first order and preserve
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the symmetry of G̃(p). A cone or reflection framework is infinitesimally rigid if the
space of infinitesimal motions is precisely that induced by the trivial motions, i.e.
Cent(�). Equivalently, the framework is infinitesimally rigid if and only if the space
of infinitesimal motions is 1-dimensional. As discussed above, the rank of the system
(3)–(4), which defines a rigidity matrix, is maximal at any generic point, so infinitesi-
mal rigidity and rigidity coincide generically. In Sect. 4.1, we give a description of the
non-generic set for cone frameworks; the case of reflection frameworks is analogous.

To characterize infinitesimal rigidity, we use a direction network method (cf. [16,
31,34]). A �-direction network (G̃, ϕ,d) is a graph G̃ equipped with a free action
ϕ : � → Aut(G) and a symmetric assignment of directions with one direction di j per
edge. The realization space of a direction network is the set of solutions G̃(p) to the
system of equations:

〈
p j − pi ,d⊥

i j

〉 = 0 for all edges i j ∈ E(G̃) (5)

pϕ(γ )·i = γ · pi for all γ ∈ Z/kZ and i ∈ V (G̃) (6)

where, as above, � is a finite group of rotations about the origin or the 2-element
group generated by a reflection. We call such a direction network a cone direction
network in the former case and a reflection direction network in the latter case. By (6), a
�-direction network is determined by assigning a direction to each edge of the colored
quotient graph (G, γ ) of (G̃, ϕ) (cf. [14, Lem. 17.2]). A realization of a �-direction
network is faithful if none of the edges of its graph have coincident endpoints and
collapsed if all the endpoints coincide.

A basic fact in the theory of finite planar frameworks [7,31,34] is that, if a direc-
tion network has faithful realizations, the dimension of the realization space is equal
to that of the space of infinitesimal motions of a generic framework with the same
underlying graph. This is also true for �-frameworks, if the symmetry group contains
only orientation-preserving elements, as in [16], or the finite order rotations considered
here. Thus, a characterization of generic cone direction networks with a 1-dimensional
space of faithful realizations implies a characterization of generic minimal rigidity by
a straightforward sequence of steps. We will show:

Theorem 3 A generic cone direction network has a faithful realization that is unique
up to scaling if and only if its associated colored graph is cone-Laman.

From this, Theorem 1 follows using a slight modification of the arguments in
[16, Sect. 17–18], which is presented in Sect. 4 where we will highlight where the
proof breaks down for the reflection case. The main novelty in the proof of Theorem 3
is that wemake a direct geometric argument for the key Proposition 3.1, since standard
results on linear representations of matroid unions do not apply to the system (5)–(6).

The situation for reflection direction networks is more complicated. The reasoning
used to transition from direction networks to infinitesimal rigidity in the orientation-
preserving case does not apply verbatim in the presence of reflections. Thus, we will
need to rely on a more technical analogue of Theorem 3, which we state after giving
an important definition.

Let (G̃, ϕ,d) be a direction network and define (G̃, ϕ,d⊥) to be the direction
network with (d⊥)i j = (d⊥

i j ). These two direction networks form a special pair if:
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• (G̃, ϕ,d) has a, unique up to scale and (vertical) translation, faithful realization.
• (G̃, ϕ,d⊥) has only collapsed realizations.

Theorem 4 Let (G, γ ) be a colored graph with n vertices, 2n − 1 edges, and lift
(G̃, ϕ). Then there are directions d such that the direction networks (G̃, ϕ,d) and
(G̃, ϕ,d⊥) are a special pair if and only if (G, γ ) is reflection-Laman.

Briefly, we will use Theorem 4 as follows: the faithful realization of (G̃, ϕ,d) gives a
symmetric immersion of the graph G̃ that can be interpreted as a framework, and the
fact that (G̃, ϕ,d⊥) has only collapsed realizations will imply that the only symmet-
ric infinitesimal motions of this framework correspond to translation parallel to the
reflection axis.

1.4 Related Work

This paper is part of a sequence extending our results about periodic frameworks [16],
and the results (and proofs) reported here have been previously circulated in other
preprints: Theorems 1 and 3 in [14], and Theorems 2 and 4 in [15].

This paper deals with the setting of “forced symmetry” in which all the motions
considered preserve the �-symmetry of the framework. Some directly related results
are those of Jordán et al. [10], who substantially generalize the results here to dihedral
groups of order 2(2k+1) using mainly inductive constructions. Tanigawa [32] proves
results for scene analysis and body-bar frameworks symmetric with respect to a large
number of groups using a more matroidal method.

Much of the interest in forced symmetry arises from the study of periodic frame-
works, which are symmetric with respect to a translation lattice. These appear in [34],
though recent interest should be traced to the more general setup in [4]. A Maxwell–
Laman-type theorem for periodic frameworks in dimension 2 appears in our paper
[16]. Periodic frameworks admit a number of natural variants; in dimension 2 there
are combinatorial rigidity characterizations for the fixed lattice [23], partially fixed
lattice with 1-degree of freedom [21] and fixed-area unit cell [17]. This paper emerged
from a project to extend the rigidity characterizations from [16] to more symmetry
groups; the sequel [18] has results for the orientation-preserving plane groups.

In dimensions d ≥ 3, combinatorial rigidity characterizations for even finite bar-
joint frameworks are not known. The forced-symmetric case does not appear to be
much easier. However, Maxwell-type counting heuristics have been determined for a
large number of space and point groups by Ross et al. [24].

All the combinatorial work mentioned so far approaches forced-symmetric frame-
works in a similar formalism. Another approach used in [3,5] is to study what, in our
terminology, is the underlying graph of the colored graph. This leads to a theory of a
somewhat different flavor.

Another direction in the study of symmetric frameworks is to not force the symmetry
constraint. This is the approach taken by Fowler and Guest [9], and a number of
combinatorial characterizations are known [26–29].
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1.5 Notations and Terminology

In this paper, all graphs G = (V, E) may be multi-graphs. Typically, the number of
vertices, edges, and connected components are denoted by n, m, and c, respectively.
The notation for a colored graph is (G, γ ), and a symmetric graph with a free Z/kZ-
action is denoted by (G̃, ϕ). If (G̃, ϕ) is the lift of (G, γ ), we denote the fiber over
a vertex i ∈ V (G) by ĩγ , with γ ranging over Z/kZ. The fiber over a directed edge
i j ∈ E(G) with color γi j consists of the edges ĩγ j̃γ+γi j for γ ranging over Z/kZ.

We also use (k, �)-sparse graphs [13] and their generalizations. For a graph G, a
(k, �)-basis is a maximal (k, �)-sparse subgraph; a (k, �)-circuit is an edge-wise min-
imal subgraph that is not (k, �)-sparse; and a (k, �)-component is a maximal subgraph
that has a spanning (k, �)-graph. (To simplify terminology, we follow a convention of
[31] and refer to (k, �)-tight graphs simply as (k, �)-graphs.)

Points in R
2 are denoted by pi = (xi , yi ), indexed sets of points by p = (pi ), and

direction vectors by d and v. For any vector v, we denote its counter-clockwise rotation
by π/2 by v⊥. Realizations of a cone or reflection direction network (G̃, ϕ,d) are
written as G̃(p), as are realizations of abstract �-frameworks. The type of realization
under consideration will always be clear from context.

2 Cone- and Reflection-Laman Graphs

In this section we define cone-Laman and reflection-Laman graphs and develop the
properties we need. We start by recalling some general facts about colored graphs and
the associated map ρ.

2.1 The Map ρ and Equivalent Colorings

Let (G, γ ) be a Z/kZ-colored graph. Since all the colored graphs in this paper have
Z/kZ colors, from nowonwemake this assumption andwrite simply “colored graph”.

The map ρ : H1(G, Z) → Z/kZ is defined on oriented cycles by adding up the
colors on the edges; if the cycle traverses the edge in reverse, then the edge’s color is
added with aminus sign; otherwise it is added without a sign. As the notation suggests,
ρ extends to a homomorphism from H1(G, Z) to Z/kZ, and it is well defined even
if G is not connected [16, Sect. 2]. The ρ-image of a colored graph is defined to be
trivial if it contains only the identity.

We say γ and η are equivalent colorings of a graph G if the corresponding lifts are
isomorphic covers of G. Equivalently, γ and η are equivalent if the induced represen-
tations H1(G, Z) → Z/kZ are identical. Since all of the characteristics of rigidity or
direction networks for a colored graph can be defined on the lift, (G, γ ) and (G, η)

have the same generic rigidity properties and the same generic rank for direction net-
works. We record the following lemma which will simplify the exposition of some
later proofs.

Lemma 2.1 Suppose G ′ is a subgraph of (G, γ ) such that ρ(H1(G ′, Z)) is trivial.
Then, there is an equivalent coloring η such that ηi j = 0 for all edges i j in G ′.
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Proof It suffices to construct colors ηi j such that the induced representation
H1(G, Z) → Z/kZ is equal to ρ. There is no loss of generality in assuming that
G is connected. Choose a spanning forest T ′ of G ′. Extend T ′ to a spanning tree T
of G, and set ηi j = 0 for all i j ∈ E(T ). Each edge i j in G − T creates a funda-
mental (oriented) cycle Ci j with respect to T . Define ηi j = ±ρ(Ci j ) with the sign
being positive if the orientations of i j and Ci j agree and negative otherwise. Since, by
hypothesis, ρ(C) = 0 for all cycles in G ′, all its edges are colored 0 by η. 
�

2.2 Cone- and Reflection-Laman Graphs

Let (G, γ ) be a colored graph with n vertices and m edges. We define (G, γ ) to be a
cone-Laman graph or reflection-Laman graph if: m = 2n − 1, and for all subgraphs
G ′, spanning n′ vertices,m′ edges, c′ connected components with non-trivial ρ-image
and c′

0 connected components with trivial ρ-image

m′ ≤ 2n′ − c′ − 3c′
0. (7)

The underlying graph G of a cone-Laman graph is easily seen to be a (2, 1)-graph. In
the setting of reflection symmetry, the only colored graphs arising are Z/2Z-colored;
for such colorings, the families of cone-Laman and reflection-Laman graphs,which are
defined purely combinatorially, are precisely the same. See Fig. 1 for some examples
of various kinds of graphs described here and below.

We call (G, γ ) cone-Laman-sparse (resp. reflection-Laman-sparse) if it satisfies
(7) for all subgraphs. Note that while Theorems 1 and 2 imply that these classes of
graphs arematroids, at this point we have not established this. Hence, we define (G, γ )

to be a cone-Laman-circuit (resp. reflection-Laman-circuit) if it is cone-Laman-sparse
(resp. reflection-Laman-sparse) after the removal of any edge.

2.3 Ross Graphs and Circuits

Another family we need is that of Ross graphs.2 These are colored graphs with n
vertices, m = 2n − 2 edges, satisfying the sparsity counts

m′ ≤ 2n′ − 2c′ − 3c′
0 (8)

using the same notations as in (7). In particular, Ross graphs (G, γ ) have as their
underlying graph a (2, 2)-graph G and are thus connected [13].

A Ross circuit3 is a colored graph that becomes a Ross graph after removing any
edge. The underlying graph G of a Ross-circuit (G, γ ) is a (2, 2)-circuit, and these
are also known to be connected [13], so, in particular, a Ross circuit has c′

0 = 0 and

2 This terminology is from [1]. Elissa Ross introduced this class in [23], andwe introduced this terminology
in light of her contribution. In [23], they are called “constructive periodic orbit graphs”.
3 The matroid of Ross graphs has more circuits, but these are the ones we are interested in here. See
Sect. 2.5.
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c′ = 1, and thus satisfies (7) on the whole graph. Since (8) implies (7) and (8) holds
on proper subgraphs, we see that every Ross circuit is reflection-Laman. Because
reflection-Laman graphs are (2, 1)-graphs and subgraphs that are (2, 2)-sparse satisfy
(8), we get the following structural result.

Proposition 2.2 ([1, Lem. 11]) Let (G, γ ) be a reflection-Laman graph. Then each
(2, 2)-component of G contains at most one Ross circuit, and in particular, the Ross
circuits in (G, γ ) are vertex disjoint.

2.4 Cone-(2, 2) Graphs

A colored graph (G, γ ) is defined to be a cone-(2, 2) graph, if it has n vertices,m = 2n
edges, and satisfies the sparsity counts

m′ ≤ 2n′ − 2c′
0 (9)

using the same notations as in (7). The link with cone-Laman graphs is the following
straightforward proposition:

Proposition 2.3 A colored graph (G, γ ) is cone-Laman if and only if, after adding a
copy of any colored edge, the resulting colored graph is a cone-(2, 2) graph.

2.5 Reflection-(2, 2) Graphs

A colored graph (G, γ ) is defined to be a reflection-(2, 2) graph, if it has n vertices,
m = 2n − 1 edges, and satisfies the sparsity counts

m′ ≤ 2n′ − c′ − 2c′
0 (10)

using the samenotations as in (7). The relationship betweenRoss graphs and reflection-
(2, 2) graphs we will need is:

Proposition 2.4 Let (G, γ ) be a Ross graph. Then for either

• an edge i j with any color where i 
= j
• or a self-loop � at any vertex i colored by 1

the graph (G + i j, γ ) or (G + �, γ ) is reflection-(2, 2).

Proof Adding i j with any color to a Ross (G, γ ) creates either a Ross circuit, for
which c′

0 = 0, or a Laman-circuit with trivial ρ-image. Both of these types of graph
meet this count, and so the whole of (G + i j, γ ) does as well. 
�

It is easy to see that every reflection-Laman graph is a reflection-(2, 2) graph. The
converse is not true.

Lemma 2.5 A colored graph (G, γ ) is a reflection-Laman graph if and only if it is a
reflection-(2, 2) graph and no subgraph with trivial ρ-image is a (2, 2)-block.
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Let (G, γ ) be a reflection-Laman graph, and letG1,G2, . . . ,Gt be theRoss circuits
in (G, γ ). Define the reduced graph (G∗, γ ) of (G, γ ) to be the colored graph obtained
by contracting each Gi , which is not already a single vertex with a self-loop (this is
necessarily colored 1), into a new vertex vi , removing any self-loops created in the
process, and then adding a new self-loop with color 1 to each of the vi . By Proposition
2.2, the reduced graph is well defined.

Proposition 2.6 Let (G, γ ) be a reflection-Laman graph. Then its reduced graph is
a reflection-(2, 2) graph.

Proof Let (G, γ ) be a reflection-Laman graph with t Ross circuits with vertex sets
V1, . . . , Vt . By Proposition 2.2, the Vi are all disjoint. Now select a Ross-basis (G ′, γ )

of (G, γ ). The graph G ′ is also a (2, 2)-basis of G, with 2n − 1 − t edges, and each
of the Vi spans a (2, 2)-block in G ′. The (k, �)-sparse graph Structure Theorem [13,
Thm 5] implies that contracting each of the Vi into a new vertex vi and discarding any
self-loops created yields a (2, 2)-sparse graphG+ on n+ vertices and 2n+−1−t edges.
It is then easy to check that adding a self-loop colored 1 at each of the vi produces a
colored graph satisfying the reflection-(2, 2) counts (10) with exactly 2n+ − 1 edges.
Since this is the reduced graph, we are done. 
�

2.6 Decomposition Characterizations

A map-graph is a graph with exactly one cycle per connected component. A cone-
(1, 1) or reflection-(1, 1) graph is defined to be a colored graph (G, γ )where G, taken
as an undirected graph, is a map-graph and the ρ-image of each connected component
is non-trivial. Note that by [36, Matroid Theorem], cone-(1, 1) and reflection-(1, 1)
graphs each are bases of a matroid.

Lemma 2.7 Let (G, γ ) be a colored graph. Then (G, γ ) is a reflection-(2, 2) graph
if and only if it is the union of a spanning tree and a reflection-(1, 1) graph.

Proof By [36, Matroid Theorem], reflection-(1, 1) graphs are equivalent to graphs
satisfying m = n and

m′ ≤ n′ − c′
0 (11)

for every subgraph G ′. Moreover, the right-hand side of (11) is the rank function of
the matroid. We can rewrite (10) as

m′ ≤ (n′ − c′
0) + (n′ − c′ − c′

0). (12)

The second term in (12) is well known to be the rank function of the graphic matroid,
and the lemma follows from theEdmonds-Rota construction [8] and theMatroidUnion
Theorem. 
�

Nearly the same proof yields the analogous statement for cone-(2, 2) graphs.

Proposition 2.8 A colored graph (G, γ ) is cone-(2, 2) if and only if it is the union of
two cone-(1, 1) graphs.
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In the sequel, it will be convenient to use this slight refinement of Lemma 2.7.

Proposition 2.9 Let (G, γ ) be a reflection-(2, 2) graph. Then there is an equivalent
coloring γ ′ of the edges of G such that the tree in the decomposition as in Lemma 2.7
has all edges colored by the identity.

Proof Apply Lemma 2.1 to the tree in the decomposition. 
�
Proposition 2.9 has the following re-interpretation in terms of the symmetric lift

(G̃, ϕ):

Proposition 2.10 Let (G, γ ) be a reflection-(2, 2) graph. Then for a decomposition,
as provided by Proposition 2.9, into a spanning tree T and a reflection-(1, 1) graph
X:

• Every edge i j ∈ T lifts to the two edges ĩ0 j̃0 and ĩ1 j̃1. In particular, the vertex
representatives in the lift all lie in a single connected component of the lift of T .

• Each connected component of X lifts to a connected graph.

2.7 The Overlap Graph of a Cone-(2, 2) Graph

Let (G, γ ) be cone-(2, 2) and fix a decomposition of it into two cone-(1, 1) graphs
X and Y . Let Xi and Yi be the connected components of X and Y , respectively. Also
select a base vertex xi and yi for each connected component of X and Y , with all base
vertices on the cycle of their component. Denote the collection of base vertices by B.
We define the overlap graph of (G, X,Y, B) to be the directed graph with:

• Vertex set B.
• A directed edge from xi to y j if y j is a vertex in Xi .
• A directed edge from y j to xi if xi is a vertex in Y j

The property of the overlap graph we need is:

Proposition 2.11 Let (G, γ ) be a cone-(2, 2) graph. Fix a decomposition into cone-
(1, 1) graphs X and Y and a choice of base vertices. Then the overlap graph of
(G, X,Y, B) has a directed cycle in each connected component.

Proof Every vertex has exactly one incoming edge, since each vertex is in exactly one
connected component of each of X and Y . Directed graphs with an in-degree exactly
one have exactly one directed cycle per connected component (see, e.g., [30]). 
�

3 Cone Direction Networks

In this section, we prove Theorem 3. The main step in the proof is:

Proposition 3.1 Let (G, γ ) be a cone-(2, 2) graph. Then every realization of a generic
direction network on (G, γ ) is collapsed, with all vertices placed on the rotation center.

Next, we introduce colored direction networks, which will be convenient to work
with.
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1 1

1

1

2

Ross reflection-Laman cone-Laman

cone-(2,2) reflection-(2,2)

2

1 1

Fig. 1 Various examples of graphs. For the reflection-Laman and reflection-(2,2) graphs, the colors lie in
Z/2Z. For the rest, the colors lie in Z/kZ

3.1 The Colored Realization System

The system of equations (5)–(6) defining the realization space of a cone direction
network (G̃, ϕ,d) is linear and as such has a well-defined dimension. Let (G, γ ) be
the colored quotient graph of (G̃, ϕ).

Since our setting is on symmetric frameworks, we require that the assigned direc-
tions also be symmetric. In other words, if di j is the direction for the edge ĩ0 j̃γi j in the
fiber of i j , then Rγ

k di j is the direction for the edge ĩγ j̃γ+γi j where here and throughout
this section Rk is the counter-clockwise rotation about the origin through angle 2π/k.
Thus, to specify a direction network on (G̃, ϕ), we need only to assign a direction to
one edge in each edge orbit. Furthermore, since the directions and realizations must
be symmetric, the system can be reduced to the following one where the unknowns
consist of n points pi , one for each vertex i of the quotient graph where di j = dĩ0 j̃γi j

:

〈
R

γi j
k · p j − pi ,di j

〉 = 0 for all edges i j ∈ E(G). (13)

Proposition 3.1 can be reinterpreted to say that the colored realization system (13),
in matrix form, is a linear representation for the matroid of cone-(2, 2) graphs. The
representation obtained via Proposition 3.1 is different from the one produced by the
matroid union construction for linearly representable matroids (see [6, Prop. 7.16.4]).

3.2 Genericity

Let (G, γ ) be a colored graph with m edges. A statement about direction networks
(G̃, ϕ,d) is generic if it holds on the complement of a proper algebraic subset of the
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possible direction assignments, which is canonically identified with R
2m . Some facts

about generic statements that we use frequently are as follows:

• Almost all direction assignments are generic.
• If a set of directions is generic, then so are all sufficiently small perturbations of it.
• If two properties are generic, then their intersection is as well.
• The maximum rank of (13) is a generic property.

The next proof is relatively standard.

3.3 Proof that Proposition 3.1 implies Theorem 3

We prove each direction of the statement in turn. Since it is technically easier, we
prove the equivalent statement on colored direction networks.

Cone-Lamangraphsgenerically have faithful realizations Theproof in [16, Sect. 15.3]
applies with small modifications.

Cone-Laman-circuits have collapsed edges For the other direction, we suppose that
(G, γ ) has n vertices and is not cone-Laman. If the number of edges m is less than
2n−1, then the realization space of any direction network is at least 2-dimensional, so
it contains more than just rescalings. Thus, we assume that m ≥ 2n − 1. In this case,
G is not cone-Laman- sparse, so it contains a cone-Laman-circuit (G ′, γ ). Thus, we
are reduced to showing that any cone-Laman-circuit has, generically, only realizations
with collapsed edges, since these then force collapsed edges in any realization of a
generic colored direction network on (G, γ ).

There are two types of subgraphs (G ′, γ ) that constitute minimal violations of
cone-Laman sparsity:

• (G ′, γ ) is a cone-(2, 2) graph.
• (G ′, γ ) has trivial ρ-image, and is a (2, 2)-block.

If (G ′, γ ) is a cone-(2, 2) graph, then Proposition 3.1 applies to it, and we are done.
For the other type, we may assume that the colors on G ′ are zero by Lemma 2.1 in

which case the system (13) on (G ′, γ ) is equivalent to a direction network on G ′ as
a finite, unsymmetric, uncolored graph. Thus, the Parallel Redrawing Theorem [35,
Thm. 4.1.4] in the form [31, Thm. 3] applies directly to show that all realizations of
G ′ have only collapsed edges.

The rest of this section proves Proposition 3.1.

3.4 Geometry of Some Generic Linear Projections

We first establish some geometric results we need below. Given a unit vector v ∈ R
2

and a point p ∈ R
2, we denote by �(v,p) the affine line consisting of points q where

q − p = λv

for some scalar λ ∈ R, i.e. �(v,p) is the line through p in direction v.
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3.4.1 An Important Linear Equation

The following is a key lemma which will determine where certain points must lie
when solving a cone direction network.

Lemma 3.2 Suppose R is a non-trivial rotation about the origin, v∗ is a unit vector
and p satisfies

(R − I )p = λv∗

for some λ ∈ R. Then, for some C ∈ R, we have p = Cv where v = Rπ/2R−1/2v∗,
R−1/2 is the inverse of a square root of R, and Rπ/2 is the counter-clockwise rotation
through angle π/2.

Proof A computation shows that (R − I )R−1/2 = R1/2 − R−1/2 is a scalar multiple
of Rπ/2. The lemma follows. 
�

3.4.2 The Projection T (v,w,R)

Let v and w be unit vectors in R
2 and R some non-trivial rotation. Denote by v∗ the

vector R1/2 · v⊥ for some choice of square root of R1/2 of R.
We define T (v,w, R) to be the linear projection from �(v, 0) to �(w, 0) in the

direction v∗. The following properties of T (v,w, R) are straightforward.

Lemma 3.3 Let v andw be unit vectors and R a non-trivial rotation. Then, the linear
map T (v,w, R):

• Is defined if v∗ is not in the same direction as w.
• Is identically zero if and only if v∗ and v are collinear.

3.4.3 The Scale Factor of T (v,w, R)

The image T (v,w, R) · v is equal to λw for some scalar λ. We define the scale factor
λ(v,w, R) to be this λ. We need the following elementary fact about the scaling factor
of T (v,w, R).

Lemma 3.4 Let v and w be unit vectors such that v∗ and w are linearly independent.
Then the scaling factor λ(v,w, R) of the linear map T (v,w, R) is given by

〈v, (v∗)⊥〉
〈w, (v∗)⊥〉 .

Proof The map T (v,w, R) is equivalent to the composition of

• perpendicular projection from �(v, 0) to �((v∗)⊥, 0), followed by
• the inverse of perpendicular projection �(w, 0) → �((v∗)⊥, 0).

The firstmap scales the length of vectors by 〈v, (v∗)⊥〉 and the second by the reciprocal
of 〈w, (v∗)⊥〉. 
�
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From Lemma 3.4 it is immediate that

Lemma 3.5 The scaling factor λ(v,w, R) is identically 0 precisely when R is an
order-2 rotation. If R is not an order-2 rotation, then λ(v,w, R) approaches infinity
as v∗ approaches ±w.

3.4.4 Generic Sequences of the Map T (v,w, R)

Let v1, v2, . . . , vn be unit vectors, and S1, S2, . . . , Sn be rotations of the form Ri
k ,

where Rk is a rotationof order k.Wedefine the linearmapT (v1, S1, v2, S2, . . . , vn, Sn)
to be

T (v1, S1, v2, S2, . . . , vn, Sn)

= T (vn, v1, Sn) ◦ T (vn−1, vn, Sn−1) ◦ · · · ◦ T (v1, v2, S1).

The following proposition plays a key role in the next section, where it is interpreted
as providing a genericity condition for cone direction networks.

Proposition 3.6 Let v1, v2, . . . , vn be pairwise linearly independent unit vectors and
S1, S2, . . . , Sn be rotations of the form Ri

k . If the vi avoid a proper algebraic subset of
(S1)n (that depends on the Si ), the map T (v1, S1, v2, S2, . . . , vn, Sn) scales the length
of vectors by a factor of λ 
= 1.

Proof If any of the T (vi , vi+1, Si ) are identically zero, we are done, so we assume
none of them are. Themap T (v1, S1, v2, S2, . . . , vn, Sn) then scales vectors by a factor
of

λ(v1, v2, S1) · λ(v2, v3, S2) · · · λ(vn−1, vn, Sn−1) · λ(vn, v1, Sn)

which we denote by λ. That λ is constantly one is a polynomial statement in the vi by
Lemma 3.4, and so it is either always true or holds only on a proper algebraic subset
of

(
S
1
)n
. This means it suffices to prove that there is one selection for the vi where

λ 
= 1.
Without loss of generality, we may assume that T (v j , v j+1, S j ) is defined for all

j . Note that |λ(vn, v1, Sn)| attains an absolute (non-zero) minimum when v∗
n = v⊥

1
by Lemma 3.4 and |λ(v1, v2, S1)| grows arbitrarily large as v∗

1 moves towards v2.
Thus |λ| grows arbitrarily large as v∗

1 moves towards v2. This means that λ is not
constantly 1. 
�

3.5 Proof of Proposition 3.1

It will suffice to prove the existence of a single assignment of directions d to a cone-
(2, 2) graph (G, γ ) forwhichwe can show that all the realizationsG(p) of the resulting
direction network are collapsed. The generic statement is then immediate. The strategy
is to first decompose (G, γ ) into cone-(1, 1) graphs using Proposition 2.8, assign
directions to each connected cone-(1, 1) graph which force a certain local geometric
structure on G(p) (Sect. 3.5.1), and then to show that the properties of the overlap
graph imply that the whole realization must be collapsed (Sects. 3.5.2, 3.5.3).
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3.5.1 Special Direction Networks on Connected Map-Graphs

Let (G, γ ) be a Z/kZ-colored graph that is a connected cone-(1, 1) graph. We select
and fix a base vertex b ∈ V (G) that is on the (unique) cycle in G. The next lemma
provides the main “gadget” that we use in the proof of Proposition 3.1.

Lemma 3.7 Let k ≥ 2, and let (G, γ ) be a Z/kZ-colored graph that is a connected
cone-(1, 1) graph with a base vertex b. Let γ ∈ Z/kZ be the ρ-image of the cycle in
G, let v be a unit vector, and let v∗ = (Rγ /2

k · v)⊥. We can assign directions d to the
edges of G so that, in all realizations of the corresponding direction network (G̃, ϕ,d)

on the lift:

• For each γ ′ ∈ Z/kZ, the point pb̃γ ′ lies on the line �(Rγ ′
k · v, 0).

• The rest of the points all lie on the lines �(Rγ ′
v∗,pb̃γ ′ ) as γ ′ ranges over Z/kZ.

Proof We assign directions in the lift G̃ ofG. We start by selecting an edge bi ∈ E(G)

that is incident on the base vertex b and in the cycle in G. Then G − bi is a spanning
tree T of G.

Since T is contractible, it lifts to k disjoint copies of itself in G̃. Let T̃ be the copy
containing b̃0. Note that T̃ hits the fiber over every edge in G except for bi exactly
one time and the fiber over every vertex exactly one time.

Recall that we only need to assign a direction to one edge in each orbit. We first
assign every edge in T̃ the direction v∗ = (Rγ /2

k · v)⊥. From this choice of directions
already, it now follows by the connectivity of T that in any realization of the cone

direction network induced on the �-orbit of T̃ any point lies on some �(Rγ ′
k v∗,pb̃γ ′ ).

It only remains to specify a direction for some edge in the fiber of bi . Select the
edge in the fiber over bi incident on the copy of i in T̃ . Assign this edge the direction
v∗ as well. Note that this edge is necessarily incident on the vertex b̃γ since the cycle
has ρ-image γ . The choice of direction on this edge implies that

pb̃γ
− pb̃0 = Rγ

k pb̃0 − pb̃0 = λv∗

for some scalar λ. It now follows from Lemma 3.2, applied to the rotation Rγ

k , that
pb̃0 lies on �(v, 0). 
�

3.5.2 Proof of Proposition 3.1 for order-2 rotations

Decompose the cone-(2, 2) graph (G, γ ) into two edge-disjoint (but not necessar-
ily connected) cone-(1, 1) graphs X and Y , using Proposition 2.8. The order of the
ρ-image of any cycle in either X or Y is always 2, so the construction of Lemma 3.7
implies that, by assigning the same direction v to every edge in X , every vertex in any
realization lies on a single line through the origin in the direction of v. Similarly for
edges in Y , assign a direction w different than v.

Since every vertex is at the intersection of two skew lines through the origin, the
proposition is proved.
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3.5.3 Proof of Proposition 3.1 for rotations of order k ≥ 3

Using Proposition 2.8, fix a decomposition of the cone-(2, 2) graph (G, γ ) into two
cone-(1, 1) graphs X and Y and choose base vertices for the connected components of
X and Y . This determines an overlap graph D. Since we deal with them independently
of X and Y , we define Gi to be the connected components of X and Y , and recall that
these partition the edges of G. We denote the base vertex of Gi by bi . Since we use
subscripts to denote the subgraph of the base vertex, in this section we will use the
notation γ · b̃i as γ ranges over Z/kZ for the fiber over vertex bi .

Assigning directions For each Gi , select a unit vector vi such that:

• For any i, j , we have vi 
= Rγ

k v j for all γ ∈ Z/kZ.

• For all choices ki , the vectors wi = Rki
k vi are generic in the sense of Proposition

3.6.

Now, for each Gi we assign directions as prescribed by Lemma 3.7 where vi is the
vector input into the lemma. This is well defined, since Gi partition the edges of G.
(They clearly overlap on the vertices—we will exploit this fact below—but it does not
prevent us from assigning edge directions independently.)

We define the resulting colored direction network to be (G, γ ,d) and the lifted
cone direction network (G̃, ϕ, d̃). We also define, as a convenience, the rotation Si to
be Rγ

k where γ is the ρ-image of the unique cycle in Gi .

Local structure of realizations Let Gi and G j be distinct connected cone-(1, 1) com-
ponents and suppose that there is a directed edge bib j in the overlap graph D. We
have the following relationship between pb̃i and pb̃ j

in realizations of (G̃, ϕ, d̃).

Lemma 3.8 Let G̃(p) be a realization of the cone direction network (G̃, ϕ, d̃) defined
above. Let vertices bi and b j in V (G) be the base vertices of Gi and G j , and suppose
that bi b j is a directed edge in the overlap graph D. Let γ · b̃i be some vertex in the

fiber of bi . Then for some γ ′, we have p
γ ′·b̃ j

= T (Rγ ′
k vi , R

γ

k v j , Si ) · p
γ ·b̃i .

The proof is illustrated in Fig. 2.

Proof By Lemma 3.7, the vertex p
γ ·b̃i lies on the line �(Rγ

k v, 0), and p
γ ′·b̃ j

lies on

�(Rγ

k v
∗,p

γ ·b̃i ) for some γ ′ ∈ Z/kZ since the vertex b j lies in the map-graph Gi . By

Lemma 3.7 applied to G j , the vertex pγ ′·b̃ j
lies on the line �(Rγ ′

k v, 0). This is exactly

the situation captured by the map T (Rγ ′
k vi , R

γ

k v j , Si ). 
�

Base vertices on cycles in D must be at the origin Let bi be the base vertex in Gi

that is also on a directed cycle in D. The next step in the proof is to show that all
representatives in bi must be mapped to the origin in any realization of (G̃, ϕ, d̃).

Lemma 3.9 Let G̃(p) be a realization of the cone direction network (G̃, ϕ, d̃) defined
above, and let bi ∈ V (G) be a base vertex that is also on a directed cycle in D (one
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Fig. 2 Example of the local
structure of the proof of
Proposition 3.1; in this example,
R2
4pb̃2

is the image of pb̃1
via

the projection T (v1, R2
4v2, S1)

v1

v2

p b̃1

p b̃2

exists by Proposition 2.11). Then all vertices in the fiber over bi must be mapped to
the origin.

Proof Iterated application of Lemma 3.8 along the cycle in D containing bi tells us
that any vertex in the fiber over bi is related to another vertex in the same fiber by a
linear map meeting the hypothesis of Proposition 3.6. This implies that if any vertex in
the fiber over bi is mapped to a point not the origin, some other vertex in the same fiber
would be mapped to a point at a different distance to the origin. This is a contradiction,
since all realizations G̃(p) are symmetric with respect to Rk , so in fact the fiber over
bi was mapped to the origin. 
�

All base vertices must be at the origin So far we have shown that every base vertex
bi that is on a directed cycle in the overlap graph D is mapped to the origin in any
realization G̃(p) of (G̃, ϕ, d̃). However, since every base vertex is connected to the
cycle in its connected component by a directed path in D, we can show that all the
base vertices are at the origin.

Lemma 3.10 Let G̃(p) be a realization of the cone direction network (G̃, ϕ, d̃) defined
above. Then all vertices in the fiber over bi must be mapped to the origin.

Proof The statement is already proved for base vertices on a directed cycle in Lemma
3.9. Any base vertex not on a directed cycle, say bi , is at the end of a directed path
which starts at a vertex on the directed cycle. Thus pγ ·bi is the image of 0 under some
linear map, and hence is at the origin. 
�

All vertices must be at the origin The proof of Proposition 3.1 then follows from the
observation that, if all the base vertices bi must be mapped to the origin in G̃(p),
then Lemma 3.7 implies that every vertex in the lift of Gi lies on a family of k lines
intersecting at the origin. Since every vertex is in the span of two of the Gi , and these
families of lines intersect only at the origin, we are done: G̃(p) must put all the points
at the origin.
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4 Infinitesimal Rigidity of Cone Frameworks

The generic rigidity of a cone framework (G̃, ϕ, �̃) is a property of the underlying
colored graph. To see this, note that we can identify the realization space R(G̃, ϕ, �̃)

with the solutions to the following system, defined via the associated colored graph
(G, γ ):

‖Rγi j
k p j − pi‖2 = �2i j for all edges i j ∈ E(G). (14)

Here �i j is equal to the length of any lift of the edge i j which, by symmetry, is
independent of the lift. We call the resulting object a colored framework (G, γ , �) on
the quotient graph and denote its realization space byR(G, γ , �). Since the two spaces
have the same dimension, for any choice V ⊂ V (G̃) of vertex–orbit representatives
in G̃, the projection onto the set (pi )i∈V induces an algebraic isomorphism.

Let G have n vertices. Computing the formal differential of (14), we see that a
vector v ∈ R

2n is an infinitesimal motion if and only if

〈Rγi j
k v j − vi , R

γi j
k p j − pi 〉 = 0 for all edges i j ∈ E(G). (15)

We define (G, γ , �) to be infinitesimally rigid if the system (15) has rank 2n − 1.
It is easy to see that infinitesimal rigidity of (G, γ , �) coincides with that of the lift
(G̃, ϕ, �̃).

4.1 Framework Genericity

Our approach to genericity for cone frameworks is a small extension of the one for
finite frameworks from [31]. Let (G, γ , �) be a colored framework. A realizationG(p)

is generic if the rank of (15) is maximum among all the realizations. Thus, the set of
non-generic realizations consists simply of those for which the (complexification of
the) system (15) does not attain its maximal rank. This is cut out by the minors of the
matrix form of (15), and so is clearly algebraic. Since the natural homeomorphism
R(G̃, ϕ, �̃) → R(G, γ , �) is an algebraic map, the pre-image in R(G̃, ϕ, �̃) of the
non-generic subset of R(G, γ , �) is also algebraic.

4.2 Proof of Theorem 1

We prove necessity by inspecting (15) and then sufficiency with Theorem 3.

The Maxwell direction Suppose that (G, γ ) is a colored graph on m = 2n − 1 edges
that is not cone-Laman-sparse. Thus G contains (at least) one of two possible types
of cone-Laman-circuits which we call G ′: a cone-(2, 2) graph or a (2, 2)-graph with
trivial ρ-image. In the former case, the subgraph has n vertices and 2n edges, and
since any framework has a trivial motion arising from rotation, the system (15) has a
dependency.
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In the latter case, by Lemma 2.1, we may assume the edges are colored by 0, in
which case the system (15) is identical to the well-known rigidity matrix for finite
frameworks. Since G ′ is not (2, 3)-sparse, the Maxwell-Laman Theorem provides a
dependency in (15).

The Laman direction Theorem 3 implies that (13) has, generically, rank 2n − 1 if
(G, γ ) is cone-Laman. The next proposition says that (15) has the same rank.

Proposition 4.1 Let G(p) be a realization of a cone framework with colored graph
(G, γ ). If G(p) is faithful and solves the direction network (G, γ ,d), then the system
(15) for G(p) has the same rank as (13) for (G, γ ,d).

Proof Let Rπ/2 be the counter-clockwise rotation through angleπ/2. IfG(p) faithfully
solves (G, γ ,d), then R

γi j
k p j − pi = αdi j . A vector q is therefore an infinitesimal

motion if and only if q⊥ is a solution to (13) by this computation:

〈Rγi j
k q j − qi ,di j 〉 = 0 ⇐⇒

〈Rπ/2(R
γi j
k q j − qi ), Rπ/2di j 〉 = 0 ⇐⇒

〈Rγi j
k Rπ/2q j − Rπ/2qi , Rπ/2di j 〉 = 0.

Thus, (15) and (13) have isomorphic solution spaces and hence the same rank. 
�

Remark That Rπ/2 and R
γi j
k commute is critical in the computation used to prove

Proposition 4.1. The corresponding argument for reflection frameworks would fail
since R

γi j
k would be replaced by a reflection which does not commute with Rπ/2. In

fact, as we will see, the ranks of the two systems can be different in the reflection case.

4.3 Rigidity for Non-free Actions

Webriefly remark here on symmetric frameworkswith fixed vertices or inverted edges.
If there is an edge ĩ j̃ ∈ G̃ and a group element γ ∈ � such that γ · ĩ j̃ = j̃ ĩ , then ĩ
and j̃ descend to the same vertex, say i , in the quotient. The inverted edge, in terms
of rigidity, forces pi and Rγ · pi to remain at a constant distance. This is the same
constraint as if there were a self-loop at i with color γ in the quotient graph (G, γ ).
Thus, for every inverted edge, we simply put such a self-loop in the quotient graph
and appeal to Theorem 1.

If there is a fixed vertex, say ĩ , then in any realization it lies at the origin. (We
may assume without loss of generality that there is only one fixed vertex.) Suppose j̃
and consequently its �-orbit are connected to ĩ by some edge (orbit). As a symmetric
framework, this forces p j and its �-orbit to be the vertices of a regular k-gon with
fixed distance from the origin. The same constraint can be enforced by deleting the
edge orbit to ĩ and replacing it with the edges of the regular polygon (see Fig. 3). Thus,
we reduce the problem again to the case of a free �-action.
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Fig. 3 Operation removing an edge orbit to a fixed vertex

5 Special Pairs of Reflection Direction Networks

We recall, from the introduction, that for reflection direction networks, Z/2Z acts on
the plane by some reflection through the origin. It is clear that we can reduce to the
case where the reflection is through the y-axis, and we make this assumption for the
remainder of this section.

5.1 Direction Networks on Ross Graphs

We first characterize the colored graphs for which generic direction networks have
strongly faithful realizations. A realization is strongly faithful if no two vertices lie on
top of each other. This is a stronger condition than simply being faithful which only
requires that edges are not to be collapsed.

Proposition 5.1 A generic direction network (G̃, ϕ,d) has a unique, up to (vertical)
translation and scaling, strongly faithful realization if and only if its associated colored
graph is a Ross graph.

To prove Proposition 5.1 we expand upon the method from [16, Sects. 17–18] and
use the following proposition.

Proposition 5.2 Let (G, γ ) be a reflection-(2, 2) graph. Then a generic direction
network on the symmetric lift (G̃, ϕ) of (G, γ ) has only collapsed realizations.

Since the proof of Proposition 5.2 requires a detailed construction, we first show how
it implies Proposition 5.1.

5.2 Proof that Proposition 5.2 Implies Proposition 5.1

Let (G, γ ) be a Ross graph, and assign directions d to the edges of G such that, for
any extension (G + i j, γ ) of (G, γ ) to a reflection-(2, 2) graph as in Proposition 2.4,
d can be extended to a set of directions that is generic in the sense of Proposition 5.2.
This is possible because there are a finite number of such extensions.

For this choice of d, the realization space of the direction network (G̃, ϕ,d) is
2-dimensional. Since solutions to (13) may be scaled or translated in the vertical
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direction, all solutions to (G̃, ϕ,d) are related by scaling and translation. It then
follows that a pair of vertices in the fibers over i and j are either distinct from each
other in all non-zero solutions to (13) or always coincide. In the latter case, adding
the edge i j with any direction does not change the dimension of the solution space,
no matter what direction we assign to it. It then follows that the solution spaces of

generic direction networks on (G̃, ϕ,d) and (G̃ + i j, ϕ,d) have the same dimension,
which is a contradiction by Proposition 5.2.

For the opposite direction, suppose (G, γ ) is not a Ross graph. A proof similar
to that in Sect. 3.3 applies. If m < 2n − 2, then dimension counting tells us that
the space of realizations cannot be unique up to (vertical) translations and scaling. If
m ≥ 2n − 2, then (G, γ ) has one of two types of circuits, either a reflection-(2, 2)-
subgraph or a (2, 2)-subgraph with trivial ρ-image. In the former case, we are done
by Proposition 5.2, and in the latter case, the same proof from Sect. 3.3 applies.

5.3 Proof of Proposition 5.2

Let (G, γ ) be a reflection-(2, 2) graph associated to (G̃, ϕ). It is sufficient to construct
a set of directions d such that the direction network (G̃, ϕ,d) has only collapsed
realizations. In the rest of the proof, we construct a set of directions d and then
verify that the colored direction network (G, γ ,d) has only collapsed solutions. The
proposition then follows from the equivalence of colored direction networks with
reflection direction networks.

Combinatorial decomposition We apply Proposition 2.9 to decompose (G, γ ) into a
spanning tree T with all colors the identity and a reflection-(1, 1) graph X . For now,
we further assume that X is connected.

Assigning directions Let v be a direction vector that is not horizontal or vertical. For
each edge i j ∈ T , set di j = v. Assign all the edges of X the vertical direction. Denote
by d this assignment of directions.

All realizations are collapsed We now show that the only realizations of (G̃, ϕ,d)

have all vertices on top of each other. By Proposition 2.10, T lifts to two copies of
itself, in G̃. It then follows from the connectivity of T and the construction of d that,
in any realization, there is a line L with direction v such that every vertex of G̃ must
lie on L or its reflection. Since the vertical direction is preserved by reflection, the
connectivity of the lift of X , again from Proposition 2.10, implies that every vertex of
G̃ lies on a single vertical line, which must be the y-axis by reflection symmetry.

Thus, in any realization of (G̃, ϕ,d) all the vertices lie at the intersection of L ,
the reflection of L through the y-axis and the y-axis itself. This is a single point, as
desired. Figure 4 shows a schematic of this argument.

X does not need to be connected Finally, we can remove the assumption that X was
connected by repeating the argument for each connected component of X separately.
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1
2

3

4

p1̃

p2̃

p3̃

p4̃

0

0 0

1

1

1

1

Fig. 4 Schematic for proof of Proposition 5.2 and Lemma 5.4: the y-axis is shown as a dashed line.
The corresponding colored graph is depicted on the left with the tree indicated by black lines and the
reflection-(1, 1) graph indicated by the gray lines. The right-hand figure indicates a realization where only
the directions on the tree are enforced. If the gray lines are then forced to be vertical, the entire framework
collapses to the y-axis. If the gray lines are forced to be horizontal, the framework takes on the form given
in Fig. 5

5.4 Special Pairs for Ross Circuits

Theorem 4 will reduce to the case of a Ross circuit.

Proposition 5.3 Let (G, γ ) be a Ross circuit with lift (G̃, ϕ). Then there is an edge i ′ j ′
with non-zero color such that for a generic direction network (G̃ ′, ϕ,d) with colored
graph (G − i ′ j ′, γ ):

• For all faithful realizations of (G̃ ′, ϕ,d), we have that p j̃ ′1
−pĩ ′0

is a non-zero vector

with direction independent of the realization. In particular, (G̃ ′, ϕ,d) induces a
well-defined direction on the edge i ′ j ′, which extends to an assignment of directions
to the edges of G.

• The direction networks (G̃, ϕ,d) and (G̃, ϕ, (d)⊥) are a special pair.

Before giving the proof, we describe the idea. We are after sets of directions that
lead to faithful realizations of Ross circuits. By Proposition 5.2, these directions must
be non-generic. A natural way to obtain such a set of directions is to discard an
edge i j from the colored quotient graph, apply Proposition 5.1 to obtain a generic
set of directions d′ with a strongly faithful realization G̃ ′(p), and then simply set the
directions on the edges in the fiber over i j to be the difference vectors between the
points.

Proposition 5.1 tells us that this procedure induces a well-defined direction for the
edge i j , allowing us to extend d from G ′ to G in a controlled way. However, it does
not tell us that rank of (G̃, ϕ,d) will rise when the directions are turned by angle
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π/2, and this seems hard to do directly. Instead, we construct a set of directions d so
that (G̃, ϕ,d) is rank deficient and has realizations where pi 
= p j , and (G̃, ϕ,d⊥)

is generic. Then we make a perturbation argument to show the existence of a special
pair.

The construction we use is, essentially, the one used in the proof of Proposition
5.2 but turned through angle π/2. The key geometric insight is that horizontal edge
directions are preserved by the reflection, so the “gadget” of a line and its reflection
crossing on the y-axis, as in Fig. 4, degenerates to just a single line.

5.5 Proof of Proposition 5.3

Let (G, γ ) be a Ross circuit; recall that this implies that (G, γ ) is a reflection-Laman
graph.

Combinatorial decomposition We decompose (G, γ ) into a spanning tree T and a
reflection-(1, 1) graph X as in Proposition 2.10. In particular, we again have all edges
in T colored by the identity. For now, we assume that X is connected, and we fix i ′ j ′
to be an edge that is on the cycle in X with γi ′ j ′ 
= 0; such an edge must exist by the
hypothesis that X is reflection-(1, 1). Let G ′ = G \ i ′ j ′. Furthermore, let T̃0 and T̃1
be the two connected components of the lift of T . For a vertex i ∈ G, the lift ĩk lies in
T̃k . We similarly denote the lifts of i ′ and j ′ by ĩ ′0, ĩ ′1 and j̃ ′0, j̃ ′1.

Assigning directions The assignment of directions is as follows: to the edges of T ,
we assign a direction v that is neither vertical nor horizontal. To the edges of X we
assign the horizontal direction. Define the resulting direction network to be (G̃, ϕ,d)

and the direction network induced on the lift of G ′ to be (G̃ ′, ϕ,d).

The realization space of (G̃, ϕ,d) Figs. 4 and 5 contains a schematic picture of the
arguments that follow.

Lemma 5.4 The realization space of (G̃, ϕ,d) is 2-dimensional and parameterized
by exactly one representative in the fiber over the vertex i selected above.

Proof In a manner similar to the proof of Proposition 5.2, the directions on the edges
of T force every vertex to lie either on a line L in the direction v or its reflection.
Since the lift of X is connected, we further conclude that all the vertices lie on a single
horizontal line. Thus, all the points p j̃0

are at the intersection of the same horizontal
line and L or its reflection. These determine the locations of the p j̃1

, so the realization
space is parameterized by the location of pĩ ′0

. 
�
Inspecting the argument more closely, we find that:

Lemma 5.5 In any realization G̃(p) of (G̃, ϕ,d), all the p j̃0
are equal and all the p j̃1

are equal.

Proof Because the colors on the edges of T are all zero, it lifts to two copies of
itself, one of which spans the vertex set { j̃0 : j ∈ V (G)} and one which spans
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0 0

Fig. 5 Schematic of the proof of Proposition 5.3: the y-axis is shown as a dashed line. The directions on
the edges of the lift of the tree T force all the vertices to be on one of the two lines meeting at the y-axis. The
horizontal directions on the connected reflection-(1, 1) graph X force the point p j̃0

to be at the intersection

marked by the black dot and p j̃1
to be at the intersection marked by the gray one. The thick gray line

indicates a thick mass of horizontal edges

{ j̃1 : j ∈ V (G)}. It follows that in a realization, we have all the p j̃0
on L and the p j̃1

on the reflection of L . 
�
In particular, because the color γi ′ j ′ on the edge i ′ j ′ is 1, we obtain the following.

Lemma 5.6 The realization space of (G̃, ϕ,d) contains points where the fiber over
the edge i ′ j ′ is not collapsed.

The realization space of (G̃ ′, ϕ,d) The conclusion of Lemma 5.4 implies that the
realization system for (G̃, ϕ,d) is rank deficient by one. Next we show that removing
the edge i ′ j ′ results in a direction network that has full rank on the colored graph
(G ′, γ ).

Lemma 5.7 The realization space of (G̃, ϕ,d) is canonically identified with that of
(G̃ ′, ϕ,d).

Proof In the proof of Lemma 5.4, it was not essential that X lifts to a connected
subgraph of G̃. It was only required that X spans the vertices, and this is true of
X − i ′ j ′. Since the two lifts of a vertex must always lie on the same horizontal line in
a realization, if any lift of i and any lift of j lie on the same horizontal line, then all
lifts do. It is then easy to conclude all points lie on a single horizontal line. 
�

The realization space of (G̃, ϕ,d⊥) Next, we consider what happens when we turn
all the directions by π/2.

Lemma 5.8 The realization space of (G̃, ϕ,d⊥) has only collapsed solutions.

Proof This is exactly the construction used to prove Proposition 5.2. 
�

Perturbing (G̃, ϕ,d) To summarize what we have shown so far:

(a) (G̃, ϕ,d) has a 2-dimensional realization space parameterized bypĩ ′0
and identified

with that of a full-rank direction network on the Ross graph (G ′, γ ).
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(b) There are points G̃(p) in this realization space where pĩ ′0

= p j̃ ′1

.

(c) (G̃, ϕ,d⊥) has a 1-dimensional realization space containing only collapsed solu-
tions.

What we have not shown is that the realization space of (G̃, ϕ,d) has faithful realiza-
tions, since the ones we constructed all have many coincident vertices. Proposition 5.1
will imply the rest of the theorem, provided that the above properties hold for any small
perturbation of d, since some small perturbations of any assignment of directions to
the edges of (G ′, γ ) have only faithful realizations.

Lemma 5.9 Let d̂′ be a perturbation of the directions d on the edges of G ′ only. If
d̂′ is sufficiently close to d|E(G ′) , then there are realizations of the direction network

(G̃ ′, ϕ, d̂′) such that the direction of p j̃ ′1
− pĩ ′0

is non-zero and a small perturbation of
di j .

Proof The realization space is parameterized by pĩ ′0
(for directions sufficiently close

to d′), and so p j̃ ′1
varies continuously with the directions on the edges and pĩ ′0

. Since

there are realizations of (G̃ ′, ϕ,d) with pĩ0 
= p j̃1
, the lemma follows. 
�

Lemma5.9 implies that any sufficiently small perturbationof the directions assigned
to the edges of G ′ gives a direction network that induces a well-defined direction on
the edge i ′ j ′ which is itself a small perturbation of di ′ j ′ . Since the ranks of (G̃ ′, ϕ,d′)
and (G̃, ϕ,d⊥) are stable under small perturbations, this implies that we can perturb
d to a d̂ so that d̂|E(G ′) is generic in the sense of Proposition 5.1, while preserving

faithful realizability of (G̃, ϕ, d̂) and full rank of the realization system for (G̃, ϕ, d̂
⊥
).

The Proposition is proved when X is connected.

X need not be connected The proof is then complete once we remove the additional
assumption that X was connected. Let X have connected components X1, X2, . . . , Xc.
For each of the Xi , we can identify an edge (i ′ j ′)k with the same properties as i ′ j ′
above.

Assign directions to the tree T as above. For X1, we assign directions exactly as
above. For each of the Xk with k ≥ 2, we assign the edges of Xk \(i ′ j ′)k the horizontal
direction and (i ′ j ′)k a direction that is a small perturbation of horizontal.

With this assignment d, we see that for any realization of (G̃, ϕ,d), each of the Xk ,
for k ≥ 2, is realized as completely collapsed to a single point at the intersection of
the line L and the y-axis. Moreover, in the direction network on d⊥, the directions on
these Xi are a small perturbation of the ones used on X in the proof of Proposition
5.2. From this it follows that any realization of (G̃, ϕ,d⊥) is completely collapsed and
hence full rank.

We now see that this new set of directions has properties (a), (b), and (c) above
required for the perturbation argument. Since that argument makes no reference to the
decomposition, it applies verbatim to the case where X is disconnected.
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5.6 Proof of Theorem 4

The easier direction to check is necessity.

The Maxwell direction If (G, γ ) is not reflection-Laman, then it contains either a
Laman-circuit with trivial ρ-image or a violation of (2, 1)-sparsity. A violation of
(2, 1)-sparsity implies that the realization system (13) of (G̃, ϕ,d⊥) has a dependency,
since the realization space is always at least 1-dimensional.

Suppose instead there is a Laman-circuitG ′ with trivialρ-image. Then any direction
network on (G ′, γ ) is equivalent to a direction network on the (finite, uncolored, non-
symmetric) graph G ′. (The lift G̃ ′ is two mirror images of G ′.) In this case, similar
to Proposition 4.1, (G ′, γ ,d) and (G ′, γ ,d⊥) have the same rank. Thus if (G, γ ,d⊥)

and hence (G ′, γ ,d⊥) have only collapsed realizations, so does (G ′, γ ,d) in which
case (G, γ ,d) has no faithful realization.

The Laman direction Now let (G, γ ) be a reflection-Laman graph and let (G ′, γ ) be
a Ross basis of (G, γ ). For any edge i j /∈ G ′, adding it to G ′ induces a Ross circuit4
which contains some edge i ′ j ′ having the property specified in Proposition 5.3. Note
thatG ′− i j+ i ′ j ′ is again a Ross basis.We therefore can assume (after edge-swapping
in this manner) for all i j /∈ G ′ that i j has the property from Proposition 5.3 in the
Ross circuit it induces.

We assign directions d′ to the edges of G ′ such that:

• The directions on each of the intersections of the Ross circuits with G ′ are generic
in the sense of Proposition 5.3.

• The directions on the edges of G ′ that remain in the reduced graph (G∗, γ ) are
perpendicular to an assignment of directions on G∗ that is generic in the sense of
Proposition 5.2.

• The directions on the edges of G ′ are generic in the sense of Proposition 5.1.

This is possible because the set of disallowed directions is the union of a finite number
of proper algebraic subsets in the space of direction assignments. Extend to directions
d on G by assigning directions to the remaining edges as specified in Proposition 5.3.
By construction, we know that:

Lemma 5.10 The direction network (G̃, ϕ,d) has faithful realizations.

Proof The realization space is identified with that of (G̃ ′, ϕ,d′), and d′ is chosen so
that Proposition 5.1 applies. 
�
Lemma 5.11 In any realization of (G̃, ϕ,d⊥), the Ross circuits are realized with all
their vertices coincident and on the y-axis.

Proof This follows from how we chose d and Proposition 5.3. 
�

4 Recall that here we are using Ross circuit to refer to only one kind of circuit in the Ross matroid. The
other type of circuit cannot appear since reflection-Laman graphs do not have (2, 2) blocks with trivial
ρ-image.
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As a consequence of Lemma 5.11 and the fact that we picked d so that d⊥ extends
to a generic assignment of directions (d∗)⊥ on the reduced graph (G∗, γ ) we have:

Lemma 5.12 The realization space of (G̃, ϕ,d⊥) is identified with that of (G̃∗, ϕ,

(d∗)⊥) which, furthermore, contains only collapsed solutions.

Observe that a direction network for a single self-loop (colored 1) with a generic
direction only has solutions where vertices are collapsed and on the y-axis. Conse-
quently, replacing a Ross circuit with a single vertex and a self-loop yields isomorphic
realization spaces. Since the reduced graph is reflection-(2, 2) by Proposition 2.6 and
the directions assigned to its edges were chosen generically for Proposition 5.2, that
(G̃, ϕ,d⊥) has only collapsed solutions follows. Thus, we have exhibited a special
pair, completing the proof.

Remark It can be seen that the realization space of a direction network as supplied in
Theorem 4 has at least one degree of freedom for each edge that is not in a Ross basis.
Thus, the statement cannot be improved to, e.g., a unique realization up to translation
and scale.

6 Infinitesimal Rigidity of Reflection Frameworks

Let (G̃, ϕ, �) be a reflection framework, and let (G, γ ) be the quotient graph with n
vertices. The algebraic steps in this section are similar to those inSect. 4. For a reflection
framework, the realization spaceR(G̃, ϕ, �̃)definedby (1)–(2) is canonically identified
with the solutions to

‖γi j · p j − pi‖2 = �2i j for all edges i j ∈ E(G). (16)

As in Sect. 5, we assume, without loss of generality, that � acts by reflections through
the y-axis.

Computing the formal differential of (16), we obtain the system

〈
γi j · p j − pi , v j − vi

〉 = 0 for all edges i j ∈ E(G) (17)

where the unknowns are the velocity vectors vi . A realization is infinitesimally rigid
if the system (17) has rank 2n − 1. As in the case of cone frameworks, generically,
infinitesimal rigidity and rigidity coincide, and the non-generic set is defined in the
same way.

6.1 Relation to Direction Networks

Here is the core of the direction network method for reflection frameworks: we can
understand the rank of (17) in terms of a direction network.

Proposition 6.1 Let G̃(p) be a realization of a reflection framework. Define the direc-
tion di j to be γi j ·p j −pi . Then the rank of (17) is equal to that of (13) for the direction
network (G, γ ,d⊥).
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Proof Exchange the roles of vi and pi in (17). 
�

6.2 Proof of Theorem 2

The,more difficult, “Laman direction” of theMainTheorem follows immediately from
Theorem 4 and Proposition 6.1: given a reflection-Laman graph, Theorem 4 produces
a realization with no coincident endpoints and a certificate that (17) has corank one.
The “Maxwell direction” follows from a similar argument as that for Theorem 1.

Remark The statement of Proposition 6.1 is exactly the same as the analogous state-
ment for orientation-preserving cases of this theory. What is different is that, for
reflection frameworks, the rank of (G, γ ,d⊥) is not the same as that of (G, γ ,d). By
Proposition 5.2, the set of directions arising as the difference vectors from point sets
is always non-generic on reflection-Laman graphs, so we are forced to introduce the
notion of a special pair.

Remark We can extend Theorem 2 to �-actions with inverted edges but which are
otherwise free. Indeed, a similar argument as in Sect. 4.3 applies here.
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