
Discrete Comput Geom (2015) 53:817–824
DOI 10.1007/s00454-015-9687-9

Indecomposable Coverings with Homothetic Polygons

István Kovács1

Received: 3 March 2014 / Revised: 12 March 2015 / Accepted: 16 March 2015 /
Published online: 2 April 2015
© Springer Science+Business Media New York 2015

Abstract Weprove that for any convex polygon S with at least four sides, or a concave
one with no parallel sides, and any m > 0, there is an m-fold covering of the plane
with homothetic copies of S that cannot be decomposed into two coverings.
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1 Introduction

Let C = {Ci | i ∈ I } be a collection of planar sets. It is an m-fold covering if every
point in the plane is contained in at leastm members of C. A 1-fold covering is simply
called a covering.

A planar set S is said to be cover-decomposable if there is a constantm = m(S) such
that every m-fold covering of the plane with translates of S can be decomposed into
two coverings. Pach [3] proposed the problem of determining all cover-decomposable
sets in 1980. He conjectured that all planar convex sets are cover-decomposable. The
conjecture has been verified, in several steps, for all convex polygons [9] (see also
[4,11]). However, very recently, Pálvölgyi proved that the unit disk is not cover-
decomposable [8]. His result holds also for convex sets with smooth boundary.

The problemof determining cover-decomposable sets has been generalized inmany
directions, see [5] for a survey.
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A homothetic transformation is the composition of a translation and a scaling.
Keszegh and Pálvölgyi [1] proved that any 12-fold covering of the plane with homo-
thetic copies of a fixed triangle T can be decomposed into two coverings. In this note
we prove that, with a few possible exceptions, this result cannot be extended to other
polygons.

Theorem 1 Let S be a convex polygon with at least four sides, or a concave polygon
with no parallel sides, and let m > 0. There is an m-fold covering of the plane with
homothetic copies of S that cannot be decomposed into two coverings.

For convex polygons we can keep the sizes of the homothetic copies “almost equal.”

Theorem 2 Let S be a convex polygon with at least four sides, and let ε > 0 and
m > 0. There is a collection of homothetic copies of S, each of them with scaling
factor between 1 − ε and 1 + ε, which forms an m-fold covering of the plane that
cannot be decomposed into two coverings.

Our method is based on the ideas of Pálvölgyi [7,8].

2 Preparations

Most of the papers about cover-decomposability investigate the problem in its dual
form.

Suppose that H = {Si | i ∈ I } is collection of translates of S that form an m-
fold covering of the plane. For every i ∈ I , let ci be the center of gravity of Si .
LetH′ = {ci | i ∈ I } be the set of the centers. For any point a, let−S(a) be a translate
of −S whose center of gravity is a. Then a ∈ Si if and only if ci ∈ −S(a). Therefore,
the collectionH can be decomposed into two coverings if and only if the points of the
setH′ can be colored with two colors such that every translate of S contains points of
both colors. This idea is originally due to Pach [4].

If we have homothetic copies, then the dual version of the problem is not equivalent
to the original one. However, in this paper we give a tricky definition of the dual form.

Fix a coordinate system and let o be the origin. If it does not lead to confusion, for
any point p, we denote its position vector−→op also by p. For any α real, set S, and point
p, let

α · S(p) = {α · x + p | x ∈ S}.

The Minkowski sum of any convex polygons S and T is defined as

S + T = {s + t | s ∈ S, t ∈ T }.

Let S be a fixed convex polygon of at least four sides, o ∈ S. It is well known [10]
that for any α, β ≥ 0

α · S + β · S = (α + β) · S.

As an easy consequence, we get the following statement.
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Statement 1 Let α, β ≥ 0, p, q ∈ R
2. (α+β) · S(p) contains q if and only if α · S(p)

and −β · S(q) intersect each other.

First, for every pair (k, l), we will construct a collection of homothetic copies of S,
Xk,l and a collection of translates of −S, Yk,l with the property that for every red-blue
coloring of the elements of Xk,l , there is an element of Yk,l which intersects exactly
k elements, all of which are red (resp. exactly l elements, all of which are blue).

Then we “dualize” this construction, for m = k = l, as follows. Replace each
element of Xm,m by a larger homothetic copy and let X ′

m,m be the new collection.
Replace each element of Ym,m by a point and let Y ′

m,m be the set of these points.
By Statement 1, X ′

m,m and Y ′
m,m have the following property.

For every red-blue coloring of the elements of X ′
m,m , there is an element (point) of

Y ′
m,m which is contained in exactly m elements of X ′

m,m , all of which are of the same
color.

So, for every m, X ′
m,m forms a non-decomposable m-fold covering of the points

in Y ′
m,m . Finally, we extend it to a non-decomposable m-fold covering of the whole

plane.

3 Proof of Theorems 1 and 2

Let S be a fixed convex polygon of at least four sides, o ∈ S. We say that o is the center
of S. We can assume that S is contained in the unit disk of center o. By definition, −S
denotes the reflection of S about the origin. Let v1, v2, . . . , vn be the vertices of −S,
ordered clockwise. Indices are understood mod n, that is, vn+1 means v1.

Definition 1 For every i , 1 ≤ i ≤ n, let Ei denote the convex wedge whose apex is
at the origin and its bounding halflines are the translates of −−−→vivi−1 and

−−−→vivi+1. Ei is
called the wedge that belongs to vertex vi of −S.

Choose a direction d which is not parallel to the sides of S, and the two vertices
va and vb, where S can be touched by a line parallel to d, are not adjacent. Assume
without loss of generality that d is horizontal, and va is the highest and vb is the lowest
vertices of S. Let Q be a quadrilateral created from S by extending the sides at va and
vb. Let vr and vl be the rightmost and the leftmost vertices of Q, respectively. See
Fig. 1. We can assume without loss of generality that vl is not lower than vr . Indeed,
if vl is lower than vr , then we can apply a reflection of S about the y-axis. Let δ > 0
be a very small constant.

For every pair (k, l), k, l ≥ 1, we will construct a triple Tk,l = (Xk,l , Ea
k,l , Eb

k,l),
whereXk,l = {εi · S(pi ) | i ∈ Ik,l}, εi > 0, a collection of homothetic copies of S, and
Ea
k,l = {Ea(q j ) | j ∈ Jak,l}, Eb

k,l = {Eb(r j ) | j ∈ Jbk,l} are collections of translates of
the wedges Ea and Eb, respectively, for some Ik,l , Jak,l , J

b
k,l index sets. Tk,l will have

the following properties.

Property 1 For every red-blue coloring of the elements of Xk,l , either there is an
element of Ea

k,l which intersects exactly k elements of Xk,l , all of which are red, or

there is an element of Eb
k,l which intersects exactly l elements of Xk,l , all of which are

blue.
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Fig. 1 S, Q and the
corresponding vertices
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Fig. 2 The construction of Tk,1
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Property 2 There is a disk Dk,l of radius δ which contains all apices of the wedges
in Ea

k,l and Eb
k,l , and all elements of Xk,l .

First we define Tk,1 and T1,l . For arbitrary k, let Xk,1 be k very small homothetic
copies of S, very close to each other on a horizontal line. Ea

k,1 contains one translate

of the wedge Ea that intersects all k homothetic copies, and Eb
k,1 contains k translates

of the wedge Eb, each intersecting exactly one of the k homothetic copies, but each
intersecting a different one. See Fig. 2. We define the triple T1,l similarly for any l.

Suppose now that we have already defined Tk,l−1 and Tk−1,l . Take a translate of
Tk,l−1 so that the center of Dk,l−1 is (0, 0) and a translate of Tk−1,l so that the center
of Dk−1,l is (1, 3δ). Place a suitable homothetic copy S′ = ε · S of S between points
(0, 0) and (1, 3δ) such that

(i) S′ intersects all wedges in Eb
k,l−1, and all wedges in Ea

k−1,l ,

(ii) S′ does not intersect any of the wedges in Ea
k,l−1, and any of the wedges in Eb

k−1,l .

See Fig. 3. Let

Xk,l = Xk−1,l ∪ Xk,l−1 ∪ {S′},
Ea
k,l = Ea

k−1,l ∪ Ea
k,l−1,

Eb
k,l = Eb

k−1,l ∪ Eb
k,l−1.

Apply a suitable scaling so that Property 2 is satisfied. We claim that Property 1
is also satisfied. Color the elements of Xk,l by red and blue. Suppose that S′ is red.
In the subconfiguration that corresponds to Tk−1,l , either there is a translate of Ea that
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Fig. 3 The induction step
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intersects exactly k − 1 elements of Xk−1,l , all of which are red, or there is a translate
of Eb that intersects exactly l elements of Xk−1,l , all of which are blue. In the first
case, the corresponding translate of Ea intersects exactly one more element of Xk,l ,
S′, and it is red, so we are done. In the second case, the corresponding translate of Eb

does not intersect any other element of Xk,l , so we are done again. We can argue the
same way if S′ is colored blue. Consequently, Property 1 is satisfied.

To obtain a non-decomposable m-fold covering, consider Tm,m = (Xm,m, Ea
m,m,

Eb
m,m). Xm,m = {εi · S(pi ) | i ∈ Im,m}, εi > 0, a collection of homothetic copies.
Replace each element of Ea

m,m (resp. Eb
m,m) by a translate of −S such that its

vertex va (resp. vb) moves to its apex. We obtain a collection of translates of −S,
Ym,m = {−S(q j ) | j ∈ Jm,m}, with the property that for every red-blue coloring of
the elements ofXm,m , there is an element ofYm,m which intersects exactlym elements
of Xm,m , all of the same color.

Let X ′
m,m = {(1 + εi ) · S(pi ) | i ∈ Im,m}, a collection of homothetic copies of S,

and let Y ′
m,m = {q j | j ∈ Jm,m}, a collection of points. By Statement 1, for every

red-blue coloring of the elements of X ′
m,m , there is an element (point) of Y ′

m,m which
is contained in exactly m elements of X ′

m,m , all of the same color.
That is, X ′

m,m forms a non-decomposable m-fold covering of the points in Y ′
m,m .

Moreover, for any ε > 0, if we choose δ small enough, then the scaling factor of each
member of X ′

m,m is between 1 − ε and 1 + ε.
Now we extend X ′

m,m to a non-decomposable m-fold covering of the whole plane
as follows.Wewill add homothetic copies of S toX ′

m,m that do not contain any point in
Y ′
m,m , but each point in the plane will be covered at leastm times. If we allow arbitrary

small copies in the covering, then the extension is trivial since Y ′
m,m is a finite point

set. Just add all homothetic copies of S that do not contain any point of Y ′
m,m .

If we want to keep the sizes almost equal, we have to be more careful. Points in
Y ′
m,m are of two types, type a (resp. type b) is the set of those which come from a

wedge in Ea
m,m (resp. Eb

m,m). Observe that any two points of the same type determine
a line which is almost horizontal. In fact, we can take two horizontal lines �a and �b
at distance Vert(vavb) such that all points of type a (resp. type b) are at distance at
most δ from �a (resp. �b). See Figs. 4 and 5.
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X ′
k ,k

Y ′
k ,k

�a

(1−ε)S

Fig. 4 The points of type a in X ′
m,m are almost on the line �a

Fig. 5 Extending the cover by
translates of (1 − ε)S

Y ′
k ,k

�a

�b

(1−ε)S

Add all translates of (1− ε)S which avoid the points in Y ′
m,m . Now it is not hard to

see that the resulting collection is an m-fold covering of the whole plane, and by the
construction of X ′

m,m and Y ′
m,m , it is not decomposable. This concludes the proof of

Theorem 2 and also the proof of Theorem 1 in the special case when S is convex.
Now suppose that S is concave with no parallel sides and let m > 0. Pálvölgyi

[7] constructed a collection X ′
m,m of translates of S and a set Y ′

m,m of points such
that X ′

m,m forms a non-decomposable m-fold covering of the points in Y ′
m,m . Add all

homothetic copies of S that do not contain any point of Y ′
m,m . The resulting collection

is clearly an m-fold covering of the plane, and just like in the previous argument, it is
not decomposable. This finishes the proof of Theorem 1.

Remark 1 The dual version of this problem is still open. Let S be a polygon of at least
four sides. Is there an m = m(S) with the following property? Any point set P can
be colored with two colors such that if a homothetic copy of S contains at least m
points of P , then it contains points of both colors. If S is concave and has no parallel
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sides, then the answer is NO to this question, even if we use only translates instead of
homothetic copies, by the result of Pálvölgyi [7].

On the other hand, if S is convex and we use only translates, then the answer is
YES, by Pálvölgyi and Tóth [9]. If we do not allow arbitrarily large and arbitrarily
small homothetic copies, then the answer is still YES, and the proof in [9] works also
in this case. But if we allow all homothetic copies, then the problem is unsolved. See
[2] for related results.

Remark 2 We can define a hypergraph Hk,l to the pair (Xk,l ,Yk,l) in a natural way:
elements of Xk,l correspond to the vertices and elements of Yk,l correspond to the
hyperedges—a hyperedge contains a vertex if and only if the corresponding elements
intersect each other. The same hypergraph was used by Pálvölgyi in [7,8] to show that
some concave polygons and the unit disk are not cover-decomposable.

Remark 3 It was shown in [6] that for every m, there exists an m-fold covering of the
plane with axis-parallel rectangles that cannot be decomposed into two coverings. We
can slightly strengthen this result.

Theorem 3 For any m > 0, there is an m-fold covering of the plane with axis-
parallel rectangles, each with unit horizontal side, that cannot be decomposed into
two coverings.

The proof is almost identical to the proof of Theorem 1. The main difference is that
in the induction step, instead of a very small copy of S, we add a very short vertical
segment. We omit the details.

Remark 4 We believe that Theorem 2 can be extended to concave polygons with no
parallel sides.

Acknowledgments I would like to thank my supervisor Géza Tóth for all the help and for the many
discussions. Without him this article would not have been completed. This work has been supported by
OTKA NN-102029.

References

1. Keszegh, B., Pálvölgyi, D.: Octants are cover-decomposable. Discrete Comput. Geom. 47(3), 598–609
(2012)

2. Keszegh, B., Pálvölgyi, D.: Convex polygons are self-coverable. Discrete Comput. Geom. 51(4), 885–
895 (2014)

3. Pach, J.: Kolloquium über Diskrete Geometrie. Decomposition of Multiple Packing and Covering.
University of Salzburg, Salzburg (1980)

4. Pach, J.: Covering the plane with convex polygons. Discrete Comput. Geom. 1(1), 73–81 (1986)
5. Pach, J., Pálvölgyi, D., Tóth, G.: Survey on the decomposition of multiple coverings. In: I. Bárány,

et al. (eds.) Geometry-Intuitive, Discrete and Convex. Bolyai Society Mathematical Studies, vol. 24,
pp. 219–259. Springer, Heidelberg (2013)

6. Pach, J., Tardos, G., Tóth, G.: Indecomposable coverings. In: Discrete Geometry, Combinatorics and
Graph Theory, Springer Lecture Notes in Computer Science, vol. 4381, pp. 135–148. Springer, Berlin
(2007)

7. Pálvölgyi, D.: Indecomposable coverings with concave polygons. Discrete Comput. Geom. 44(3),
577–588 (2010)

123



824 Discrete Comput Geom (2015) 53:817–824

8. Pálvölgyi, D.: Indecomposable coverings with unit discs. arXiv preprint arXiv:1310.6900 (2013)
9. Pálvölgyi, D., Tóth, G.: Convex polygons are cover-decomposable. Discrete Comput. Geom. 43(3),

483–496 (2010)
10. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Minkowski Addition, vol. 44, 3rd edn.

Cambridge University Press, Cambridge (1993)
11. Tardos, G., Tóth, G.: Multiple coverings of the plane with triangles. Discrete Comput. Geom. 38(2),

443–450 (2007)

123

http://arxiv.org/abs/1310.6900

	Indecomposable Coverings with Homothetic Polygons
	Abstract
	1 Introduction
	2 Preparations
	3 Proof of Theorems 1 and 2
	Acknowledgments
	References




