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Abstract A bar framework determined by a finite graph G and a configuration
p = (p1, . . . ,pn) in R

d is universally rigid if it is rigid in any R
D ⊃ R

d . We provide
a characterization of universal rigidity for any graph G and any configuration p in
terms of a sequence of affine subsets of the space of configurations. This corresponds
to a facial reduction process for closed finite-dimensional convex cones.

Keywords Rigidity · Prestress stability · Universal rigidity · Global rigidity ·
Infinitesimal rigidity · Dimensional rigidity

1 Introduction

1.1 Basic Definitions

Given a configurationp = (p1, . . . ,pn) of n points inRd , and a finite graphG, without
loops or multiple edges, on those n points one can ask the natural and fundamental
question: is there another configuration q = (q1, . . . ,qn) in R

d , where the distance
between pi and p j is the same as the distance between qi and q j when {i, j} is an edge
of G? When this happens we say that (G,p) is equivalent to (G,q). (Traditionally
G(p) and G(q) is the notation used for (G,p) and (G,q) respectively, which are called
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(bar) frameworks, but we break that tradition here.) Of course, if there is a congruence
between p and q, they are called trivially equivalent or congruent, since all pairs of
distances are the same.

The following is a sequence of ever stronger rigidity properties of frameworks,
where (G,p) is a framework on n vertices in R

d .

• If all the frameworks (G,q) in R
d equivalent to (G,p) and sufficiently close to

(G,p) are trivially equivalent to (G,p), we say that (G,p) is locally rigid in R
d

(or just rigid in R
d ).

• If all the frameworks (G,q) in R
d equivalent to (G,p) are congruent to (G,p),

we say that (G,p) is globally rigid in R
d .

• If all the frameworks (G,q) in any R
D ⊃ R

d equivalent to (G,p) are trivially
equivalent to (G,p), we say that (G,p) is universally rigid.

1.2 Main Result

It is well known that the existence of a certain kind of “stress” matrix associated with
a specific framework is sufficient to prove its universal rigidity [10]. It is also known
that when a “generic” framework is universally rigid, it is also necessary for it to have
this type of associated stress matrix [20]. But there do exist special frameworks that
are universally rigid while not possessing such a matrix. In this paper, we propose a
new criterion in terms of a certain “sequence of stress matrices” which gives a com-
plete (necessary and sufficient) characterization of universal rigidity for any specific
framework in any dimension of any graph.

The validity of this certificate can be checked efficiently and deterministically in
the real computational mode of [8]. We need to use a real model, since even if p is
described using rational numbers, the stress matrix might have irrational entries. As
such, this means that universal rigidity is in the class NP under this real computational
model. Note that universal rigidity is clearly in CO-NP under real-valued computation
since the non-universal rigidity of a framework p can always be certified by providing
an equivalent non-congruent framework q.

The main result will be explained in Sect. 8 and Theorem 8.1. We will derive our
results in a self-contained manner, but note that technically, what we have is really
a thinly disguised version of a known technique called “facial reduction” which is
used to analyze convex cone programs [9]. The connection is explained explicitly in
Sect. 10.

1.3 Relation to Other Forms of Rigidity

Given (G,p), testing for local or global rigidity is known to be a hard computational
problem [1,39]. Fortunately, this is not the end of the story. For local and for global
rigidity, the problems become much easier if we assume that p is generic. (We say
that a configuration p is generic in R

d if all the coordinates of all the points of p are
algebraically independent over the rationals. This means, in particular, there can be no
symmetries in the configuration, no three points are collinear for d ≥ 2, etc.) Local
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rigidity and global rigidity have efficient randomized algorithms under the assumption
that the configuration is generic (and for d = 1 or d = 2, there are even purely
combinatorial polynomial-time algorithms). See [11,12,21,46] for information about
all of these concepts. In particular, both local and global rigidity in R

d are generic
properties of a graph G. That is, either all generic frameworks are rigid, or none
of them are, and so these properties only depend on the graph G and not on the
configuration p.

One justification for assuming that a configuration is generic is that, in any region,
the generic configurations form a set of full measure. In other words, if a configuration
is chosen from a continuous distribution, with probability one, it will be generic, and
with any physical system, there will always be some indeterminacy with respect to the
coordinates. But the problem is that special features of a particular configuration, such
as symmetry, collinearity, overlapping vertices, etc, may be of interest and they are
necessarily non-generic. In this paper we do not want to restrict ourselves to generic
frameworks.

In order to test for local rigidity of a specific non-generic framework, there is a
natural sufficient condition to use, namely infinitesimal rigidity. This says that in R

d

(for n ≥ d) the rank of the rigidity matrix R(p) is nd − d(d + 1)/2, where R(p)

is an m-by-nd (sparse) matrix with integer linear entries, where m is the number of
members (another name for the bars) as defined in Sect. 6. See also [46], for example.
Infinitesimal rigidity of (G,p) can be computed efficiently [46].

Infinitesimal rigidity is simply a linearized form of local rigidity and thus is a very
natural sufficient condition to use for testing the local rigidity of (G,p). In fact, the
matrix test for infinitesimal rigidity is central to the determination of generic local
rigidity for G just described. In contrast, we do not have such a natural sufficient
condition to use for global rigidity. Indeed, the particular matrix test used to compute
generic global rigidity for the graph G does not give us information about the global
rigidity of any specific framework (G,p) [12].

Thus, in order to test for global rigidity of a specific non-generic framework, we
often resort to “stronger” conditions; perhaps the most usable sufficient condition is
universal rigidity. In this context, one can choose the ambient dimension D to be,
say, n − 1 with no loss in generality. As such, understanding universal rigidity can be
essential to determining global rigidity, and it is the focus of this paper.

1.4 Complexity Issues

The theoretical complexity of testing universal rigidity for (G,p) (even when p is
given by integer-valued input) is technically unknown. There are no known hardness
results, nor are there any provably correct efficient algorithms. One can pose the
problem of universal rigidity in the language of semi-definite programing (SDP) [49].
Unfortunately, the complexity for conclusively deciding an SDP feasibility problem
is itself unknown [36].

In practice, one can use a numerical (say interior point) SDP solver for these prob-
lems. Roughly speaking, this can efficiently find a framework with an affine span of
dimension n − 1 (the highest possible dimension) that is within ε of being equivalent
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Fig. 1 The large black vertices
are pinned to the plane, and the
whole framework is universally
rigid as in Corollary 8.2

Fig. 2 This is the same
framework as in Fig. 1 but with
the lengths of the bars increased
by less than 0.5 %

to the given framework. If this framework appears to “almost” have an affine span of
dimension d, and appears to be “very close” to the input p, then we have strong “evi-
dence” for universal rigidity. In effect, this means, in the case with imprecise input,
that the problem to determine whether the framework is universally rigid cannot be
solved because there is not enough information in the input to be able to solve it.

An exasperating issue is that there can be great sensitivity between errors in achiev-
ing desired edge lengths (which are what we get when using an SDP solver) and errors
in the resulting configuration. Figure 1 shows a framework (with pinned vertices) that
is universally rigid in R

2. We will see that this can be verified using methods described
in this paper. If the lengths in Fig. 1 are all increased by 0.5 %, this results in the real-
ization in the plane shown in Fig. 2. Note that this slightly perturbed framework is
far from being universally rigid. Here we see that a very small error in the numerical
calculation of the lengths of the members can lead to a very large perturbation of
the resulting configuration, and, indeed, the decision as to universal rigidity may be
incorrect.

1.5 Certificates

The lack of conclusive algorithms for universal rigidity brings us, finally, to the topic
of “sufficient certificates” for universal rigidity. In this paper, we show that there is
a kind of sufficient certificate that must exist for any universally rigid framework.
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This certificate is described by a sequence of real-valued matrices and can be verified
efficiently using real computation.

Note that we do not claim that, given a universally rigid framework, this certificate
can always be found efficiently. But, as we describe in Sect. 15, there are many cases
where we can systematically find the appropriate certificates for the universal rigidity
of (G,p). We also discuss other cases where we have at least a positive probability of
finding the certificate.

Looking again at the situation of Figs. 1 and 2, we see that universal rigidity itself
can be a fragile property, which is destroyed (along with its sufficient certificates)
by any errors in the description of p. Given our new characterization of universal
rigidity, we suggest that when exploring and designing frameworks that we wish to
be universally rigid, it may be best to explicitly maintain the appropriate certificates
as part of the representation and description of (G,p).

2 Stress

The central tool we will use to analyze universal rigidity is the concept of a stress.

Definition 2.1 A stress associated to a graph G is a scalar ωi j = ω j i assigned to each
edge {i, j} of G. Call the vector ω = (. . . , ωi j , . . .), the stress vector.

We can suppress the role of G here by simply requiring that ωi j = 0 for any
non-edge {i, j} of G. (One should also be careful not to confuse the notion of stress
here with that used in structure analysis, in physics or in engineering. There, stress
is defined as a force per cross-sectional area. In the setup here, there are no cross
sections; the scalar ωi j is better interpreted as a force per unit length.)

Since we will be concerned with configurations in an arbitrarily high dimension, we
will fix a large dimension D, which can effectively be taken to ben if our framework has
n vertices. When we are given a particular configuration, we generally will assume that
it is realized in R

D . We can describe a configuration p in R
D using coordinates using

a single vector in R
Dn . Of course, for the purposes of deciding universal rigidity and

some of the other concepts defined here, there is no reason to restrict the configurations
to lie in some particular Euclidean space R

D . But it is clear that once the ambient
dimension D is greater than n, any configuration in any higher dimension is congruent
to one in R

D , and it will be convenient to consider configurations in dimensions larger
than n. In order to define a finite-dimensional space of configurations appropriate for
universal rigidity, though, it is useful to restrict just to those configurations in R

D , and
if a construction pops out of RD , we can always rotate it back into R

D .
Given a stress, we can measure the energy of a configuration: Let ω = (. . . , ωi j , . . .)

be a stress for a graph G and let p = (p1, . . . ,pn) be a configuration in R
D .

Definition 2.2 We define the stress energy associated to ω as

Eω(p) :=
∑

i< j

ωi j (pi − p j )
2, (2.1)

where the product of vectors is the ordinary dot product, and the square of a vector is
the square of its Euclidean length.
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Regarding the stress ω as fixed constants, Eω is a quadratic form defined on vectors
in R

Dn , and it is easy to calculate that the configuration p is a critical point for Eω

when, for each vertex i of G,
∑

j

ωi j (p j − pi ) = 0. (2.2)

Definition 2.3 When (2.2) holds, we say that the stress ω is an equilibrium stress for
the configuration p. We also say that p is in equilibrium with respect to ω.

It is useful to represent a stress in matrix form: Then-by-n stressmatrix� associated
to the stress ω is defined by making the {i, j} entry of � to be −ωi j when i �= j , and
the diagonal entries of � are such that the row and column sums of � are zero.

It is easy to see that with respect to the standard basis of RDn , the matrix of Eω

is � ⊗ I D , where I D is the D-by-D identity matrix and ⊗ is the matrix Kronecker
product. Note that although Eω is defined over the high-dimensional space R

nD , its
being PSD only depends on � and its rank only depends on the rank of � and D.

If p is a configuration in R
d with an equilibrium stress ω, it is easy to check that,

for any affine map of a : Rd → R
D , the configuration a(p) defined by pi → a(pi ),

for all i , is also an equilibrium configuration with respect to ω.

Definition 2.4 We say that a configuration p is universal with respect to the stress ω

if p is in equilibrium with respect to ω, and any other configuration q in R
D , which is

also in equilibrium with respect to ω, is such that q is an affine image of p.

Definition 2.5 For a configuration p = (p1, . . . ,pn) we regard each pi as a column
vector in R

D , as we define the D-by-n configuration matrix of p as

P = [
p1 p2 . . . pn

]
.

Then it is easy to check that the equilibrium condition for a given stress is

P � = 0,

where � is the stress matrix for the stress ω.
The following is easy to check and is already given in [10]. See also Lemma 7.1

for a general universal construction.

Proposition 2.1 Given a stress ω, let p be any configuration that is in equilibrium
with respect to ω and whose affine span is of maximal dimension over all such con-
figurations. Let this affine span have dimension d. Then p is universal with respect to
ω and the rank of � is n − d − 1.

3 The Conic at Infinity

In a sense, an equilibrium stress can only make distinctions “up to affine motions” as
seen in Proposition 2.1. For rigidity questions, we would like to know when the affine
motions can be restricted to Euclidean congruences.
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Definition 3.1 We say that v = {v1, . . . , vm}, a finite collection of non-zero vectors
in R

d , lie on a conic at infinity; if when regarded as points in real projective (d − 1)

space RP
d−1, they lie on a conic.

This means that there is a non-zero d-by-d symmetric matrix A such that for all
i = 1, . . . ,m, vti Avi = 0, where ()t is the transpose operation. The following shows
how affine motions can be non-trivial flexes of a framework.

Definition 3.2 A flex of a framework (G,p) is a continuous motion p(s), 0 ≤ s ≤
1,p(0) = p, where p(s) is equivalent to p. It is non-trivial if p(s) is not congruent to
p for all s > 0. If p(s) = A(s)p(0), where A(s) is an affine function of Euclidean
space, then we say p(s) is an affine flex.

Proposition 3.1 A framework (G,p) in R
d , with d-dimensional affine span, has a

non-trivial affine flex if and only if it has an equivalent non-congruent affine image in
R
d if and only if the member directions {pi − p j }{i, j}∈E(G) lie on a conic at infinity,

where E(G) are the edges of G.

See [10,14] for a simple proof of this property. Note that, in the plane, the conic lies
in RP

1, which consists of two points or one point. So affine motions of a framework
can only occur when the edge directions lie in two possible directions.

4 The Fundamental Theorem

The major tool used for proving universal rigidity is the following. (See [10].)

Theorem 4.1 Let (G,p) be a framework whose affine span of p is all of Rd , with an
equilibrium stress ω and stress matrix �. Suppose further

1. � is positive semi-definite (PSD).
2. The configuration p is universal with respect to the stress ω. (In other words, the

rank of � is n − d − 1.)
3. The member directions of (G,p) do not lie on a conic at infinity.

Then (G,p) is universally rigid.

The idea is that Eω(p) only depends on the edge lengths of p, and so any configu-
ration q equivalent to q must have zero energy. Since Eω is PSD, this forces such a q
to have coordinates in the kernel of � and thus q to be an affine image of p. Thus by
Proposition 3.1, their member directions must lie on a conic at infinity. So Condition
3 implies that (G,p) is universally rigid.

Definition 4.1 If all three conditions of Theorem 4.1 are met, we say that the frame-
work (G,p) is super stable.

There are many instances of such frameworks. For example, the rigid tensegrities
of [18] are super stable in R

3, where the number of edges of G is m = 2n, and n is
the number of vertices. Theorem 4.1 is the starting point for most of our results in this
paper, where this result will be generalized significantly.

123



854 Discrete Comput Geom (2015) 53:847–877

A

Fig. 3 This is a framework where the vertices are all in general position, there is only a one-dimensional
space of equilibrium stresses, and the associated stress matrix does not have maximal rank. The stresses
on the members at the vertex A must all be zero. The dotted lines extending the members coming from the
vertices of the outside triangle meet at a point and are not part of the framework, as shown. As described
in this paper, we will use multiple levels of stresses. In this figure and later ones, the first-level stresses and
the corresponding members are colored in dark blue, the next level in red, and the third level in green

Given such a matrix � and (G,p) as real-valued input, one can efficiently verify
(under, say a real model of computation) that � is PSD and that it is an equilibrium
stress matrix for (G,p).

We note, in passing, the following result in [4] in which the conic condition is
replaced with a more natural one.

Definition 4.2 A configuration p = (p1, . . . ,pn) in R
d is in general position if no k

points lie in a (k − 1)-dimensional affine space for 1 ≤ k ≤ d.

Theorem 4.2 If Conditions 1 and 2 hold in Theorem 4.1 and Condition 3 is replaced
by the assumption that the configuration p is in general position, then Condition 3 still
holds and (G,p) is super stable.

This natural question is whether the conditions of Theorem 4.1 are necessary for
universal rigidity. The answer in the generic case is in the affirmative. The following
is from [20]:

Theorem 4.3 A universally rigid framework (G,p), with p generic in Ed and having
n ≥ d + 2 vertices, has a PSD equilibrium stress matrix with rank n − d − 1.

This result does not hold for non-generic frameworks (even in general position).
For example, see the universally rigid framework in Fig. 3. In this paper, we will
describe a (weaker) sufficient condition that is also necessary for universal rigidity for
all frameworks.

5 Dimensional Rigidity

In [2] a notion called dimensional rigidity is introduced. This is closely related to,
but distinct from, universal rigidity. Our main result can be best understood in terms
of dimensional rigidity, first. Then we can derive the appropriate statements about
universal rigidity.

Definition 5.1 We say that a framework (G,p) in R
d , with affine span of dimension

d, is dimensionally rigid in R
d if every framework (G,q) equivalent to (G,p) has an

affine span of dimension no greater than d.
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(One might better call this concept dimensionally maximal, since a dimensionally
rigid framework may not even be locally rigid, but we refrain from that indulgence.)

In many applications, one often wants to find the minimum dimension for a graph
(G, e) with given edge lengths e = {. . . , ei j , . . .}, so the concept of the maximal
dimension seems backward from what is normally desired. For example, finding the
minimal dimension of (G, e) is the point of [6,29]. Nevertheless, dimensional rigidity
is quite relevant for universal rigidity.

It is clear that if a framework (G,p) is universally rigid in R
d , then it is dimension-

ally rigid in R
d , but we shall see several examples of non-rigid dimensionally rigid

frameworks. Such cases always occur due to a conic at infinity (in which case, the
framework is not even locally rigid). For example, two bars, with a single vertex in
common, is dimensionally rigid in the plane, but it is flexible, i.e., not rigid, in the
plane.

An important connection between dimensional rigidity and universal rigidity is the
following. (This is proved in [2], but we provide a more direct proof here.)

Theorem 5.1 If a framework (G,p) with n vertices in R
d is dimensionally rigid in

R
d , and (G,q) is equivalent to (G,p), then q is an affine image of p.

Proof Suppose that h : p → q is the correspondence between the configurations.
Consider the graph of this correspondence �(h) = {(pi ,qi )}i=1,...,n ⊂ R

d × R
D ,

where D is sufficiently large to contain q. It is easy to check (see [7] or the proof of
Lemma 7.1) that 1√

2
�(h) is equivalent to p and q. Thus there is a d-dimensional affine

hyperplane that contains 1√
2
�(h). This implies that q is an affine image of p. ��

A key consequence of Theorem 5.1 shows that universal rigidity can be determined
from dimensional rigidity and Property 3 of Theorem 4.1.

Corollary 5.1 A framework (G,p) with n vertices in R
d is universally rigid if and

only if it is dimensionally rigid and the edge directions do not lie on a conic at infinity.

One result that follows from the proof of Theorem 4.1 from [10] is the following.

Theorem 5.2 If a framework (G,p) with n vertices in R
d has an equilibrium stress

with a PSD stress matrix of rank n − d − 1, then (G,p) is dimensionally rigid in Rd .

See [2] for similar conditions for dimensional rigidity. This just says that the con-
figuration p is universal with respect to the given stress. The only other possible
equivalent configurations of (G,p), in this case, are affine linear images, which do not
raise dimension.

Since universal rigidity implies dimensional rigidity, the examples of Figs. 5 (on
the right) and 3 also show that the PSD stress matrix of rank n−d−1 is not necessary
for dimensional rigidity.

In order to start to understand what is necessary for dimensional (and universal)
rigidity we begin with the following, Theorem 6 in [3]. We also provide a simple proof
as a special case of the results in Sect. 7.
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Theorem 5.3 If (G,p) is a dimensionally rigid framework with n vertices whose
affine span is of dimension, d ≤ n − 2, then it has a non-zero equilibrium stress with
a PSD stress matrix �.

Note that the rank of � in Theorem 5.3 could be as low as one. As such, it is
weaker than the sufficient conditions above. Later, we will describe a new condition,
which is stronger than having a non-zero PSD stress matrix, but weaker than having
a non-zero PSD stress matrix of rank n − d − 1. Our condition instead will be of the
form of a sequence of PSD matrices, where the combined rank is n − d − 1. Briefly,
we will apply Theorem 5.3 repeatedly to a smaller and smaller space of possible
configurations.

6 The Measurement Set

Fix a finite graph G with n vertices, m edges and fix a Euclidean space RD , where the
dimension D is at least as large as n. Let

C := {p | p = (p1, . . . ,pn) is a configuration in R
D}

be the set of configurations in R
D . Each configuration can be regarded as a vector in

R
Dn .

Definition 6.1 We define the rigidity map as

f : C = R
nD → M ⊂ R

m

by f (p) = (. . . , (pi − p j )
2, . . .), where the {i, j} are the corresponding edges in

G, and M = M(G) is the image of f in R
m for the graph G, which we call the

measurement set.

In other words, M is the set of squared lengths of edges of a framework that are
actually achievable in some Euclidean space. The following are some basic properties
of C and any affine set A:

1. M is a closed convex cone in R
m .

2. For any e ∈ M, f −1(e) consists of an equivalence class of frameworks p ∈ C.

The convexity of Condition 1 is well known and even has an explicit formula for the
convexity in [7] and follows from Lemma 7.1 in Sect. 7. Condition 2 follows directly
from the definition.

Definition 6.2 The rigidity matrix is defined as R(p) = 1
2d fp, with respect to the

standard basis in Euclidean space, and f (p) = R(p)p, where d f is the differential of
f . Then the energy function associated to a stress ω can also be written as

Eω(p) = ωR(p)p,

where ω is regarded as a row vector.
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7 Affine Sets

Definition 7.1 A subset A ⊂ C that is the finite intersection of sets of the form

{
p ∈ C |

∑

i j

λi j (pi − p j ) = 0
}
, (7.1)

for some set {. . . , λi j , . . .} of constants, is called an affine set.

Clearly an affine set is a linear subspace of the configuration space C and it is closed
under arbitrary affine transformations acting on R

D . Moreover, any such set can be
defined by equations of the form (7.1).

For example, if there are three collinear points p1,p2,p3, and p2 is the midpoint
of p1 and p3, then {p ∈ C | (p1 − p2) − (p3 − p2) = 0} is an affine set. Or {p ∈ C |
p1 − p2 + p3 − p4 = 0}, which is a configuration of four points of a parallelogram
(possibly degenerate), is another example.

A special case of such an affine set is determined by a stress ω, where the equilibrium
condition (2.2) at each vertex supplies the condition (7.1).

In Definition 2.4 we defined what it means for a configuration p to be universal
with respect to a single stress ω. This just means that any other configuration q that
is in equilibrium with respect to ω is an affine image of p. We generalize this case to
that of any affine set as follows.

Definition 7.2 We say that a configurationp in an affine setA is universal with respect
to A if any other configuration q in A is an affine image of p. We denote by Å ⊂ A,
the set of configurations that are universal with respect to A.

For any set X in a linear space, 〈X〉 denotes the affine linear span of X .

Lemma 7.1 A configuration p ∈ C is universal with respect to an affine set A if and
only if it has maximal dimensional affine span for configurations in A. Let f : A →
R
m be the restriction of the rigidity map to the measurement space for some graph G.

Then f (A) is convex and f (Å) is the relative interior of f (A) ⊂ 〈 f (A)〉.
Proof Clearly any possible universal configuration must have maximal affine span
in order for it to map affine linearly onto any other configuration in A. Conversely,
let p be any configuration with maximal dimensional affine span, say d, in A, and
let q be any other configuration in A. Define p̃ to be another configuration where
p̃i = (pi ,qi ) ∈ R

D × R
D for i = 1, . . . , n. The configuration p̃ is also in A since

all its coordinates satisfy Eq. (7.1). Since projection is an affine linear map and the
affine span of p is maximal, namely d, the dimension of the affine span of p̃ must
also be d, and the projection between their spans must be an isomorphism. So the
map p → p̃ → q provides the required affine map since projection onto the other
coordinates is an affine map as well.

If p,q ∈ A, then, regarding p and q as being in complementary spaces,

f ((cos θ)p, (sin θ)q) = (cos θ)2 f (p) + (sin θ)2 f (q), (7.2)
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for 0 ≤ θ ≤ π/2 is the segment connecting f (p) to f (q) is in f (A), showing that
f (A) and f (Å) are convex.

The rank of d fp is constant for non-singular affine images of p (see [16], for
example), which are in Å, the universal configurations. This implies that f is locally a
projection into f (A) at p, which implies that f (Å) is open in 〈 f (A)〉. This, combined
with its being dense in f (A), and its convexity make f (Å) equal to the relative interior
of f (A). ��

The dimension of an affine setA is dim(A) = D(d+1), where D is the dimension of
the ambient space and d is the dimension of the affine span of a universal configuration
p for A.

For any (symmetric) bilinear form B for a vector space V , the radical of B is the
set {v | B(v,w) = 0 for all w ∈ V }. If V is a finite-dimensional vector space and B
is given by a symmetric matrix, then the radical of B is the kernel (or co-kernel) of
that matrix. We can interpret the stress energy Eω as such a bilinear form. If B acting
on V is PSD, then its zero set must be equal to its radical.

Lemma 7.2 Let q ∈ A ⊂ R
nD. Then f (q) is in the boundary of the relative interior

of f (A) ⊂ 〈 f (A)〉 if and only if there is a non-zero stress ω for (G,q) such that when
Eω is restricted to A, the resulting form is PSD and has f (q) in its radical.

Note that this does NOT mean that the Eω is necessarily PSD over all of C or that
the configuration q is in the radical of the form Eω defined over all of C.

Proof Suppose that a stress ω �= 0 exists for the framework (G,q). The condition
that Eω is PSD on A is equivalent to Eω(q) ≥ 0 for all q in A, which is equivalent
to the linear inequality ω f (q) ≥ 0 for any f (q) ∈ f (A), and any configuration q in
A. When Eω(q) = 0, f (q) is in the closure of the complement of that inequality in
〈 f (A)〉 and thus in the boundary of f (A) ⊂ 〈 f (A)〉.

Conversely, suppose that f (q) is in the boundary of f (A) ⊂ 〈 f (A)〉. Since the set
f (A) is convex, f (q) is in a supporting hyperplane

H = {e ∈ 〈 f (A)〉 | ωe = 0},
which is defined by a non-zero stress ω. Then

0 ≤ 1

2
ω f (q) = ωR(q)q =

∑

i< j

ωi j (qi − q j )
2 = qt� ⊗ I Dq = Eω(q).

Thus the quadratic form defined by Eω restricted to the affine set A is PSD and has
f (q) in its radical.

Lemma 7.3 Let A be an affine set and Eω be a stress energy which we restrict to A.
Then its radical must be an affine set.

Proof Let q be universal for A. Then a configuration p ∈ A is in the radical when
∑

i< j

ωi j (pi − p j ) · (q̃i − q̃ j ) = 0

for any q̃ that is an affine image of q.
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Suppose some p is in the radical. Then clearly so is any translation of p. Any linear
transform applied to the coordinates of p can be defined using the above equation by
applying its inverse transpose to q. Thus the radical is invariant for affine transforms,
making it an affine set. ��

8 Iterated Affine Sets and the Main Theorem

Definition 8.1 If C = A0 ⊃ A1 ⊃ A2 ⊃ · · ·Ak is a sequence of affine sets, we call
it an iterated affine set.

Definition 8.2 Suppose an iterated affine set has a corresponding sequence of stress-
energy functions E1, . . . , Ek as defined of the form (2.1) such that each Ei is restricted
to act only onAi−1. Suppose that each restricted Ei is PSD (overAi−1), that Ei (q) = 0
for all q ∈ Ai , and that Ei (q) > 0 for all q ∈ Ai−1 − Ai . Then we call E1, . . . , Ek

an (associated) iterated PSD stress for this iterated affine set.

Our main result is the following characterization of dimensional rigidity.

Theorem 8.1 Let (G,p) be a framework in Rd , where p has an affine span of dimen-
sion d. Suppose C = A0 ⊃ A1 ⊃ A2 ⊃ · · ·Ak is an iterated affine set with p ∈ Ak

and with an associated iterated PSD stress. If the dimension of Ak is (d + 1)D, then
(G,p) is dimensionally rigid in Rd .

Conversely, if (G,p) is dimensionally rigid in R
d , then there must be an iterated

affine set with p ∈ Ak , Dim(Ak) = (d + 1)D, with an associated iterated PSD stress.

Proof First we prove the easy direction. Since Ei operates on the squared edge lengths,
the energy function forces any equivalent framework (G,q) to be in Ai and ultimately
in Ak . Since the dimension of Ak is (d + 1)D, p must be universal for Ak , and so q
must be an affine image of p and thus has, at most, a d-dimensional affine span.

For the converse, suppose that (G,p) is dimensionally rigid inRd . The configuration
p is such that p ∈ C = A0. If f (p) is in the boundary of f (A0), we apply Lemma
7.2 to find a stress ω1 and a corresponding stress-energy function E1 whose radical
includes p and, by Lemma 7.3, is an affine set A1. In order to iterate the process, we
define

Ai = {q ∈ Ai−1 | ωi R(q)q = 0}, (8.1)

where ωi �= 0 is chosen such that ωi R(q)q = ωi f (q) ≥ 0 for all q ∈ Ai−1,
ωi R(q)q = ωi f (q) > 0 for some q ∈ Ai−1, and ωi R(p)p = ωi f (p) = 0. The
quadratic form qt�i ⊗ I Dq is PSD when restricted to Ai−1, and from Lemma 7.3,
the resulting Ai must also be an affine set. When such an ωi �= 0 cannot be found, we
stop and that is the end of the sequence of affine sets. This sequence must terminate
as each of our subsequent affine sets is of strictly lower dimension.

From Lemma 7.2, we see that we can continue creating stresses ω1, . . . , ωk and
affine sets until f (p) is in the relative interior of f (Ak), and is universal with respect
to Ak by Lemma 7.1. If the dimension of Ak is not D(d + 1), then the dimension of
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Fig. 4 The sets f (A1) and
f (A2) shown as the point and
line segment

f (A )2 1f (A )

2
1

Ak is strictly greater than D(d + 1) and the dimension of the affine span of p would
have been greater than D(d + 1), a contradiction. ��

Figure 4, similar to Fig. 2 of [20], shows a symbolic version of this process in the
measurement set, where the indicated point represents the image of the configuration
and its relation to the measurement cone. The arrows represent the stress vectors.

8.1 The Basis Matrix

An affine setA can always be represented by a universal configuration b = (b1 . . . bn)
of n points in R

D , with an affine span of some dimension, say d. Without loss of
generality, we can assume (using a translation if needed) that the linear span of the bi
(thought of as vectors) is of dimension d + 1.

Definition 8.3 We define a basis matrix B, for an affine set as a rank d + 1 matrix
with n columns and D rows given by the coordinates of b.

Since this matrix has rank d + 1, we can apply row reduction operations so that
B has only d + 1 rows. Additionally (if we want) since the affine span of b is only
d-dimensional, we can perform these operations so that the final row is the all-ones
vector.

Definition 8.4 Given an iterated affine set, C = A0 ⊃ A1 ⊃ A2 ⊃ · · ·Ak . We define
di to be the dimension of the affine span of a universal configuration for Ai .

Definition 8.5 Given an iterated PSD equilibrium stress for an iterated affine set,
a basis matrix Bi−1 for each Ai−1, and the n-by-n stress matrix �i corresponding
to each Ei , we define a restricted stress matrix �∗

i := Bi−1�i Bt
i−1. Each �∗

i is a
(di−1 + 1)-by-(di−1 + 1) PSD matrix.

The following is a corollary of Theorem 8.1.

Corollary 8.1 Let (G,p) be a framework in R
d with an affine span of dimension d.

Suppose C = A0 ⊃ A1 ⊃ A2 ⊃ · · ·Ak is an iterated affine set with p ∈ Ak , and that
this iterated affine set has an associated iterated PSD stress, described by restricted
stress matrices �∗

i . Let ri be the rank of �
∗
i . If

k∑

i=1

ri = n − d − 1, (8.2)
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then (G,p) is dimensionally rigid. Conversely, if (G,p) is dimensionally rigid in Rd ,
then there must be an iterated affine set with p ∈ Ak , with an associated iterated PSD
stress such that (8.2) holds.

The two versions of this theorem are related as follows: the zero set of configurations
for the energy function Ei corresponds via the change of basis Bi−1, to the kernel of the
matrix �∗

i . Since the rank of �∗
i is ri , its kernel has dimension di−1 + 1 − ri = di + 1.

Thus dk + 1 = n − ∑i
i=1 ri = (d + 1). So Ak , which has dimension (dk + 1)D, is

the set of all affine images of p in R
D .

Figure 9 is an example of an application of Theorem 8.1. The set of configurations
of all the points, where for a pole, one is at the midpoint between the other two, is
an affine set. The stress is indicated. Each of the restricted stress matrices has rank
one. The horizontal members also have a stress that is in equilibrium when restricted
to the intersection of the first two affine sets. This matrix also has rank one. Thus
all the stress matrices can be assumed to be (and are) PSD. But n = 6, d = 2, so
d + 1 + ∑i

i=1 ri = 3 + 3 = 6 = n, and this (G,p) is dimensionally rigid in R
2. This

framework has a flex in the plane that is an affine motion, but the point is that it cannot
be twisted into a 3-dimensional shape. The calculations are done in Sect. 15.1.

One application of Theorem 8.1 is to universal rigidity.

Corollary 8.2 Suppose C = A0 ⊃ A1 ⊃ A2 ⊃ · · ·Ak is an iterated affine set for
a framework (G,p) with n vertices in R

d . Suppose that the iterated affine set has an
associated iterated PSD stress. If dim(Ak) = D(d + 1) and the member directions
do not lie on a conic at infinity, then (G,p) is universally rigid.

Conversely if (G,p) is universally rigid in Rd , then there is such an iterated affine
set with an iterated PSD stress, and the member directions do not lie on a conic at
infinity.

For example, if another bar is inserted between any of two of the vertices that do
not already have a bar in Fig. 9, the resulting framework will be universally rigid.

9 Convexity Interpretation

We now point out the connection of the results here from the point of view of basic
convexity considerations.

Definition 9.1 For any finite-dimensional convex set X and any point x in X , let
F(x), called the face of x , be the largest convex subset of X containing x in its relative
interior. Equivalently [23], F(x) is the set of points z ∈ X so that there is a z′ ∈ X
with x in the relative interior of the segment [z′, z].
Definition 9.2 A subset X0 ⊂ X is called a face of X if X0 = F(x) for some x ∈ X .

Definition 9.3 Let X = X0 ⊃ X1 ⊃ X2 ⊃ · · · Xk be a sequence of faces of X ,
which we call a face flag. If each Xi = Hi ∩ Xi−1, where Hi ⊂ 〈Xi−1〉 is a support
hyperplane for Xi−1 ⊂ 〈Xi−1〉 for i = 1, . . . , k, then we call the face flag supported.

The following is an easy consequence of these definitions.
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Lemma 9.1 A subset Y of X is a face of X if and only if Y = Xk for some supported
flag face.

We next specialize to the case when the space X = M, the measurement space for
the graph G defined in Sect. 6. The function f is the rigidity map as before.

Lemma 9.2 A supporting hyperplane H ⊂ R
m for M corresponds to a non-zero

PSD stress ω for the graph G. A hyperplaneH supports a convex subcone of Xi ⊂ M
if and only if there is a quadratic energy form Eω which is PSD on f −1(Xi ) and
Eω(p) = 0 for some p ∈ f −1(Xi ).

Definition 9.4 If p ∈ C is a configuration, defineA(p) to be the set of all affine images
of p. As before, we call any q of maximal dimensional affine span in A(p) a universal
configuration for A(p). Define Å(p) to be the set of universal configurations of A(p).

Lemma 9.3 Suppose (G,p) is dimensionally rigid. Then

f −1(F( f (p))) ⊂ A(p).

Thus additionally, we have

F( f (p)) ⊂ f (A(p)).

Proof Suppose not. Then there is a configuration q �∈ A(p)) such that f (q) ∈
F( f (p)). Since f (p) is in the interior of the face, and f(q) is in the face, then, from
the definition of a face, there must be some third configuration r, such that f (p) is
in the relative interior of the segment [f(q), f(r)]. As in the proof of Lemma 7.1, we
can use two complementary spaces, and find appropriate scalars α and β such that
p̃ := (αq, βr) is equivalent to p. Since q is not an affine image of p, neither is p̃.
This, together with Theorem 5.1, contradicts our assumption that p was dimensionally
rigid. ��
Lemma 9.4 Suppose (G,p) is dimensionally rigid. Then

F( f (p)) ⊃ f (A(p)).

Thus additionally, we have

f −1(F( f (p))) ⊃ A(p).

Proof From Lemma 7.1, we know that f (A(p)) is convex with f (p) in its relative
interior. Thus from the definition of a face, we have F( f (p))) ⊃ f (A(p)). ��
Corollary 9.1 If (G,p) is dimensionally rigid and the configuration q is a non-
singular affine image of p, then (G,q) is dimensionally rigid as well.

Proof Since q ∈ A(p), from the above lemmas, we have f −1( f (q)) ∈ A(p). But q
is universal for A(p) and so A(p) = A(q), thus making q dimensionally rigid.
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With the above two lemmas in mind, we make the following definition:

Definition 9.5 We say that the affine set A is a G-affine set if A is equal to the
pre-image of some face of the measurement set.

Proposition 9.1 A framework (G,p) is dimensionally rigid if and only if A(p) is a
G-affine set.

Proof Suppose that (G,p) is dimensionally rigid. Then from Lemmas 9.3 and 9.4, we
know f −1(F( f (p))) = A(p), which is thus a G-affine set.

For the other direction, let F ′ be any face of M containing f (p). Then F( f (p)) ⊂
F ′. If (G,p) is not dimensionally rigid, then there is configuration q �∈ A(p) such that
f (q) = f (p). Thus f −1(F(p)) is not a subset of A(p), and f −1(F ′) is not a subset
of A(p). So A(p) is not a G-affine set. ��

In summary, this says that the face lattice of the measurement set M exactly cor-
responds the lattice of G-affine sets. Theorem 8.1 follows directly. The sequence of
faces in a face flag of M corresponds to an iterated sequence of G-affine sets Ai cut
out by an appropriate stress sequence Ei .

10 Relation to Facial Reduction

Facial reduction is a general technique used in the study of duality in cone program-
ming [9,35,36], and we describe the translation between that and our exposition here.
In the general setup, one might have a cone programming problem where the feasible
set is expressed as points x ∈ R

N that are both in some convex cone K ⊂ R
N and sat-

isfy an equality constraint, expressed as x ∈ L+b, where L is a linear subspace of RN

and b ∈ R
N . Let x0 be in the relative interior of the feasible set and let Fmin := F(x0)

be its face in K .
In the process of facial reduction, we start with F0 := K and find a supporting

hyperplane �⊥
1 whose intersection with F0 is some subface F1 of F0 such that F1 ⊃

Fmin. This can be iterated on any Fi−1 by finding a hyperplane �⊥
i that supports

Fi−1 and whose intersection with Fi−1 is some subface Fi such that Fi ⊃ Fmin. In
each step, we guarantee that we are not excluding any part of Fmin by ensuring that
�i ∈ (L⊥ ∩ b⊥). This process is iterated until Fi = Fmin.

In the setting of graph embedding, we can think of K as Sn+, the cone of n-by-n
symmetric PSD matrices. Any configuration p can be mapped to its Gram matrix in
K . Each affine set A corresponds to some face of Sn+. (Note that not every face F of
Sn+ corresponds to an affine set. The face F must include the all-ones matrix so that
its corresponding configuration set is closed under translations in R

D .)
The linear constraint x ∈ L + b corresponds to a framework being equivalent to

(G,p). (The graph G determines the space L and the edge lengths in p give us a b.)
The constraint �i ∈ L⊥ means that �i is a stress matrix for G (zero on non-edges, and
rows summing to zero). The constraint �i ∈ b⊥ means that any p and any equivalent
configuration have zero energy under the quadratic form defined by �i . The constraint
that �i supports Fi−1 corresponds to �i being PSD over a corresponding affine set
Ai .
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Under this correspondence, one can see that our process of finding iterated affine
setsAi using iterated stress matrices �i corresponds exactly to an application of facial
reduction.

We note that, in our exposition, we do not describe the process using Sn+ at all. On
the one hand, we describe the affine sets Ai as subsets of configuration space (instead
of as faces of Sn+). On the other hand, instead of picturing of our stresses �i as support
planes for Sn+, we work over the measurement set of our graph M(G) := Sn+/L ,
which is a linear projection of Sn+. In this projected picture, our support planes are
orthogonal to the stress vectors ωi in R

m .
As described in Sect. 9, facial reduction “upstairs” on the cone K (such as Sn+) for

the constraint x ∈ L + b is exactly mirrored by the facial reduction “downstairs” on
the cone K/L (such as M) for the constraint x = b/L .

11 Tensegrities

It is also possible to use the ideas here to get a similar complete characterization of
universal rigidity for tensegrity frameworks, where there are upper and lower bounds
(cables and struts) on the member lengths corresponding to the sign of the rigidifying
stresses.

Definition 11.1 Each edge of a graph G is designated as either a cable, which is
constrained to not get longer in length, or a strut, which is constrained not to get
shorter in length, or a bar, which, as before, is constrained to stay the same length. So
when we have a framework (G,p), where each edge, which we call a member, is so
designated, we call it a tensegrity framework, or simply a tensegrity, and we call G a
tensegrity graph.

We can then ask whether (G,p) is locally rigid, globally rigid, or universally rigid.
For local rigidity and the corresponding concept of infinitesimal rigidity, there is an
extensive theory as one can see in [13,14,16,37,38,41,48], for example. For global
rigidity and universal rigidity, there is a natural emphasis on stress matrices and related
ideas.

Definition 11.2 We say that a stress ω = (. . . , ωi j , . . .) for a tensegrity graph is a
proper stress if ωi j ≥ 0, when the member {i, j} is cable, and ωi j ≤ 0, when the
member {i, j} is a strut. There is no condition for a bar.

Theorem 4.1 takes on the following form for tensegrities. See [10].

Theorem 11.1 Let (G,p) be a tensegrity framework whose affine span of p is all of
R
d , with a proper equilibrium stress ω and stress matrix �. Suppose further

1. � is PSD.
2. The configuration p is universal with respect to the stress ω. (In other words, the

rank of � is n − d − 1.)
3. The member directions of (G,p) with a non-zero stress, and bars, do not lie on a

conic at infinity.
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Fig. 5 These are three examples of super-stable tensegrities. The one on the left is trivially universally
rigid when all the members are bars. But as a tensegrity it is also super stable, which follows from its rank
one equilibrium stress matrix. The tensegrity in the middle is an example of a Cauchy polygon, one of the
class of convex polygonal tensegrity polygons as defined in [10]. The one on the right has a degree three
vertex attached by bars to another super-stable planar tensegrity in R

3. The bars must have zero stress, but
in order to insure that there is no affine motion, the bar directions must be included in the directions that
are to avoid the conic at infinity

Then (G,p) is universally rigid.

When we draw a tensegrity, cables are designated by dashed line segments, struts
by solid line segments, and bars by thicker line segments, as in Fig. 5.

12 Iterated Stresses for Tensegrities

For the case of tensegrities, the iterated case is similar.

Definition 12.1 We say that a tensegrity (G,p) in R
d is dimensionally rigid, if any

other configuration q in any R
D , satisfying the member constraints of G, has an affine

span of dimension d or less.

Theorem 12.1 Let (G,p) be a tensegrity in Rd , where p has an affine span of dimen-
sion d. Suppose C = A0 ⊃ A1 ⊃ A2 ⊃ · · ·Ak is an iterated affine set with p ∈ Ak

with an associated iterated proper PSD stress. If the dimension of Ak is (d + 1)D,
then p is dimensionally rigid in Rd .

Conversely, if (G,p) is dimensionally rigid in R
d , then there must be an iterated

affine set with p ∈ Ak , Dim(Ak) = (d+1)D, with an associated iterated proper PSD
stress.

Proof The proof of this is essentially the same as in Sect. 8 for Theorem 8.1. For
the necessity direction, we just need to be careful to maintain the proper signs for a
tensegrity stress. When a tensegrity is dimensionally rigid, this means that not only
is f (p) on the boundary of M, but also that P , the polyhedral cone of tensegrity
constraints of Definition 11.2 (the squared lengths e2

i j ≤ (pi −p j )
2 for each cable and

e2
i j ≥ (pi −p j )

2 for each strut), is disjoint from M except for f (A(p)). By a standard
separation theorem, we can choose a hyperplane that separates the relative interiors
of the two convex sets P and M. (See Fig. 6 in the next section.) This means that the
corresponding stress will be a proper stress for the tensegrity. It may be the case that
this hyperplane contains other points of the boundary of P besides just f (p), which
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Fig. 6 This shows a section of a
cone as in Fig. 4, but with the
rectangular cone given by the
cable and strut constraints. The
stress vectors ω1 determine the
rectangular cone since it is
proper

1p

means that some of the edges of G will have zero stress components. This argument
can be applied at each level of iteration.

Note that once an edge has a non-zero stress component at some level, this strictness
can be maintained at any subsequent level. In particular, the stress ωi is orthogonal
to the configurations in f (A j ), and thus we can always replace ω j , for j > i , with
ωi + ω j . So once a member gets stressed, it can remain stressed from then on. ��

The major application of this result is the following.

Corollary 12.1 Suppose C = A0 ⊃ A1 ⊃ A2 ⊃ · · ·Ak is an iterated affine set for a
tensegrity (G,p) with n vertices in Rd , with an associated iterated proper PSD stress
described by PSD-restricted stress matrices�∗

i . Let ri be the rank of�
∗
i . If (8.2) holds,

and the member directions with non-zero stress directions and bars do not lie on a
conic at infinity, then (G,p) is universally rigid.

Conversely if (G,p) is universally rigid in R
d , then there is an iterated affine set

with an associated iterated PSD stress determined by proper stresses; the dimension
of Ak is (d + 1)D, and the members with non-zero stress directions and bars do not
lie on a conic at infinity.

Proof This proof also follows that of the case of a bar framework. The only thing
new that we need to establish in the necessity direction is that we will be able to find
non-zero stress values on the cable and strut edges to certify that they do not lie on
a conic at infinity. The iterated stresses that are guaranteed from the above theorem
need not be non-zero on any particular set of edges (see Fig. 7).

To establish this we can use, if needed, one extra stress beyond that needed to
establish dimensional rigidity. Suppose at the last level of iteration, we have a sequence
of stresses that restricts us to frameworks in the affine setAk , such thatp is universal for
Ak . In this case, we have that f (p) is in the relative interior of f (Ak). The assumption
of universal rigidity means that the polyhedral cone P is disjoint from f (Ak) except
for the shared point f (p). Since f (p) is in the relative interior of f (Ak), this means
that we can find a hyperplane that includes f (Ak) and excludes all of P except for
the single point f (p). The corresponding stress must have zero energy for all of Ak

and will have non-zero values on all of the edges. ��
Figure 7 is an example where one extra iteration is needed for universal rigidity

after the iteration process shows dimensional rigidity. There is just one pole in the
plane and just one vertex attached to all three vertices. There are two ways (as shown)
to assign cables and struts to the remaining three members so that there will be an
equilibrium at that vertex. Both possibilities provide a universally rigid tensegrity. At
the first level, we can find a rank 1 stress on the vertical pole. This is sufficient to
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Fig. 7 These are two
universally rigid tensegrities in
the plane. The signs on the
members not on the pole can be
reversed, and it still remains
universally rigid

-1-1
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2

2

2
-2

1

1-1

-1
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serve as a certificate for dimensional rigidity. For a bar framework, universal rigidity
follows since the edge directions do not lie at a conic at infinity. But for a tensegrity
framework, we are not done, since in that case, the conic test only can use cable and
strut edges with non-zero stress coefficients. As shown in Fig. 7, for this we can use
a second-level stress that has a constant 0 energy over A1.

13 Projective Invariance

It is well known that a bar framework (G,p) is infinitesimally rigid if and only if
(G,q) is infinitesimally rigid, where the configuration q is a non-singular projective
image of the configuration p. See [16,44,45] for a discussion of this property. Infini-
tesimal rigidity for tensegrities is also projectively invariant, but a cable that “crosses”
the hyperplane at infinity is changed to a strut and vice-versa, because the sign of the
stress changes. It is also true that any equilibrium stress is also altered by the pro-
jective transformation. Indeed a stress matrix � is replaced by another stress matrix
D�D, where the matrix D is a non-singular diagonal matrix and comes from the
non-singular projective transformation. This transformation preserves the rank and
PSD nature of the stress. At any subsequent level, we also can set �i := D�i D using
the same D matrix. The basis matrix which is derived from the kernel is transformed
as Bi → Bi D−1. Thus, the restricted stress matrix �∗

i := Bi D−1(D�i D)D−1Bt
i is

not changed at all due to the projective transform, thus maintaining its rank and PSD
nature. See [17, Prop. 7], for the same idea applied to a bar framework. Thus we get
the following result.

Theorem 13.1 Let f : Rd − X → R
d be non-singular projective transformation,

where X is a (d − 1)-dimensional affine subspace of Rd , and suppose that for each i ,
pi /∈ X. Then for any tensegrity framework, (G,p) is dimensionally rigid if and only if
(G, f (p)) is dimensionally rigid, where the strut/cable designation for {i, j} changes
only when the line segment [pi ,p j ] intersects X and bars go to bars.

It is not always true that the universal rigidity of a bar framework is projectively
invariant. For example, the orchard ladder, narrower at the top than at the bottom,
as in Fig. 8, is universally rigid, whereas the straight ladder, as shown in Fig. 9—a
projective image—is flexible in the plane.

14 Calculation Methods

We test for dimensional rigidity of (G,p) by finding the maximal dimension of any
framework (G,q) that is equivalent top. This is done by building up a maximal iterated
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Fig. 8 This is an example of a
universally rigid framework, but
the framework shown in Fig. 9 is
a projective image that is not
universally rigid. The two poles
on the sides are collinear
triangles

2

-2

2
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2

1

1

2

-1 65

32

1 4

Fig. 9 This shows a framework with two collinear triangles, each of which provides an affine relation on
the space of configurations of the framework (G,p). The stresses are indicated and the member connecting
the external vertices of poles is indicated by a curved arc. This framework is dimensionally rigid in the
plane, but it is not universally rigid, since it has an affine flex in the plane, and since there are only two
member directions. The vertices are labeled in bold

affine set with an associated iterated PSD stress as guaranteed by Corollary 8.1. To do
this calculation, we always maintain a basis matrix Bi , where at the start, B0 = I .

Given Bi−1 we perform the following steps:
Find the next stress Look for a matrix �i such that the restricted stress matrix

�∗
i := Bi−1�i Bt

i−1 is non-zero, PSD and such that the “energy” linear constraint
pt (�i ⊗ I D)p = 0 holds. If there is no such solution, we are done with the iteration.

Definition 14.1 Given an affine set Ai−1 described by a basis matrix Bi−1. We say
that a restricted stress matrix �∗

i = Bi−1�i Bt
i−1 is a restricted equilibrium stress

matrix for p if P�i Bt
i−1 = 0 holds for �i .

For any stress matrix �i that satisfies the energy constraint and such that the
restricted stress matrix �∗

i is PSD, we also see that �∗
i must be a restricted equilibrium

matrix for p. Since we want to get the most milage out of our linear constraints, we
replace the energy constraint with this constraint, which we call a restricted energy
constraint.

The resulting problem can be posed as an SDP feasibility problem. If possible, we
would like to avoid using an SDP solver, since that is not only expensive, but, as a
numerical algorithm, only approaches, and it never exactly hits, a feasible solution.
We discuss this issue in detail in Sect. 16.

Sometimes, we can avoid calling an SDP solver by simply looking at the problem
and guessing the correct �i . For example, if we see, within some two-dimensional
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framework, a degenerate triangle (which we will call a pole), it is self-evident how to
stress that subgraph.

Another easy case arises when the space of solutions for�∗
i is only one-dimensional.

In this case, there is no need to search for PSD solutions, and thus one only needs to
pick one solution �∗

i and check its eigenvalues. If it is positive semi-definite, then we
have succeeded. If it is negative semi-definite, then we can negate the matrix, and we
have succeeded. If it is indefinite, then there is no such solution and we are done with
the iteration.

An even easier sub-case of this is when the space of �∗
i is not only one-dimensional,

but also that the maximal rank of these matrices is 1. Then we know immediately that
�∗

i is semi-definite.
Update the basis Given Bi−1 and a stress �i we need to update the basis. We do

this by finding a maximal set of linearly independent row vectors of length n that are
in the row span of Bi−1, and such that each of these vectors is in the co-kernel of
�i Bt

i−1.
These vectors form the rows of our new basis Bi . We then continue the iteration.
When the iteration is done We simply count the number of rows of the final Bk ,

which we call dk + 1. If dk equals d, the dimension of the affine span of p, then we
have produced a certificate that p is dimensionally rigid. Otherwise, we have found a
higher dimensional affine set that includes frameworks equivalent to p and we have a
certificate that p is not dimensionally rigid.

15 Examples

15.1 The Ladder

We first show the process described in Sects. 8.1 and 14 applied to the example in
Fig. 9. The first-level stress matrix, using just the stresses on the vertical members of
the ladder, is the following:

�1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 −2 0
1 1 0 0 −2 0
0 0 1 1 0 −2
0 0 1 1 0 −2

−2 −2 0 0 4 0
0 0 −2 −2 0 4

⎞

⎟⎟⎟⎟⎟⎟⎠
.

This matrix has rank r1 = 2, a 4-dimensional kernel, and d = 2. The kernel of this
matrix defines the affine set A1. A basis matrix for A1 is

B1 =

⎛

⎜⎜⎝

1 0 0 0 1/2 0
0 1 0 0 1/2 0
0 0 1 0 0 1/2
0 0 0 1 0 1/2

⎞

⎟⎟⎠ .
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Fig. 10 This is a framework
that is dimensionally rigid in the
plane. Each set of three (nearly)
vertical line segments are
considered to be a collinear
triangle, while the other
horizontal members are
connected as shown. This
involves at least three levels of
iteration as described in Sect. 8,
where the levels, in order, are
marked in dark blue, red, and
green

A B C D

-2, 4-2, 4
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3

-1, -1

2

2 2

2

-1, -1

3

6

1

44

-2

1

1

2

85

112

96
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71 4 10

At the second level, we enforce the restricted equilibrium constraint and find that
the possible candidates for �∗

2 must be up to scale, equal to

B1�2B
t
1 = �∗

2 =

⎛

⎜⎜⎝

1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

⎞

⎟⎟⎠

These are rank 1 with positive trace and thus positive semi-definite. This �∗
2 has an

associated second-level stress �2 where ω14 = ω23 = 1 and ω56 = −2 as in Fig. 9.
We have rank �1 + rank �∗

2 = 3 = n−d − 1, making the ladder dimensionally rigid.

15.2 The 4-pole Example

Consider the configuration shown in Fig. 10 with four vertical parallel line segments,
the poles, where each pole is connected to the other three by horizontal members.

The poles are labeled A, B,C, D, and the vertices are simply labeled by their
number, 1, . . . , 12. The horizontal spacing between the AB, BC , and CD poles is
equal. The vertical spacing of the horizontal members is such that the distance between
the 2–11 line and the 1–7 line is twice the distance between the 2–11 line and the 3–5
line. The 5 vertex is the midpoint of the B pole, and the 8 vertex is the midpoint of the
C pole. The stresses on this framework are as indicated. These are simply arranged so
that the lever arm moments are all 0. The question is whether the appropriate stress
matrices are PSD of the right rank.

The stress for each pole is rank one and they can all be combined to one rank 4
stress, which can be considered as a stress at the first level. It is simply the certificate,
in any equivalent framework, that each pole remains straight maintaining the ratio
of each of the lengths. The stress for each of those members is proportional to the
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reciprocal of its length in absolute value. The stress for the longest member of each
collinear triangle is negative, while the other two are positive.

One can then choose a basis forA1 and search for the restricted equilibrium matrices
as in Sect. 14. It turns out that, as in the ladder example, the space of a possible
equilibrium �∗

2 is only one-dimensional, and these have rank 4. We check and find
that these matrices are semi-definite. An associated �2 is shown in red in Fig. 10.
We then choose a basis for A2 and use the methods described in Sect. 14 one final
time. Again, we find a one-dimensional space of equilibrium matrices �∗

3, and these
have rank 1. An associated �3 can be constructed with ω1,3 = ω10,12 = 4 and
ω4,6 = ω7,9 = −1.

The sum of the ranks is 4 + 4 + 1 = 9 = 12 − (2 + 1) = n − (d + 1), so
this framework is dimensionally rigid in the plane. It is not universally rigid since
the original framework has only two member directions. One interesting feature of
this example is that the stress �2 involves all of the vertices of the graph G from the
second level, and it still needs another level for the complete analysis of its dimensional
rigidity.

The first stage in this example involves only the four collinear triangles, which
imply the corresponding affine constraints on the configuration. Suppose one initially
starts with those four affine constraints and then proceeds with the analysis, where the
distance constraints on the poles is dropped? It turns out that the configuration is not
dimensionally rigid in the plane, since at the third level the member constraints in the
poles are needed again. The maximal dimensional realization, in that case, is R3.

15.3 The 4-pole Extended Example

Definition 15.1 A spider web is a tensegrity, where some subset of the vertices are
fixed, and all the members are cables.

For a spider web, it was shown in [10] that it is locally rigid if and only if it
is universally rigid and that, when it is universally rigid, the iterated construction
simplifies to a sequence of proper subgraphs, where the number of vertices decreases
at each stage as in Fig. 1. Another example of the iteration process is shown in Fig. 3,
where the vertex A is added at the second stage. In each of those examples, there is a
proper subgraph that is universally rigid on its own without using the presence of the
other vertices.

Figure 11 shows that, in general, when the framework is universally rigid in more
than one step of the iteration, there may be no proper sub-framework that is universally
rigid on its own. The stresses at each level are shown.

This is a perturbed version of Fig. 10, and it turns out to be universally rigid by
the process described here, but using only two stages instead of three as in Sect.
15.2. Since the stressed members have more than two directions in the plane and it is
dimensionally rigid in the plane as with Fig. 10, it is universally rigid.

In both of these cases, we were able to find the certifying sequence of stresses
without calling a PSD solver. This was because, at each step, there was only a one-
dimensional space of restricted equilibrium matrices �∗ as candidates. Since they
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4

4

4

8

8 8

1

-3/2

-8/3, 4

4

-2, -1

2

4

8

Fig. 11 This is an example of a universally rigid tensegrity framework in the plane that has only one stress
that is PSD of rank 8, one less than the maximal possible n − d − 1 = 12 − 2 − 1 = 9. There is a stress
at the second stage which is PSD of rank one in the affine set defined by the stress at the first stage. The
vertices of this configuration are the same as those in Fig. 10, except the interior point of each pole has been
moved half the distance (left or right as indicated) between adjacent poles

Fig. 12 This is an example of a
universally rigid bar framework
in the plane that has a
three-dimensional space of
equilibrium stresses but only a
one-dimensional space that is
PSD

were rank 1, we automatically knew that they were semi-definite, and for the second
step, for the 4 poles, we just checked that it was of rank 4.

More generally, if we end up with a higher dimensional space of equilibrium �∗ as
candidates, we might have a harder time determining if that space includes a positive
semi-definite one. We discuss this in detail in Sect. 16.

15.4 A Hidden Stress

One of the problems with SDP is finding even one PSD equilibrium stress (or more
generally restricted equilibrium stresses at later stages). The following example is a
framework where PSD equilibrium stresses form a low-dimensional subcone of the
space of all equilibrium stresses.

The two triangles and the members joining corresponding vertices constitute a
super-stable PSD sub-framework as in Fig. 3. Since the whole (bar) framework is
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infinitesimally rigid in the plane, and that there are 18 members and 9 vertices, the
dimension of the stress space is 18 − 2 · 9 + 3 = 3. Equilibrium at each blue vertex
implies that the three stresses at a blue vertex must all have the same sign. But any
equilibrium stress, non-zero on any of the members adjacent to the blue vertices, cannot
be all have the same sign for all the members adjacent to all the blue vertices. This
is because the twisting infinitesimal motion of the inner triangle relative to the outer
triangle either decreases all the members adjacent to the blue vertices or increases
them. So one of the set of three members adjacent to a blue vertex has to have all
negative stresses. This stress cannot be PSD since by moving that single blue vertex
the stress energy must decrease.

16 Computational Matters

An important property of universal rigidity is that often it can be calculated efficiently
using various SDP algorithms. For example, see [5,9,28,30,35,36,47] for information
on this vast subject including facial reduction. In particular, if one is given the edge
lengths e for a graph G, one can use SDP to find a configuration p whose edge lengths
approximate e. More precisely, an ε-approximate configuration p can be found, in
some unconstrained dimension D if it exists, in time polynomial in log(1/ε), where
n is the number of vertices of G, and m is the number of members of G, as described
in [47]. So this can be used to attempt to see if the existence problem is feasible and
to attempt to find a satisfying configuration when it is feasible.

But, as mentioned in Sect. 1, one problem is that even though the member lengths
of the approximation are close to the given lengths, the configuration may be quite a
distance from one implied by the actual constraints. Small errors in the edge lengths can
imply large errors in the proposed configuration as in the framework in Fig. 1, but see
[26]. In principle, one could use the calculation as evidence that a given configuration
is universally rigid inR2, but as shown in Fig. 2 it may appear that (G,p) has equivalent
configurations in R

3 or higher, even with ε > 0 is very small.
In contrast to this “primal approach,” we have shown in this paper that when a

framework is dimensionally or universally rigid, there must exist a certificate, in the
form of an iterated PSD stress, that conclusively proves the dimensional or universal
rigidity of the framework.

Although finding these stresses also involves solving an SDP problem, in many
cases, we can hope to exactly solve this “dual” SDP. At any level of the analysis here,
there is a linear space of restricted equilibrium stress matrices �∗

i as described in
Sect. 14. If there is such a PSD matrix of maximal rank among all such �∗

i , then the
PSD-restricted equilibrium stresses include an open subset of the space of all restricted
equilibrium stresses. In this case, it reasonable to expect that we can exactly find such
a solution. Thus, even if the numerical solution from an SDP solver is, say, PSD but
not quite in restricted equilibrium, a sufficiently close restricted equilibrium stress will
still be PSD and of maximum rank.

In fact this “maximal rank case” must always occur in the last step of our iterated
process so, for example, if the framework (G,p) is super stable (in other words, there
is only one step in the iterated process described here), then the PSD solutions are full
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dimensional within the linear space of equilibrium stress matrices. This is the situation
if p is generic in R

d , and the framework (G,p) is universally rigid, since this must be
super stable by Theorem 4.3. The two examples on the left in Fig. 5 have that property.

In other cases, though we may not be able to exactly solve this “dual” SDP, the
example of Fig. 12 shows a case where the PSD equilibrium stresses are all of lower
rank than the indefinite equilibrium stresses, and thus do NOT form an open subset
of the space of equilibrium stresses. If the dimension of PSD matrices is lower than
the dimension of all the equilibrium matrices, then we may have to resort to using the
SDP to “suggest” what an actual PSD matrix is (since it will only converge to a PSD
matrix in the limit).

More generally, when the configuration is not generic, you have to ask: how is the
configuration even defined? It is possible to create configurations precisely so that they
become universally rigid. For example, the symmetric tensegrities of many artists are
created in such a way that they become super stable, but not at all generic, not even
infinitesimally rigid, even though they are super stable. Indeed, they often have certain
symmetries that can be used to simplify the calculations and create tensegrities that are
super stable. The representation theory of some small finite groups can be exploited to
create these configurations. A brief explanation is in [15]. This is called form finding
in the Engineering literature, as in [31,40].

Stresses and iterated stresses might also be useful during the process of calculating
a realization p from an input graph G and input set of edge lengths e. Note though,
when we are just given input lengths and are searching for an appropriate �, we do not
have enough information to express the (restricted) equilibrium linear constraint and
can only use the “energy linear constraint”: 0 = ∑

i< j e
2
i jωi j . Therefore, we do not

expect to be in a “maximal rank” setting. Once we have computed the iterated stresses,
then we just need to look for p within the final affine set. As described in the appendix
in [22], when p is universally rigid, this calculation of pwithin its affine set can be done
easily by solving a certain small linear system. (In the case that p is not universally
rigid but is only dimensionally rigid, then that linear system will be singular. Still,
since we have restricted ourselves to the correct affine set, we only need to solve small
SDP problem, which must be applied over the space of (d + 1)-by-(d + 1) matrices.)

In addition to the example in [15], a graph coloring problem can be solved using
this idea as in [34].

17 Extensions

In general, we propose the following procedure for determining/creating universally
rigid frameworks and tensegrities. First a (tensegrity) graph G, and a corresponding
configuration p, is defined. A priori, a sequence of affine sets in configuration space
can be given as well, as in Sect. 8. These sets may or may not be a consequence of
the geometry of the configuration p. Then at each stage, one either calculates a PSD
stress for the given configuration or one assumes that there is a corresponding affine
constraint. If the constraints are consistent, then one has a proof that the configuration is
dimensionally rigid or universally rigid, depending on the stressed member directions.
For example, if there appears to be a (proper) PSD stress for a given affine set, one
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can assume that it exists and proceeds, getting further affine sets. It would depend on
the circumstance as to whether the particular affine constraint is reasonable or not.
For example, in Fig. 1, one might suspect that the eight subdivided vertical members
are straight, but initially not the others. Only then one might suspect that the four
smaller horizontal members are straight, etc. After this, one can conclude that the
whole framework is universally rigid.

The idea of assigning nested affine constraints is a generalization of the idea of a
body-and-bar framework as defined by Tay and Whiteley in [42,43]. The concept of
nested affine sets, introduced here, is closely related to the concepts of hypergraphs
of points and affine rigidity introduced in [22]. Also, a recent result in [19] shows that
body-and-bar frameworks are generically globally rigid in R

d if they are generically
redundantly rigid in R

d .

Definition 17.1 Redundant rigidity means that the framework is locally rigid, and
remains so after the removal of any member.

It is also true [19] that such body-and-bar graphs always have a generic configuration
that is universally rigid in R

d as well.

18 Possible Future Directions and Questions

It is also possible to use stresses to estimate the possible perturbations of a given
tensegrity or framework. The sign of a PSD stress associated to each member corre-
sponds to an inequality constraint. If all of those constraints are such that at least one
of the constraints is violated, we know that the edge length perturbed configuration
cannot be achieved. This imposes somewhat weak, but useful, conditions on which
sets of members can increase or decrease in length. If there are more PSD stresses on
the members, there will be more of these sign constraints that can be calculated even
if the tensegrity framework is not rigid.

One could use universal rigidity properties to understand flexible structures by
adding members providing parameters for controlling the motion of a flexible frame-
work. For a fixed length of such additional members, the configuration could be deter-
mined. As the length varies, the whole configuration could flex in a controlled way.

For the case of generic global rigidity, the notion of globally linked pairs of vertices
is discussed in [24,25]. This means that although the whole framework may not be
globally rigid, some pairs of vertices would be forced to have a fixed length for all
equivalent configurations in the same dimension. A similar question in the universally
rigid category involving configurations in higher dimensions that satisfy the tensegrity
inequality constraints would be interesting to explore.

It is also interesting to determine whether a framework is universally rigid on the
line. In [27] it is determined when a rigid one-dimensional complete bipartite bar-and-
joint framework in the line is universally rigid, as well as several open questions in
this direction. We have a forthcoming paper that extends this result, and determines
when any complete bipartite framework in any dimension is universally rigid.

The weavings of [32,33,44,45] concern lines in the plane that may or may not arise
from projections of configurations of lines in a higher dimension. Particularly, there
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is a relation to stresses of dual configurations in [44,45]. Can there be a connection to
the poles in universal rigidity?

Acknowledgments We would like to thank Dylan Thurston for countless helpful conversations on con-
vexity.
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