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Abstract We describe a computer algorithm that searches for substitution rules on
a set of triangles, the angles of which are all integer multiples of π/n. We find new
substitution rules admitting 7-fold rotational symmetry at many different inflation
factors.
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1 Introduction

1.1 Motivation

Planar tilings are of interest for their own inherent structure, for their roles as models
of aperiodic solids called quasicrystals, and for aesthetic reasons. Among all planar
tilings, those that exhibit global n-fold rotational symmetry are of particular interest.
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This is because n-fold rotational symmetry is evident to the naked eye, it is an invariant
of the tiling and the underlying tiling space (see [22] for a definition of a tiling space),
and it can distinguish non-periodic tilings from periodic ones, as periodic planar tilings
can only exhibit 2-, 3-, 4-, or 6-fold global rotational symmetry.

In [19] a method is described for constructing substitutions on the set of all triangles
with angles that are integer multiples of π/n, subject to an appropriate normalization.
This method gives rise to an infinite family of planar substitution tilings. (The terms
“substitution” and “tiling” will be defined formally in Sect. 1.3.) The underlying tiling
spaces of these substitutions are n-fold symmetric, but the tilings themselves do not
appear to exhibit global n-fold rotational symmetry except in the special case n = 9.

Still there is another substitution described in [19, Fig. 12] that is defined on a proper
subset of the triangles with angles that are integer multiples of π/7. This substitution
does not arise from the general construction; indeed, the method of its discovery is not
explained, yet it appears to give rise to a tiling with global 7-fold rotational symmetry.
This turns out upon closer inspection to be false, as certain isosceles triangles appear in
reflected positions, breaking the symmetry. The authors of [19] also observe that this
last substitution is special in that it admits a local matching rule (see [9,13]) whereas,
in all of the cases that they checked, the substitutions arising from their general method
do not.

The goal of this work is to search for other substitutions that are similar to this
extra substitution in that they are defined on a proper subset of the triangles with
angles that are integer multiples of π/n. In particular the intention is that, by selecting
a minimal subset of these triangles, the substitutions found will produce at least one
tiling possessing global n-fold rotational symmetry. Such substitutions will necessarily
not arise from the general construction in [19], because the general construction uses
all triangles with angles that are integer multiples of π/n, at least for n not divisible
by 3.

It is particularly desirable to find multiple different substitution rules on the same set
of prototiles that are compatible with one another, meaning that they can be combined
to produce edge-to-edge tilings. There has been much recent work on different tiling
spaces that arise from the combination of two or more substitution rules on the same
prototile set. (Some terms mentioned here, such as “prototile,” will be defined formally
in Sect. 1.3.) These fall into two classes: the multi-substitution tilings (see [4–6,10,
11,20]), that are obtained by choosing a substitution for each hierarchical level and
applying it to all tiles at that level; and the random substitution tilings (see [2,12,17,
18]), that are obtained by making separate choices of substitution for each tile at each
hierarchical level. While it is easy to find examples of such families of substitutions
in one dimension, in two dimensions it is harder. Most known examples—with the
noteworthy exception of [19]—are either constant length substitutions [7] or lack the
edge-to-edge property [12].

The edge-to-edge property is obviously desirable from the point of view of mod-
eling quasicrystals. But constant length substitutions have integer inflation factors,
and so exhibit behavior markedly different from that of substitutions with non-integer
inflation factors (see [3,16]). Therefore there is a need for a collection of examples
in two dimensions that are edge-to-edge and have non-integer inflation factors. This
project addresses that need.

123



Discrete Comput Geom (2015) 53:445–465 447

1.2 Background

Other projects have been undertaken with the goal of finding substitution rules admit-
ting tilings with global n-fold symmetry, but with different approaches and different
constraints. In [8], a family of substitution rules is introduced, one for each n > 7,
that generalises the extra substitution in [19, Fig. 12]. This involves amalgamating
adjacent triangles into quadrilaterals and pentagons to bypass a negative area obstruc-
tion. In [15], a family of substitutions on rhombic tiles is introduced, generalising
a rule of Goodman-Strauss to orders of symmetry greater than 7. In the notation of
Sect. 2.1, the inflation factor in [8] is 1+ a2 and the inflation factor in [15] is 2+ a2,
where a2 = 2 cos(π/n). The former is a unit in its ring of integers, but not a Pisot–
Vijayaraghavan (PV) number, except in a few cases. The latter is neither a PV number
nor a unit in its ring of integers. Representative pictures of both families of rules can
be found in [9] under the names “cyclotomic trapezoids” and “Harriss’s 9-fold rhomb”
respectively.

Both of these works successfully adapt a substitution rule that was originally defined
for n = 7 to arbitrary n, therefore producing an infinite family of substitutions. In the
process, both of them introduce extra prototiles, so that they no longer work with a
minimal set. Also, the tilings that result from the substitution rules they describe do
not exhibit local n-fold symmetry in the k-fold substituted image of any prototile,
and hence the associated tiling spaces do not contain any tiling with global n-fold
symmetry.

The approach in this work is exploratory rather than constructive. In [8,15] the
approach was to generalise to higher orders of symmetry n a substitution rule that has
already been found at a low order of symmetry, thereby producing an infinite family of
substitution rules, parametrized by n. Here we make no attempt to build on rules that
already exist, but instead search exhaustively for all rules that fit a certain description.
In this way we find many rules that do not appear in [8] or [15] because they do not
fall into those families. The drawback is that we can only ever hope to find finitely
many substitution rules by this method—although, as we shall see, this finite list is
quite long, and can easily be made longer.

Since we impose no preconditions on the inflation factors that we search, accord-
ingly we must search a large parameter space. To do this it is necessary to use a
computer.

1.3 Definitions

A tile is a subset of R
d homeomorphic to the closed unit disk. A patch is a collection

of tiles, any two of which intersect only in their boundaries. The support of a patch is
the union of the tiles that it contains. A tiling is a patch, the support of which is all of
R

d .
Let us restrict our attention to the case d = 2, and let us consider only polygonal

(in fact, triangular) tiles having some finite set S of representatives up to isometry.
The elements of S are called prototiles, and we denote by P(S) the set of all patches
consisting of tiles that are congruent to these prototiles. Let us also suppose that we
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Fig. 1 A substitution on three prototiles, with edge orientations

have a substitution, that is, a map ϕ : S→ P(S) for which there is an inflation factor
λ > 1 such that, for any p ∈ S, the support of ϕ(p) is λp. Letting S = {p1, . . . , pk},
we define the substitution matrix of ϕ to be the k×k integer matrix, the entry of which
at position (i, j) is the number of tiles isometric to pi in ϕ(p j ).

Figure 1 depicts a substitution on three prototiles, with the arrows on the edges
of the tiles describing edge orientations, which are defined in Sect. 1.4 below. This
substitution has the same prototile shapes and substitution matrix—that is,

⎡
⎣

3 3 5
1 4 3
2 1 3

⎤
⎦

—as the substitution in [19, Fig. 12], although it is indeed a different substitution. In
particular, the prototiles, although congruent to those of [19, Fig. 12], have different
edge orientations, and so should be seen as different prototiles.

We can extend the definition of ϕ to all tiles isometric to the elements of S in the
following way. If p is a prototile, τ is an orthogonal transformation of R

2, and v ∈ R
2

is a translation vector, then ϕ(τ(p) + v) = {τ(t) + λv | t ∈ ϕ(p)}. Once we have
done this, we can extend the definition of ϕ further to include all patches in P(S) by
declaring ϕ(P) = {ϕ(t) | t ∈ P}. The chief motivation for this is that, under certain
easily-satisfied conditions, we can produce a tiling by starting with some prototile
p and repeatedly applying ϕ [14]. Let us refer to such tilings as substitution tilings.
Figure 2 depicts a substitution tiling constructed in this way from the substitution in
Fig. 1. It clearly possesses local 7-fold rotational symmetry.

1.4 The Objective

Our purpose here is to find substitutions that obey a certain rule and use certain prototile
sets. The rule is that the resulting substitution tilings must be edge-to-edge [14], which
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Fig. 2 A substitution tiling constructed from the substitution in Fig. 1

means that, if two tiles in a tiling intersect, their intersection is a face of both tiles. For
polygonal tiles in two dimensions, this amounts to the property that, if the vertex of
one tile touches another tile, then it is also a vertex of the other tile.

The edge-to-edge condition for substitution tilings arising from ϕ is equivalent to
the condition that the patches ϕm(p) be edge-to-edge for all m ∈ N and all prototiles p.
Verifying this condition seems at first to require checking infinitely many patches, but
in fact it is sufficient to check for all prototiles p that the patches ϕ(p) are edge-to-edge
and satisfy one additional condition, which is described below.

Given a tile t with an edge e having end points v1 and v2, an edge orientation
is a map ft that assigns to e one of its vertices vi . We can represent ft graphically
by drawing an arrow on e originating at ft (e) and terminating at the other vertex, as
has been done in Fig. 1. Then we require that all prototiles p and tiles t have edge
orientations on all of their edges satisfying the following conditions.

1. (Isometry equivariance) If t = τ(p)+v, then, for any edge e of p, the correspond-
ing edge in t has the same edge orientation; that is, ft (τ (e)+ v) = τ( f p(e))+ v.

2. (Matching) If an edge e lies in two tiles t1 and t2, then it receives the same edge
orientation from both of them; that is, ft1(e) = ft2(e).

3. (Preservation under ϕ) If two prototiles p and p′ contain edges e and e′ respectively
such that e = τ(e′)+v and f p(e) = τ( f p′(e′))+v, then e and e′must have the same
edge breakdowns, which means roughly that their inflated images must contain
the same edges in the same order with the same orientations. More specifically,
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Fig. 3 The elements of S(7) inscribed in regular heptagons

let e1 ⊂ t1, . . . , ek ⊂ tk denote the edges in ϕ(p) that are contained in λe, and let
e′1 ⊂ t ′1, . . . , e′m ⊂ t ′m denote the edges in ϕ(p′) that are contained in λe′. Then
k = m, ei = τ(e′i ) + v for all 1 ≤ i ≤ k, and fti (ei ) = τ( ft ′i (ei )) + v for all
1 ≤ i ≤ k.

Now let us describe the special prototile sets that we will use. For a natural number
n ≥ 3, let S(n) denote the set of isometry classes of triangles, the angles of which are
integer multiples of π/n, normalized so that they can all be inscribed in circles of the
same size. S(7) is depicted in Fig. 3.

The goal in this work is to find substitutions that use proper subsets of S(n) as
prototiles. The substitution depicted in Fig. 1 uses three of the four prototiles from
S(7).

Note that the general method for constructing substitutions that is described in [19]
uses a bigger set of prototiles. In particular, that prototile set contains two copies of each
scalene triangle in S(n). These triangles have opposite edge orientations and therefore
should be considered as different from one another. Let us not follow this convention
here; for us, any two isometric tiles will always have the same edge orientations, and
hence will be copies of the same prototile.

2 Lengths and Areas

We will need to know the areas of the triangles in S(n), along with their various edge
lengths. Denote by T (k1, k2, k3) the triangle with angles k1π/n, k2π/n, and k3π/n.

2.1 Lengths

Since we have normalized the triangles in S(n) so that they can all be inscribed in the
same circle, in particular we know that their side lengths coincide with the lengths of
the diagonals of a regular n-gon, as is depicted for n = 7 in Fig. 3.

Let the edge lengths of this regular n-gon be a1 = 1. Then the first diagonal has
length a2 := sin((n − 2)π/n)/ sin(π/n) = 2 cos(π/n). This is the length of the long
edge of the triangle T (1, 1, n − 2).

We can use similar triangles to produce a recursion relation for the length ak of
the kth diagonal of the n-gon. In particular, the triangles T (1, k, n − k − 1) and
T (1, k−1, n−k) can be placed against one another along their short edges to produce
a triangle similar to T (1, 1, n−2), as has been done in Fig. 4. The edges of this triangle
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are obtained from the edges of T (1, 1, n−2) by scaling by a factor of ak . In particular,
using the fact that the long edge of this new triangle has length ak+1 + ak−1, we see
that

ak−1 + ak+1 = a2ak, (1)

ak+1 = a2ak − ak−1. (2)

Taking a0 = 0, this recursion holds for all k ≥ 1. If we view a2 as a variable and
ak as a polynomial in a2, then ak is the kth Chebyshev polynomial of type 2, subject
to the reparametrization a2 = 2x [21]. If n is odd, then diagonal number (n − 1)/2
has the same length as diagonal number (n − 1)/2− 1, so setting

a(n−1)/2 = a(n−1)/2−1 (3)

yields a polynomial equation of degree (n − 1)/2 that a2 satisfies.
If n is even, then the equation is

an/2 = an/2−1.

Note that, by the symmetry of the regular n-gon, ak = an−k .
Now let A denote the companion matrix of the minimal polynomial qn of a2. If

b ∈ Q(a2), let pb ∈ Q[x] denote the monic polynomial for which b = pb(a2), and
let v(b) = (v0(b), . . . , v�(n)/2(b)) denote the vector of coefficients of this polyno-

mial; i.e., the vector representation of b with respect to the basis 1, a2, . . . , a�(n)/2
2

of Q(a2). Note that by (1) pai has integer coefficients. Then v(a2b)t = Av(b)t and,
given an inflation factor λ ∈ Q(a2), v(λb)t = pλ(A)v(b)t . This provides a means
of representing the lengths λai as combinations of a0, . . . , a(n−1)/2. In particular,
let Ln := [v(a0)|v(a2)| · · · |v(a(n−1)/2)] denote the �(n)/2 × (n − 1)/2 matrix, the
columns of which are v(ai ); then the i th column of the solution X of the matrix
equation

Ln X = pλ(A)Ln (4)

expressesλai as a combination of a0, . . . , a(n−1)/2. If n is prime, then Ln is square—the
number (n−1)/2 of edge lengths agrees with the degree of qn—and upper triangular—
eq. (1) expresses ai as a polynomial of degree i – 1 in a2—and hence invertible. Then
we can write

X = L−1
n pλ(A)Ln . (5)

Let us use only inflation factors λ that are positive integer combinations of
a0, . . . , a(n−1)/2. The reason for doing so is that, if t ∈ S(n) contains an angle of
measure π/n, then its shortest edge has length a1 = 1, so the shortest edge of λt will
have length λ, which must therefore be a sum of prototile edge lengths. This is not
strictly necessary if we choose for our set of prototiles a subset of S(n) that contains
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Fig. 4 Two narrow triangles

11
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k n − k 1l
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k − 1
al · T (1, k − 1, n − k)T (k, l, n − k − l)

Fig. 5 A non-narrow triangle and an inflated narrow triangle

no triangle with an edge of length 1, but empirically such prototile sets do not work
well, and we will soon focus our attention on a special set of prototiles that contains
two triangles with minimal edge lengths—see Sect. 3.2.

2.2 Areas

Now we can calculate the areas of the triangles in S(n). Given a triangle t , let |t |
denote its area. Then we can express the areas of all the triangles as elements of
Q(a2) · |T (1, 1, n − 2)|, where a2 = 2 cos(π/n) as described in Sect. 2.1. Let us call
a triangle in S(n) a narrow triangle if it has an angle of π/n. Then we first calculate
the areas of the narrow triangles recursively using the same similar triangles that we
used to express ak in terms of a2.

In particular, T (1, k, n−k−1) and T (1, k−1, n−k) fit together to form a triangle
similar to T (1, 1, n − 2), but inflated by a factor of ak (see Fig. 4). Therefore

|T (1, k, n − k − 1)| = a2
k · |T (1, 1, n − 2)| − |T (1, k − 1, n − k)|, (6)

so, recursively, we obtain formulas expressing the areas of the narrow triangles in
terms of |T (1, 1, n− 2)|. Note that each ak can be written as an integer polynomial in
a2, so this recursion formula expresses |T (1, k, n − k − 1)| as an integer polynomial
in a2.

To calculate the areas of the non-narrow triangles, note that every non-narrow
triangle fits together with an inflated narrow triangle to form another inflated narrow
triangle, as in Fig. 5. In particular, if k < l < n − k − l, then

|T (k, l, n − k − l)| = a2
k · |T (1, l, n − l − 1)| − a2

l · |T (1, k − 1, n − k)|, (7)

and, since |T (1, l, n−1− l)| and |T (1, k−1, n− k)| are multiples of |T (1, 1, n−2)|
by integer polynomials in a2, so is |T (k, l, n − k − l)|. Note that permuting the order
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of the angles k, l, and n − k − l gives us up to three different formulas for this area,
any one of which will work.

The main reason for computing triangle areas is to determine the substitution matrix
of the substitution ϕ that we are trying to find. Choose a set of prototiles S ⊂ S(n), the
areas of which form a Q-basis for Q(a2) · |T (1, 1, n − 2)|. Enumerate the elements
of this set t1, . . . , tm , and let Ak := |tk |/|T (1, 1, n − 2)|. Let BS denote the square
matrix, the columns of which are the vectors v(Ak) (defined in Sect. 2.1); that is,
BS = [v(A1)| · · · |v(Am)]. Our choice of S having areas that are a Q-basis for Q(a2) ·
|T (1, 1, n − 2)| means that BS is invertible.

Then, if there exists a substitution ϕ on S with inflation factor λ, it will have
substitution matrix

M := B−1
S pλ(A)2 BS . (8)

Sometimes an inspection of the matrix M is enough to prove the non-existence
of a substitution on S with factor λ. For instance, if any of the entries of M are not
integers or are negative, then no such rule can exist—although [8] describes a way of
modifying S to address the problem of a negative entry.

If the entries of M are all positive integers, then we search the combination of S
and λ for substitution rules.

3 The Program

Let us now describe the program used to search for substitution rules. The program
is written in Java, although the discussion presented here contains no Java-specific
details. We chose Java because of its native support for concurrency (see Sect. 3.5)
and cross-platform compatibility.

3.1 Overview

Before describing the search algorithm in any detail, let us give an overview of how
the program works.

The order of symmetry n is assumed to be fixed from the start. The program takes
three ingredients as input: a set S ⊂ S(n) of prototiles, an inflation factor λ that is
a non-negative integer combination of a1, a2, . . . , a(n−1)/2, and an inflated prototile
λt0, where t0 ∈ S. Then it tries to fill λt0 with tiles congruent to prototiles from S in
such a way that the tiles overlap at most in their boundaries, they meet edge-to-edge if
at all, and their union is all of λt0. Let us refer to each such application of the program
as a search of the triple (S, λ, t0). The output of a search is a (possibly empty) set of
patches from P(S(n)), each of which has support λt0. Let us call such a patch a result.
A search will be considered successful if it returns at least one result.

In order to obtain a substitution rule on S with factor λ, we must run a search on
(S, λ, t) for each prototile t ∈ S, and the search must be successful for each one. Then
we can define a substitution rule ϕ as follows: for each t ∈ S, let ϕ(t) be any one of the
patches found in the search on (S, λ, t). In order for the substitution rule so obtained
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to be edge-to-edge, it must satisfy some additional conditions on its edge orientations
and edge breakdowns, as described in Sect. 1.4. Isometry equivariance (condition (1))
and matching (condition (2)) are built into the search—so, in fact, the program will
not find any patches that do not satisfy these conditions, although that restriction can
be turned off.

Preservation under ϕ (condition (3)) is checked after the completion of all the
searches for a given S and λ. More specifically, we assemble all of the results together
and look for a tuple of results, one for each tile, that can be used to define a substitu-
tion that satisfies condition (3). We also check now that the tuple of results satisfies
condition (1) as a whole, because the program only checks the patches individually
during the search.

If such a tuple of results exists, then the substitution that it defines is edge-to-edge,
and we have found what we set out to find for S and λ.

3.2 A Special Prototile Set

Of all subsets S ⊂ S(n) for odd n, one works better than the others. This is the set
consisting of all triangles that contain at least one edge of maximum length, that is,
all triangles with at least one angle of measure n/2 ± 1/2. There are (n − 1)/2 such
triangles, and they can be combined along their short sides to produce triangles similar
to the (n − 1)/2 isosceles triangles in S(n).

3.3 Representation of Points

If a patch in P(S(n)) contains a tile with a vertex at the origin, then all tile vertices in
that patch must lie in the Z-module V generated by all of the vectors

{ak(cos(iπ/n), sin(iπ/n)) | 1 ≤ k ≤ (n − 1)/2, 0 ≤ i < 2n}. (9)

If each t ∈ S has a vertex at the origin, then so does each λt , and so we can restrict our
attention to such patches. Therefore the program need not deal with arbitrary points
in R

2, but only points in V .
Internally, it represents these points as elements of Z

n−1.
If n is prime, then Z

n−1 is isomorphic to V . Specifically, multiplying on the left by
the matrix

[
cos 0π

n cos 1π
n · · · cos (n−2)π

n

sin 0π
n sin 1π

n · · · sin (n−2)π
n

]
(10)

takes the i th standard basis vector of Z
n−1 to the vector (cos(iπ/n), sin(iπ/ n)) ∈ V ,

which is an element of the set 9 as a1 = 1. To see that this map is onto, note that the
images of the standard basis vectors are the direction vectors of n− 1 of the sides of a
regular n-gon. This is depicted for the case n = 7 in Fig. 6. Then it is not hard to see
that vectors with all different lengths a1, . . . , a(n−1)/2 can be obtained as sums of the
images of the standard basis vectors—for instance,
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e0

e1

e2

e3e4

e5

− e0

e1

− e2e5

e3 − e4

− e0 + e1 − e2 + e3 − e4 + e5

Fig. 6 The images of the standard basis vectors of Z
6, arranged to form the edges of a regular heptagon

a2(cos(1π/n), sin(1π/n)) = (cos(0π/n), sin(0π/n))

+ (cos(2π/n), sin(2π/n)).

If n is not prime then this map Z
n−1 → V is onto but not one-to-one, as there are

multiple non-trivial relations between the direction vectors of the edges of a regular
n-gon.

3.4 The Search

The search works by recursion. It has two main objects that it updates with each
recursion step, and it uses these objects to decide whether or not to terminate the
recursion. The first object is a patch P ∈ P(S), the support of which is contained
in λt0. The second is a list of non-negative integer multiplicities of prototiles. These
multiplicities indicate how many prototiles of each type remain to be placed in order
to obtain a patch with support equal to λt0; it is initialized using the column of the
matrix M from (8) that corresponds to λt0. We say that this list contains a tile t if the
multiplicity of that tile is greater than 0. At each step in the recursion, the multiplicity
of one prototile is decremented in this list and the corresponding tile is pushed on P ,
which is in fact a stack. Then the recursion is finished when all of the multiplicities
are 0.

The main recursive procedure is called solve. Simplified pseudocode for this pro-
cedure appears in Algorithm 1.

Several of the statements in Algorithm 1 require further explanation. The place
procedure on line 11 takes as input the prototile t and returns a tile t ′ that is congruent
to t . Then the compatible procedure on line 12 returns true if P ∪ {t ′} is a patch with
support contained in λt0. (In fact, compatible also requires P ∪ {t ′} to satisfy edge
orientation conditions (1) and (2)—see Sects. 1.4 and 3.1.)

There are many conceivable ways of placing a copy of the prototile t in P , but we
only consider a restricted range of possibilities. The edges of all of the tiles in P are
divided into two lists, called open edges and closed edges. Closed edges are edges
that are contained in two different tiles, or in one tile and in the boundary of λt0. Open
edges are edges that are contained in only one tile, and not in the boundary of λt0.
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Algorithm 1 The solve procedure
1: P: a patch with support contained in λt0
2: t : the prototile we are currently trying to place in P
3: l: a list of multiplicities telling us how many prototiles of each type remain to be placed
4: procedure solve
5: repeat
6: if l is empty then
7: store a deep copy of P somewhere 	 P is a result
8: break
9: end if
10: if l contains t then
11: t ′ ← place t
12: if t ′ is compatible with P then
13: push t ′ on P
14: t ← first prototile
15: solve 	 recursion
16: t ← pop last tile from P , get associated prototile
17: end if
18: end if
19: t ← prototile after t
20: until back to first prototile
21: end procedure

In other words, open edges are edges against which another tile must be placed in
order to obtain a completed patch.

The open edges and closed edges are stored in stacks, so in particular they have an
order, with the open edge(s) coming from the most recently-placed tile being listed
last. Then the rule is that we place the prototile t against the last open edge, if this
is possible (t might not have an edge of the right length). This rule has two main
implications.

The first implication is that any newly-placed tile t ′ has at least one edge in common
with a tile that has already been placed—this edge becomes a closed edge. Therefore a
newly-placed tile can contribute at most two new open edges. If it contributes one new
open edge, or no new open edges, then there is no ambiguity as to which new open
edge is listed last. But if it contributes two new open edges, then we have a systematic
way of determining the order in which they are added to the stack; namely, they are
pushed in the order in which they appear in a counterclockwise traversal of the edges
of t ′, starting with the closed edge.

The second implication is that, in order to call the place procedure, we need to have
at least one open edge, even at the beginning when no tiles have been placed yet. This
is a problem that we fix by placing an open edge, called a starter, on part of one of the
edges of λt0 (see Fig. 7). Then the first tile must be placed against the starter.

We need to choose a length for the starter edge, and some choices of edge length
might preclude certain results. We deal with this by running several searches in
parallel—one for each choice of starter edge length. This turns out to be a convenient
method to divide up the work for multithreading—see Sect. 3.5. To produce a list of
possible starter edge lengths, one option is to use all edge lengths a1, . . . , a(n−1)/2.
An even better option is to select only those lengths for which the corresponding entry
in the length substitution matrix X from (5) (Eq. 4 if n is not prime) is positive.
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Fig. 7 Two copies of an inflated prototile with starter edges of different lengths shown as dashed lines

The pseudocode in Algorithm 1 has been simplified a bit for clarity, but we should
note now that there might be several ways to place the prototile t against the last
open edge. If t has an edge of the same length as the last open edge, then there are
two possibilities: we can place t against the last open edge using a non-orientation
preserving isometry—i.e., a reflection—or using an orientation preserving isometry.
If t has two edges of that length, then there are four ways of placing it against the
last open edge. (The case in which t is equilateral has not come up yet, because
the program only works on prime n now, so in particular not on any n divisible
by 3.)

To keep track of these possible placements, we store not only the current prototile t ,
but also two booleans flip and second that tell us respectively if we are trying to place
a reflected copy of t and if we are trying to place t using the second of two edges of
the same length. Therefore on line 11, we do not place t , but rather we place the triple
(t, flip, second). On line 19, we get the next triple (t, flip, second), not just the next
prototile t , and on lines 14 and 20 we refer to the first triple (t1, false, false), not just
the first prototile t1. On line 16, we pop the last tile t ′ from P and, using information
from t ′ and P we infer which triple (t, flip, second) was input to the place procedure
to produce t ′.

This last point merits further discussion. The purpose of line 16 is to restore the
states of (t, flip, second), and P to what they were on line 13. In principle we could
store these states in memory, but note that we call the solve procedure recursively
on line 15; this means that these states could change many times between lines 13
and 16. In practice it becomes unwieldy to store all of these changes—sometimes it
even crashes the program—so we store none of them. Instead, when we remove t ′
from P on line 16, we use information about t ′ to restore everything to its state from
line 13.

In particular, we remove any open edges coming from edges of t ′, and if any closed
edges come from edges of t ′, then they are made open again. We also determine the
prototile t to which t ′ is congruent. If t ′ is a reflected copy of t , then we set flip to
true, and if t ′ has its second of two equal edges against the last open edge, then we
set second to true. These calculations allow us to ascend and descend the recursion
tree without having to use up the system memory storing states from previous levels
of recursion.
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3.5 Multithreading

The amount of time required to search an inflated prototile λt0 scales up rapidly with
its area, and it is worthwhile to take advantage of the multithreading capabilities of
the Java language to reduce this time. The particular algorithm design that makes it
possible to do this might be of independent interest, so let us describe it here.

The program holds a list of searches at varying stages of completion; at the same
time, there are many threads, each working on a different search. When a thread
finishes a search, it draws a new one from the list.

These searches are independent from one another, in the sense that no two can ever
return the same result. This is because they all contain different configurations of open
edges and tiles that have already been placed in their patches. So the initial searches
are not actually empty; rather, they contain starter edges (see Sect. 3.4), which differ
from one another in their lengths. Thus we can have up to (n − 1)/2 initial searches.

We may have many more threads than initial searches, and, empirically, most of
the initial searches seem to finish quickly with no results. Therefore we need a way
to split up the few searches that remain in order to take advantage of the extra threads
available. We do this by giving each search a kill switch that we trigger when the
number of searches remaining in the list drops too low.

When the kill switch is triggered, the search algorithm changes: instead of making
another solve call at line 15 of Algorithm 1, the search makes a deep copy of itself in
its current state, and places this copy in the list of searches. A given search may have
called solve recursively many times already when the kill switch is triggered, so it will
pass line 15 many times before finishing, adding many searches to the list. These new
searches represent work that the original search would have done had the kill switch
not been triggered.

Figuratively, the behavior of the searches can be described as follows. Under ordi-
nary conditions, a search climbs the recursion tree from bottom to top and searches
all of the branches to their ends as they are encountered. After the kill switch has been
triggered, the search no longer climbs up new branches that it encounters; instead,
whenever it encounters a new branch on the way down the tree, it cuts it off at the base
and throws it on a pile of branches to be searched. Then it reaches the bottom of the
recursion tree and finishes.

4 Results

4.1 Fivefold Symmetry

To find substitutions using S(5) it is not necessary to use a computer, but it certainly
helps. For these prototiles, the smallest inflation factor is a2, the golden ratio. Substi-
tutions with this inflation factor have been described elsewhere (see [11,19]); these
can be combined as multi-substitutions, but not as random substitutions—although
see [11] for a description of a slightly different randomization strategy, called tile
rearrangement.
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Fig. 8 Results for S(5), λ = 1+ a2

Already at the next inflation factor, a2
2 = 1 + a2, there are many substitutions

to be found. Figure 8 depicts a family of these—two for T (1, 1, 3) and seven for
T (1, 2, 2)—that can be used to produce random substitutions. The program also finds
substitutions with different edge breakdowns that can be combined with these ones as
multi-substitutions.

4.2 Sevenfold Symmetry

We have found many new substitution rules with sevenfold rotational symmetry using
three different inflation factors: λ1 = 1+a2, λ2 = a2+a3, and λ3 = 1+a2+a3. The
second and third of these are both PV numbers, while the first is not. A PV inflation
factor is a necessary condition for the existence of any non-trivial eigenvalue of the
dynamical system, that is, for any non-trivial discrete part in the spectrum [22]. All
three inflation factors are units in the ring of integers of the number field generated
by a2, which is necessary for the module generated by the eigenvalues to be finitely
generated.

Of course, it is possible to search even larger inflation factors, and presumably to
find more substitution rules, at the cost of more computing time and much greater
memory usage.

The T (1, 3, 3) and T (2, 2, 3) triangles are both isosceles, so each one has two
ways of placing it in any given position: an orientation preserving placement and
an orientation reversing placement. If we choose one of these isosceles triangles and
reflect each of its instances in a result P across its axis of symmetry, then this modified
patch is still a result. We have processed the results obtained from the program to
remove this redundancy and to select only those groups of results that have compatible
edge breakdowns in the sense of Sect. 1.4, and that therefore can be used to produce
tilings.

The results for λ1 appear in Figs. 9 and 10. They fall into two classes, depicted in
Figs. 9 and 10, according to the edge orientations of the prototiles, which are enclosed
in boxes on the right sides of the figures. These should really be considered as two
different sets of prototiles, because substitution rules coming from the two different
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Fig. 9 The standard prototiles. These are compatible with results for λ2 and λ3. Arcs between results
indicate compatibility of edge breakdowns. The substitution depicted in Fig. 1 uses the results in the middle
row of this figure

classes of results cannot be combined with one another even as multi-substitutions. On
the other hand, two or more substitution rules coming from the same class of results
can be combined as multi-substitutions.

An arc between two results in Fig. 9 or 10 indicates that they have the same edge
breakdowns. Two or more substitution rules coming from results with the same edge
breakdowns can be combined as random substitutions. So, for instance, we can make
three different substitution rules by choosing, from the bottom row of Fig. 9, any one of
the three results for T (2, 2, 3), along with the results for T (1, 3, 3) and T (1, 2, 4); these
three substitutions can be combined as random substitutions. This involves creating
tilings by repeatedly substituting a patch, and for each T (2, 2, 3) tile appearing in that
patch, choosing at random which of the three rules to apply to it.

The results for λ2 appear in Fig. 11. The substitutions built from the results in
Figs. 9 and 11 use the same prototiles, and can be combined with one another to
produce multi-substitutions. Any substitution built from results in Fig. 11 with the
same edge breakdowns and edge orientations can be combined with one another to
produce random substitutions. Of course, a substitution built from results in Fig. 11
cannot be combined with a substitution built from results in Fig. 9 or 10 to produce a
random substitution because they have different inflation factors.

The results for λ3 are too numerous to depict here, but a set of three of them, one for
each prototile, appears in Fig. 12. These three all have compatible edge breakdowns
and edge orientations, in the sense of 1.4. For these edge breakdowns and orientations
there are 3 compatible T (1, 2, 4)-results, 5 compatible T (1, 3, 3)-results, and 36 com-
patible T (2, 2, 3)-results, all of which can be combined with each other as random
substitutions.
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Fig. 10 The non-standard prototiles. The Danzer–Nischke example [19, Fig. 12] uses the result for
T (1, 2, 4) depicted at the top. Arcs between results indicate compatibility of edge breakdowns

Moreover, this is one out of ninety edge breakdown/edge orientation combinations;
the other eighty-nine also have many results associated to them (some of which are
repeated, since, for example, the T (2, 2, 3) result appearing in Fig. 12 is compatible
with any T (1, 2, 4) result having the same edge breakdown on its medium and long
edges, regardless of the edge breakdown of the short edge). A substitution built using
results from any of these ninety edge breakdown/edge orientation combinations can
be combined with any other such substitution, or any substitution coming from Fig. 9
or 11.

4.3 Observations

Let us now make a few miscellaneous observations on the results presented in Sects.
4.1 and 4.2.

1. The non-standard prototiles in Fig. 10 appear to be a phenomenon unique to the
factor λ1, in that there are no results for the factors λ2 or λ3 with those prototiles.

2. The prototiles in Figs. 8, 9, 11, and 12 have the property that, if two edges meet
at a vertex at an angle that is an even integer multiple of π/n, then they are either
both oriented towards that vertex or both oriented away from it; if the angle is
an odd integer multiple of π/n, then their orientations are opposite. This has the
consequence that, in any tiling made with these prototiles, all edges with the same
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Fig. 11 The results for λ2. Arcs between results or groups of results indicate compatibility of edge break-
downs. The two groups of results for T (2, 2, 3) are reflections of one another

angle will have the same orientation. It also means that these tilings are only n-fold
symmetric, not 2n-fold symmetric, as is often the case when one tries to construct
something n-fold symmetric. This is also true of substitutions arising from the
general method described in [19], although it is not true of the special substitution
in that work, nor of the substitutions in Fig. 10.

3. Some of the results in Figs. 9, 11, and 12 reverse the directions of the tile edges
in the super-tile edges, while others preserve them.

4. The program produces many more results than are recorded here. Some of these
results are obtained by reflecting all instances of an isosceles tile, as described in
Sect. 4.2, and so in that sense are redundant. Other results are only partial in the
sense that they cannot be combined with results for the other prototiles to produce a
substitution rule. For example, there exist results for T (2, 2, 3) that are compatible
with other results for T (1, 2, 4), but not with any result for T (1, 3, 3). In principle
such results could still be used in random substitutions, provided that they were
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Fig. 12 Results for λ3

not applied to any instance of T (2, 2, 3) that shared an edge with an instance of
T (1, 3, 3).

4.4 A Surprising Topological Property

Some of these new examples produce substitution tiling spaces with a surprising
topological property.

These scaling factors are units in the relevant ring, which means that the induced
substitution on the edge lengths (and the first cohomology of the Anderson–Putnam
complex [1]) is unimodular, and so the first cohomology is finitely generated, and
so is the module of eigenvalues in the dynamical spectrum (provided the factor is
PV, otherwise there are no non-trivial eigenvalues). Despite all that, and unlike all
examples found in the literature so far, (some of) these substitutions have a non-
unimodular action on the second cohomology, which is thus not finitely generated.

All of the substitutions coming from Fig. 10 have this property, as does the substi-
tution from the bottom row of Fig. 9 that uses the leftmost result for T (2, 2, 3). Some
of the substitutions from Fig. 11 have this property and others do not.

It is also easy to find examples with this property using the fivefold prototiles S(5).

4.5 Tilings with Global Sevenfold Rotational Symmetry

Some of the tilings arising from the substitutions in Figs. 9, 10, and 11 possess global
rotational sevenfold symmetry. Whether or not a substitution gives rise to such tilings
can be determined by looking at the collection of vertex stars of the tilings—i.e.,
the translation equivalence classes of patches consisting of tiles that share a common
vertex, which lies in the interior of the patch. There is a simple algorithm for obtaining
all such patches: Choose a prototile as a seed and apply the substitution to it enough
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times that the resulting patch contains a vertex in its interior (and hence contains vertex
stars). Put these vertex stars in a list. Then apply the substitution to these vertex stars
and add to the list any new vertex stars that appear in the resulting patches. Repeat
this process until no more vertex stars are found.

Once all the vertex stars have been found, one can check visually whether or not any
of them is sevenfold symmetric. If none of them is, then there is no globally sevenfold
symmetric tiling in the substitution tiling space. If, on the other hand, there is at least
one sevenfold symmetric vertex star, then there must be some sevenfold symmetric
vertex star that lies at the center of its own image under some power of the substitution.
This vertex star is then a seed for a sevenfold symmetric tiling that is a fixed point of
a power of the substitution.

Of the substitutions in Fig. 9, the ones in the first two rows both produce sevenfold
symmetric vertex stars, but in the third row only the substitution that uses the second
result for T (2, 2, 3) produces such stars. The substitutions in Fig. 10 do not produce any
sevenfold symmetric vertex stars. Of the substitutions in Fig. 11, all of the ones using
the T (2, 2, 3) results from the collection on the right produce sevenfold symmetric
vertex stars. Of the ones using results on the left, some do produce such stars and some
do not.

4.6 Tilings with Global Elevenfold Rotational Symmetry

One of the original goals of this work was to discover new substitution tilings with
elevenfold rotational symmetry. We were unable to find any; indeed, we found no
substitutions on minimal subsets of S(11). This is because the difficulty of the search
increases rapidly with the size of the inflation factor λ.

We searched all small inflation factors for {T (1, 5, 5), T (1, 4, 6), T (2, 3, 6),

T (2, 4, 5), T (3, 3, 5)} and found no substitutions, and the larger inflation factors are
too large to be searched within reasonable time. This is not due to a lack of memory—
the discussion at the end of Sect. 3.4 describes a method of reducing memory usage
to reasonable levels—but is rather due to CPU limitations.
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