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Abstract We prove a quantitative version of the multi-colored Motzkin–Rabin the-
orem in the spirit of Barak et al. (Proceedings of the National Academy of Sciences,
2012): Let V1, . . . , Vn ⊂ R

d be n disjoint sets of points (of n ‘colors’). Suppose that
for every Vi and every point v ∈ Vi there are at least δ|Vi | other points u ∈ Vi so that
the line connecting v and u contains a third point of another color. Then the union of
the points in all n sets is contained in a subspace of dimension bounded by a function
of n and δ alone.

Keywords Sylvester–Gallai · Point configurations · Algebraic methods

1 Introduction

The Motzkin–Rabin (MR) theorem (see [3]) states that in a non-collinear set of points
in the Euclidean plane, each colored blue or red, there always exists a monochromatic
line (a line passing through at least two points and all points on the line are of the same
color). Another way to state this theorem uses the following definition which we shall
later generalize.

Definition 1.1 (MR configuration) Let V1, V2 ⊂ R
2 be disjoint, finite sets of points

in the plane. The pair V1, V2 is called an MR-configuration if every line L with
|L ∩ (V1 ∪ V2)| ≥ 2 must intersect both sets V1 and V2.
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The Motzkin–Rabin theorem can now be stated equivalently as:

Theorem 1.2 (Motzkin–Rabin Theorem) Let V1, V2 ⊂ R
2 be an MR-configuration.

Then all points in V1 ∪ V2 must belong to a single line.

It is easy to see that one can replace R
2 with R

d and that the theorem will still hold
in this case (take a generic projection to the plane). This theorem answers a question
first raised by Graham [7]. Theorem 1.2 was discovered independently by Motzkin
[8] and Rabin (cf. Chakerian [5]. See [4, p. 306] for more references and history).

We will denote by adim(S) the dimension of the affine span (the smallest affine sub-
space containing the points) of a point set S ⊂ R

d and for a family of sets S1, . . . , Sr

we will write adim(S1, . . . , Sr ) = adim(S1 ∪· · ·∪Sr ). Then, the conclusion of the MR
theorem, namely all points in V1, V2 being on a line, can be stated as adim(V1, V2) ≤ 1.
Hence, we can view the MR theorem as converting partial information about collinear-
ity in the sets V1, V2 (the line through every pair of points of the same color contains
a third point of a different color) into a global bound on the dimension of the entire
configuration. A closely related theorem is the Sylvester–Gallai theorem which is a
‘one color’ version of the MR theorem: in every non-collinear set of points there is a
line containing only two of the points.

Shannon [9] (see also [2]) proved an n-color variant of this theorem showing that if a
family of n sets V1, . . . , Vn spans R

n then they must define at least one monochromatic
line. In this work we extend this result to the setting where the information about
collinearities is only given for many of the lines passing through two points of the
same color. To be precise we will give the following definition:

Definition 1.3 (δ, n)-MR configuration) Let V1, V2, . . . , Vn be disjoint sets of points
in R

d , and let V = V1 ∪ V2 ∪ · · · ∪ Vn . We say that V1, V2, . . . , Vn is a (δ, n)-
MR configuration if for each Vi and for each v ∈ Vi , there are at least δ|Vi | points
u ∈ Vi\{v} for which the line determined by v and u contains a third point in V \Vi .
For convenience we will always assume that |V1| ≥ |V2| ≥ · · · ≥ |Vn|.

Our main theorem gives a dimension bound for (δ, n)-MR configuration that
depends only on n and δ. We do not believe our bound to be tight and conjecture
that a bound of poly(n/δ) holds in general.

Theorem 1.4 (Main theorem) Let V = V1, V2, . . . , Vn ⊂ R
d be a (δ, n)-MR config-

uration. Then, for any 0 < ε < δ we have

adim(V ) ≤ C

ε2 ·
(

1 + 1

δ − ε

)n

,

with C > 0 an absolute constant.1

Theorem 1.4 is a multi-colored version of recent results of [1,6], which give a
similar ‘δ-version’ of the Sylvester–Gallai theorem ([1] also establishes the n = 2

1 One could set ε = δ/2 to get a simpler (but worse, in some cases) bound.
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case of Theorem 1.4). In fact, our proof uses one of the main results of [1,6] as its
principal tool. This result, given below as Theorem 2.2, gives a lower bound on the
rank of matrices whose pattern of zeros and non-zeros satisfies a certain ‘design-like’
condition. As the results of [1,6] work also over the complex numbers, our results
(in particular, Theorem 1.4) hold also when one replaces R

d with C
d (with the same

bounds).
In the next section we state some preliminaries from [1,6] that will be used in the

proof of Theorem 1.4. The proof itself is given in Sect. 3.

2 Preliminaries

The main tool in the proof is a rank lower bound for design-matrices defined in [1].
For a vector R ∈ F

n we denote the support of R by supp(R) = {i ∈ [n]|Ri �= 0}.
Definition 2.1 (Design matrix) Let A be an m × n matrix over a field F. Let
R1, . . . , Rm ∈ F

n be the rows of A and let C1, . . . , Cn ∈ F
m be the columns of

A. We say that A is a (q, k, t)-design matrix if the following three conditions are
satisfied:

1. For all i ∈ [m], |supp(Ri )| ≤ q.
2. For all j ∈ [n], |supp(C j )| ≥ k.
3. For all j1 �= j2 ∈ [n], |supp(C j1) ∩ supp(C j2)| ≤ t .

The following is a quantitative improvement of a bound originally proved in [1].

Theorem 2.2 [6] Let A by an m × n complex matrix. If A is a (q, k, t) design matrix
then

rank(A) ≥ n − ntq(q − 1)

k
.

Another lemma we will use is the following lemma whose proof is a simple con-
sequence of the existence of diagonal Latin squares.

Lemma 2.3 [1, Lemma 2.1] Let r ≥ 3. Then there exists a set T ⊂ [r ]3 of r2 − r
triples that satisfies the following properties.

1. Each triple (t1, t2, t3) ∈ T consists of three distinct elements.
2. For each i ∈ [r ] there are exactly 3(r −1) triples in T that contain i as an element.
3. For every pair i, j ∈ [r ] of distinct elements there are at most 6 triples in T which

contain both i and j as elements.

3 Proof of the Main Theorem

Before giving the proof of Theorem 1.4 we prove some useful lemmas. The first
is the technical heart of the proof and its proof utilizes the rank bound for design
matrices (Theorem 2.2). In the following we will denote by dim(S) the dimension of
the subspace spanned by a set S. Notice that, since adim(S) ≤ dim(S), we can bound
dim(V ) instead of adim(V ).
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Lemma 3.1 Let V = ⋃n
i=1 Vi be a (δ, n)-MR configuration in R

d . Let x, y be indices
with 0 ≤ x < y ≤ n. Let P1 = ⋃x

i=1 Vi , let P2 = ⋃y
i=x+1 Vi , and let P3 =⋃n

i=y+1 Vi (P1 and P3 might be empty if x = 0 or y = n). Suppose that for some
constants c1, c2 > 0 the following two inequalities hold:

|Vy | ≥ c1|P2|, (1)

(δ − c2)|Vy | ≥ |P3|. (2)

Then dim(P2) ≤ dim(P1) + 12/(c1c2).

Proof We start by noting that, since |V1| ≥ |V2| ≥ · · · ≥ |Vn|, inequalities (1) and (2)
in the lemma statement, |Vy | ≥ c1|P2| and (δ − c2)|Vy | ≥ |P3|, also hold when |Vy |
is replaced with |Vi |, for i < y.

We will call a line L extraordinary with respect to the configuration V if (1) L
passes through at least one point of P2 and (2) L passes through at least three points
of P1 ∪ P2. We will refer to the points of P1 ∪ P2 that lie on some extraordinary line
L as the points associated with L (such a line L might contain additional points from
P3 which are not associated with it).

Let L1, L2, . . . , Lk be an enumeration of the extraordinary lines of our configura-
tion and let �i denote the number of points associated with Li , for 1 ≤ i ≤ k.

For each extraordinary line Li we construct, using Lemma 2.3, a set Ti of �2
i − �i

triples of points so that (1) each triple in Ti consists of three distinct points associated
with Li ; (2) for any point v associated with Li , there are exactly 3(�i − 1) triples in Ti

that contain v; and (3) for any two points u �= v associated with Li , there are at most
6 triples in Ti that contain both u and v. Let

T =
k⋃

i=1

Ti .

Next, let m = |V | and let M be the m × d matrix whose rows are defined by the
points of V (in some choice of coordinates for R

d ). We will now define a matrix A
that will satisfy A · M = 0. Each triple in T will correspond to one row of A. Every
triple t = (t1, t2, t3) ∈ T consists of three distinct points in P1 ∪ P2 that are collinear.
Since they are collinear, there are coefficients h1, h2, h3, not all zero, such that

h1t1 + h2t2 + h3t3 = 0

(treating the points as vectors). We set the t’th row of A to have entries h1, h2, h3 in the
positions corresponding to the three points t1, t2, t3 (we can do that since the columns
of A are indexed by V ) and zero elsewhere. Observe that A is a |T | × m matrix, since
there is a bijection between the elements of T and the rows of A. Since the product of
any row of A with M is 0, we must also have that

A · M = 0.
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There is a bijection between the rows of the matrix M and the points in the set
V . Therefore, any subset of the set V corresponds to a submatrix of the matrix M ,
obtained by taking only those rows that correspond to the points in the subset. Let
M1 denote the submatrix of M corresponding to the point set P1, and likewise let
M2 and M3 be the submatrices corresponding to P2 and P3. Let A1 be the submatrix
of A obtained by taking those columns of A whose indices match the indices of the
rows of M1 (that is, with indices corresponding to elements of P1). Define A2 and A3
analogously (with columns in P2 and P3 respectively). Observe that A1 M1, A2 M2,

and A3 M3 are all valid matrix products, and that

A1 M1 + A2 M2 + A3 M3 = AM = 0.

From the definition of the matrix A we have that the column corresponding to any
given point in P3 contains only 0’s; therefore A3 = 0, and so A3 M3 = 0. Hence
A1 M1 + A2 M2 = 0 which gives

rank(A2 M2) = rank(A1 M1) ≤ rank(M1) = dim(P1). (3)

(If |P1| is empty we get A2 M2 = 0 and the rest of the proof is the same.)
We now claim that:

Claim 3.2 A2 is a (3, 3c1c2|P2|, 6)-design matrix.

Proof By the construction of A each row contains at most three non-zero terms. Since
A2 is a submatrix of A, each row of A2 can contain at most three non-zero terms.
Similarly, by the construction of A, any two columns can share at most six non-zero
locations; and again this holds for A2 as well. Finally, we claim that each column of
A2 contains at least 3c1c2|P2| non-zero entries.

Consider a column C of A2. This column corresponds to a point p in P2. The
number of non-zero entries of C is exactly equal to the number of triples in T that
contain the point p. Suppose that p ∈ Vi ⊂ P2 for some i . We claim that there must
be at least δ|Vi |− |P3| points q �= p that lie on extraordinary lines through p. Observe
that this quantity is at least c2|Vi | by inequality (2). Indeed, there are at least δ|Vi |
points q �= p in Vi , for which the line through q, p contains a point from some Vj ,
with j �= i , because the configuration is (δ, n)-MR. Let us denote this set of at least
δ|Vi | points by S. For each point q in S, either the line through q, p contains a third
point from P1 ∪ P2, and is therefore an extraordinary line, or (1) it contains no other
points from P1 ∪ P2, and (2) it contains some point r from P3.

Thus, each point q ∈ S that is not associated with any of the extraordinary lines
passing through p corresponds to some point r ∈ P3. Since no two q1 �= q2 ∈ S can
correspond to the same r , at most |P3| of the points in S are not associated with any
of the extraordinary lines passing through p. Thus, the remaining δ|Vi | − |P3| points
are associated with one of the extraordinary lines passing through p.

Now, if a given extraordinary line L passes through p, and if there are � points
associated with L besides p, then that line contributes 3� triples to T that contain p.
Therefore, since we showed that there are at least c1c2|P2| points other than p that lie
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on the extraordinary lines passing through p, there must be at least 3c1c2|P2| triples
in T that contain p.

We conclude that that the point p ∈ Vi is in at least 3c2|Vi | triples; and since
|Vi | ≥ c1|P2| (by inequality (1)), this quantity is at least 3c1c2|P2| such points and so
A2 is indeed a (3, 3c1c2|P2|, 6) design matrix as claimed. 	


Applying Theorem 2.2 we have that

rank(A2) ≥ |P2| − 12/(c1c2).

Now, using basic linear algebra, we get that

rank(A2 M2) ≥ rank(M2) − (|P2| − rank(A2)) ≥ rank(M2) − 12/(c1c2).

Using Eq. (3) we immediately get

rank(M2) ≤ dim(P1) + 12/(c1c2),

which implies dim(P2) ≤ dim(P1) + 12/(c1c2) as was required. This completes the
proof of Lemma 3.1. 	


To state the next lemma we will need the following definition.

Definition 3.3 (ε-Large and ε-small indices) Let V1, . . . , Vn ⊂ R
d be a (δ, n)-MR

configuration and let cε = 1/(δ − ε) with 0 < ε < δ some real number. We call an
index k ∈ [n] an ε-large index if

|Vk | ≥ cε(|Vk+1| + |Vk+2| + · · · + |Vn|),

otherwise we say that k is ε-small. By convention, we say that n is always ε-large.

Lemma 3.4 Let V1, V2, . . . , Vn ⊂ R
d be a (δ, n)-MR configuration, and suppose x

and y are integers with 0 ≤ x < y ≤ n such that y is an ε-large index, and each of the
indices x +1, x +2, . . . , y−2, y−1 is ε-small. Then, for each i with 0 ≤ i ≤ y−x −1
we have

∑
j≥y−i

|Vj | ≤ 2(1 + cε)
i · |Vy |.

Proof We will prove the lemma by induction on i . To prove the base case, i = 0, we
need to show that

∑
j≥y

|Vj | ≤ 2|Vy |.

Since y is an ε-large index, we have

|Vy | ≥ cε

∑
j>y

|Vj |
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and so
∑

j>y |Vj | ≤ 1/cε|Vy |. By adding |Vy | to both sides we immediately have that

∑
j≥y

|Vj | ≤ (1 + 1/cε)|Vy |,

which gives the desired bound since cε > 1 and so 1 + 1/cε < 2.
Now suppose the claim holds for i = k. We wish to show that it also holds for

i = k + 1, assuming that k + 1 ≤ y − x − 1. From the induction we have that

∑
j≥y−k

|Vj | ≤ 2(1 + cε)
k |Vy |.

We also know that y − (k + 1) is an ε-small index, so

|Vy−(k+1)| ≤ cε

∑
j≥y−k

|Vj |.

Substituting the first inequality into the second gives

|Vy−(k+1)| < 2cε(1 + cε)
k |Vy |.

Then adding this inequality to the first inequality yields the desired result. 	

Corollary 3.5 Under the same notations and conditions as Lemma 3.4, we have

|Vy | ≥ 1

2(1 + cε)y−x−1

y∑
j=x+1

|Vj |.

Proof Apply Lemma 3.4 with i = y − x − 1 to get that

n∑
j=x+1

|Vj | ≤ 2(1 + cε)
y−x−1 · |Vy |,

hence

y∑
j=x+1

|Vj | ≤ 2(1 + cε)
y−x−1 · |Vy |

and the corollary follows. 	


3.1 Proof of Theorem 1.4

Let d1 < d2 < · · · < dk = n be the ε-large indices determined by V (see Defini-
tion 3.3) and let us define d0 = 0. We define
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W1 = V1 ∪ V2 ∪ · · · ∪ Vd1;
W2 = Vd1+1 ∪ Vd1+2 ∪ · · · ∪ Vd2

etc. for 1 ≤ i ≤ k. Let

mi = dim(W1 ∪ W2 ∪ · · · ∪ Wi ),

for 1 ≤ i ≤ k and set m0 = 0.
Consider Wi for some 1 ≤ i ≤ k. Since di is an ε-large index, we have that

|Vdi | ≥ cε(|Vdi +1| + |Vdi +2| + · · · + |Vn|)

with cε = 1/(δ − ε). Hence

(δ − ε)|Vdi | ≥ |Vdi +1| + |Vdi +2| + · · · + |Vn|.

Furthermore, each of di−1 + 1, di−1 + 2, . . . , di − 2, di − 1 are ε-small indices, so by
Corollary 3.5 we have

|Vdi | ≥ 1

2(1 + cε)di −di−1−1 (|Vdi−1+1| + |Vdi−1+2| + · · · + |Vdi −1| + |Vdi |).

Therefore our configuration satisfies the conditions of Lemma 3.1, with x =
di−1, y = di , c1 = 1

2(1+cε)
di −di−1−1 , and c2 = ε. For these values of x and y, the

set P1 defined in the lemma equals W1 ∪ W2 ∪ · · · ∪ Wi−1, and the set P2 equals Wi .
Therefore we get that

dim(Wi ) ≤ mi−1 + (24/ε) · (1 + cε)
di −di−1−1.

Now, since mi ≤ mi−1 + dim(Wi ), we have that

mi ≤ 2mi−1 + (24/ε) · (1 + cε)
di −di−1−1.

Claim 3.6 For all 0 ≤ i ≤ k we have

mi ≤ 24

ε

∑
1≤ j≤i

2i− j (1 + cε)
d j −d j−1−1.

Proof We prove the claim by induction on i . The base case, i = 0, holds since m0 = 0.
Suppose the claim holds for i = h and consider the case i = h + 1. By induction we
have that

mh ≤ 24

ε

∑
1≤ j≤h

2h− j (1 + cε)
d j −d j−1−1.
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We also showed that

mh+1 ≤ 2mh + 24

ε
(1 + cε)

dh+1−dh−1.

Substituting the first inequality into the second we find that

mh+1 ≤ 24

ε

∑
1≤ j≤h

2h+1− j (1 + cε)
d j −d j−1−1 + 24

ε
(1 + cε)

dh+1−dh−1

which gives the desired result. 	


Using the claim for i = k we get

mk ≤ 24

ε

∑
1≤ j≤k

2k− j (1 + cε)
d j −d j−1−1.

Observe that for all j, d j −d j−1 ≤ n −k +1. This follows from the fact that the d j are
strictly increasing, d0 = 0, and dk = n. Therefore, the summand 2k− j (1+cε)

d j −d j−1−1

is at most 2k− j (1 + cε)
n−k , which in turn is at most (1 + cε)

n · ( 2
1+cε

)k . Adding these
together we get that

mk ≤ 24 · k

ε
(1 + cε)

n ·
(

2

1 + cε

)k

.

Observe that, since cε = 1/(δ−ε) > 1/(1−ε) > 1+ε, we have 2/(1+cε) < 2/(2+ε)

and so we get that

mk ≤ 24 · k

ε

(
2

2 + ε

)k

(1 + cε)
n .

The expression 24·k
ε

( 2
2+ε

)k is maximized when k = − 1
ln(2/(2+ε))

= O(1/ε) and so
we get

mk ≤ C

ε2 · (1 + cε)
n

For some absolute constant C . Since mk = dim(W1 ∪ W2 ∪· · ·∪ Wn) = dim(V1, . . . ,

Vn), the proof of the theorem is complete.
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