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Abstract Given a subset K of the unit Euclidean sphere, we estimate the minimal
number m = m(K) of hyperplanes that generate a uniform tessellation of K , in the
sense that the fraction of the hyperplanes separating any pair x, y ∈ K is nearly pro-
portional to the Euclidean distance between x and y. Random hyperplanes prove to be
almost ideal for this problem; they achieve the almost optimal bound m = O(w(K)2)

where w(K) is the Gaussian mean width of K . Using the map that sends x ∈ K to
the sign vector with respect to the hyperplanes, we conclude that every bounded sub-
set K of R

n embeds into the Hamming cube {−1,1}m with a small distortion in
the Gromov–Haussdorff metric. Since for many sets K one has m = m(K) � n, this
yields a new discrete mechanism of dimension reduction for sets in Euclidean spaces.

Keywords Embedding · Dimension reduction · Hyperplane tessellations · Mean
width · Near isometry

1 Introduction

Consider a bounded subset K of R
n. We would like to find an arrangement of m

affine hyperplanes in R
n that cut through K as evenly as possible; see Fig. 1 for an

illustration. The intuitive notion of an “even cut” can be expressed more formally
in the following way: The fraction of the hyperplanes separating any pair x, y ∈ K

should be proportional (up to a small additive error) to the Euclidean distance be-
tween x and y. What is the smallest possible number m = m(K) of hyperplanes with
this property? Besides having a natural theoretical appeal, this question is directly
motivated by a certain problem of information theory, which we will describe later.
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Fig. 1 A hyperplane
tessellation of a set in the plane

In the beginning, it will be most convenient to work with subsets K of the unit
Euclidean sphere Sn−1, but we will lift this restriction later. Let d(x, y) denote the
normalized geodesic distance on Sn−1, so the distance between the opposite points
on the sphere equals 1. A (linear) hyperplane in R

n can be expressed as a⊥ for some
a ∈R

n. We say that points x, y ∈ R
n are separated by the hyperplane1 if sign〈a, x〉 �=

sign〈a, y〉.

Definition 1.1 (Uniform tessellation) Consider a subset K ⊆ Sn−1 and an arrange-
ment of m hyperplanes in R

n. Let dA(x, y) denote the fraction of the hyperplanes
that separate points x and y in R

n. Given δ > 0, we say that the hyperplanes provide
a δ-uniform tessellation of K if

∣
∣dA(x, y) − d(x, y)

∣
∣ ≤ δ, x, y ∈ K. (1.1)

The main result of this paper is a bound on the minimal number m = m(K,δ) of
hyperplanes that provide a uniform tessellation of a set K . It turns out that for a fixed
accuracy δ, an almost optimal estimate on m depends only on one global parameter
of K , namely the mean width. Recall that the Gaussian mean width of K is defined
as

w(K) = E sup
x∈K

∣
∣〈g,x〉∣∣, (1.2)

where g ∼ N (0, In) is a standard Gaussian random vector in R
n.

Theorem 1.2 (Random uniform tessellations) Consider a subset K ⊆ Sn−1 and let
δ > 0. Let

m ≥ Cδ−6w(K)2

and consider an arrangement of m independent random hyperplanes in R
n uni-

formly distributed according to the Haar measure. Then with probability at least
1 − 2 exp(−cδ2m), these hyperplanes provide a δ-uniform tessellation of K . Here
and later, C,c denote positive absolute constants.

Remark 1.3 (Tessellations in stochastic geometry) By the rotation invariance of the
Haar measure, it easily follows that EdA(x, y) = d(x, y) for each pair x, y ∈ R

n.

1For convenience of presentation, we prefer the sign function to take values {−1,1}, so we define it as
sign(t) = 1 for t ≥ 0 and sign(t) = −1 for t < 0.
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Theorem 1.2 states that with high probability, dA(x, y) almost matches its expected
value uniformly over all x, y ∈ K . This observation highlights the principal difference
between the problems studied in this paper and the classical problems on random hy-
perplane tessellations studied in stochastic geometry. The classical problems concern
the shape of a specific cell (usually the one containing the origin) or certain statistics
of cells (e.g., “how many cells have volume greater than a fixed number”?); see [7].
In contrast to this, the concept of uniform tessellation we propose his paper concerns
all cells simultaneously; see Sect. 1.5 for a vivid illustration.

1.1 Embeddings into the Hamming Cube

Theorem 1.2 has an equivalent formulation in the context of metric embeddings. It
yields that every subset K ⊆ Sn−1 can be almost isometrically embedded into the
Hamming cube {−1,1}m with m = O(w(K)2).

To explain this statement, let us recall a few standard notions. An ε-isometry (or
almost isometry) between metric spaces (X,dX) and (Y, dY ) is a map f : X → Y ,
which satisfies

∣
∣dY

(

f (x), f
(

x′)) − dX

(

x, x′)∣∣ ≤ ε, x, x′ ∈ X,

and such that for every y ∈ Y one can find x ∈ X satisfying dY (y,f (x)) ≤ ε. A map
f : X → Y is an ε-isometric embedding of X into Y if the map f : X → f (X) is
an ε-isometry between (X,dX) and the subspace (f (X), dY ). It is not hard to show
that X can be 2ε-isometrically embedded into Y (by means of a suitable map f ) if X

has the Gromov–Haussdorff distance at most ε from some subset of Y . Conversely,
if there is an ε-isometry between X and f (X) then the Gromov–Haussdorff distance
between X and f (X) is bounded by ε.

Finally, recall that the Hamming cube is the set {−1,1}m with the (normalized)
Hamming distance dH (u, v) = 1

m

∑m
i=1 1{ui �=vi } = the fraction of the coordinates

where u and v are different.
An arrangement of m hyperplanes in R

n defines a sign map f : Rn → {−1,1}m,
which sends x ∈ R

n to the sign vector of the orientations of x with respect to the
hyperplanes. The sign map is uniquely defined up to the isometries of the Hamming
cube. Let a1, . . . , am ∈ R

n be normals of the hyperplanes, and consider the m × n

matrix A with rows ai . The sign map can be expressed as

f (x) = signAx, f :Rn → {−1,1}m,

where signAx denotes the vector of signs of the coordinates 〈ai, x〉 of Ax. The frac-
tion dA(x, y) of the hyperplanes that separate points x and y thus equals

dA(x, y) = dH (signAx, signAy), x, y ∈R
n.

Then looking back at the definition of uniform tessellations, we observe the following
fact:

Fact 1.4 (Embeddings by uniform tessellations) Consider a δ-uniform tessellation
of a set K ⊆ Sn−1 by m hyperplanes. Then the set K (with the induced geodesic
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Fig. 2 The graph of a
tessellation of a set in the plane.
The dashed lines represent the
edges

distance) can be δ-isometrically embedded into the Hamming cube {−1,1}m. The
sign map provides such an embedding.

This allows us to state Theorem 1.2 as follows.

Theorem 1.5 (Embeddings into the Hamming cube) Consider a subset K ⊆ Sn−1

and let δ > 0. Let

m ≥ Cδ−6w(K)2.

Then K can be δ-isometrically embedded into the Hamming cube {−1,1}m.
Moreover, let A be an m × n random matrix with independent N (0,1) entries.

Then with probability at least 1 − 2 exp(−cδ2m), the sign map

f (x) = signAx, f : K → {−1,1}m (1.3)

is an δ-isometric embedding.

1.2 Almost Isometry of K and the Tessellation Graph

The image of the sign map f in (1.3) has a special meaning. When the Hamming
cube {−1,1}m is viewed as a graph (in which two points u, v are connected if they
differ in exactly one coordinate), the image of f defines a subgraph of {−1,1}m,
which is called the tessellation graph of K . The tessellation graph has a vertex for
each cell and an edge for each pair of adjacent cells; see Fig. 2. Notice that the graph
distance in the tessellation graph equals the number of hyperplanes that separate the
two cells. Therefore, the definition of a uniform tessellation yields the following.

Fact 1.6 (Graphs of uniform tessellations) Consider a δ-uniform tessellation of a set
K ⊆ Sn−1. Then K is δ-isometric to the tessellation graph of K .

Hence, we can read the conclusion of Theorem 1.2 as follows: K is δ-isometric to
the graph of its tessellation by m random hyperplanes, where m ∼ δ−6w(K)2.

1.3 Computing Mean Width

Powerful methods to estimate the mean width w(K) have been developed in con-
nection with stochastic processes. These methods include Sudakov’s and Dudley’s



442 Discrete Comput Geom (2014) 51:438–461

inequalities, which relate w(K) to the covering numbers of K in the Euclidean met-
ric, and the sharp technique of majorizing measures (see [15, 22]).

Mean width has a simple (and known) geometric interpretation. By the rotational
invariance of the Gaussian random vector g in (1.2), one can replace g with a random
vector θ that is uniformly distributed on Sn−1, as follows:

w(K) = cn

√
n · w̄(K), where w̄(K) = E sup

x∈K

∣
∣〈θ, x〉∣∣.

Here, cn are numbers that depend only on n and such that cn ≤ 1 and limn→∞ cn = 1.
We may refer to w̄(K) as the spherical mean width of K . Let us assume for simplicity
that K is symmetric with respect to the origin. Then 2 supx∈K |〈θ, x〉| is the width of
K in the direction θ , which is the distance between the two supporting hyperplanes
of K whose normals are θ . The spherical mean width w̄(K) is then twice the average
width of K over all directions.

1.4 Dimension Reduction

Our results are already non-trivial in the particular case K = Sn−1. Since w(Sn−1) ≤√
n, Theorems 1.2 and 1.5 hold with m ∼ n. But more importantly, many interest-

ing sets K ⊂ Sn−1 satisfy w(K) � √
n and, therefore, make our results hold with

m ∼ w(K)2 � n. In such cases, one can view the sign map f (x) = signAx in The-
orem 1.5 as a dimension reduction mechanism that transforms an n-dimensional set
K into a subset of {−1,1}m.

A heuristic reason why dimension reduction is possible is that the quantity w(K)2

measures the effective dimension of a set K ⊆ Sn−1. The effective dimension w(K)2

of a set K ⊆ Sn−1 is always bounded by the algebraic dimension, but it may be much
smaller and it is robust with respect to perturbations of K . In this regard, the notion
of effective dimension is parallel to the notion of effective rank of a matrix from
numerical linear algebra (see e.g. [20]). With these observations in mind, it is not
surprising that the “true,” effective dimension of K would be revealed (and would
be the only obstruction according to Theorem 1.5) when K is being squeezed into a
space of smaller dimension.

Let us illustrate dimension reduction on the example of finite sets K ⊂ Sn−1. Since
w(K) ≤ C

√
log |K| (see, e.g., [15, (3.13)]), Theorem 1.5 holds with m ∼ log |K|, and

we can state it as follows.

Corollary 1.7 (Dimension reduction for finite sets) Let K ⊂ Sn−1 be a finite set.
Let δ > 0 and m ≥ Cδ−6 log |K|. Then K can be δ-isometrically embedded into the
Hamming cube {−1,1}m.

This fact should be compared to the Johnson–Lindenstrauss lemma for finite sub-
sets K ⊂ R

n ([12], see [17, Sect. 15.2]), which states that if m ≥ Cδ−2 log |K| then
K can be Lipschitz embedded into R

m as follows:

∣
∣
∥
∥Āx − Āx′∥∥

2 − ∥
∥x − x′∥∥

2

∣
∣ ≤ δ

∥
∥x − x′∥∥

2, x, x′ ∈ K.
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Here, Ā = m−1/2A is the rescaled random Gaussian matrix A from Theorem 1.5.
Note that while the Johnson–Lindenstrauss lemma involves a Lipschitz embedding
from R

n to R
m, it is generally impossible to provide a Lipschitz embedding from

subsets of Rn to the Hamming cube (if there are points x, x′ ∈ K that are very close
to each other); this is why we consider δ-isometric embeddings.

Like the Johnson–Lindenstrauss lemma, Corollary 1.7 can be proved directly by
combining concentration inequalities for dA(x, y) with a union bound over |K|2 pairs
(x, y) ∈ K × K . In fact, this method of proof allows for the weaker requirement
m ≥ Cδ−2 log |K|. However, as we discuss later, this argument cannot be generalized
in a straightforward way to prove Theorem 1.5 for general sets K . The Hamming
distance dA(x, y) is highly discontinuous, which makes it difficult to extend estimates
from points x, y in an ε-net of K to nearby points.

1.5 Cells of Uniform Tessellations

We mentioned two nice features of uniform tessellations in Facts 1.4 and 1.6. Let us
observe one more property: all cells of a uniform tessellation have small diameter.
Indeed, dA(x, y) = 0 iff points x, y are in the same cell, so by (1.1) we have the
following.

Fact 1.8 (Cells are small) Every cell of a δ-uniform tessellation has diameter at
most δ.

With this, Theorem 1.2 immediately implies the following.

Corollary 1.9 (Cells of random uniform tessellations) Consider a tessellation of a
subset K ⊆ Sn−1 by m ≥ Cδ−6w(K)2 random hyperplanes. Then, with probability
at least 1 − exp(−cδ2m), all cells of the tessellation have diameter at most δ.

This result has also a direct proof, which moreover gives a slightly better bound
m ∼ δ−4w(K)2. We present this “curvature argument” in Sect. 3.

1.6 Uniform Tessellations in R
n

So far, we only worked with subsets K ⊆ Sn−1. It is not difficult to extend our results
to bounded sets K ⊂ R

n. This can be done by embedding such a set K into Sn (the
sphere in one more dimension) with small bi-Lipschitz distortion. This elementary
argument is presented in Sect. 6, and it yields the following version of Theorem 1.2.

Theorem 1.10 (Random uniform tessellations in R
n) Consider a bounded subset

K ⊂ R
n with diam(K) = 1. Let

m ≥ Cδ−12w(K − K)2. (1.4)

Then there exists an arrangement of m affine hyperplanes in R
n and a scaling factor

λ > 0 such that
∣
∣λ · dA(x, y) − ‖x − y‖2

∣
∣ ≤ δ, x, y ∈ K.
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Here, dA(x, y) denotes the fraction of the affine hyperplanes that separate x and y.

Remark 1.11 (Mean width in R
n) While the quantity w(K − K) appearing in (1.4)

is clearly bounded by 2w(K), it is worth noting that the quantity w(K − K) cap-
tures more accurately than w(K) the geometric nature of the “mean width” of K .
Indeed, w(K − K) = Eh(g) where h(g) = supx∈K 〈g,x〉 − infx∈K〈g,x〉 is the dis-
tance between the two parallel supporting hyperplanes of K orthogonal to the random
direction g, scaled by ‖g‖2.

1.7 Optimality

The main object of our study is m(K) = m(K,δ), the smallest number of hyperplanes
that provide a δ-uniform tessellation of a set K ⊆ Sn−1. One has

log2 N(K,δ) ≤ m(K,δ) ≤ Cδ−6w(K)2, (1.5)

where N(K,δ) denotes the covering number of K , i.e. the smallest number of balls
of radius δ that cover K . The upper bound in (1.5) is the conclusion of Theorem 1.2.
The lower bound holds because a δ-uniform tessellation provides a decomposition of
K into at most 2m cells each of which lies in a ball of radius δ by Fact 1.8.

To compare the upper and lower bounds in (1.5), recall Sudakov’s inequality [15,
Theorem 3.18] that yields

logN(K,δ) ≤ Cδ−2w(K)2.

While Sudakov’s inequality cannot be reversed in general, there are many situa-
tions where it is sharp. Moreover, according to Dudley’s inequality (see [15, The-
orem 11.17] and [18, Lemma 2.33]), Sudakov’s inequality can always be reversed for
some scale δ > 0 and up to a logarithmic factor in n. (See also [16] for a discussion of
sharpness of Sudakov’s inequality.) So, the two sides of (1.5) are often close to each
other, but there is in general some gap. We conjecture that the optimal estimate is

cw(K)2 ≤ sup
δ>0

δ2m(K,δ) ≤ Cw(K)2,

so the mean width of K seems to be completely responsible for the uniform tessella-
tions of K .

Note that the lower bound in (1.5) holds in greater generality. Namely, it is not
possible to have m < log2 N(K,δ) for any decomposition of K into 2m pieces of
diameter at most δ. However, from the upper bound, we see that with a slightly larger
value m ∼ w(K)2, an almost best decomposition of K is achieved by a random hy-
perplane tessellation.

In this paper, we have not tried to optimize the dependence of m(K,δ) on δ. This
interesting problem is related to the open question on the optimal dependence on
distortion in Dvoretzky’s theorem. We comment on this in Sect. 3.2.
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1.8 Related Work: Embeddings of K into Normed Spaces

Embeddings of subsets K ⊆ Sn−1 into normed spaces were studied in geometric
functional analysis [13, 21]. In particular, Klartag and Mendelson [13] were con-
cerned with embeddings into �m

2 . They showed that for m ≥ Cδ−2w(K)2 there exists
a linear map A : Rn →R

m such that

∣
∣m−1/2‖Ax‖2 − 1

∣
∣ ≤ δ, x ∈ K.

One can choose A to be an m × n random matrix with Gaussian entries as in Theo-
rem 1.5, or with sub-Gaussian entries. Schechtman [21] gave a simpler argument for
a Gaussian matrix, which also works for embeddings into general normed spaces X.
In the specific case of X = �m

1 , Schechtman’s result states that for m ≥ Cδ−2w(K)2

one has
∣
∣m−1‖Ax‖1 − 1

∣
∣ ≤ δ, x ∈ K.

This result also follows from Lemma 2.1 below.

1.9 Related Work: One-Bit Compressed Sensing

Our present work was motivated by the development of one-bit compressed sensing
in [6, 11, 19] where Theorem 1.5 is used in the following context. The vector x repre-
sents a signal; the matrix A represents a measurement map R

n → R
m that produces

m � n linear measurements of x; taking the sign of Ax represents quantization of
the measurements (an extremely coarse, one-bit quantization). The problem of one-
bit compressed sensing is to recover the signal x from the quantized measurements
f (x) = signAx.

The problem of one-bit compressed sensing was introduced by Boufounos and
Baraniuk [6]. Jacques, Laska, Boufounos, and Baraniuk [11] realized a connection
of this problem to uniform tessellations of the set of sparse signals K = {x ∈ Sn−1 :
| supp(x)| ≤ s}, and to almost isometric embedding of K into the Hamming cube
{−1,1}m. For this set K , they proved Corollary 1.9 with m ∼ δ−1s log(n/δ) and
a version of Theorem 1.5 for m ∼ δ−2s log(n/δ). The authors of the present paper
analyzed in [19] a bigger set of “compressible” signals K ′ = {x ∈ Sn−1 : ‖x‖1 ≤√

s} and proved for K ′ a version of Corollary 1.9 with m ∼ δ−4s log(n/s). Since the
mean widths of both sets K and K ′ are of the order

√

s log(n/s), Theorem 1.5 holds
for these sets with m ∼ δ−6s log(n/s). In other words, apart from the dependence
of δ (which is an interesting problem), the prior results follow as partial cases from
Theorem 1.5.

It is important to note that Theorem 1.5 addresses only the theoretical aspect of
one-bit compressed sensing problem, which guarantees that the quantized measure-
ment map f (x) = signAx well preserves the geometry of signals. But one also faces
an algorithmic challenge – how to efficiently recover x from f (x), and specifically
in polynomial time. We will not touch on this algorithmic aspect here but rather refer
the reader to [19] and to our forthcoming work, which is based on the results of this
paper.
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1.10 Related Work: Locality-Sensitive Hashing

Locality-sensitive hashing is a method of dimension reduction. One takes a set of
high-dimensional vectors in R

n and the goal is to hash nearby vectors to the same bin
with high probability. More generally, one may desire that the distance between bins
be nearly proportional to the distance between the original items. There have been a
number of papers, which suggest to create such mappings onto the Hamming cube [1,
4, 8, 10, 14], some of which use a random hyperplane tessellation as defined in this
paper. The new challenge considered herein is to create a locality-sensitive hashing
for an infinite set.

1.11 Overview of the Argument

Let us briefly describe our proof of the results stated above. Since the distance in the
Hamming cube {−1,1}m can be expressed as (2m)−1‖x −y‖1, the Hamming cube is
isometrically embedded in �m

1 . Before trying to embed K ⊆ Sn−1 into the Hamming
cube as claimed in Theorem 1.5, we shall make a simpler step and embed K almost
isometrically into the bigger space �m

1 with m ∼ δ−2w(K)2. A result of this type was
given by Schechtman [21]. In Sect. 2, we prove a similar result by a simple and direct
argument in probability in Banach spaces.

Our next and nontrivial step is to reembed the set from �m
1 into its subset, the Ham-

ming cube {−1,1}m. In Sect. 3, we give a simple “curvature argument” that allows
us to deduce Corollary 1.9 on the diameter of cells, and even with a better depen-
dence on δ, namely m ∼ δ−4w(K)2. However, a genuine limitation of the curvature
argument makes it too weak to deduce Theorem 1.2 this way.

We instead attempt to prove Theorem 1.2 by an ε-net argument, which typically
proceeds as follows: (a) show that dA(x, y) ≈ d(x, y) holds for a fixed pair x, y ∈ K

with high probability; (b) take the union bound over all pairs x, y in an finite ε-net
Nε of K ; (c) extend the estimate from Nε to K by approximation. Unfortunately, as
we indicate in Sect. 4 the approximation step (c) must fail due to the discontinuity of
the Hamming distance dA(x, y).

A solution proposed in [5, 11] was to choose ε so small that none of the ran-
dom hyperplanes pass near points x, y ∈ Nε with high probability. This strategy
was effective for the set K = {x ∈ Sn−1 : | supp(x)| ≤ s} because the covering
number of this specific set K has a mild (logarithmic) dependence on ε, namely
logN(K,ε) ≤ s log(Cn/εs). However, adapting this strategy to general sets K would
cause our estimate on m to increase by a factor of n.

The solution we propose in the present paper is to “soften” the Hamming distance;
see Sect. 4 for the precise notion. The soft Hamming distance enjoys some continuity
properties as described in Lemmas 4.3 and 5.5. In Sect. 5.5, we develop the ε-net
argument for the soft Hamming distance. Interestingly, the approximation step (c)
for the soft Hamming distance will be based on the embedding of K into �m

1 , which
incidentally was our point of departure.

1.12 Notation

Throughout the paper, C, c, C1, etc. denote positive absolute constants whose values
may change from line to line. For integer n, we denote [n] = {1, . . . , n}. The �p norms
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of a vector x ∈R
n for p ∈ {0,1,2,∞} are defined as2

‖x‖0 = ∣
∣supp(x)

∣
∣ = ∣

∣
{

i ∈ [n] : x(i) �= 0
}∣
∣,

‖x‖1 =
n

∑

i=1

|xi |, ‖x‖2 =
( n

∑

i=1

x2
i

)1/2

, ‖x‖∞ = max
i∈[n] |xi |.

We shall work with normed spaces �n
p = (Rn,‖ · ‖p) for p ∈ {1,2,∞}. The unit

Euclidean ball in R
n is denoted Bn

2 = {x ∈ R
n : ‖x‖2 ≤ 1} and the unit Euclidean

sphere is denoted Sn−1 = {x ∈ R
n : ‖x‖2 = 1}.

As usual, N (0,1) stands for the univariate normal distribution with zero mean and
unit variance, and N (0, In) stands for the multivariate normal distribution in R

n with
zero mean and whose covariance matrix is identity In.

2 Embedding into �1

Lemma 2.1 (Concentration) Consider a bounded subset K ⊂ R
n and independent

random vectors a1, . . . , am ∼ N (0, In) in R
n. Let

Z = sup
x∈K

∣
∣
∣
∣

1

m

m
∑

i=1

∣
∣〈ai, x〉∣∣ −

√

2

π
‖x‖2

∣
∣
∣
∣
.

(a) One has

EZ ≤ 4w(K)√
m

. (2.1)

(b) The following deviation inequality holds:

PrZ >
4w(K)√

m
+ u ≤ 2 exp

(

− mu2

2d(K)2

)

, u > 0, (2.2)

where d(K) = maxx∈K ‖x‖2.

Proof (a) Note that E|〈ai, x〉| =
√

2
π
‖x‖2 for all i. Let ε1, . . . , εm be a sequence

of iid Rademacher random variables. A standard symmetrization argument (see [15,
Lemma 6.3]) followed by the contraction principle (see [15, Theorem 4.12]) yields
that

EZ ≤ 2E sup
x∈K

∣
∣
∣
∣

1

m

m
∑

i=1

εi

∣
∣〈ai, x〉∣∣

∣
∣
∣
∣
≤ 4E sup

x∈K

∣
∣
∣
∣

1

m

m
∑

i=1

εi〈ai, x〉
∣
∣
∣
∣

= 4E sup
x∈K

∣
∣
∣
∣

〈
1

m

m
∑

i=1

εiai, x

〉∣
∣
∣
∣
.

2Note that, strictly speaking, ‖ · ‖0 is not a norm on R
n .
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By the rotational invariance of the Gaussian distribution, 1
m

∑m
i=1 εiai is distributed

identically with g/
√

m where g ∼ N (0, In). Therefore,

EZ ≤ 4√
m
E sup

x∈K

∣
∣〈g,x〉∣∣ = 4w(K)√

m
.

This proves the upper bound in (2.1).
(b) We combine the result of (a) with the Gaussian concentration inequality. To

this end, we must first show that the map A �→ Z = Z(A) is Lipschitz where A =
(a1, . . . , am) is considered as a matrix in the space R

nm equipped with Frobenius
norm ‖ · ‖F (which coincides with the Euclidean norm on R

nm). It follows from two
applications of the triangle inequality followed by two applications of the Cauchy–
Schwarz inequality that for A = (a1, . . . , am),B = (b1, . . . , bm) ∈R

nm we have

∣
∣Z(A) − Z(B)

∣
∣ ≤ sup

x∈K

1

m

m
∑

i=1

∣
∣〈ai − bi, x〉∣∣ ≤ d(K)

m

m
∑

i=1

‖ai − bi‖2

≤ d(K)√
m

‖A − B‖F .

Thus, Z has Lipschitz constant bounded by d(K)/
√

m. We may now bound the devia-
tion probability for Z using the Gaussian concentration inequality (see [15, Eq. (1.6)])
as follows:

Pr |Z −EZ| ≥ u ≤ 2 exp
(−mu2/2d(K)2).

The deviation inequality (2.2) now follows from the bound on EZ from (a). �

Remark 2.2 (Random matrix formulation) One can state Lemma 2.1 in terms of ran-
dom matrices. Indeed, let A be an m × n random matrix with independent N (0,1)

entries. Then its rows ai satisfy the assumption of Lemma 2.1, and we can express Z

as

Z = sup
x∈K

∣
∣
∣
∣

1

m
‖Ax‖1 −

√

2

π
‖x‖2

∣
∣
∣
∣
. (2.3)

Using this remark for the set K − K , we obtain a linear embedding of K into �1:

Corollary 2.3 (Embedding into �1) Consider a subset K ⊂ �n
2 and let δ > 0. Let

m ≥ Cδ−2w(K)2.

Then, with probability at least 1 − 2 exp(−mδ2/32), the linear map f : K → �m
1

defined as f (x) = 1
m

√
π
2 Ax is a δ-isometry. Thus K can be linearly embedded into

�m
1 with Gromov-Haussdorff distortion at most δ.

Proof Let A be the random matrix as in Remark 2.2. Using Lemma 2.1 for K − K

and noting the form of Z in (2.3), we conclude that the following event holds with
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probability at least 1 − 2 exp(−mδ2/32):

∣
∣
∣
∣

1

m
‖Ax − Ay‖1 −

√

2

π
‖x − y‖2

∣
∣
∣
∣
≤ 8w(K − K)√

m
≤ 16w(K)√

m
≤ δ, x, y ∈ K. �

Remark 2.4 The above argument shows in fact that Corollary 2.3 holds for

m ≥ Cδ−2w(K − K)2.

As we noticed in Remark 1.11, the quantity w(K − K) more accurately reflects the
geometric meaning of the mean width than w(K).

Remark 2.5 (Low M∗ estimate) Note that for the subspace E = kerA we have

from (2.3) that Z ≥ supx∈K∩E

√

2
π
‖x‖2 =

√

2
π

d(K ∩ E). Then Lemma 2.1 implies
that

Ed(K ∩ E) ≤ 6w(K)√
m

. (2.4)

By rotation invariance of Gaussian distribution, inequality (2.4) holds for a random
subspace E in R

n of given codimension m ≤ n, uniformly distributed according to
the Haar measure. This result recovers (up to the absolute constant 6 which can be
improved) the so-called low M∗ estimate from geometric functional analysis; see [15,
Sect. 15.1].

Remark 2.6 (Dimension reduction) As we emphasized in the Introduction, for many
sets K ⊂ R

n one has w(K) � n. In such cases, Corollary 2.3 works for m � n.
The embedding of K into �m

1 yields dimension reduction for K (from n to m � n

dimensions).
For example, if K is a finite set then w(K) ≤ C

√
log |K| (see, e.g., [15, (3.13)]),

and so Corollary 2.3 applies with m ∼ log |K|. This gives the following variant of
the Johnson–Lindenstrauss lemma: every finite subset of a Euclidean space can be
linearly embedded in �m

1 with m ∼ log |K| and with small distortion in the Gromov–
Haussdorff metric. Stronger variants of Johnson–Lindenstrauss lemma are known for
Lipschitz rather than Gromov–Haussdorff embeddings into �m

2 and �m
1 [2, 21]. How-

ever, for general sets K (in particular for any set with nonempty interior), a Lipschitz
embedding into lower dimensions is clearly impossible; still a Gromov–Haussdorff
embedding exists due to Corollary 2.3.

3 Proof of Corollary 1.9 by a Curvature Argument

In this section, we give a short argument that leads to a version of Corollary 1.9 with
a slightly better dependence of m on δ.

Theorem 3.1 (Cells of random uniform tessellations) Consider a subset K ⊆ Sn−1

and let δ > 0. Let

m ≥ Cδ−4w(K)2
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and consider an arrangement of m independent random hyperplanes in R
n that are

uniformly distributed according to the Haar measure. Then, with probability at least
1 − 2 exp(−cδ4m), all cells of the tessellation have diameter at most δ.

The argument is based on Lemma 2.1. If points x, y ∈ K belong to the same cell,
then the midpoint z = 1

2 (x + y) also belongs to the same cell (after normalization).
Using Lemma 2.1, one can then show that ‖z‖2 ≈ 1

2 (‖x‖2 + ‖y‖2) = 1. Due to the
curvature of the sphere, this forces the length of the interval ‖x − y‖2 to be small,
which means that the diameter of the cell is small. The formal argument is below.

Proof We represent the random hyperplanes as {ai}⊥, where a1, . . . , am ∼ N (0, In)

are independent random vectors in R
n. Let δ,m be as in the assumptions of the theo-

rem. We shall apply Lemma 2.1 for the sets K and 1
2 (K +K) and for u = ε/2, where

we set ε = δ2/16. Since the diameters of both these sets are bounded by 1, we obtain
that with probability at least 1 − 2 exp(−cδ4m) the following event holds:

∣
∣
∣
∣

√

π

2

1

m

m
∑

i=1

∣
∣〈ai, v〉∣∣ − ‖v‖2

∣
∣
∣
∣
< ε, v ∈ K ∪ 1

2
(K + K). (3.1)

Assume that the event (3.1) holds. Consider a pair of points x, y ∈ K that belong
to the same cell of the tessellation, which means that

sign〈ai, x〉 = sign〈ai, y〉, i ∈ [m].
To complete the proof, it suffices to show that ‖x − y‖2 ≤ δ. This will give desired
diameter δ in the Euclidean metric. Furthermore, since for small δ the Euclidean
and the geodesic distances are equivalent, the conclusion will hold for the geodesic
distance as well.

We shall use (3.1) for x, y ∈ K and for the midpoint z := 1
2 (x + y) ∈ 1

2 (K + K).
Clearly, sign〈ai, z〉 = sign〈ai, x〉 = sign〈ai, y〉, hence

∣
∣〈ai, z〉

∣
∣ = ∣

∣〈ai, x〉∣∣ + ∣
∣〈ai, y〉∣∣, i ∈ [m].

Therefore, we obtain from (3.1) that

‖z‖2 ≥
√

π

2

1

m

m
∑

i=1

∣
∣〈ai, z〉

∣
∣ − ε

= 1

2

[√

π

2

1

m

m
∑

i=1

∣
∣〈ai, x〉∣∣ +

√

π

2

1

m

m
∑

i=1

∣
∣〈ai, y〉∣∣

]

− ε

≥ 1

2

(‖x‖2 − ε + ‖y‖2 − ε
) − ε = 1 − 2ε. (3.2)

By the parallelogram law, we conclude that

‖x − y‖2
2 = 4 − ‖x + y‖2

2 = 4
(

1 − ‖z‖2
2

) ≤ 16ε = δ2.

This completes the proof. �
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3.1 Limitations of the Curvature Argument

Unfortunately, the curvature argument does not lend itself to proving the more general
result, Theorem 1.2 on uniform tessellations. To see why, suppose x, y ∈ K do not
belong to the same cell but instead dA(x, y) = d for some small d ∈ (0,1). Consider
the set of mismatched signs

T := {

i ∈ [m] : sign〈ai, x〉 �= sign〈ai, y〉}; |T |
m

= d.

These signs create an additional error term on the right-hand side of (3.2), which is
√

π

2

1

m

∑

i∈T

∣
∣〈ai, vi〉

∣
∣ where vi ∈ {x, y}. (3.3)

By analogy with Lemma 2.1, we can expect that this term should be approximately
equal |T |/m = d . If this is true, then (3.2) becomes in our situation ‖z‖2 ≥ 1 −
2ε − d , which leads as before to ‖x − y‖2

2 � ε + d . Ignoring ε, we see that the
best estimate the curvature argument can give is d(x, y) �

√
dA(x, y) rather than

d(x, y) � dA(x, y) that is required in Theorem 1.2.
The weak point of this argument is that it takes into account the size of T but

ignores the nature of T . For every i ∈ T , the hyperplane {ai}⊥ passes through the
arc connecting x and y. If the length of the arc d(x, y) is small, this creates a strong
constraint on ai . Conditioning the distribution of ai on the constraint that i ∈ T cre-
ates a bias toward smaller values of |〈ai, x〉| and |〈ai, y〉|. As a result, the conditional
expected value of the error term (3.3) should be smaller than d . Computing this con-
ditional expectation is not a problem for a given pair x, y, but it seems to be difficult
to carry out a uniform argument over x, y ∈ K where the (conditional) distribution of
ai depends on x, y.

We instead propose a different and somewhat more conceptual way to deduce
Theorem 1.2 from Lemma 2.1. This argument will be developed in the rest of this
paper.

3.2 Dvoretzky Theorem and Dependence on δ

The unusual dependence δ−4 in Theorem 3.1 is related to the open problem of the
optimal dependence on distortion in the Dvoretzky theorem.

Indeed, consider the special case of the tessellation problem where K = Sn−1

and w(K) ∼ √
n. Then Lemma 2.1 in its geometric formulation (see Eq. (2.3) and

Corollary 2.3) states that �n
2 embeds into �m

1 whenever m ≥ Cε−2n, meaning that

(1 − ε)‖x‖2 ≤ ‖Φx‖1 ≤ (1 + ε)‖x‖2, x ∈R
n,

where Φ =
√

π
2

1
m

A. Equivalently, there exists an n-dimensional subspace of �m
1 that

is (1 + ε)-Euclidean, where n ∼ ε2m. This result recovers the well-known Dvoret-
zky theorem in V. Milman’s formulation (see [9, Theorem 4.2.1]) for the space �m

1 ,
and with the best known dependence on ε. However, it is not known whether ε2 is
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Fig. 3 This hyperplane tessellation of the set K = [− 1
2 , 1

2 ] × [− ε
2 , ε

2 ] is very non-uniform, as all cells
have diameter at least 1. The tessellation is nevertheless very uniform for the ε-net Nε = εZ ∩ K , as
dA(x, y) = ‖x − y‖2 for all x, y ∈ Nε

the optimal dependence for �m
1 ; see [21] for a discussion of the general problem of

dependence on ε in the Dvoretzky theorem.
These observations suggest that we can reverse our logic. Suppose one can prove

the Dvoretzky theorem for �m
1 with a better dependence on ε, thereby constructing

a (1 + ε)-Euclidean subspace of dimension n ∼ f (ε)m with f (ε) � ε2. Then such
construction can replace Lemma 2.1 in the curvature argument. This will lead to The-
orem 3.1 for K = Sn−1 with an improved dependence on δ, namely with m ∼ f (δ2)n.
Concerning lower bounds, the best possible dependence of m on δ should be δ−1,
which follows by considering the case n = 2. This dependence will be achieved if the
Dvoretzky theorem for �m

1 is valid with n ∼ ε1/2m. This is unknown.

4 Toward Theorem 1.2: a Soft Hamming Distance

Our proof of Theorem 1.2 will be based on a covering argument. A standard covering
argument of geometric functional analysis would proceed in our situation as follows:

(a) Show that dA(x, y) ≈ d(x, y) with high probability for a fixed pair x, y. This can
be done using standard concentration inequalities.

(b) Prove that dA(x, y) ≈ d(x, y) uniformly for all x, y in a finite ε-net Nε of K .
Sudakov’s inequality can be used to estimate the cardinality of Nε via the mean
width w(K). The conclusion will follow from step 1 by the union bound over
(x, y) ∈ Nε × Nε .

(c) Extend the estimate dA(x, y) ≈ d(x, y) from x, y ∈ Nε to x, y ∈ K by approxi-
mation.

While the first two steps are relatively standard, step (c) poses a challenge in our
situation. The Hamming distance dA(x, y) is a discontinuous function of x, y, so it
is not clear whether the estimate dA(x, y) ≈ d(x, y) can be extended from a pair
points x, y ∈ Nε to a pair of nearby points. In fact, for some tessellations this task
is impossible. Figure 3 shows that there exist very nonuniform tessellations that are
nevertheless very uniform for an ε-net, namely one has dA(x, y) = d(x, y) for all
x, y ∈ Nε . The set K in that example is a subset of the plane R

2, and one can clearly
embed such a set with into the sphere S2 as well.

To overcome the discontinuity problem, we propose to work with a soft version
of the Hamming distance. Recall that m hyperplanes are determined by their normals
a1, . . . , am ∈ R

n, which we organize in an m × n matrix A with rows ai . Then the
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usual (“hard”) Hamming distance dA(x, y) on R
n with respect to A with can be

expressed as

dA(x, y) = 1

m

m
∑

i=1

1Ei
, where Ei = {

sign〈ai, x〉 �= sign〈ai, y〉}. (4.1)

Definition 4.1 (Soft Hamming distance) Consider an m × n matrix A with rows
a1, . . . , am, and let t ∈ R. The soft Hamming distance dt

A(x, y) on R
n is defined as

dt
A(x, y) = 1

m

m
∑

i=1

1Fi
, where

Fi = {〈ai, x〉 > t, 〈ai, y〉 < −t
} ∪ {−〈ai, x〉 > t,−〈ai, y〉 < −t

}

. (4.2)

Both positive and negative t may be considered. For positive t , the soft Ham-
ming distance counts the hyperplanes that separate x, y well enough; for negative t ,
it counts the hyperplanes that separate or nearly separate x, y.

Remark 4.2 (Comparison of soft and hard Hamming distances) Clearly, dt
A(x, y) is

a nonincreasing function of t . Moreover,

dt
A(x, y) = dA(x, y) for t = 0;

dt
A(x, y) ≤ dA(x, y) for t ≥ 0;

dt
A(x, y) ≥ dA(x, y) for t ≤ 0.

The soft Hamming distance for a fixed t is as discontinuous as the usual (hard)
Hamming distance. However, some version of continuity emerges when we allow t

to vary slightly.

Lemma 4.3 (Continuity) Let x, y, x′, y′ ∈ R
n, and assume that ‖Ax′‖∞ ≤ ε,

‖Ay′‖∞ ≤ ε for some ε > 0. Then for every t ∈R one has

dt+ε
A (x, y) ≤ dt

A

(

x + x′, y + y′) ≤ dt−ε
A (x, y).

Proof Consider the events Fi = Fi (x, y, t) from the definition of the soft Ham-
ming distance (4.2). By the assumptions, we have |〈ai, x

′〉| ≤ ε, |〈ai, y
′〉| ≤ ε for

all i ∈ [m]. This implies by the triangle inequality that

Fi (x, y, t + ε) ⊆ Fi

(

x + x′, y + y′, t
) ⊆ Fi (x, y, t − ε).

The conclusion of the lemma follows. �

We are ready to state a stronger version of Theorem 1.2 for the soft Hamming
distance.
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Theorem 4.4 (Random uniform tessellations: soft version) Consider a subset K ⊆
Sn−1 and let δ > 0. Let

m ≥ Cδ−6w(K)2

and pick t ∈ R. Consider an m × n random (Gaussian) matrix A with independent
rows a1, . . . , am ∼ N (0, In). Then with probability at least 1 − exp(−cδ2m), one has

∣
∣dt

A(x, y) − d(x, y)
∣
∣ ≤ δ + 2|t |, x, y ∈ K.

Note that if we take t = 0 in the above theorem, we recover Theorem 1.2. However,
we find it easier to prove the result for general t , since in our argument we will work
with different values of the t for the soft Hamming distance.

Theorem 4.4 is proven in the next section.

5 Proof of Theorem 4.4 on the Soft Hamming Distance

We will follow the covering argument outlined in the beginning of Sect. 4, but instead
of dA(x, y) we shall work with the soft Hamming distance dt

A(x, y).

5.1 Concentration of Distance for a Given Pair

At the first step, we will check that dt
A(x, y) ≈ d(x, y) with high probability for a

fixed pair x, y. Let us first verify that this estimate holds in expectation, i.e., that
Edt

A(x, y) ≈ d(x, y). One can easily check that

EdA(x, y) = d(x, y), (5.1)

so we may just compare Edt
A(x, y) to EdA(x, y). Here is a slightly stronger result.

Lemma 5.1 (Comparing soft and hard Hamming distances in expectation) Let A be
a random Gaussian matrix be as in Theorem 4.4. Then, for every t ∈ R and every x,

y ∈ R
n, one has

∣
∣Edt

A(x, y) − d(x, y)
∣
∣ ≤ E

∣
∣dt

A(x, y) − dA(x, y)
∣
∣ ≤ 2|t |.

Proof The first inequality follows from (5.1) and Jensen’s inequality. To prove the
second inequality, we use the events Ei and Fi from Eqs. (4.1), (4.2) defining the
hard and soft Hamming distances, respectively. It follows that

E
∣
∣dt

A(x, y) − dA(x, y)
∣
∣

= E

∣
∣
∣
∣

1

m

m
∑

i=1

(1Ei
− 1Fi

)

∣
∣
∣
∣

≤ E|1E1 − 1F1 | (by triangle inequality and identical distribution)

= P{E1 �F1}
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≤ P
{∣
∣〈a1, x〉∣∣ ≤ |t |} + P

{∣
∣〈a1, y〉∣∣ ≤ |t |}

≤ 2P
{|g| ≤ |t |} (

where g ∼ N (0,1)
)

≤ 2|t | (by the density of the normal distribution). �

Now we upgrade Lemma 5.1 to an concentration inequality.

Lemma 5.2 (Concentration of distance) Let A be a random Gaussian matrix as in
Theorem 4.4. Then, for every t ∈ R and every x, y ∈ R

n, the following deviation
inequality holds:

P
{∣
∣dt

A(x, y) − d(x, y)
∣
∣ > 2|t | + δ

} ≤ 2 exp
(−2δ2m

)

, δ > 0.

Proof By definition, m · dt
A(x, y) has the binomial distribution Bin(m,p). The pa-

rameter p = Edt
A(x, y) satisfies by Lemma 5.1 that

∣
∣p − d(x, y)

∣
∣ ≤ 2|t |.

A standard Chernoff bound for binomial random variables states that

P
{∣
∣dt

A(x, y) − p
∣
∣ > δ

} ≤ 2 exp
(−2δ2m

)

, δ > 0,

see, e.g., [3, Corollary A.1.7]. The triangle inequality completes the proof. �

5.2 Concentration of Distance over an ε-Net

Let us fix a small ε > 0 whose value will be determined later. Let Nε be an ε-net of
K in the Euclidean metric. By Sudakov’s inequality (see [15, Theorem 3.18]), we can
arrange the cardinality of Nε to satisfy

log |Nε| ≤ Cε−2w(K)2. (5.2)

We can decompose every vector x ∈ K into a center x0 and a tail x′ so that

x = x0 + x′, where x0 ∈ Nε, x′ ∈ (K − K) ∩ εBn
2 . (5.3)

We first control the centers by taking a union bound in Lemma 5.2 over the net Nε .

Lemma 5.3 (Concentration of distance over a net) Let A a random Gaussian matrix
be as in Theorem 4.4. Let Nε be a subset of Sn−1 whose cardinality satisfies (5.2).
Let δ > 0, and assume that

m ≥ Cε−2δ−2w(K)2. (5.4)

Let t ∈ R. Then the following holds with probability at least 1 − 2 exp(−δ2m):

∣
∣dt

A(x0, y0) − d(x0, y0)
∣
∣ ≤ 2|t | + δ, x0, y0 ∈ Nε.
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Proof By Lemma 5.3 and a union bound over the set of pairs (x0, y0) ∈ Nε × Nε , we
obtain

P

{

sup
x,y∈Nε

∣
∣dt

A(x, y) − d(x, y)
∣
∣ > 2|t | + δ

}

≤ |Nε|2 · 2 exp
(−2δ2m

) ≤ 2 exp
(−δ2m

)

where the last inequality follows by (5.2) and (5.4). The proof is complete. �

5.3 Control of the Tails

Now we control the tails x′ ∈ (K − K) ∩ εBn
2 in decomposition (5.3).

Lemma 5.4 (Control of the tails) Consider a subset K ⊆ Sn−1 and let ε > 0. Let

m ≥ Cε−2w(K)2.

Consider independent random vectors a1, . . . , am ∼ N (0, In). Then with probability
at least 1 − 2 exp(−cm), one has

1

m

m
∑

i=1

∣
∣
〈

ai, x
′〉∣∣ ≤ ε for all x′ ∈ (K − K) ∩ εBn

2 .

Proof Let us apply Lemma 2.1 for the set T = (K − K) ∩ εBn
2 instead of K , and for

u = ε/8. Since d(K) = maxx′∈T ‖x′‖2 ≤ ε, we obtain that the following holds with
probability at least 1 − 2 exp(−cm):

sup
x′∈T

1

m

m
∑

i=1

∣
∣
〈

ai, x
′〉∣∣ ≤ sup

x′∈T

∣
∣
∣
∣

1

m

m
∑

i=1

∣
∣
〈

ai, x
′〉∣∣ −

√

2

π
‖x′‖2

∣
∣
∣
∣
+

√

2

π
ε

≤ 4w(T )√
m

+ ε

8
+

√

2

π
ε. (5.5)

Note that w(T ) ≤ w(K −K) ≤ 2w(K). So, using the assumption on m, we conclude
that the quantity in (5.5) is bounded by ε, as claimed. �

5.4 Approximation

Now we establish a way to transfer the distance estimates from an ε-net Nε to the
full set K . This is possible by a continuity property of the soft Hamming distance,
which we outlined in Lemma 4.3. This result requires the perturbation to be bounded
in L∞ norm. However, in our situation, the perturbations are going to be bounded
only in L1 norm due to Lemma 5.4. So, we shall prove the following relaxed version
of continuity.

Lemma 5.5 (Continuity with respect to L1 perturbations) Let x, y, x′, y′ ∈ R
n, and

assume that ‖Ax′‖1 ≤ εm, ‖Ay′‖1 ≤ εm for some ε > 0. Then for every t ∈ R and
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M ≥ 1 one has

dt+Mε
A (x, y) − 2

M
≤ dt

A

(

x + x′, y + y′) ≤ dt−Mε
A (x, y) + 2

M
. (5.6)

Proof Consider the events Fi = Fi (x, y, t) from the definition of the soft Hamming
distance (4.2). By the assumptions, we have

m
∑

i=1

∣
∣
〈

ai, x
′〉∣∣ ≤ εm,

m
∑

i=1

∣
∣
〈

ai, y
′〉∣∣ ≤ εm.

Therefore, the set

T := {

i ∈ [m] : ∣∣〈ai, x
′〉∣∣ ≤ Mε,

∣
∣
〈

ai, y
′〉∣∣ ≤ Mε

}

satisfies
∣
∣T c

∣
∣ ≤ 2m/M.

By the triangle inequality, we have

Fi (x, y, t + Mε) ⊆ Fi

(

x + x′, y + y′, t
) ⊆ Fi (x, y, t − Mε), i ∈ T .

Therefore,

dt+Mε
A (x, y) = 1

m

m
∑

i=1

1Fi (x,y,t+Mε) ≤ |T c|
m

+ 1

m

∑

i∈T

1Fi (x,y,t+Mε)

≤ 2

M
+ 1

m

∑

i∈T

1Fi (x+x′,y+y′,t) ≤ 2

M
+ dt

A

(

x + x′, y + y′).

This proves the first inequality in (5.6). The proof of the second inequality is simi-
lar. �

5.5 Proof of Theorem 4.4

Now we are ready to combine all the pieces and prove Theorem 4.4. To this end,
consider the set K , numbers δ, m, t , and the random matrix A as in the theorem.
Choose ε = δ2/100 and M = 10/δ.

Consider an ε-net Nε of K as we described in the beginning of Sect. 5.2. Let
us apply Lemma 5.3 that controls the distances on Nε along with Lemma 5.4 that
controls the tails. By the assumption on m in the theorem and by our choice of ε,
both requirements on m in these lemmas hold. By a union bound, with probability
at least 1 − 4 exp(−cδ2m) the following event holds: for every x0, y0 ∈ Nε and x′,
y′ ∈ (K − K) ∩ εBn

2 , one has

∣
∣dt−Mε

A (x0, y0) − d(x0, y0)
∣
∣ ≤ 2|t − Mε| + δ/2,

∣
∣dt+Mε

A (x0, y0) − d(x0, y0)
∣
∣ ≤ 2|t + Mε| + δ/2,

(5.7)

∥
∥Ax′∥∥

1 ≤ εm,
∥
∥Ay′∥∥

1 ≤ εm. (5.8)
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Let x, y ∈ K . As we described in (5.3), we can decompose the vectors as

x = x0 + x′, y = y0 + y′, where x0, y0 ∈ Nε, x′, y′ ∈ (K − K) ∩ εBn
2 . (5.9)

The bounds in (5.8) guarantee that the continuity property (5.6) in Lemma 5.5 holds.
This gives

dt
A(x, y) ≤ dt−Mε

A (x0, y0) + 2

M

≤ d(x0, y0) + 2|t | + 2Mε + δ

2
+ 2

M

by (5.7) and the triangle inequality. Furthermore, using (5.9) we have
∣
∣d(x0, y0) − d(x, y)

∣
∣ ≤ d(x0, x) + d(y0, y) ≤ ‖x0 − x‖2 + ‖y0 − y‖2 ≤ 2ε.

It follows that

dt
A(x, y) ≤ d(x, y) + 2|t | + 2Mε + δ

2
+ 2

M
+ 2ε.

Finally, by the choice of ε and M , we obtain

dt
A(x, y) ≤ d(x, y) + 2|t | + δ.

A similar argument shows that

dt
A(x, y) ≥ d(x, y) − 2|t | − δ.

We conclude that
∣
∣dt

A(x, y) − d(x, y)
∣
∣ ≤ δ + 2|t |.

This completes the proof of Theorem 4.4.

6 Proof of Theorem 1.10 on Tessellations in R
n

In this section, we deduce Theorem 1.10 from Theorem 1.2 by an elementary lifting
argument into R

n+1. We shall use the following notation: Given a vector x ∈ R
n and

a number t ∈ R, the vector x ⊕ t ∈ R
n ⊕ R = R

n+1 is the concatenation of x ∈ R
n

and t . Furthermore, K ⊕ t denotes the set of all vectors x ⊕ t where x ∈ K .
Assume K ⊂ R

n has diam(K) = 1. Translating K if necessary we may assume
that 0 ∈ K ; then

1

2
≤ sup

x∈K

‖x‖2 ≤ 1. (6.1)

Also note that by assumption we have

m ≥ Cδ−12w(K − K) ≥ Cδ−12w(K). (6.2)
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Fix a large number t ≥ 2 whose value will be chosen later and consider the set

K ′ = Q(K ⊕ t) ⊆ Sn,

where Q : Rn+1 → Sn denotes the spherical projection map Q(u) = u/‖u‖2. We
have

w
(

K ′) ≤ t−1w(K ⊕ t) (as ‖u‖2 ≥ t for all u ∈ K ⊕ t)

≤ t−1(w(K) + tE|γ |) (

where γ ∼ N (0,1)
)

= t−1w(K) + √

2/π ≤ 3w(K),

where the last inequality holds because w(K) ≥ √
2/π supx∈K ‖x‖2 ≥ 1/

√
2π

by (6.1).
Then Theorem 1.2 implies that if m ≥ Cδ−6

0 w(K)2 for some δ0 > 0, then there
exists an arrangement of m hyperplanes in R

n+1 such that

∣
∣dA

(

x′, y′) − d
(

x′, y′)∣∣ ≤ δ0, x′, y′ ∈ K ′. (6.3)

Consider arbitrary vectors x and y in K and the corresponding vectors x′ = Q(x ⊕ t)

and y′ = Q(x ⊕ t) in K ′. Let us relate the distances between x′ and y′ appearing
in (6.3) to corresponding distances between x and y.

Let ai ⊕ a ∈R
n+1 denote normals of the hyperplanes. Clearly, x′ and y′ are sepa-

rated by the ith hyperplane if and only if x ⊕ t and y ⊕ t are. This in turn happens if
and only if x and y are separated by the affine hyperplane that consists of all x ∈ R

n

satisfying 〈ai ⊕ a, x ⊕ t〉 = 〈ai, x〉 + at = 0. In other words, the hyperplane tessella-
tion of K ′ induces an affine hyperplane tessellation of K , and the fraction dA(x′, y′)
of the hyperplanes separating x′ and y′ equals the fraction of the affine hyperplanes
separating x and y. With a slight abuse of notation, we express this observation as

dA

(

x′, y′) = dA(x, y). (6.4)

Next, we analyze the normalized geodesic distance d(x′, y′), which satisfies

∣
∣π · d(

x′, y′) − ∥
∥x′ − y′∥∥

2

∣
∣ ≤ C0

∥
∥x′ − y′∥∥2

2. (6.5)

Denoting tx = ‖x ⊕ t‖2 and ty = ‖y ⊕ t‖2 and using the triangle inequality, we obtain

ε := ∣
∣
∥
∥x′ − y′∥∥

2 − t−1‖x − y‖2
∣
∣

= ∣
∣
∥
∥t−1

x (x ⊕ t) − t−1
y (y ⊕ t)

∥
∥

2 − ∥
∥t−1x − t−1y

∥
∥

2

∣
∣

≤ ‖x‖∣∣t−1
x − t−1

∣
∣ + ‖y‖∣∣t−1

y − t−1
∣
∣ + t

∣
∣t−1

x − t−1
y

∣
∣. (6.6)

Note that (6.1) yields that t ≤ tx, ty ≤ √
t2 + 1. It follows that |t−1

x − t−1| ≤ 0.5t−3

and the same bound holds for the other two similar terms in (6.6). Using this and (6.1),
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we conclude that ε ≤ t−2. Putting this into (6.5) and using the triangle inequality
twice, we obtain

∣
∣π · d(

x′, y′) − t−1‖x − y‖2
∣
∣ ≤ C0

(

t−1
∥
∥x′ − y′∥∥

2 + ε
)2 + ε

≤ C0
(

2t−1 + t−2)2 + t−2 ≤ C1t
−2.

Finally, we use this bound and (6.4) in (6.3), which gets us
∣
∣πt · dA(x, y) − ‖x − y‖2

∣
∣ ≤ πtδ0 + C1t

−1. (6.7)

Now we can assign the values t := 2C1/δ and δ0 = δ2/(4πC1) so the right-hand side
of (6.7) is bounded by δ, as required. Note that the condition m ≥ Cδ−6

0 w(K)2 that
we used above in order to apply Theorem 1.2 is satisfied by (6.2). This completes the
proof of Theorem 1.10.
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