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Abstract For every k > 3, we give a construction of planar point sets with many
collinear k-tuples and no collinear (k + 1)-tuples. We show that there are n0 = n0(k)

and c = c(k) such that if n ≥ n0, then there exists a set of n points in the plane that
does not contain k + 1 points on a line, but it contains at least n2−(c/

√
log n) collinear

k-tuples of points. Thus, we significantly improve the previously best known lower
bound for the largest number of collinear k-tuples in such a set, and get reasonably
close to the trivial upper bound O(n2).

Keywords Collinear · Planar · Point sets · Construction

1 Introduction

In the early 60s Paul Erdős asked the following question about point-line incidences in
the plane: Is it possible that a planar point set contains many collinear four-tuples, but
it contains no five points on a line? There are constructions for n-element point sets
with n2/6 − O(n) collinear triples with no four on a line (see [4] or [11]). However,
no similar construction is known for larger tuples.

Let us formulate Erdős’ problem more precisely. For a finite set P of points in the
plane and k ≥ 2, let tk(P) be the number of lines meeting P in exactly k points, and
let Tk(P) := ∑

k′≥k tk′(P) be the number of lines meeting P in at least k points. For
r > k and n, we define
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Fig. 1 A construction of a point
set showing that t3(7) ≥ 6

t (r)
k (n) := max|P|=n

Tr (P)=0

tk(P).

In plain words, t (r)
k (n) is the number of lines containing exactly k points from P , max-

imized over all n point sets P that do not contain r collinear points. Erdős conjectured
that t (r)

k (n) = o(n2) for any fixed r > k > 3 and offered $100 for a proof or disproof
[9] (the conjecture is listed as Conjecture 12 in the problem collection of Brass et al.
[3]). In this paper we are concerned about bounding t (k+1)

k (n) from below for k > 3.

To simplify notation, from now on we will use tk(n) to denote t (k+1)
k (n) (Fig. 1).

1.1 Earlier Results and Our Result

This problem was among Erdős’ favourite geometric problems, he frequently talked
about it and listed it among the open problems in geometry, see [6–10]. It is not just
a simple puzzle which might be hard to solve, it is related to some deep and difficult
problems in other fields. It seems that the key to tackle this question would be to
understand the group structure behind point sets with many collinear triples. A recent
result of Green and Tao—proving the Motzkin–Dirac conjecture [12]—might be an
important development in this direction.

In the present paper, our goal is to give a construction showing that Erdős conjecture,
if true, is sharp; for k > 3, one cannot replace the exponent 2 by 2 − c, for any c > 0.

The first result was due to Kárteszi [15] who proved that tk(n) ≥ ckn log n
for all k > 3. In 1976 Grünbaum [13] showed that tk(n) ≥ ckn1+1/(k−2).
For some 30 years this was the best bound when Ismailescu [14], Brass et al.
[2], and Elkies [5] consecutively improved Grünbaum’s bound for k ≥ 5. How-
ever, similarly to Grünbaum’s bound, the exponent was going to 1 as k went to
infinity.

In what follows we are going to give a construction that substantially improves the
lower bound. Namely, we will show the following.
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Theorem 1 For any k ≥ 4 integer, there is a positive integer n0 such that for n > n0
we have tk(n) > n2−(c/

√
log n), where c = 2 log(4k + 9).

We note that each of the collinear k-tuples that we count in our construction has
an additional property that the points form a k-term arithmetic progression, as the
distance between every two consecutive points is the same in every coordinate.

1.2 Preliminaries

For r > 0 and a positive integer d let Bd(r) denote the closed ball in R
d of radius

r centred at the origin, and Sd(r) denotes the sphere in R
d of radius r centred at the

origin.
For any positive integer d the d-dimensional unit hypercube (and its translates) are

denoted by Hd . If the center of the cube is a point x ∈ R
d then it has the vertex set

x + {−1/2, 1/2}d and we denote it by Hd(x).
For a set S ⊆ R

d , let N (S) denote the number of points from the integer lattice Z
d

that belong to S, i.e., N (S) := |Zd ∩ S|.
Throughout the paper the log notation stands for the base 2 logarithm.

2 A Lower Bound on tk(n)

We will prove bounds for even and odd value of k separately, as the odd case needs a
bit more attention. Our proof is elementary, we use the fact that the volume of a large
sphere approximates well the number of lattice points inside the ball. There are more
advanced techniques to count lattice points on the surface of a sphere, however we see
no way to improve our bound significantly by applying them.

In our construction, we rely on the fact that a point set in a large dimensional
space that satisfies our collinearity conditions can be converted to a planar point set by
simply projecting it to a plane along a suitably chosen vector, with all the collinearities
preserved. That enables us to perform most of the construction in a space of large
dimension, exploiting the properties of such a space.

2.1 Proof for Even k

Let d be a positive integer, and let r > 0. We will use a quantitative version of the
following well known fact

N (Bd(r))

V (Bd(r))
→ 1 as r → ∞,

where

V (Bd(r)) = rdπ
d
2

�
( d

2 + 1
) , (1)

estimating the number of lattice points on a sphere using Gauss’ volume argument.

123



814 Discrete Comput Geom (2013) 50:811–820

Lemma 1 For r ≥ √
d, we have

V (Bd(r − √
d/2)) ≤ N (Bd(r)) ≤ V (Bd(r + √

d/2)).

Proof For every lattice point p ∈ Bd(r) ∩ Z
d we look at the unit cube Hd(p) with

center p. These cubes all have disjoint interiors and each of them has diameter
√

d.
Moreover, their union

⋃
p∈Bd (r)∩Zd Hd(p) is included in Bd(r + √

d/2), it contains

Bd(r−√
d/2) and its volume is equal to N (Bd(r)), which readily implies the statement

of the lemma. ��
We will also use a bound on the number of points on a sphere.

Lemma 2 There exists a constant c0 > 0 such that

N (Sd(r)) ≤ 2
c0 log r
log log r N (Bd−2(r)).

Proof The number N (Sd(r)) is the number of ways r2 can be written as an ordered
sum of d perfect squares. Such sum can be broken into two sums, the first containing
all summands except the last two, and the second containing the last two summands,
so we have

N (Sd(r)) =
r2

∑

s=1

N (Sd−2(
√

s))N (S2(
√

r2 − s)).

The number of ways a positive integer n can be represented as a sum of two squares
is known to be at most 4 times d(n), the number of divisors of n, and there exists a
constant c′ > 0 so that d(n) ≤ 2c′ log n/log log n (see, e.g., [1, Sect. 13.10]). Hence, we
have

N (Sd(r)) ≤ 4d(r2)

r2
∑

s=1

N (Sd−2(
√

s))

≤ 2
2c′ log r
log log r N (Bd−2(r)).

��
Proof (of Theorem 1 for even k) We will give a construction of a point set P containing
no k + 1 collinear points, with a high value of tk(P).

For a positive integer d let us set r0 = 2d . For each integer point from Bd(r0),
the square of its distance to the origin is at most r2

0 . As the square of that distance
is an integer, we can apply pigeonhole principle to conclude that there exists r , with
0 < r ≤ r0, such that the sphere Sd(r) contains at least 1/r2

0 fraction of points from
Bd(r0), and together with Lemma 1, we have

N (Sd(r)) ≥ 1

r2
0

N (Bd(r0)) ≥ 1

r2
0

V (Bd(r0 − √
d/2)).
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Fig. 2 Line s with k points, for k even

Fig. 3 The position of the k points related to the origin, for k even

Let us consider the unordered pairs of different points from Z
d ∩ Sd(r). The total

number of such pairs is at least

( N (Sd(r))

2

)
≥

( V (Bd (r0−
√

d/2))

r2
0

2

)
.

For every p, q ∈ Z
d ∩ Sd(r) the Euclidean distance d(p, q) between p and q is at

most 2r , and the square of that distance is an integer. Hence, there are at most 4r2

different possible values for d(p, q). Applying pigeonhole principle again, we get that
there are at least

1

4r2

( V (Bd (r0−
√

d/2))

r2
0

2

)
≥ V (Bd(r0 − √

d/2))2

8r6
0

(2)

pairs of points from Z
d ∩Sd(r) that all have the same distance. We denote that distance

by �.
Let p1, q1 ∈ Z

d ∩ Sd(r) with d(p1, q1) = �, and let s be the line going through
p1 and q1. We define k − 2 points p2, . . . , pk/2, q2, . . . , qk/2 on the line s such
that d(pi , pi+1) = � and d(qi , qi+1) = �, for all 1 ≤ i < k/2, and all k points
p1, . . . , pk/2, q1, . . . , qk/2 are different, see Fig. 2.

Knowing that p1 and q1 are points from Z
d , the way we defined points

p2, . . . , pk/2, q2, . . . , qk/2 implies that they have to be in Z
d as well. If we set

ri :=
√

r2 + i(i − 1)�2 ≤
√

r2 + (2ir)2 ≤ r(k + 1), (3)

for all i = 1, . . . , k/2, then the points pi and qi belong to the sphere Sd(ri ), and hence,
pi , qi ∈ Z

d ∩ Sd(ri ), for all i = 1, . . . , k/2, see Fig. 3.
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We define the point set P to be the set of all integer points on spheres Sd(ri ), for
all i = 1, . . . , k/2, that is

P := Z
d ∩ (

k/2⋃

i=1

Sd(ri )
)
.

As the point set P is contained in the union of k/2 spheres, there are obviously no
k +1 collinear points in P . On the other hand, every pair of points p1, q1 ∈ Z

d ∩ Sd(r)

with d(p1, q1) = � defines one line that contains k points from P .
If we set n := |P|, and if d is large enough, we have

n =
k/2∑

i=1

N (Sd(ri ))

≤
k/2∑

i=1

2
c1 log ri
log log ri N (Bd−2(ri ))

≤ k2
c2d
log d N (Bd−2((k + 1)2d)) (4)

≤ k2
c2d
log d V (Bd−2(2

d(k + 1 + √
d/2d+1)))

≤ k2
c2d
log d

2d(d−2)(k + 1 + √
d/2d+1)d−2π(d−2)/2

√
πd(d/2e)d/2

d/2

≤ 2d(d−2)(k + 2)dπd/2(2e)d/2

dd/2

≤ 2d2− d
2 log d+ d

2 log(
(k+2)2πe

8 ),

where c1, c2 are constants depending only on k. Here, we used Lemmas 1, 2, (1), (3),
and the standard estimates for the function �.

On the other hand, we get from (2) and (1) that the number of lines containing
exactly k points from P is

tk(P) ≥
((

2d −
√

d
2

)d
πd/2(2e)d/2

√
4π
d dd/2

)2 1

26d+3

≥ 2
2d2−d log d−d log

(
64
πe

)

.

Putting the previous two inequalities together it follows that there exist a constant n0
depending on k, such that for n > n0 we have

tk(P) ≥ n2

2c
√

log n
= n

2− c√
log n ,

where c = 2 log(3k + 6).
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To obtain a point set in two dimensions, we project the d dimensional point set to a
two dimensional plane in R

d . The vector v along which we project should be chosen
generically, so that every two points from our point set are mapped to different points,
and every three points that are not collinear are mapped to points that are still not
collinear. ��

2.2 Proof for Odd k

Proof (of Theorem 1 for odd k) We will give a construction of a point set P containing
no k + 1 collinear points, with a high value of tk(P).

For a positive integer d let us set r0 = 2d . In the same way as in the proof for even
k, we can find r with 0 < r ≤ r0, such that the sphere Sd(r) contains at least a 1/r2

0
fraction of the integer points from Bd(r0), and hence

N (Sd(r)) ≥ 1

r2
0

N (Bd(r0)) ≥ 1

r2
0

V (Bd(r0 − √
d/2)).

Now, for every point p ∈ Z
d ∩ Sd(r) there is a corresponding point p′ on the sphere

Sd(2r) that belongs to the half-line from the origin to p. It is not hard to see that all
coordinates of p′ are even integers, so p′ ∈ (2Z)d ∩ Sd(2r). Hence, the number of
points in (2Z)d ∩ Sd(2r) is at least N (Sd(r)).

We look at unordered pairs of different points from (2Z)d ∩ Sd(2r). The total
number of such pairs is at least

( N (Sd(r))

2

)
≥

( V (Bd (r0−
√

d/2))

r2
0

2

)
.

If we just look at such pairs of points that have different first coordinate, we surely
have at least half as many pairs as before. To see that, observe that for every point
p ∈ (2Z)d ∩ Sd(2r), a point obtained from p by changing the sign of any number of
coordinates of p and/or permuting the coordinates is still in (2Z)d ∩ Sd(2r).

For every p, q ∈ (2Z)d ∩ Sd(2r) we know that the Euclidean distance d(p, q)

between p and q is at most 4r , and that the square of that distance is an integer. Hence,
there are at most 16r2 different possible values for d(p, q). Applying pigeonhole
principle again, we get that there are at least

1

16r2 · 1

2

( V (Bd (r0−√
d/2))

r2
0

2

)
≥ V (Bd(r0 − √

d/2))2

64r6
0

(5)

pairs of points from (2Z)d ∩ Sd(2r) with different first coordinate that have the same
distance. We denote that distance by 2�. Note that since both p and q are contained
in (2Z)d , we have that the middle point m of the segment pq belongs to Z

d , and
d(p, m) = d(q, m) = �.
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Fig. 4 Line s with k points, for k odd

Fig. 5 The position of the k points related to the origin, for k odd

Let p1, q1 ∈ (2Z)d ∩ Sd(2r) with d(p1, q1) = 2�, let m0 be the middle point of
the segment p1q1, and let s be the line going through p1 and q1. We define k − 3
points p2, . . . , p(k−1)/2, q2, . . . , q(k−1)/2 on the line s such that d(pi , pi+1) = � and
d(qi , qi+1) = �, for all 1 ≤ i < (k − 1)/2, and all k points m0, p1, . . . , p(k−1)/2,
q1, . . . , q(k−1)/2 are different, see Fig. 4.

Knowing that p1 and q1 are points from (2Z)d , the way we defined points
m0, p2, . . . , p(k−1)/2, q2, . . . , q(k−1)/2 implies that they have to be in Z

d . If we set

ri :=
√

4r2 + (i + 1)(i − 1)�2 ≤ r(k + 1), (6)

for all i = 0, . . . , (k − 1)/2, the points pi and qi belong to the sphere Sd(ri ), and the
point m0 belongs to Sd(r0). Hence, pi , qi ∈ Z

d ∩ Sd(ri ), for all i = 1, . . . , (k − 1)/2,
and m0 ∈ Z

d ∩ Sd(r0), see Fig. 5.
By αx we denote the hyperplane containing all points in R

d with first coordinate
equal to x . Let M be the multiset of points m such that there exist points p, q ∈
(2Z)d ∩ Sd(2r) having different first coordinate, with d(p, q) = 2�, and with m being
the middle point of the segment pq. In this multiset, we include the point m once for
every such p and q. We know that M ⊆ Z

d ∩ Sd(r0), and each point from Z
d ∩ Sd(r0)

is contained in αx for some integer −r0 ≤ x ≤ r0. Hence, by the pigeonhole principle,
we get from (5) that there exists −r0 ≤ x0 ≤ r0 such that αx0 ∩ M contains at least

|M |
2r0

≥ V (Bd(r0 − √
d/2))2

128r7
0

(7)

points.
We define the point set P to be the set of all integer points on spheres Sd(ri ), for

all i = 1, . . . , (k − 3)/2, all integer points on Sd(r(k−1)/2) that do not belong to αx0 ,
and all integer points on Sd(r0) that belong to αx0 . I.e., we have
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P := Z
d ∩ ((

(k−3)/2⋃

i=1

Sd(ri )
) ∪ (

Sd(r(k−1)/2) \ αx0

) ∪ (
Sd(r0) ∩ αx0

))
.

Let us first prove that the point set P does not contain k + 1 collinear points. As P
is contained in the union of (k − 1)/2 spheres and a hyperplane, any line that is not
contained in that hyperplane cannot contain more than k points from P . But the point
set P restricted to the hyperplane αx0 belongs to the union of (k −1)/2 spheres Sd(ri ),
for i = 0, . . . , (k − 3)/2, so we can also conclude that there are no k + 1 collinear
points in P ∩ αx0 .

Let n := |P|. Obviously, P ⊆ ⋃(k−1)/2
i=0 Sd(ri ), so we can estimate the value of n

similarly as in the even case. We have

n ≤
k−1

2∑

i=0

N (Sd(ri ))

≤
k−1

2∑

i=0

2
c1 log ri
log log ri N (Bd−2(ri ))

≤ k2
c2d
log d N (Bd−2((k + 1)2d))

≤ 2d2− d
2 log d+ d

2 log(
(k+2)2πe

8 ),

where c1, c2 are constants depending only on k. The last estimate was done the same
way as in the case where k is even, as the third line of the calculation is exactly the
same as the one obtained in (4).

On the other hand, every pair of points p1, q1 ∈ Z
d ∩ Sd(r) with different first

coordinate, with d(p1, q1) = 2�, and with the middle point that belongs to αx0 ∩ M ,
defines one line that contains k points from P . Note that such line cannot belong to
αx0 , as the first coordinates of p1 and q1 cannot be x0 simultaneously.

Hence, we get from (7) and (1) that the number of lines containing exactly k points
from P is

tk(P) ≥
((

2d −
√

d
2

)d
πd/2(2e)d/2

√
4π
d dd/2

)2 1

27d+7

≥ 22d2−d log d−d log
(

128
πe

)

.

Putting the last two inequalities together we get that there exists a constant n0 depend-
ing on k, such that for n > n0 we have

tk(P) ≥ n2

2c
√

log n
= n

2− c√
log n ,

where c = 2 log(4k + 9).
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To obtain a point set in two dimensions, we project the d dimensional point set to
a two dimensional plane in R

d , similarly as in the even case. ��
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