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Abstract Let P be a set of n points in the plane, not all on a line. We show that
if n is large then there are at least n/2 ordinary lines, that is to say lines passing
through exactly two points of P . This confirms, for large n, a conjecture of Dirac and
Motzkin. In fact we describe the exact extremisers for this problem, as well as all sets
having fewer than n − C ordinary lines for some absolute constant C . We also solve,
for large n, the “orchard-planting problem”, which asks for the maximum number of
lines through exactly 3 points of P . Underlying these results is a structure theorem
which states that if P has at most K n ordinary lines then all but O(K) points of P lie
on a cubic curve, if n is sufficiently large depending on K .
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1 Introduction

The Sylvester–Gallai theorem is a well-known theorem in combinatorial geometry. It
was proven by Gallai [18] in response to a question of Sylvester [33] from 40 years
earlier (Fig. 1).
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Fig. 1 Sylvester’s question [33]

Theorem 1.1 (Sylvester–Gallai theorem) Suppose that P is a finite set of points in
the plane, not all on one line. Then there is an ordinary line spanned by P, that is to
say a line in P containing exactly two points.

Several different proofs of this now appear in the literature. We will be particularly
interested in a proof due to Melchior [25] based on projective duality and Euler’s
formula, which we will recall in Sect. 3. It is natural to wonder how many ordinary
lines there are in a set P of points, not all on a line, when the cardinality |P| of P
is equal to n. Melchior’s argument in fact shows that there are at least three ordinary
lines, but considerably more is known. Motzkin [26] was the first to obtain a lower
bound (of order n1/2) tending to infinity with n. Kelly and Moser [22] proved that there
are at least 3n/7 ordinary lines, and Csima and Sawyer [11] improved this to 6n/13
when n > 7. Their work used ideas from the thesis of Hansen [20], which purported
to prove the n/2 lower bound but was apparently flawed. An illuminating discussion
of this point may be found in the MathSciNet review of [11]. There are several nice
surveys on this and related problems; see [4], [15, Chap. 17], [27] or [28].

One of our main objectives in this paper is to clarify this issue for large n. The
following theorem resolves, for large n, a long-standing conjecture which has been
known as the Dirac–Motzkin conjecture. Apparently neither author formally conjec-
tures this in print, though Dirac [12] twice states that its truth is “likely”. Motzkin [26]
does not seem to mention it at all.

Theorem 1.2 (Dirac–Motzkin conjecture) Suppose that P is a finite set of n points
in the plane, not all on one line. Suppose that n � n0 for a sufficiently large absolute
constant n0. Then P spans at least n/2 ordinary lines.

We will in fact establish a more precise result obtaining the exact minimum for all
n � n0 as well as a classification of the extremal examples. One rather curious feature
of this more precise result is that if n is odd there must be at least 3�n/4� ordinary
lines. See Theorems 2.2 and 2.4 below for more details. When n is even, one can attain
n/2 ordinary lines by combining n/2 equally spaced points on a circle with n/2 points
at infinity; see Proposition 2.1 below.

For small values of n, there are exceptional configurations with fewer than n/2
ordinary lines. Kelly and Moser [22] observe that a triangle together with the midpoints
of its sides and its centroid has n = 7 and just 3 ordinary lines. Crowe and McKee
[10] provide a more complicated configuration with n = 13 and 6 ordinary lines.
It is possible that Theorem 1.2 remains true for all n with the exception of these
two examples (or equivalently, one could take n0 as low as 14). Unfortunately our
method does not give a good bound for n0; we could in principle compute such
a bound, but it would be of double exponential type and, we think, not worth the
effort.
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Fig. 2 Jackson’s question [21]

Our methods also apply (in fact with considerably less effort) to resolve sufficiently
large instances of a slightly less well-known (but considerably older) problem referred
to in the literature as the orchard problem. This was first formally posed by Sylvester
[32] in 1868 (Fig. 3), though the 1821 book of Jackson [21] has a whole section
containing puzzles of a similar flavour, posed more eloquently than any result in this
paper (Fig. 2).

Theorem 1.3 (Orchard problem) Suppose that P is a finite set of n points in the plane.
Suppose that n � n0 for some sufficiently large absolute constant n0. Then there are
no more than �n(n − 3)/6� + 1 lines that are 3-rich, that is they contain precisely 3
points of P. (Here and in the sequel, �x� denotes the integer part of x.)

This theorem is tight for large n, as noted by Sylvester [32], and also subsequently
by Burr et al. [5], who discuss this problem extensively. We will give these examples,
which are based on irreducible cubic curves, in Proposition 2.6 below. In fact these are
the only examples where equality occurs for large n: see the remarks at the very end
of Sect. 9. Again, there are counterexamples for small n. In particular, the example of
a triangle, the midpoints of its sides and its centroid has n = 7 but 6 lines containing
precisely three points of P; by contrast, the bound of Theorem 1.3 is 5 in this case.

As observed in [5], lower bounds for the number N2 of ordinary lines can be
converted into upper bounds for the number N3 of 3-rich lines thanks to the obvious
double-counting identity

∑n
k=2

(k
2

)
Nk = (n

2

)
(with Nk denoting the number of k-rich

lines). In particular, previously known lower bounds on the Dirac–Motzkin conjecture
can be used to deduce upper bounds on the orchard problem. However, one cannot
deduce Theorem 1.3 in this fashion from Theorem 1.2; this is related to the fact that
the extremal examples showing the sharpness of the two theorems are quite different,
as we shall see in Sect. 2 below.

Underlying the proof of both of these results are structure theorems for sets with
few ordinary lines, which are perhaps of independent interest. The most basic such
result is the following. We use the asymptotic notation X = O(Y ) or X � Y to denote
the bound |X | � CY for some absolute constant C .

Theorem 1.4 (Weak structure theorem) Suppose that P is a finite set of n points in
the plane. Suppose that P spans at most K n ordinary lines for some K � 1. Suppose
also that n � exp exp(C K C ) for some sufficiently large absolute constant C. Then all
but at most O(K O(1)) points of P lie on an algebraic curve γ of degree at most 3.

In fact we establish a slightly more precise statement, see Proposition 6.14 below.
Note that we do not require the algebraic curve γ to be irreducible; thus γ could be
an irreducible cubic, the union of a conic and a line, or the union of three lines. As
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Fig. 3 Sylvester’s question [32]

we shall see in later sections, cubic curves arise naturally in the study of point-line
configurations with few ordinary lines, in large part due to the well-known abelian
group structure (or pseudo-group structure) defined by the collinearity relation on such
curves (or equivalently, by Chasles’s version of the Cayley–Bacharach theorem, see
Proposition 4.1). The lower bound n � exp exp(C K C ) is present for rather artificial
reasons, and can likely be improved substantially.

Projective geometry Much of the paper is best phrased in the language of projective
geometry. We recall for the convenience of the reader the notion of the projective
plane RP

2 as (R3 \ {0})/ ∼, where (x, y, z) ∼ (x ′, y′, z′) if and only if there is
some λ �= 0 such that x ′ = λx, y′ = λy and z′ = λz. We denote points of RP

2

with square brackets, thus [x, y, z] is the equivalence class of (x, y, z) under ∼. We
have the embedding R

2 ↪→ RP
2 given by (x, y) 	→ [x, y, 1]; in fact RP

2 may be
thought of as R

2 together with the line at infinity consisting of points [x, y, 0] (modulo
the equivalence relation ∼). For the point-line incidence problems considered in this
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paper, the projective and affine formulations are equivalent. Indeed given a finite set of
points P in RP

2, we may apply a generic projective transformation so as to move all
points of P to the affine plane R

2 if desired, without affecting the number of ordinary
lines or 3-rich lines. This is illustrated in the figures in Sect. 2.

For our purposes, there are two main advantages of working in projective space
instead of affine space. The first is to allow the use of projective transformations to
normalise one’s geometric configurations, for instance by moving a line to the line at
infinity, or transforming a non-singular irreducible cubic curve into an elliptic curve in
Weierstrass normal form. The other main advantage is the ability to utilise point-line
duality. Given a point p = [a, b, c], one may associate the line p∗ := {[x, y, z] : ax +
by+cz = 0}, and conversely given a projective line � = {[x, y, z] : ax +by+cz = 0}
one may associate the point �∗ = [a, b, c]. It is clear that p ∈ � if and only if �∗ ∈ p∗.
Working in the dual can provide us with information that is difficult to access otherwise.
We shall see this twice: once in Sects. 3 and 4, when we apply Euler’s formula in the
dual setting following an argument of Melchior [25], and then again in Sect. 6 where
we will employ a convexity argument, due to Luke Alexander Betts, in the dual setting.

Next, we give a structure theorem which is more precise than Theorem 1.4.

Theorem 1.5 (Full structure theorem) Suppose that P is a finite set of n points in the
projective plane RP

2. Let K > 0 be a real parameter. Suppose that P spans at most
K n ordinary lines. Suppose also that n � exp exp(C K C ) for some sufficiently large
absolute constant C. Then, after applying a projective transformation if necessary, P
differs by at most O(K ) points (which can be added or deleted) from an example of
one of the following three types:

(i) n − O(K ) points on a line;
(ii) The set

X2m :=
{[

cos
2π j

m
, sin

2π j

m
, 1

]
: 0 � j < m

}

∪
{[

− sin
π j

m
, cos

π j

m
, 0

]
, 0 � j < m

}
(1.1)

consisting of m points on the unit circle and m points on the line at infinity, for
some m = n

2 + O(K );
(iii) A coset H ⊕ g, 3g ∈ H, of a finite subgroup H of the non-singular real points

on an irreducible cubic curve, with H having cardinality n + O(K ) (the group
law ⊕ on such curves is reviewed in Sect. 2 below).

Conversely, every set of this type has at most O(K n) ordinary lines.

We have the following consequence, which can handle slowly growing values
of K .

Corollary 1.6 Suppose that P is a finite set of n points in the projective plane RP
2.

Suppose that P spans at most n(log log n)c ordinary lines for some sufficiently small
constant c > 0. Then, after applying a projective transformation, P differs by at most
o(n) points from one of the examples (i), (ii), (iii) detailed in Theorem 1.5 above. In
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particular, we may add/remove o(n) points to/from P to get a set with at most n+O(1)
ordinary lines.

Here, of course, o(n) denotes a quantity which, after dividing by n, tends to zero
as n goes to infinity.

Remark This corollary may, for all we know, be true with a much weaker assumption,
perhaps even that P spans o(n2) ordinary lines. Very likely, if one could weaken
the hypothesis n � exp exp(C K C ) in Theorem 1.4 then one could do so also in
Theorem 1.5.

Proof methods As mentioned previously, the starting point1 of our arguments will
be Melchior’s proof [25] of the Sylvester–Gallai theorem using duality and the Euler
formula V − E + F = 1 for polygonal decompositions of the projective plane RP

2.
Melchior’s argument uses at one point the obvious fact that all polygons have at least
three sides to obtain an inequality implying the existence of ordinary lines. The same
argument also shows that if a point set P spans very few ordinary lines, then almost all
of the polygons in the dual configuration �P (cut out by the dual lines p∗ for p ∈ P)
must in fact have exactly three sides. Because of this, it is possible to show in this
case that the dual configuration contains large regions which have the combinatorial
structure of a regular triangular grid.

The next key observation is that inside any triangular grid of non-trivial size, one can
find “hexagonal” configurations of lines and points (see Fig. 14) which are dual to the
configuration of lines and points arising in Chasles’s version of the Cayley–Bacharach
theorem (Proposition 4.1 below). From this observation and some elementary combi-
natorial arguments, one can start placing large subsets of P on a single cubic curve. For
instance, in Proposition 5.1 we will be able to establish a “cheap structure theorem”
asserting that a set of n points with fewer than K n ordinary lines can be covered by
no more than 500K cubic curves. This observation turns out not to be new—a closely
related technique is used in a paper of Carnicer and Godés [7] concerning generalised
principal lattices, which arise in interpolation theory.

In principle, this cheap structure theorem already reduces the underlying geometry
from a two-dimensional one (the projective plane RP

2) to a one-dimensional one (the
union of a number of cubic curves). Unfortunately, the collinearity relation between
distinct cubic curves is too complicated to handle directly. Because of this, we must
refine the previous combinatorial analysis to strengthen the structural control on a point
set P with few ordinary lines. By studying the lines connecting a typical point p in P
with all the other points in P using the triangular grid analysis, one can obtain a more
complicated partition of P into cubic curves passing through p. A detailed statement
may be found in Lemma 5.2. Comparing such a partition with the reference partition
coming from the cheap structure theorem, one can obtain Proposition 5.3, a structure
theorem of intermediate strength. Roughly speaking this result asserts that most of
the points in P lie on a single irreducible cubic curve, on a union of an irreducible

1 One defect of this approach is that it breaks down totally in the complex case, and so we have nothing
new to say here about ordinary lines or 3-rich lines for configurations of complex lines in CP

2.
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conic and a bounded number of lines (with the points shared almost evenly between
the conic and the lines), or on the union of a bounded number of lines only.

The next stage is to cut the number of lines involved down to one. The key proposi-
tion2 here is Proposition 6.3. It asserts, roughly speaking, that a set of n points on two
or more lines, which contains � n points on each line, must generate � n2 ordinary
lines. This is a statement that fails in finite field geometries, and must use at some
point the torsion-free nature of the real line R [see Sect. 2 for more discussion of this
point, particularly with regards to the “near-counterexamples” (2.1) and (2.2)]. There
are two key cases of the proposition which need to be established. The first is when the
lines involved are all concurrent or, after a projective transformation, all parallel. In
this case we use an argument of Betts, Proposition 6.4, involving projective duality and
convexity. The use of convexity here is where the torsion-free nature of R is implicitly
used. In the case when the lines are not concurrent, we instead rely on Menelaus’s
theorem to introduce various ratios of lengths, and then exploit a sum-product esti-
mate of Elekes et al. [14]. This latter result, stated in Proposition A.9, also implicitly
exploits the torsion-free nature of R.

The result of the above analysis is a yet stronger structure theorem for sets P
with few ordinary lines: P is mostly placed in either an irreducible cubic curve, the
union of an irreducible conic and a line, or on a single line. A detailed statement
may be found in Proposition 6.14. The latter case, in which almost all points lie on
a line, is easily studied. To deal with the other two cases one uses the abelian group
structure on irreducible cubics, as well as the analogous pseudo-group structure on
the union of a conic and a line. The information that P contains few ordinary lines
can then be converted to an additive combinatorics property on finite subsets of an
abelian group. Fairly standard tools from additive combinatorics then show that P is
almost a finite subgroup of that abelian group. This allows us to rule out “essentially
torsion-free” situations, such as that provided by singular cubic curves (except for the
acnodal singular cubic curve), and eventually leads to the full structure theorem in
Theorem 1.5.

To solve the Dirac–Motzkin conjecture and the orchard problem for large n, we
observe that potential counterexamples P to either conjecture will have few ordinary
lines and hence can be described by Theorem 1.5. This quickly implies that P is
close, up to projective transformation, to one of the known extremisers coming from
roots of unity or from subgroups of elliptic curves, with a small number of additional
points added or removed. The remaining task is to compute the effect that these
added/removed points have on the number of ordinary lines or 3-rich lines in P .
Here, to get the strongest results, we will need a slight variant of a result of Poonen
and Rubinstein [29] in order to control the number of times a point may be concurrent
with two roots of unity. See Proposition 7.5 for details.

Of the two problems, the orchard problem turns out to be somewhat easier, and can
be in fact established using only the intermediate structure theorem in Proposition 5.3
rather than the more difficult structure theorem in Theorem 1.5.

2 Unfortunately, our reduction to this key proposition is somewhat expensive with regards to the quantitative
bounds, and is responsible for the double exponential lower bound required on n.
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2 The Key Examples

The aim of this section is to describe the various key examples of sets with few ordi-
nary lines or many 3-rich lines. In particular we describe the sets X2m in (1.1) and
the Sylvester examples appearing in the various cases of the main structure theorem,
Theorem 1.5. We will also mention some important “near-counterexamples” which do
not actually exist as finite counterexamples to the structure theorem, but nevertheless
are close enough to genuine counterexamples that some attention must be given in the
analysis to explicitly exclude variants of these examples from the list of possible con-
figurations. All of these examples are connected to the group (or pseudo-group) struc-
ture on a cubic curve, or equivalently to Chasles’s version of the Cayley–Bacharach
theorem as described in Proposition 4.1 below. The main variation in the examples
comes from the nature of the cubic curve being considered, which may or may not be
irreducible and/or nonsingular.

Böröczky and near-Böröczky examples We begin with the sets X2m from (1.1),
together with some slight perturbations of these sets described by Böröczky (as cited
in Ref. [10]). These sets, it turns out, provide the examples of non-collinear sets of n
points with the fewest number of ordinary lines, at least for n large.

Proposition 2.1 (Böröczky examples) Let m � 3 be an integer. Then we have the
following.

(i) The set X2m contains 2m points and spans precisely m ordinary lines.
(ii) The set X4m together with the origin [0, 0, 1] contains 4m + 1 points and spans

precisely 3m ordinary lines.
(iii) The set X4m minus the point [0, 1, 0] on the line at infinity contains 4m −1 points

and spans precisely 3m − 3 ordinary lines.
(iv) The set X4m+2 minus any of the 2m + 1 points on the line at infinity contains

4m + 1 points and spans 3m ordinary lines.

Thus, if we define a function f : N → N by setting f (2m) := m, f (4m + 1) := 3m
and f (4m − 1) := 3m − 3, then there is an example of a set of n points in RP

2, not
all on a line, spanning f (n) ordinary lines.

Proof This is a rather straightforward check, especially once one has drawn suitable
pictures. Whilst the unit circle together with the line at infinity form a pleasant context
for calculational work, drawing configurations involving the line at infinity is prob-
lematic. In the four diagrams below, Figs. 4, 5, 6 and 7, we have applied a projective
transformation to aid visualisation. First of all we applied a rotation about the origin
through π/12, and followed this by the projective map [x, y, z] 	→ [−y, x, 2z + x].
The unit circle is then sent to the ellipse whose equation in the affine plane is
4x2 + 3(y + 1

3 )
2 = 4

3 , while the line at infinity is sent to the horizontal line y = 1.
The origin is mapped to itself, and the point [0, 1, 0] at infinity now has coordinates
(− cot(π/12), 1) ≈ (−3.73, 1). In the pictures, ordinary lines are red and lines with
three or more points of P are dotted green.

123



Discrete Comput Geom (2013) 50:409–468 417

Fig. 4 The Böröczky example X12, a set with n = 12 points and 6 ordinary lines. The ordinary lines (in
red) are just the tangent lines to the 6th roots of unity on the unit circle (Color figure online)

It is helpful to note that the line joining

[
cos

2π j

m
, sin

2π j

m
, 1

]

and

[
cos

2π j ′

m
, sin

2π j ′

m
, 1

]

passes through the point

[
− sin

π( j + j ′)
m

, cos
π( j + j ′)

m
, 0

]

on the line at infinity (cf. the proof of Proposition 7.3).
For case (i), the ordinary lines are the m tangent lines to the mth roots of unity. The

case m = 6 is depicted in Fig. 4.
In case (ii), the ordinary lines are the 2m tangent lines to the 2mth roots of unity

together with the m lines joining the origin [0, 0, 1] to [− sin π j
2m , cos π j

2m , 0], j even.
The case m = 6 is depicted in Fig. 5.

In case (iii), the ordinary lines are the 2m tangent lines to the 2mth root of unity
except for those at the points [±1, 0, 1], whose corresponding point at infinity has
now been removed. However we do have m − 1 new ordinary lines, the vertical lines
joining [cos π j

m , sin π j
m , 1] and [cos π(2m− j)

m , sin π(2 j−m)
m , 1] for j = 1, . . . ,m − 1.

The case m = 6 is illustrated in Fig. 6.
Finally, in case (iv) the ordinary lines are the 2m +1 tangent lines to the (2m +1)th

roots of unity except for one whose corresponding point at infinity has been removed,
together with m new ordinary lines joining pairs of roots of unity. This is illustrated
in Fig. 7 in the case m = 2. ��
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Fig. 5 The Böröczky example X12 together with the origin [0, 0, 1], a set with n = 13 points and 9 ordinary
lines. The ordinary lines (in red) are just the tangent lines to the 6th roots of unity on the unit circle, plus 3
extra lines through the origin and 3 of the points on the line at infinity (Color figure online)

Fig. 6 The Böröczky example X12 minus the point at infinity [0, 1, 0], a set with n = 11 points and 6
ordinary lines. The ordinary lines (in red) are the 4 tangent lines to the 6th roots of unity on the unit circle
not through the point at infinity, plus 2 extra lines passing through the point at infinity (Color figure online)

We remark that Proposition 2.1 illustrates a basic fact, namely that if one adds or
removes K points to an n-point configuration, then the number of ordinary lines (or
3-rich lines) is modified by at most O(K n + K 2); this can be seen by first considering
the K = 1 case and then iterating. This stability with respect to addition or deletion
of a few points is reflected in the conclusions of the various structural theorems in this
paper.

We may now state our more precise version of the Dirac–Motzkin conjecture for
large n.

Theorem 2.2 (Sharp threshold for Dirac–Motzkin) Let the function f : N → N be
defined by setting f (2m) := m, f (4m + 1) := 3m and f (4m − 1) := 3m − 3. There
is an n0 such that the following is true. If n � n0 and if P is a set of n points in RP

2,
not all on a line, then P spans at least f (n) ordinary lines. Furthermore if equality
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Fig. 7 The Böröczky example X10 minus the point at infinity [0, 1, 0], a set with n = 9 points and 6
ordinary lines. The ordinary lines (in red) are the 4 tangent lines to the 6th roots of unity on the unit circle
not through the point at infinity, plus 2 extra lines passing through the point at infinity (Color figure online)

occurs then, up to a projective transformation, P is one of the Böröczky examples
described in Proposition 2.1 above.

Remark Note in particular that there is an essentially unique extremal example unless
n ≡ 1(mod 4), in which case there are two, namely examples (ii) and (iv) above. Note
that, all of the examples in (iv) are equivalent up to rotation.

Let us record, in addition to the Böröczky examples mentioned in Proposition 2.1,
the following near-extremal example.

Proposition 2.3 (Near-Böröczky example) The set X4m minus the point [− sin π
2m ,

cos π
2m , 0] on the line at infinity contains 4m − 1 points and spans 3m ordinary lines.

Proof This is illustrated in Fig. 8 in the case m = 3. The ordinary lines are the 2m
tangent lines to the 2mth roots of unity as well as m lines joining [cos π j

m , sin π j
m , 1]

and [cos π j ′
m , sin π j ′

m , 1] with j + j ′ ≡ 1(mod 2m).

We may now state a still more precise result, which asserts that all configurations
not equivalent to one of the above examples must necessarily have a significantly
larger number of ordinary lines than f (n), when n is large. In fact there must be at
least n − O(1) ordinary lines in such cases.

Theorem 2.4 (Strong Dirac–Motzkin conjecture) There is an absolute constant C
such that the following is true. If P is a set of n points in RP

2, not all on a line,
spanning no more than n − C ordinary lines then P is equivalent under a projective
transformation to one of the Böröczky examples or to a near-Böröczky example.

The threshold n − C is sharp except for the constant C . Indeed we will shortly
see that finite subgroups of elliptic curves of cardinality n give examples of sets with
n−O(1) lines. This gives infinitely many new examples of sets with few ordinary lines
which are inequivalent under projective transformation due to the projective invariance
of the discriminant of an elliptic curve.
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Fig. 8 The near-Böröczky example with n = 11 points and 9 ordinary lines. The ordinary lines (in red)
are the 6 tangent lines to the 6th roots of unity on the unit circle plus 3 lines passing through the removed
point [− sin π

6 , cos π6 , 0] (Color figure online)

Sylvester’s cubic curve examples We turn now to Sylvester’s examples of point sets
coming from cubic curves, as further discussed by Burr et al. [5]. While these do not
provide the best examples of sets with few ordinary lines, it appears that consideration
of them is essential in order to solve the Dirac–Motzkin problem. Of course, they also
feature in the statement of our main structural result, Theorem 1.5, and are optimal for
the orchard problem (see Sect. 9). Finally, they provide essentially different examples
of sets with n + O(1) ordinary lines to any of those considered so far.

For a leisurely discussion of all the projective algebraic geometry required in this
paper, including an extensive discussion of cubic curves, we recommend the book [3].

Let γ be any irreducible cubic curve. It is known (see [3, Chap. 12]) that γ has
a point of inflection, that is to say a point where the tangent meets γ to order 3. By
moving this to the point [0, 1, 0] at infinity, we may bring γ into the form y2 = f (x)
in affine coordinates, where f (x) is a cubic polynomial. If γ is smooth then it is called
an elliptic curve. An elliptic curve may have one or two components; these two cases
are illustrated in Fig. 10. If γ has a singular point then it may be transformed into one
of the following three (affine) forms:

• (nodal case) y2 = x2(x + 1);
• (cuspidal case) y2 = x3;
• (acnodal case) y2 = x2(x − 1).

See [3, Theorem 8.3] for details. These three singular cases are illustrated in Figure 9.
We remark that the classification of cubic curves over R has a long and honourable

history dating back to Isaac Newton.
The group law Suppose that γ is an irreducible cubic curve, and write γ ∗ for the

set of nonsingular points of γ . If γ is smooth then of course γ = γ ∗, and in this case
γ is an elliptic curve. We may define an abelian group structure on γ ∗ by taking the
identity O to be a point of inflection on γ ∗ and, roughly speaking, P ⊕ Q ⊕ R = O
if and only if P, Q, R are collinear. The “roughly speaking” refers to the fact that we
must take appropriate account of multiplicity, thus P ⊕ P ⊕ Q = O if the tangent
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Fig. 9 The three different types of singular cubic curve

Fig. 10 Two elliptic curves, illustrating the group law and showing the two possibilites for the group
structure

to γ at P also passes through Q. The inverse �P of P is defined using the fact that
�P, O and P are collinear. See [3, Chap. 9] for more details, including a proof that
this does indeed give γ ∗ the structure of an abelian group.

We have the following theorem regarding the nature of γ ∗ as a group.

Theorem 2.5 Let γ be an irreducible cubic curve, and let γ ∗ be the set of its nonsin-
gular points. Then we have the following possibilities for γ ∗, considered as a group:

• (elliptic curve case) R/Z or R/Z × Z/2Z, depending on whether γ has 1 or 2
connected components;

• (nodal case) R × Z/2Z;
• (cuspidal case) R;
• (acnodal case) R/Z.

Once again, details may be found in [3]. Thinking about the curves topologically, the
theorem is reasonably evident. In the three singular cases isomorphisms φ : G → γ ∗
can be given quite explicitly, as detailed in the following list.
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• In the nodal case y2 = x2(x + 1), the map φ : R × Z/2Z → γ ∗ defined by
φ(x, ε) = (t2 − 1, t (t2 − 1)), where t = coth x if ε = 0 and t = tanh x if ε = 1
provides an isomorphism;

• In the cuspidal case y2 = x3, the map φ : R → γ ∗ defined by φ(x) = ( 1
x3 ,

1
x2 )

provides an isomorphism;
• In the acnodal case y2 = x2(x − 1), the map φ : R/Z → γ ∗ defined by φ(x) =
(t2 + 1, t (t2 + 1)), where t = cot(πx), provides an isomorphism.

We leave the reader to provide the details. In the nodal case (for example) we recom-
mend first proving that (t2 − 1, t (t2 − 1), (u2 − 1, u(u2 − 1)) and (v2 − 1, v(v2 − 1))
are collinear if and only if −v = (1 + tu)/(t + u).

The following maps in the other direction, described in Silverman [30, III. 7] (the
acnodal case is described in [30, Exercise 3.15]) are perhaps even tidier. Here ∞ =
[0, 1, 0].
• In the nodal case the map (x, y) 	→ (y − x)/(y + x) and ∞ 	→ 1 gives an

isomorphism from γ ∗ to R
∗ ∼= R × Z/2Z;

• In the cuspidal case the map (x, y) 	→ x/y and ∞ 	→ 1 gives an isomorphism
from γ ∗ to R;

• In the acnodal case the map (x, y) 	→ −(x + iy)2/x3 and ∞ 	→ 1 gives an
isomorphism from γ ∗ to the unit circle S1 in the complex plane.

Sylvester’s examples By a Sylvester example En we mean a set of n points P in the
plane which corresponds to a subgroup of order n of an irreducible cubic curve γ . If
n > 2 the existence of such an example requires γ to be either an elliptic curve or
an acnodal3 cubic curve, by the classification of the group structure of γ described in
Theorem 2.5. A Sylvester example coming from an elliptic curve is depicted in Fig. 11.

As it turns out, Sylvester examples have somewhat more ordinary lines than the
Böröczky examples, namely n + O(1) instead of n/2 + O(1) or 3n/4 + O(1), and
are thus not extremisers for the Dirac–Motzkin conjecture. However, due to the more
evenly distributed nature of the Sylvester examples, they have significantly more 3-rich
lines. Indeed, the following is essentially established in Ref. [5].

Proposition 2.6 Let n � 3, and let En be a subgroup of order n in γ ∗, the group of
nonsingular points of an irreducible cubic curve γ (which must be an elliptic curve or
an acnodal cubic). Then En spans n−1−2·13|n ordinary lines and � n(n−3)

6 �+1 3-rich
lines, where 13|n is equal to 1 when 3 divides n and zero otherwise. Furthermore, if
x ∈ E is such that x �∈ En and x ⊕ x ⊕ x ∈ En then En ⊕ x has n − 1 ordinary lines
and � n(n−3)

6 � 3-rich lines.

Proof Let N2 be the number of ordinary lines, and N3 be the number of 3-rich lines.
From Bézout’s theorem no line can meet En in more than three points, and so by
double counting we have the identity

N2 + ( 3
2
)
N3 = ( n

2
)
.

3 We do not know whether Sylvester himself was interested in the acnodal case. We thank Frank de Zeeuw
for correcting an oversight in the first version of this paper by drawing it to our attention.
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Fig. 11 A Sylvester example
with n = 8, the subgroup being
isomorphic to Z/2Z × Z/4Z.
The labels reflect the group
structure, thus 03 corresponds to
the element
(0, 3) ∈ Z/2Z × Z/4Z. This
comes from an elliptic curve
with equation y2 =
x3 − 1

36 x2 − 5
36 x + 25

1296 = 0
to which we have applied the
projective transformation
[x, y, z] 	→ [x, y, x + y + z], so
that the point at infinity maps to
the point (0, 1) in the affine
plane (which is then an
inflection point for the curve).
There are 7 ordinary lines,
marked in red, and also 7 3-rich
lines, marked in dotted green
(Color figure online)

A brief computation (splitting into three cases depending on the residue of n modulo
3) then shows that N3 = � n(n−3)

6 � + 1 if and only if N2 = n − 1 − 2 · 13|n . But
from the group law the number of ordinary lines is precisely equal to the number of
elements a ∈ En such that −2a is distinct from a, or in other words the number n
of elements in En minus the number of third roots in En . But γ ∗ is isomorphic as a
group to either R/Z or (R/Z)× (Z/2Z), and so En is isomorphic to either Z/nZ or
to (Z/(n/2)Z) × (Z/2Z). It has 1 + 2 · 13|n third roots in either case, and the claim
follows.

The analysis in the shifted case En ⊕ x is analogous, the only difference being that
En ⊕ x does not contain any third roots of unity. ��
Remarks For the sake of comparison, the n-point examples in Proposition 2.1 can all
be computed to have n2/8+ O(n) 3-rich lines instead of n2/6+ O(n) for the Sylvester
examples. This discrepancy can be explained by the existence of a high-multiplicity
line with n/2 + O(1) points in those examples. This absorbs many of the pairs of
points that could otherwise be generating 3-rich lines.

We note also that the acnodal case allows for a quite explicit construction of a set of
n points defining ∼ n2/6 3-rich lines, without the use of the Weierstrass ℘-function
which would be necessary in the elliptic curve case. We leave the reader to supply the
details, using the parametrisation detailed after the statement of Theorem 2.5. We are
not sure whether this point has been raised in the literature before.

Near-counterexamples In addition to the actual examples coming from Böröczky’s
constructions and from elliptic curve subgroups, there are also some important “near-
counterexamples” which do not directly enter into the analysis (because they involve
an infinite number of points, rather than a finite number), but which nevertheless appear
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to indirectly complicate the analysis by potentially generating spurious counterexam-
ples to the structural theory of points with few ordinary lines. These then need to be
eliminated by additional arguments.

As with the previously discussed examples, the near-counterexamples discussed
here will lie on cubic curves. But whilst the actual examples were on an elliptic curve,
an acnodal singular cubic curve, or on the union of a conic and a line, the near-
counterexamples will lie on three lines (which may or may not be concurrent), or on
a non-acnodal singular cubic curve.

We first consider a near-counterexample on three concurrent lines. Up to projective
transformation, one can take the lines to be the parallel lines

�1 := {[x1, 0, 1] : x1 ∈ R} ∪ {[1, 0, 0]},
�2 := {[x2, 1, 1] : x2 ∈ R} ∪ {[1, 0, 0]},
�3 := {[x3, 2, 1] : x3 ∈ R} ∪ {[1, 0, 0]}.

Observe that [x1, 0, 1], [x2, 1, 1] and [x3, 2, 1] are colinear if and only if x1+x3 = 2x2.
Thus, if we consider the infinite point set

P := {[n1, 0, 1] : n1 ∈ Z} ∪ {[n2, 1, 1] : n2 ∈ 1
2 Z}

∪{[n3, 2, 1] : n3 ∈ Z} (2.1)

then there are no ordinary lines whatsoever; every line joining a point in P ∩ �1 with
a point in P ∩ �2 meets a point in P ∩ �3, and similarly for permutations. If Z could
somehow have a non-trivial finite subgroup, then one could truncate this example into
a counterexample to the Sylvester–Gallai theorem, i.e. a finite set with no ordinary
lines. Of course, this cannot actually happen, but this example strongly suggests that
one needs to somehow use the torsion-free nature of the additive group R at some
point in the arguments, for instance by exploiting arguments based on convexity,
or by using additive combinatorics results exploiting the ordered nature of R. One
such example, a variant of which we prove in Lemma A.3, is the trivial inequality
|A + B| � |A| + |B| − 1 for finite subsets A, B of R. This can be viewed as a
quantitative version of the assertion that R has no non-trivial finite subgroups.

There is a similar near-counterexample involving three non-concurrent lines. Again,
after applying a projective transformation, we may work with the lines

�1 := {[x, 0, 1] : x ∈ R} ∪ {[1, 0, 0]},
�2 := {[0, y, 1] : y ∈ R} ∪ {[0, 1, 0]},
�3 := {[−z, 1, 0] : z ∈ R} ∪ {[1, 0, 0]}.

Observe that if x, y, z ∈ R
× := R\{0}, then [x, 0, 1], [0, y, 1] and [−z, 1, 0] are

concurrent precisely when z = x/y. Thus, if we consider the infinite point set

P := {[2n1, 0, 1] : n1 ∈ Z} ∪ {[0, 2n2 , 1] : n2 ∈ Z}
∪{[−2n3 , 1, 0] : n3 ∈ Z}, (2.2)
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then again there are no ordinary lines: every line joining a point in P ∩ �1 with a point
in P ∩ �2 meets a point in P ∩ �3, and similarly for permutations. As before, this
example suggests that the (essentially) torsion-free nature of the multiplicative group
R

× must somehow come into play at some point in the argument.
Finally, we give an example that lies on a cuspidal singular cubic curve, which after

projective transformation can be written as

γ := {[x, y, z] : yz2 = x3}.

Removing the singular point at [0, 1, 0], we may parameterise the smooth points γ ∗
of this curve by {[t, t3, 1] : t ∈ R}. One can compute after a brief determinant
computation that three distinct smooth points [t1, t3

1 , 1], [t2, t3
2 , 1] and [t3, t3

3 , 1] on
the curve are concurrent precisely when t1 + t2 + t3 = 0. Thus, if one sets P to be the
infinite set

P := {[n, n3, 1] : n ∈ Z} (2.3)

then there are very few ordinary lines—indeed only those lines that are tangent to
γ at one point [n, n3, 1] and meet γ at a second point [(−2n), (−2n)3, 1] for some
n ∈ Z\{0} will be ordinary. This example can be viewed as a degenerate limit of the
Sylvester examples En when the discriminant is sent to zero and n sent to infinity.
Again, finitary versions of this example can be ruled out, but only after one exploits
the torsion-free nature of the group associated to γ ∗, which in this case is isomorphic
to R. Similar remarks also apply to nodal singular cubic curves such as {[x, y, z] :
y2z = x3 +x2z}, the smooth points of which form a group isomorphic to R×(Z/2Z),
which is essentially torsion free in the sense that there are no large finite subgroups.

A variant of the example (2.3) lies on the union

{[x, y, z] : yz = x2} ∪ {[x, y, z] : z = 0}

of a parabola and the line at infinity. Observe that two points [t1, t2
1 , 1], [t2, t2

2 , 1] on the
parabola and a point [0, t3, 1] on the line at infinity with t1, t2, t3 ∈ R are concurrent
if and only if t3 = t1 + t2. Thus, the infinite set

P := {[n, n2, 1] : n ∈ Z} ∪ {[0, n, 1] : n ∈ Z}, (2.4)

which can be viewed as a degenerate limit of a Böröczky example, has very few
ordinary lines (namely, the line tangent to the parabola at one point [n, n2, 1] and also
passing through [0, 2n, 1]).

The existence of these near-counterexamples forces us to use a somewhat ad hoc
case-by-case analysis. Tools such as Chasles’s version of the Cayley–Bacharach the-
orem, which are valid for all cubic curves, get us only so far. They must be followed
up by more specialised arguments exploiting the torsion or lack thereof in the group
structure. In this way we can rule out near-counterexamples involving triples of lines,
or singular irreducible cubics, until only the Böröczky and Sylvester type of examples
remain.
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3 Melchior’s Proof of the Sylvester–Gallai Theorem

In this section, we review Melchior’s proof [25] of the Sylvester–Gallai theorem. As
mentioned in the Sect. 1, this is the starting point for all of our arguments.

Theorem 1.1 (Sylvester–Gallai, again) Suppose that P is a finite set of points in the
plane, not all on one line. Then P spans at least one ordinary line.

Proof Let P be a set of n points in RP
2. Consider the dual collection P∗ := {p∗ :

p ∈ P} of n lines in RP
2. These lines determine a graph4 �P in RP

2 whose vertices
are the intersections of pairs of lines p∗

1, p∗
2 (or equivalently points �∗, where � is a

line joining two or more points of P), and whose edges are (projective) line segments
of lines in P∗ connecting two vertices of �P with no vertex in the interior. Note that
as the points in P were assumed not to lie on one line, every line in P∗ must meet at
least two vertices of �P ; in particular, the graph �P contains no loops. (It is however
possible for a line to meet exactly two vertices in �P , in which case those two vertices
are joined by two edges, rather than one.) Also, by construction, each vertex of �P is
incident to at least two lines in P∗. As such, the graph�P partitions the projective plane
RP

2 into some number V of vertices, some number E of edges, and some number F
of faces, each of which is the projective image of a polygon. In particular, each face
has at least three edges, and any edge is incident to two distinct faces.

By Euler’s formula in the projective plane RP
2 we have5

V − E + F = 1. (3.1)

To proceed further, suppose that for each k = 2, 3, 4, . . . the set P has Nk lines
containing precisely k points of P . Then V , which by duality is the number of lines
defined by pairs of points in P , satisfies

V =
n∑

k=2

Nk . (3.2)

Furthermore the degree d(�∗) of a vertex �∗ in our graph is twice the number of lines
in P∗ passing through �∗, which is 2|P ∩ �|. Thus, summing over all lines �,

2E =
∑

�

d(�∗) = 2
∑

�

|P ∩ �| =
n∑

k=2

2k Nk . (3.3)

Finally, for s = 3, 4, 5, . . .write Ms for the number of faces in �P with s edges. Since
each edge is incident to exactly two faces, we have

4 Strictly speaking, �P determines a drawing of a graph in the projective plane, because we are viewing
the edges as curves in RP

2 rather than abstract pairs of vertices, but we shall abuse notation by identifying
a graph with its drawing.
5 The Euler characteristic χ(RP

2) = 1 of the projective plane is of course half of the Euler characteristic
χ(S2) = 2 of the sphere, as the latter is a double cover of the former.
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2E =
n∑

s=3

s Ms . (3.4)

Combining (3.1), (3.2), (3.3) and (3.4) gives the following expression for N2, the
number of ordinary lines:

N2 = 3 +
n∑

k=4

(k − 3)Nk +
n∑

s=4

(s − 3)Ms . (3.5)

It follows immediately that N2 � 3, which of course implies the Sylvester-Gallai
theorem. ��

After discarding the non-negative term
∑n

s=4(s − 3)Ms , Eq. (3.5) implies
Melchior’s inequality

N2 � 3 +
n∑

k=4

(k − 3)Nk .

In this paper, however, we will need to save the term
∑n

s=4(s−3)Ms , as it gives crucial
control on the geometry of the dual configuration �P , ensuring that this configuration
resembles a triangulation when N2 is small. More precisely, we have the following
proposition.

Proposition 3.1 (Few bad edges) Suppose that P is a set of n points in the projective
plane RP

2, not all on a line, and suppose that P has at most K n ordinary lines.
Consider the planar graph �P obtained by dualising P as described above. Then �P

is an “almost triangulation” in the following sense. Say that an edge of �P is good if
both of its vertices have degree 6, and if both faces it adjoins are triangles. Say that it
is bad otherwise. Then the number of bad edges in �P is at most 16K n.

Proof From (3.5) we have

n∑

s=4

s Ms � 4
n∑

s=4

(s − 3)Ms � 4N2 � 4K n. (3.6)

Secondly, let us observe that

∑

�:d(�∗) �=6

d(�∗) � 12K n. (3.7)

To see this, recall that d(�∗) = 2|P ∩ �|. We thus obtain

∑

�:d(�∗)>6

d(�∗) = 2
∑

�:|P∩�|>3

|P ∩ �|

=
∑

k�4

2k Nk � 8
∑

k�4

(k − 3)Nk � 8K n.
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Noting also that

∑

�:d(�∗)=4

d(�∗) = 2
∑

�:|P∩�|=2

|P ∩ �| = 4N2 � 4K n,

(3.7) follows.
Now we can place an upper bound on the number B of bad edges. Each face with

s > 3 sides gives s bad edges, and each vertex �∗ with degree d(�∗) �= 6 gives d(�∗)
bad edges. As these are the only sources of bad edges, we have

B �
∑

s>3

s Ms +
∑

�:d(�∗) �=6

d(�∗) � 16K n,

by (3.6) and (3.7). ��

4 Triangular Structure in the Dual and Cubic Curves

In general, the number of edges overall in �P is expected to be of the order of n2 (cf.
Beck’s theorem [2]). Thus, when K is small, Proposition 3.1 should be viewed as an
assertion that almost all the edges of �P are good. For instance, it shows that any dual
line p∗, p ∈ P should contain at most O(K ) bad edges on the average. Intuitively,
this suggests that �P is an “almost triangulation” in which most vertices have degree
6 and most faces are triangles. In Sect. 5 we will use this information to put the points
of P on a small number of cubic curves, which will be our starting point for more
powerful structural theorems on P .

By a cubic curve we mean a set of points in RP
2 of the form

{[X,Y, Z ] : a1 X3 + a2 X2Y + a3 XY 2 + a4Y 3 + a5 X2 Z

+ a6 XY Z + a7Y 2 Z + a8 X Z2 + a9Y Z2 + a10 Z3 = 0}

for some coefficients a1, . . . , a10 ∈ R, not all zero, or in other words the locus of
a nontrivial homogeneous polynomial of degree 3. Note that, we do not assume this
polynomial to be irreducible. In particular, we consider the union of three lines, as
well as the union of a conic and a line, to be examples of cubic curves.

A key observation in our arguments will be the fact that pockets of true triangular
structure in the dual�P signify a collection of points of P lying on a single cubic curve.
Results of this type may be found in Lemmas 4.4 and 4.5 below. A key ingredient will
be the following incredibly classical fact from projective geometry, usually known as
the Cayley–Bacharach theorem (although the case we require was proven by Chasles
[9], prior to the more general results of Cayley [8] and Bacharach [1]).

Proposition 4.1 (Chasles) Suppose that two sets of three lines define nine distinct
points of intersection in RP

2. Then any cubic curve passing through eight of these
points also passes through the ninth.
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Fig. 12 Chasles’s theorem. There are two sets of three lines: the solid lines
{p0, q−1, r1}, {p1, q0, r−1}, {p−1, q0, r1} and the dotted lines {p0, q1, r−1}, {p1, q−1, r0} and
{p−1, q1, r0}. The nine points of intersection p−1, p0, p1, q−1, q0, q1, r−1, r0 and r1 are all dis-
tinct. Any cubic curve passing through 8 of these points also passes through the 9th; one such curve is
shown

This situation is shown in Fig. 12 below. See [13] or the blog post [34] for a
discussion of this result, including its link to Pappus’s theorem, Pascal’s theorem, and
the associativity of the group law on an elliptic curve.

Proposition 4.1 allows one to establish some duality relationships6 between tri-
angular grids and cubic curves. We first define what we mean by a triangular grid:

Definition 4.2 (Triangular grid) Let I, J, K be three discrete intervals in Z (thus
I takes the form {i ∈ Z : i− � i � i+} for some integers i−, i+, and similarly
for J and K ). A triangular grid with dimensions I, J, K is a collection of lines
(p∗

i )i∈I , (q∗
j ) j∈J , (r∗

k )k∈K in RP
2, which we will view as duals of not necessarily

distinct points pi , q j , rk in RP
2, obeying the following axioms:

(i) If i ∈ I, j ∈ J, k ∈ K are integers with i + j + k = 0, then the lines p∗
i , q∗

j , r
∗
k

are distinct and meet at a point Pi jk . Furthermore, this point Pi jk is not incident
to any line in the grid which is not already identical to one of the lines p∗

i , q∗
j , r

∗
k .

Thus, for instance, if i ′ ∈ I is such that p∗
i ′ �= p∗

i , q∗
j , r

∗
k , then p∗

i ′ cannot contain
Pi jk .

6 Let us note once again that rather similar results were obtained earlier, in a completely different context,
by Carnicer and Godés [7].
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Fig. 13 A triangular grid with dimensions {−2, . . . , 2}, {−10, . . . ,−1} and {1, . . . , 10}

(ii) If i ∈ I, j, j ′ ∈ J, k, k′ ∈ K are such that i + j + k = i + j ′ + k′ = 0 and
0 < | j − j ′| � 2 (or equivalently 0 < |k − k′| � 2), then the intersection
points Pi jk and Pi j ′k′ are distinct. In particular, this forces q∗

j �= q∗
j ′ and r∗

k �= r∗
k′ .

Similarly for cyclic permutations of i, j, k and of j ′, k′.

An example of a triangular grid is depicted in Fig. 13.
The following basic consequence of Proposition 4.1 drives our whole argument.

Lemma 4.3 (Completing a hexagon) Let i0, j0, k0 be integers with i0 + j0 + k0 = 0,
let I := {i0 − 1, i0, i0 + 1}, J := { j0 − 1, j0, j0 + 1}, K := {k0 − 1, k0, k0 + 1}, and
let (pi )i∈I , (q j ) j∈J , (rk)k∈K be triples of points whose duals form a triangular grid
with dimensions I, J, K . Then the nine points (pi )i∈I , (q j ) j∈J , (rk)k∈K are distinct,
and any cubic curve which passes through eight of them passes through the ninth.

Proof By relabeling, we may assume that i0 = j0 = k0 = 0, thus the nine points
are p−1, p0, p1, q−1, q0, q1, r−1, r0, r1. Once it is shown that these nine points are
distinct, their duals form a “hexagon” as depicted in Fig. 14 below as part of a larger
triangular grid. The configuration in Fig. 14, however, is precisely the dual of the
configuration of 9 points appearing in Chasles’s theorem (see Fig. 12), and the claim
then follows.

It remains to establish the distinctness of the nine points. By applying Defin-
ition 4.2(ii) to the intersections of p∗

i , q∗
0 , r

∗−i for i = −1, 0, 1 we see that the
p−1, p0, p1 are distinct; similarly for q−1, q0, q1 and r−1, r0, r1. Next, from Defini-
tion 4.2(i) we see that pi and q j are distinct as long as −1 � i + j � 1, and similarly
for cyclic permutations. The only remaining claim left to check, up to permutations
and reflections, is that p1 and q1 are distinct. But if these two points coincided, then the
intersections of p∗

1, q∗−1, r
∗
0 and p∗−1, q∗

1 , r
∗
0 would then also coincide, contradicting

Definition 4.2(ii). ��
We now iterate the above proposition.
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Fig. 14 The dual of the
configuration in Chasles’s
theorem, showing a “hexagon”
formed by the duals of two sets
of three lines. The light grey
lines are duals of other points on
the cubic curve shown in
Fig. 12, specifically those points
in longer arithmetic progressions
(in the group law on γ )
containing the pi , q j , rk . We
have included them mainly for
aesthetic interest, but also as a
more complicated example of a
triangular grid

Lemma 4.4 Suppose that m � 4 is an integer and that i−, i+ are integers with
2 � i+ � m − 2 and 2 − m � i− � −1. Suppose that we have a collection of points
(pi )i−�i�i+ , (q j )−m� j�−1 and (rk)1�k�m in RP

2 whose duals form a triangular grid
with the indicated dimensions (The case i− = −2, i+ = 2 and m = 10 is illustrated
in Fig. 13). Then all of the points pi , q j , rk lie on a single cubic curve γ .

Proof Consider the nine points p−1, p0, p1, p2, q−3, q−2, q−1, r1, r2. The space of
cubic homogeneous polynomials is a vector space of dimension 10, and so by
straightforward linear algebra there is a cubic curve γ containing these nine points
p−1, p0, p1, p2, q−3, q−2, q−1, r1 and r2. (Note that it is not necessary for the nine
points to be distinct in order to obtain this claim.) We will now claim that all the
remaining points pi , q j , rk in the configuration also lie on γ .

Firstly, by applying Lemma 4.3 to the set

p−1, p0, p1, q−3, q−2, q−1, r1, r2, r3

we see that as eight of the points already lie in γ , the ninth point r3 must also. We now
know that the 10 points

p−1, p0, p1, p2, q−3, q−2, q−1, r1, r2, r3

all lie on γ . Now apply Lemma 4.3 to the set

p0, p1, p2, q−4, q−3, q−2, r1, r2, r3.

We conclude that q−4 also lies on γ , so now the 11 points

p−1, p0, p1, p2, q−4, q−3, q−2, q−1, r1, r2, r3

all lie on γ .
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Next apply Lemma 4.3 to the set

p−1, p0, p1, q−4, q−3, q−2, r2, r3, r4

to conclude that r4 lies on γ . We now know that the 12 points

p−1, p0, p1, p2, q−4, q−3, q−2, q−1, r1, r2, r3, r4

all lie on γ .
By shifting the q indices down by one and r indices up by one repeatedly, we

may then inductively place q−k and rk in γ for all 4 � k � m. Finally, by applying
Lemma 4.3 inductively to the sets

pi−1, pi , pi+1, q−i−3, q−i−2, q−i−1, r1, r2, r3

for i = 2, . . . , i+ − 1 (noting that −i − 3 � −i+ − 2 � −m) we may place pi in γ
for all 2 < i � i+, and similarly by applying Lemma 4.3 inductively to

p−i−1, p−i , p−i+1, q−3, q−2, q−1, ri+1, ri+2, ri+3

for i = 1, . . . ,−i_−1 we can also place p−i in γ for all 1 < i � −i_. This concludes
the proof of the claim. ��

This lemma is already enough to imply our most basic structural result for sets with
few ordinary lines, Proposition 5.1. To get stronger results, such as Proposition 5.3,
we need to perform a deeper analysis. The new feature in the following lemma is the
last statement.

Lemma 4.5 Suppose that L � 10 and that m � 10L. Suppose that we have a
collection of 4L +1+2m points (pi )−2L�i�2L , (q j )−m� j�−1 and (rk)1�k�m in RP

2

whose duals form a (4L + 1)× m × m triangular grid with the indicated dimensions.
Assume furthermore that the points pi , q j , rk are all distinct. Then all of the points
pi , q j , rk lie on a single cubic curve γ , each irreducible component of which contains
at least L of the points pi , q j , rk .

Proof Note from Definition 4.2 and the distinctness of the pi , q j , rk that the intersec-
tion points Pi jk = p∗

i ∩ q∗
j ∩ r∗

k in the grid are all distinct.
That all the pi , q j , rk lie on a single cubic curve γ follows from Lemma 4.4.
If γ is already an irreducible cubic then we are done. By enlarging γ via the addition

of extra lines if necessary, we may otherwise suppose that we are in one of the following
two cases:

Case 1: γ is the union of three distinct lines �, �′, �′′;
Case 2: γ is the union of an irreducible conic σ and a line �.
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In each case, we are to show that all irreducible components contain at least L
points pi , q j , rk .

In Case 1, consider a triple of points pi , q j , rk with i + j + k = 0. Since pi , q j , rk

are collinear and lie on � ∪ �′ ∪ �′′, one of the following two possibilities holds:

(i) One of the three lines �, �′, �′′ is incident to all three of pi , q j , rk (i.e. the line
{pi , q j , rk} is one of �, �′, or �′′);

(ii) pi , q j , rk lie on one of each of the lines �, �′, �′′ (for instance, one could have
pi ∈ �′, q j ∈ �′′, rk ∈ �, or any of the other five possible permutations). Note
that we allow a point to lie on more than one of the lines �, �′, �′′.

First of all note that (i) cannot hold for more than three triples (i, j, k)with i+ j+k =
0. Indeed, as observed previously, the intersection points Pi jk := p∗

i ∩ q∗
j ∩ r∗

k are all
distinct, and so the lines containing {pi , q j , rk} are distinct for distinct triples (i, j, k).

Let 
 be the set of triples (i, j, k) with i + j + k = 0,−L � i � L ,−2L �
j < −L and L < k � 2L . Suppose that (i) holds for some triple (i, j, k) ∈ 
 and
that pi , q j , rk all lie on � (say). We now consider the triples (i ′, j ′, k′) ∈ 
 with
i �= i ′, j �= j ′, k �= k′. With at most two exceptions, (ii) holds for any such triple.
Fix one of these triples for which (ii) holds. One of the points pi ′ , q j ′ , rk′ then lies on
�. Suppose that pi ′ lies in �. But, noting that 1 � −i ′ − j � m, we see that pi ′ , q j

and r−i ′− j are collinear and so r−i ′− j lies on � as well. That is, the lines containing
{pi , q j , rk} and {pi ′ , q j , r−i ′− j } are the same. This is a contradiction as we noted
above. Similarly, if q j ′ lies in �, then 1 � −i − j ′ � m and we can conclude that the
lines containing {pi , q j , rk} and {pi , q j ′ , r−i− j ′ } are again coincident, a contradiction.
Finally, if rk′ lies in �, then −m � −i − k′ � 1 and the lines containing {pi , q j , rk}
and {pi , q−i−k′ , rk′ } are coincident, again a contradiction.

It follows that, whenever (i, j, k) ∈ 
, we are in case (ii) and not in (i), that is to
say the points pi , q j , rk lie on one of each of the lines �, �′, �′′, but do not all lie on
one of the lines �, �′, or �′′. Suppose without loss of generality that p0 ∈ �, q−2L ∈
�′, r2L ∈ �′′. If q−2L+1 ∈ �′′ then the concurrent lines p−1, q−2L+1, r2L all lie in
�′′; as (−1,−2L + 1, 2L) ∈ 
, we obtain a contradiction. Similarly, if q−2L+1 ∈ �,
then p0, q−2L+1, r2L+1 all lie in �, again a contradiction. Thus q−2L+1 ∈ �′, which
implies r2L−1 ∈ �′′. Repeating this argument we see that in fact all of the points
q j ,−2L � j < −L , lie on �′ and all of the points rk, L < k � 2L , lie on �′′. Finally,
considering the triple (i,−2L−i, 2L) ∈ 
, we see that all of the points pi , 0 � i < L ,
lie on �. We have established that each of the lines �, �′, �′′ contains at least L of the
points pi , q j , rk , concluding the proof of the lemma in Case 1.

We turn now to Case 2, where the argument is very similar. Consider once again a
triple of points pi , q j , rk with i + j +k = 0. These lie on a line. By Bézout’s theorem,
there are two cases:

(i) pi , q j , rk all lie on �;
(ii) two of pi , q j , rk lie on σ and the other lies on �.

If (i) ever holds for some triple (i, j, k) then there is at most one such triple. Suppose
it holds for some triple (i, j, k) ∈ 
. There are again many triples (i ′, j ′, k′) ∈ 


with i �= i ′, j �= j ′, k �= k′. For any such triple, two of pi ′ , q j ′ , rk′ lie on σ and the
other lies on �. Suppose, without loss of generality, that pi ′ ∈ �. Then, noting that
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1 � −i ′ − j � m, we see that pi ′ , q j , r−i ′− j are collinear and so r−i ′− j lies on � as
well, and thus (i) also holds for the triple (i ′, j,−i ′ − j). This leads to a contradiction
exactly as before.

It follows that, whenever (i, j, k) ∈ 
, two of the points pi , q j , rk lie on σ and the
other lies on �. If p0 ∈ σ then one of q− j , r j lies on σ and the other lies on �, for each
j with L < j � 2L . Thus both σ and � contain at least L of the points pi , q j , rk . If,
on the other hand, p0 ∈ �, then all the q− j , r j with L < j � 2L lie on σ . But for
each i, |i | � L − 1, there are some j, k with −2L � j < −L and L < k � 2L such
that (i, j, k) ∈ 
, and so pi ∈ � for all these i too. Thus both � and σ contain at least
L of the points pi , q j , rk in this case also. ��

We remark that this analysis can be pushed further in order to say something about
the distribution of the points pi , q j , rk on (for example) three lines �, �′, �′′. One
could most probably give some kind of complete classification of (say) 100 × 100 ×
100 triangular grids. However it is also possible to take a self-contained additive-
combinatorial approach, leading to better bounds, and this is the technique we pursue
in Sect. 6.

To conclude this section let us remark that a number of beautiful pictures of trian-
gular structures arising from cubic curves (for various different types of cubic) may
be found in the paper [6], another work in the interpolation theory literature.

5 Almost Triangular Structure and Covering by Cubics

Recall that if P ⊂ RP
2 is a set of points then �P is the graph defined by the dual

lines p∗, p ∈ P . We now know (Proposition 3.1) that if P has few ordinary lines then
�P has a highly triangular structure. We also understand (Lemma 4.4) that triangular
structure in �P corresponds to points of P lying on a cubic curve. In this section, we
put these facts together to prove some of the structural results stated in the introduction.

The main result is Lemma 5.2, whose statement and proof are somewhat technical.
To convey the main idea (and because we will need it later, and because it may be of
independent interest) we first establish the following much easier result. This result
also comes with better bounds—indeed it says something even if one only knows that
P spans o(n2) ordinary lines—than our more technical later result.

Proposition 5.1 (Cheap structure theorem) Suppose that P is a finite set of n points
in the plane. Suppose that P spans at most K n ordinary lines for some K � 1. Then
P lies on the union of 500K cubic curves.

Proof We first dispose of a degenerate case. Suppose that one of the dual lines
p∗, p ∈ P , meets fewer than 500K points in �P . Then every dual line meets one
of these points, which means that P is covered by at most 500K lines. As every line is
already a cubic curve, we are done in this case. Thus we may assume that each dual line
p∗ meets at least 500K points in �P . In particular, it meets at least three points of �P .

Recall the definition of a “good edge” of �P : an edge both of whose vertices have
degree 6, and where both faces adjoining it are triangles.

Let us say that an edge is really good if all paths of length two from both of its
endpoints consist entirely of good edges. If we have a segment S of l � 1 consecutive
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edges on p∗, all of which are really good, then the structure of �P is locally that of a
triangular grid with dimensions {−2, . . . , 2}, {−l − 4, . . . ,−1}, {1, . . . , l + 4}; note
that the distinct intersection property of Definition 4.2(i) is automatic since every dual
line is assumed to meet at least three points in �P . Applying Lemma 4.4, we conclude
that if S is such a segment of consecutive really good edges, containing at least one
edge, then the set of q ∈ P \ {p} for which q∗ meets S all lie on a cubic curve γS

(which also contains p).
If an edge is not really good, we say that it is somewhat bad. We know, by Propo-

sition 3.1, that the number of bad edges is at most 16K n. Now associated to any
somewhat bad edge e is a path of length 1, 2 or 3 whose first edge is e and whose last
edge is bad, and which is furthermore the only bad edge on that path (take a minimal
path starting in e and ending in a bad edge). The number of paths of length 3 of the
form bad–good–good is at most 16K n × 5 × 5, since each vertex of a good edge has
degree 6. Taking account of paths of length 2 and 1 as well, we obtain an upper bound
of 500K n for the number of somewhat bad edges.

By the pigeonhole principle there is a line p∗ which contains t � 500K somewhat
bad edges. These somewhat bad edges partition p∗ into t segments of consecutive
really good edges (a segment may have length zero). Let the segments with at least
one edge be S1, . . . , St ′ , and let the segments of length zero, which are simply vertices,
consist of vertices vt ′+1, . . . , vt .

If q ∈ P \ {p}, then q∗ meets p∗ either in a vertex of one of the Si , or in one of the
additional vertices v j . In the former case, as discussed previously, Lemma 4.4 places
q in a cubic curve γSi depending on Si . In the latter case, q lies in the dual line v∗

j .
Such a dual line can be thought of as a (degenerate) cubic curve. Taking the union
of all these cubic curves, of which there are at most t ′ + (t − t ′) � 500K , gives the
result. ��

Proposition 5.1 is already a fairly strong structure theorem for sets with few ordinary
lines. It is possible that the ordinary lines in a union of O(1) cubics can be analysed
directly, though this certainly does not seem to be straightforward. Fortunately, there
is much more to be extracted from Proposition 3.1 and the results of Sect. 4, enabling
us to prove more precise statements that refine Proposition 5.1, albeit with somewhat
worse explicit constants.

The next lemma is the main technical result of this section. In an effort to make the
paper more readable, we have formulated it so that, once it is proven, we will have no
further need of the dual graph �P and consequences of Melchior’s inequality.

Lemma 5.2 Suppose that P is a set of n points in the plane. Suppose that P spans at
most K n ordinary lines for some K � 1, and let L � 10 be a parameter. Suppose that
P cannot be covered by a collection of 4L concurrent lines. Then for every p ∈ P
there is a partition P = {p} ∪�1,p ∪ · · · ∪�cp,p with the following properties:

(i) For i = 1, . . . , cp the points of �i,p lie on a (not necessarily irreducible) curve
γi,p of degree at most three, which also contains p;

(ii) If γi,p is not a line, then each irreducible component of it contains at least L
points of P;
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(iii) If γi,p is not a line, then the points of �i,p may be partitioned into pairs (q, r)
such that p, q, r are collinear, and no other points of P are on the line joining
p, q and r;

(iv) We have the upper bound
∑

p∈P cp � 219L3 K n on the average size of cp.

Proof The proof of this lemma is basically the same as the last one, except now we
work with a considerably enhanced notion of what it means to be a “really good edge”.
Call an edge extremely good if all paths of length 2L from both of its endpoints consist
entirely of good edges. In the last proposition, we only needed paths of length 2. If an
edge e is not extremely good, let us say that it is slightly bad.

We now count the number of slightly bad edges by an argument similar to that used
to prove the previous proposition. Let e be a slightly bad edge, and let r be the length of
the shortest path from an endpoint of e to a vertex of a bad edge. Thus 0 � r � 2L −1,
and there is a vertex v of a bad edge e′ that is at distance exactly r from an endpointw
of e. Then all paths of length up to r from either of the vertices of e are good, which
means that the r -neighbourhood of e has the combinatorial structure of a triangular
grid, and also that v lies on the boundary of this neighbourhood and has degree six.
Among other things, this implies that among all the paths of length r from v to w,
there is a path that changes direction only once. To describe this path, as well as the
slightly bad edge e, one could specify the bad edge e′, followed by an endpoint v of
that bad edge of degree six, followed by an edge emanating from v, which is followed
along for some length r1 to a vertex of degree six, at which point one switches to one
of the other four available directions and follows that direction for a further length r2,
with r1 + r2 � r (so in particular 0 � r1, r2 � 2L − 1), until one reaches a vertex
w, at which point the slightly bad edge e is one of the six edges adjacent to w. From
Proposition 3.1 and simple counting arguments, we may thus bound the total number
of slightly bad edges e crudely by

16K n × 2 × 6 × 2L × 4 × 2L × 6 � 215 K L2n

and so we conclude that the number of slightly bad edges is at most 215 K L2n. One
could save a few powers of two here by being more careful, but we will not do so.

Suppose that there are bp slightly bad edges on p∗. Then

∑

p∈P

bp � 215L2 K n. (5.1)

If we have a segment of m � 10L consecutive edges on p∗, all of which
are extremely good, and with p∗ containing at least 4L additional edges beyond
these m, then the structure of �P is locally that of a triangular grid of dimensions
{−2L , . . . , 2L}, {−m, . . . ,−1}, {1, . . . ,m}. Note that as we are assuming that P can-
not be covered by 4L concurrent lines, every dual line p∗ meets at least 4L +1 distinct
points in �P , ensuring the disjointness property in Definition 4.2(ii). Indeed, the fact
that each dual line meets at least 4L + 1 distinct points, and that p∗ contains at least
4L additional edges beyond the m consecutive edges, ensures that all the lines in this
triangular grid are distinct.
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Thus if S is such a segment then, by Lemma 4.5, the set �S of all q ∈ P \ {p} for
which q∗ meets S all lie on a cubic curve γS which contains p, and each component
of which contains at least L points of P . Furthermore, since the lines q∗ meet the
vertices of S in pairs (since each such vertex certainly has degree 6) the points of �S

may be divided into pairs (q, r) such that p, q, r are collinear, and no other point of
P lies on the line joining p, q and r . Compare with conclusion (iii) of this lemma.

The line p∗ is divided into bp segments, each containing one or more vertices, by
the slightly bad edges. We then create some subsegments S1, . . . , St by the following
rule:

(i) If p∗ contains at most 14L edges in all, then we set t = 0, so no subsegments
S1, . . . , St are created;

(ii) If p∗ contains more than 14L edges, and one of the segments S cut out by the
slightly bad edges contains all but at most 4L of the edges, we set t = 1, and
define S1 to be a subsegment of S omitting precisely 4L edges;

(iii) In all other cases, we set S1, . . . , St be those segments cut out by the slightly bad
edges with at least 10L edges.

We then let vt+1, . . . , vcp be the vertices not contained in any of the S1, . . . , St .
By construction, we see that we always have t � bp and that the number cp − t of
remaining vertices vi is at most max(14L , 4L , (10L + 1)bp) � (10L + 1)bp + 14L .
We thus have

cp � (10L + 2)bp + 14L . (5.2)

Define �i,p := �Si and γi,p := γSi for i � t , and for i � t + 1 let γi,p be the line v∗
i

and take �i,p to consist of the points of P \ {p} lying on this line.
This collection of cubics and lines has properties (i), (ii) and (iii) claimed in the

lemma. The bound (iv) follows immediately from (5.1) and (5.2) and the crude bound
(10L + 2)215L2 K + 14L � 219L3 K , valid for L � 10 and K � 1. ��

We are now in a position to prove a result which is still not quite as strong as our
main structure theorem, Theorem 1.5, but is still considerably more powerful (albeit
with worse explicit constants) than the rather crude statement of Proposition 5.1.

Proposition 5.3 (Intermediate structure theorem) Suppose that P is a finite set of n
points in the plane. Suppose that P spans at most K n ordinary lines for some K � 1.
Then one of the following three alternatives holds:

(i) P is contained in the union of an irreducible cubic γ and an additional 275 K 5

points.
(ii) P lies on the union of an irreducible conic σ and an additional 264 K 4 lines.

Furthermore, σ contains between n
2 − 276 K 5 and n

2 + 276 K 5 points of P, and
P \ σ spans at most 262 K 4n ordinary lines.

(iii) P is contained in the union of 216 K lines and an additional 287 K 6 points.

Remark The explicit expressions such as 275 K 5 in the above proposition could of
course be replaced by the less specific notation O(K O(1)) if desired, and the reader
may wish to do so in the proof below as well.
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Proof If P can be covered by 60000K � 216 K concurrent lines then we are of course
done, so we will assume that this is not the case.

By Proposition 5.1 we know that P is covered by at most 500K cubic curves. By
breaking each of these curves up into irreducible components, we may thus cover P
by distinct irreducible cubic curves γ1, . . . , γm for some

m � 1500K . (5.3)

By Bézout’s Theorem, no pair of distinct irreducible curves intersects in more than 9
points, and so there is a set P ′ ⊂ P , with

|P\P ′| � 9
( m

2
)

� 224 K 2,

such that each point of P ′ lies on just one of the curves γi .
Suppose first of all that one of the γi , say γ1, is an irreducible cubic and contains

at least 276 K 5 points of P . Then it also contains at least 275 K 5 points of P ′. Write
n0 := |P ′ ∩ γ1|: thus n0 � 275 K 5.

By construction and (5.3), P is not covered by 40m concurrent lines. Applying
Lemma 5.2 with L := 10m, we see that for each p′ ∈ P we may partition P as
{p′} ∪�1,p′ ∪ · · · ∪�cp′ ,p′ , where

∑
p′∈P cp′ � 219(10m)3 K n � 261 K 4n and each

�i,p′ is contained in some (not necessarily irreducible) cubic γi,p′ containing p′ which
is either a line, or has the property that each irreducible component of it contains at
least 10m points of P .

By the pigeonhole principle, there is some p′ ∈ P ′ ∩ γ1 with the property that
cp′ � 261 K 4n/n0. Fix this p′. By Bézout’s theorem, an irreducible curve of degree
at most three that is not already one of the γ j meets P in no more than 9m points,
and so we infer that each γi,p′ is either a line, or else every irreducible component of
it is one of the γ j . Since p′ lies on γ1 but not on any other γi , we infer that all the
γi,p′ are lines except that one of them, say γ1,p′ , may be γ1. Furthermore, none of the
lines γ j,p′ , j = 2, . . . , cp′ , which all contain p′, coincides with any of γ2, . . . , γm .
By another application of Bézout’s theorem, each of them contains at most 3m points
of P .

It follows that

n = |P| � |P ∩ γ1| +
cp′
∑

j=2

|P ∩ γ j,p′ |

� n0 + 224 K 2 + 3mcp′ � n0 + 274 K 5n

n0
.

Since n0 � 275 K 5, we conclude that n0 � n/2, which when inserted again into the
above inequality gives n0 � n − 275 K 5, which is option (i) of Proposition 5.3.

The analysis of option (ii) goes along similar lines but is a little more complicated.
Suppose now that one of the γi , say γ1, is an irreducible conic and contains at least
276 K 5 points of P . Once again, it also contains at least 275 K 5 points of P ′. Write
n0 := |P ′ ∩ γ1|; thus n0 � 275 K 5.
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By Lemma 5.2 as before we may, for each p′ ∈ P , partition P as {p′} ∪ �1,p′
∪ · · · ∪ �cp′ ,p′ with

∑
p′ cp′ � 219(10m)3 K n � 261 K 4n and each �i,p′ contained

in some (not necessarily irreducible) curve γi,p′ of degree at most three containing p′
which is either a line, or has the property that each irreducible component contains at
least 10m points of P .

By the pigeonhole principle as before, we may find p′ ∈ P ′ ∩ γ1 such that cp′ �
261 K 4n/n0. Now fix this p′.

Suppose that γi,p′ is not a line. Then, by Bézout’s theorem as above, each irreducible
component of γi,p′ is one of the γ j . Since p′ ∈ γi,p′ , and p′ lies on γ1 but not on any
other γ j , one of the irreducible components of γi,p′ is γ1. Thus for each i one of the
following is true:

(i) �i,p′ is contained in a line through p′;
(ii) �i,p′ is contained in the conic γ1;

(iii) �i,p′ is contained in the union of the conic γ1 and a line γ ji .

Now recall Lemma 5.2. Item (iii) of that lemma asserts that in cases (ii) and (iii)
above the points of�i,p′ may be divided into collinear triples (p′, q, r). This immedi-
ately rules out option (ii). For those i satisfying (iii) we see that |�i,p′ | = 2|�i,p′ ∩γ1|.
For those i satisfying (i) it follows from Bézout’s theorem that |�i,p′ | � 3m.

Let I be the set of indices i for which �i,p′ is not contained in a line through p′,
that is to say for which option (iii) above holds. It follows that

n = |P| = 1 +
cp′
∑

i=1

|�i,p′ | � 1 + 2
∑

i∈I

|�i,p′ ∩ γ1| + 3mcp′

However, any line through p′ meets γ1 (which contains p′) in at most one other point,
and so

∑

i∈I

|�i,p′ ∩ γ1| � |P ∩ γ1| + cp′ .

Since

|P ∩ γ1| � |P ′ ∩ γ1| + |P\P ′| � n0 + 224 K 2

we conclude that

n � 2n0 + 225 K 2 + (3m + 2)cp′ + 1 � 2n0 + 274 K 5n

n0
.

Since n0 � 275 K 5, this is easily seen to imply that n0 � n/4, and hence n0 �
n/2 − 276 K 5 and cp′ � 263 K 4. In the converse direction, we have

n �
∑

i∈I

|�i,p′ | = 2
∑

i∈I

|�i,p′ ∩ γ1|
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and so

|P ∩ γ1| � n

2
+ 1 + |

⋃

i �∈I

�i,p′ ∩ γ1|.

For i �∈ I, �i,p′ ∩ γ1 consists of at most one point, and so

|P ∩ γ1| � n

2
+ 1 + cp′ � n

2
+ 276 K 5

and hence γ1 contains between n
2 − 276 K 5 and n

2 − 276 K 5 elements of P .
Looking back at the three possibilities (i), (ii) and (iii) above, we see that the

other points lie in the union of the lines γi,p′ and γ j , of which there are at most
cp′ + m � 264 K 4.

To complete the proof that we are in case (ii) claimed in the proposition, we need to
give an upper bound for the number of ordinary lines spanned by the set P \ γ1. Such
a line could be ordinary in P , but there are at most K n such lines. Otherwise, such a
line passes through a point p′ ∈ P ∩ γ1, and contains precisely two points in P \ γ1.
Let us say that such a line is bad. The number of bad lines arising from p′ ∈ P \ P ′, a
set of cardinality at most 224 K 2, is at most 223 K 2n. Suppose then that p′ ∈ P ′ ∩ γ1.
As above, for each such p′ we have a partition P = {p′} ∪ �1,p′ ∪ · · · ∪ �cp′ ,p′ ,
and we now know that �i,p′ is either contained in a line through p′ or is contained in
the union of γ1 and a line. Furthermore in the latter case we know from Lemma 5.2
(iii) that every line though p′ and a point of �i,p′ passes through precisely two other
points of P , one on γ1 and the other not. Therefore it is not bad. The number of bad
lines through p′ is thus at most cp′ , and so the total number of bad lines arising from
p′ ∈ P ∩ γ1 is at most

∑
p′ cp′ � 261 K 4n. Statement (ii) of the proposition follows

immediately.
We have now considered all cases in which any irreducible cubic or conic from

amongst the m curves γi contains more than 276 K 5 points of P . If this is not the case,
the only curves among the γi containing more than 276 K 5 points of P are lines. Thus
P may be covered by m � 216 K lines and at most 276 K 5m � 287 K 6 points, which
gives option (iii). ��

6 Unions of Lines

Suppose that P is a set of n points spanning at most K n ordinary lines. We know
from Proposition 5.3 that all but O(K O(1)) points of P lie on an irreducible cubic, an
irreducible conic and some lines, or some lines. The aim of this section is to reduce
the number of lines, in all cases, to at most one. The main result of this section is the
following theorem, which may again be of independent interest.

Proposition 6.1 Suppose that a set P ⊂ RP
2 of size n lies on a union �1 ∪ · · · ∪ �m

of lines, and that P spans at most K n ordinary lines. Suppose that n � n0(m, K ) is
sufficiently large. Then all except at most 3K of the points of P lie on a single line.
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We first handle the (easy) case where one line has almost all the points. For this,
one does not need to know that P is contained in the union of a few lines.

Lemma 6.2 Suppose that P ⊂ RP
2 is a set of size n, that P spans at most K n

ordinary lines, and that at least 2
3 n of the points of P lie on a single line �. Then in

fact all except at most 3K of the points lie on �.

Proof Let p ∈ P \ �. Then p forms at least 2n/3 lines with the points of P ∩ �. At
most n/3 of these contain another point of P , and so at least n/3 of them are ordinary.
Therefore the number of ordinary lines is at least |P \ �|n/3, and the claim follows
immediately. ��

Suppose now, and for the rest of the section, that P ⊂ �1 ∪ · · · ∪ �m . The opposite
extreme to that considered by the above lemma is when all the lines �i contain many
points of P . The next result, which is the key technical step in the proof of Proposi-
tion 6.1 (and is in fact rather stronger than that proposition), may be of independent
interest.

Proposition 6.3 Suppose that m � 2 and that a set P ⊂ RP
2 of size n lies on a union

�1 ∪ · · · ∪ �m of lines, and that at least εn points of P lie on each of the lines �i .

Suppose that m, 1
ε

� n
1

10000 . Then P spans at least ε12n2/m6 ordinary lines.

Remark The exponent 1
10000 could certainly be improved somewhat, but a really sig-

nificant improvement—beyond 1
100 , say—would require new methods.

The proof of this proposition is quite long. Before embarking upon it we show how
to derive Proposition 6.1 as a consequence.

Deduction of Proposition 6.1 from Proposition 6.3 and Lemma 6.2 Reorder the lines
so that n1 � n2 � · · · � nm , where ni := |P ∩ �i |. Set ε j := n j/n. If ε2 �
1/3m then ε1 � 2/3 and we are done by Lemma 6.2, so suppose that ε2 � 1/3m.
Write Pj := P ∩ (�1 ∪ · · · ∪ � j ), j = 2, 3, . . . ,m. By Proposition 6.3, the set Pj

determines at least ε12
j n2/m6 ordinary lines (here we have used the trivial lower bound

|Pj | � |P1| � n/m). Since |P \ Pj | � mε j+1n, the number of these which fail to
be ordinary lines in P is bounded above by mε j+1n2. Let j be the least index such
that ε j+1 <

1
2ε

12
j m−7 or, if there is no such index, set j := m. Then it follows that

the number of ordinary lines in P is at least 1
2ε

6
j n2/m5. We have the lower bound

ε j � exp(−eCm), and so P spans � exp(−eCm)n2 ordinary lines. If n � n0(m, K )
is sufficiently large this is greater than K n, so we obtain a contradiction. ��
Remark We note that n0(m, K ) can be taken to have the shape n0(m, K ) ∼ K
exp exp(Cm).

We may now focus our attention on establishing Proposition 6.3. We will divide
into two quite different cases, according as the lines �i all intersect at a point or not.

Proposition 6.4 Suppose that m � 2 and that P lies on a union �1 ∪· · ·∪�m of lines,
all of which pass through a point, and that at least εn points of P lie on each of the
lines �i . Then P spans at least ε2n2/50 ordinary lines.
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Proof We are greatly indebted to Luke Alexander Betts, a second year undergraduate
at Trinity College, Cambridge, who showed us the following argument. For brevity
we give a slightly crude version of the argument he showed us.

Applying a projective transformation, we may assume without loss of generality
that all the lines pass through the origin [0, 0, 1] in the affine part of RP

2. Dualising,
these m lines become points on the line at infinity, and the sets P ∩ �i become sets of
parallel lines. If L is a set of lines in R

2, we say that a point is ordinary for L if it lies
on precisely two of the lines in L. We say that L is t-parallel if, for every line � ∈ L,
there are at least t other lines parallel to it. Finally, we say that a point lying on three
or more of the lines from L is a triple point. The dual statement to Proposition 6.4
(with t replacing εn) is then the following. ��
Proposition 6.5 Let t > 0 be a real number. Suppose that L is a t-parallel set of
lines in R

2, and that not all the lines of L are parallel. Then there are at least t2/50
ordinary points for L.

The heart of the matter is the following lemma.

Lemma 6.6 Suppose that L is t-parallel, but not all the lines of L are parallel. Then
there is a line � ∈ L containing at least t/2 ordinary points for L.

Proof If there are no triple points determined by L then the conclusion is immediate, as
every line intersects at least t +1 > t/2 other lines. If there are triple points determined
by L, let T be the set of them. Let v be a vertex of the convex hull of T , lying on lines
�1, �2, �3 ∈ L. There are open rays (half-lines) �+1 , �

+
2 , �

+
3 emanating from v which

do not intersect T . Suppose without loss of generality that the rays �+1 , �
+
3 lie on either

side of the line �2, as depicted in Fig. 15. Each of the t other lines in L parallel to �2
meets either �+1 or �+3 , and so at least one of these rays meets at least t/2 lines in L.
All of these points of intersection must, by construction, be ordinary points for L.

Now let us return to the main problem, the dual form of Proposition 6.4 stated
above. Note that if L′ is formed by removing at most t/5 lines from L then it is
still 4t/5-parallel. Thus, by �t/5� applications of Lemma 6.6 we may inductively
find distinct lines �1, . . . , ��t/5� such that �i contains at least 2t/5 ordinary points
for L \ {�1, . . . , �i−1}. These are not necessarily ordinary points for L, but any such
point that is not lies on one of �1, . . . , �i−1. Since it also lies on �i , there are at most
i − 1 < t/5 such points, and so �i contains at least t/5 ordinary points of L. Each
ordinary point of L lies on at most two of the lines �i , so we get at least t2/50 ordinary
points in total. ��

We have now established Proposition 6.4, which is the particular case of Proposi-
tion 6.3 in which all the lines �i pass through a single point. We turn now to the case in
which this is not so. The next proposition, together with Proposition 6.4, immediately
implies Proposition 6.3 and hence the main result of the section, Proposition 6.1.

Proposition 6.7 Suppose that m � 2 and that a set P ⊂ RP
2 of size n lies on a union

�1 ∪ · · · ∪ �m of lines, not all of which pass through a single point, and that at least

εn points of P lie on each of the lines �i . Suppose that m, 1
ε

� n
1

10000 . Then P spans
� ε12n2/m6 ordinary lines.
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Fig. 15 Figure relevant to the proof of Lemma 6.6. Here, t = 6 and the ray �+3 meets 4 > 6/2 lines in L.
All of these points of intersection are ordinary as they lie outside the convex hull of the triple points of L,
shaded in blue (Color figure online)

The proof proceeds via several lemmas. It also requires some additive-combinatorial
ingredients not needed elsewhere in the paper, which we collect in the appendix. It is
convenient, for this portion of the argument, to work entirely in the affine plane. Let
us begin, then, by supposing that a projective transformation has been applied so that
all lines �i and their intersections lie in the affine plane R

2.
Suppose that � is a line. Then by a ratio map on � we mean a map

ψ = ψq,q ′ : � → R ∪ {∞}

of the form

ψq,q ′(p) = length(pq)

length(pq ′)
,

where q, q ′ are distinct points on � and the lengths length(pq), length(pq ′) are signed
lengths on �. We say that the ratio maps ψq,q ′ and ψq ′,q are equivalent, but otherwise
all ratio maps are deemed inequivalent. Note that such ratio maps implicitly appeared
in the analysis of the infinite near-counterexample (2.2).

An ordered triple of lines �i , � j , �k not intersecting in a single point defines two
ratio maps φi, j,k : �i → R ∪ {∞} and φ̃i, j,k : � j → R ∪ {∞} via

φi, j,k := ψ�i ∩� j ,�i ∩�k and φ̃i, j,k := ψ�i ∩� j ,� j ∩�k .
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We will make considerable use of these maps in what follows, as well as of the
following definition.

Definition 6.8 (Quotient set) Suppose that X ⊂ R ∪ {∞} is a set. Then we write
Q(X) for the set of all quotients x1/x2 with x1, x2 ∈ X and x1, x2 /∈ {0,∞}.

The following definition depends on the parameter n, which is the number of points
in the set P . Since this is fixed throughout the section, we do not indicate dependence
on it explicitly.

Definition 6.9 Let A be a finite subset of some line �, and let ψ be a ratio map on

�. Then we say that A is a ψ-grid if A is a union of at most n
1

30 sets S such that

|Q(ψ(S))| � n1+ 1
10 . We say that A is a grid if it is a ψ-grid for some ratio map ψ

on �.

Lemma 6.10 Let � be a line, and suppose that ψ and ψ ′ are inequivalent ratio maps

on �. Suppose that A is a ψ-grid and that A′ is a ψ ′-grid. Then |A ∩ A′| � n1− 1
25 .

Proof Without loss of generality we may assume that � is the x-axis parametrised as
{(t, 0) : t ∈ R}. By abuse of notation we identify A and A′ with subsets of R. The
ratio maps ψ,ψ ′ are given by ψ(t) = (t + a)/(t + b), ψ ′(t) = (t + a′)/(t + b′) with
a �= b, a′ �= b′ and {a, b} �= {a′, b′}.

Suppose that A is a ψ-grid and that A′ is a ψ ′-grid. Write A = ⋃n1/30

i=1 Si and

A′ = ⋃n1/30

j=1 S′
j where |Q(ψ(Si ))| and |Q(ψ ′(S′

j ))| are both at most n1+ 1
10 . It suffices

to show that |Si ∩ S′
j | � n

22
25 .

Suppose that X is the set of all x ∈ Si ∩ S′
j for which ψ(x) > 0. Since X is

contained in both Si and S′
j , |Q(ψ(X))| and |Q(ψ ′(X))| are both at most n1+ 1

10 .
Writing Y := {logψ(x) : x ∈ X}, we see that

|Y − Y |, | f (Y )− f (Y )| � 2n1+ 1
10 , (6.1)

where

f (y) = log ◦ψ ′ ◦ ψ−1 ◦ exp(y)

= log((b − a′)ey + a′ − a)− log((b − b′)ey + b′ − a)

= log(Aey + B)− log(A′ey + B ′),

say, and f (Y ) := { f (y) : y ∈ Y, f (y) is defined }. Note that we do not have AA′ = 0
and B B ′ = 0 (there are four cases to consider). We thus compute

f ′′(y) = ey(b − a)(b′ − a′)(AA′e2y − B B ′)
(Aey + B)2(A′ey + B ′)2

.

This is continuous except when ey = −B ′/A′ or −B/A, and nonzero except when
e2y = B B ′/AA′. It follows that R may be split into at most 4 pieces on which f
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Fig. 16 An illustration of Menelaus’s theorem. The lengths are signed

is defined and strictly concave/convex. By Proposition A.9, this implies that at least
one of |Y − Y |, | f (Y )− f (Y )| has size � |Y |5/4. Comparing with (6.1) we see that

|X | = |Y | � n
22
25 .

An almost identical argument applies when X is the set of all x ∈ Si ∩ S′
j for

which ψ(x) < 0, taking Y := {log(−ψ(x)) : x ∈ X}: now we have f (y) =
log(−Aey + B)− log(−A′ey + B ′), but the rest of the argument is the same.

Putting these two cases together gives |Si ∩ S′
j | � n

22
25 , which is what we wanted

to prove. ��
Ratio maps may be used in understanding the metric properties of intersections of

lines as a consequence of Menelaus’s theorem, illustrated in Fig. 16.

Lemma 6.11 Let �i , � j , �k be three lines not meeting at a point. Let Xi ⊂ �i and
X j ⊂ � j , and let � ⊂ Xi × X j be a set of pairs, with neither Xi nor X j containing
�i ∩ � j . Let Xk ⊂ �k be the set of points on �k formed by intersecting the lines
{xi , x j }, (xi , x j ) ∈ �, with �k . Then

|Xk | = |{φi, j,k(xi )/φ̃i, j,k(x j ) : (xi , x j ) ∈ �}|.

Proof Apply Menelaus’s theorem with AC = �i , AB = � j and BC = �k . Suppose
that xi ∈ �i and x j ∈ � j , and write E = xi , F = x j in the diagram. Then D is the point
at which {xi , x j } intersects �k . Note that φi, j,k(xi ) = E A/EC, φ̃i, j,k(x j ) = F A/F B.
By Menelaus’ theorem it follows that φi, j,k(xi )/φ̃i, j,k(x j ) = DB/DC . This ratio
uniquely determines the point D, and the lemma follows. ��
Lemma 6.12 Suppose that P is a set of n points lying on a union �1 ∪· · ·∪�m of lines,
that the lines �i are not all concurrent, and that at least εn points of P lie on each line

�i . Suppose that m, 1
ε

� n
1

10000 . Then either P spans at least ε2n2/8 ordinary lines,
or else there are at least two values of i such that P ∩ �i contains a grid with size
� ε4n/m2.

Proof By the dual version of the Sylvester–Gallai theorem, there is some pair of lines
�i , � j such that no other line passes through �i ∩ � j . Each of �i , � j contains at least
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εn points of P , at least εn − 1 � εn/2 of which are not the intersection point �i ∩ � j .
If P spans fewer than ε2n2/8 ordinary lines then there is some k such that for at least
ε2n2/8m pairs pi ∈ �i , p j ∈ � j (pi , p j �= �i ∩� j ) the line {pi , p j } meets �k in a point
of P . Write Xi := (�i ∩ P) \ (�i ∩ � j ), X j := (� j ∩ P) \ (�i ∩ � j ) and � ⊂ Xi × X j

for the set of pairs (pi , p j ) ∈ Xi × X j for which {pi , p j } meets �k in a point of
Xk = �k ∩ P . By Lemma 6.11 it follows that

n � |Xk | � |{φi, j,k(xi )/φ̃i, j,k(x j ) : (xi , x j ) ∈ �}|.

By Corollary A.2 and the hypothesis on m and 1
ε

it follows that there are sets
X ′

i ⊂ Xi , X ′
j ⊂ X j with |X ′

i |, |X ′
j | � ε4n/m2 and

|Q(φi, j,k(X
′
i ))|, |Q(φ̃i, j,k(X

′
j ))| � m11n/ε22 < n1+ 1

10 .

Thus certainly X ′
i is a φi, j,k-grid and X ′

j is a φ̃i, j,k-grid. ��
As a result of this lemma we may, in proving Proposition 6.7, restrict attention to

sets where P ∩ �i contains a large grid for at least two values of i . We study this
situation further in the next lemma, whose proof is a little involved.

Lemma 6.13 Suppose P is a set of n points lying on a union of lines �1 ∪ · · · ∪ �m,

where m � n
1

10000 . Suppose that i �= j and that Xi ⊂ P ∩ �i , X j ⊂ P ∩ � j are

grids, both of size at least ε′n, where ε′ � n− 1
1000 , and neither containing �i ∩ � j .

Then either P spans � (ε′)3n2 ordinary lines, or else there is a line �k , not passing
through �i ∩� j , and a grid Xk ⊂ P ∩�k , such that all but at most ε′|Xi ||X j |/25 pairs
(xi , x j ) ∈ Xi × X j are such that the line {xi , x j } meets �k in a point of Xk.

Proof Write η := ε′/100. Suppose that P does not contain at least (ε′)3n2/100 =
η(ε′n)2 ordinary lines. Then there are at least (1−η)|Xi ||X j | pairs (xi , x j ) ∈ Xi × X j

such that {xi , x j } meets some other line �k . Write �k ⊂ Xi × X j for the set of pairs
(xi , x j ) ∈ Xi × X j such that {xi , x j } meets �k in a point of P . Thus

∑
k |�k | �

(1 − η)|Xi ||X j |. We claim that there is at most one value of k for which |�k | �
η|Xi ||X j |/m, and that for this k (if it exists) the line �k does not pass through �i ∩ � j .
Note that if |�k | � η|Xi ||X j |/m then certainly |�k | � δn2, where δ = n−1/250.

This claim is a consequence of the following two facts.
Fact 1 If �k passes through �i ∩ � j then |�k | < δn2.
Fact 2 If we have two lines �k, �k′ , neither passing through �i ∩ � j , then at least

one of |�k |, |�k′ | has size at most δn2.

Proof of Fact 1 Suppose that �k passes through �i ∩ � j , but that |�k | � δn2. Here
(and in the proof of Fact 2 below) we apply an affine transformation so that �i is the
x-axis and � j is the y-axis. Suppose that �k is the line {(t, λk t) : t ∈ R}. Suppose
that Xi = {(a, 0) : a ∈ A} and X j = {(0, b) : b ∈ B} and, by slight abuse of
notation, identify �k with a subset of A × B in the obvious way. A short computation
confirms that the intersection of the line through (a, 0) ∈ �i and (0, b) ∈ � j with �k is
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the point ( 1
1/x+λk/y ,

λ
1/x+λk/y ). By Corollary A.2 there are sets A′ ⊂ A and B ′ ⊂ B

with |A′|, |B ′| � δn and | 1
A′ − 1

A′ | � δ−11n � n1+ 1
10 . Since Xi is a grid, there is

some ratio function ψ(t) = (t + α)/(t + β), α �= β, such that A′ ⊂ ⋃n1/30

i=1 Si , where

|Q(ψ(Si ))| � n1+ 1
10 for each i . Let A′′ be the largest of the intersections A′ ∩ Si ; then

|A′′| � δn1− 1
30 , |Q(ψ(A′′))| � n1+ 1

10 ,

∣
∣
∣
∣

1

A′′ − 1

A′′

∣
∣
∣
∣ � n1+ 1

10 .

Writing Y := 1/A′′ and f (y) := log(1 + αy)− log(1 + βy) we thus have

|Y | � δn1− 1
30 , |Y − Y |, | f (Y )− f (Y )| � n1+ 1

10 . (6.2)

However

f ′′(y) = β2

(1 + βy)2
− α2

(1 + αy)2
= (α − β)

2αβy − (α + β)

(1 + αy)2(1 + βy)2

is continuous away from y = −1/α and y = −1/β and has just one real zero,
and therefore one may divide R into at most 4 intervals on the interior of which
f is defined and strictly convex/concave. By Proposition A.9 it follows that one of
|Y − Y |, | f (Y ) − f (Y )| has size � |Y |5/4. This comfortably contradicts (6.2) for
large n. ��
Proof of Fact 2 Suppose that |�k |, |�k′ | � δn2. By Lemma 6.11 and the fact that
neither �k nor �k′ contains more than n points we have

|{φi, j,k(xi )/φ̃i, j,k(x j ) : (xi , x j ) ∈ �k}| � n

and

|{φi, j,k′(xi )/φ̃i, j,k′(x j ) : (xi , x j ) ∈ �k′ }| � n.

Applying Corollary A.2 exactly as before we deduce that there are sets X (k)i , X (k
′)

i ⊂
Xi and sets X (k)j , X (k

′)
j ⊂ X j , all of size � δn > n1− 1

25 , such that all

of |Q(φi, j,k(X
(k)
i )|, |Q(φi, j,k′(X (k

′)
i ))|, |Q(φ̃i, j,k(X

(k)
j ))| and |Q(φ̃i, j,k′(X (k

′)
j ))| have

size � δ−12n < n1+ 1
10 . Thus X (k)i is a φi, j,k-grid, X (k

′)
i is a φi, j,k′ -grid, X (k)j is a

φ̃i, j,k-grid and X (k
′)

j is a φ̃i, j,k′ -grid. Since Xi and X j are themselves grids, and since
grids corresponding to inequivalent ratio functions intersect in a set of size no more

than n1− 1
25 by Lemma 6.10, we see that φi, j,k ∼ φi, j,k′ and φ̃i, j,k ∼ φ̃i, j,k′ .

It follows immediately from the definition of φi, j,k, φi, j,k′ , φ̃i, j,k, φ̃i, j,k′ that �i ∩
�k = �i ∩ �k′ and � j ∩ �k = � j ∩ �k′ , and therefore �k = �k′ . This is contrary to
assumption, and so we have established Fact 2.
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This completes the proof of the claim. It follows that there is some k such that at
least (1−2η)|Xi ||X j | pairs xi ∈ Xi , x j ∈ X j are such that {xi , x j } meets P ∩�k , and
furthermore �k does not pass through �i ∩ � j . If xk ∈ P ∩ �k , we say that xk is well-
covered if there are at least η(ε′)2n pairs (xi , x j ) ∈ Xi × X j such that {xi , x j } passes
through xk . Since |P ∩�k | � n, the number of pairs (xi , x j ) used up by poorly-covered
xk is no more than η(ε′)2n2 � η|Xi ||X j |. Thus, for at least (1 − 3η)|Xi ||X j | pairs
(xi , x j ), the line {xi , x j } meets �k in a well-covered point xk . Write X̃k ⊂ P ∩ �k for
the set of well-covered points; we are going to show that there is a grid Xk occupying
almost all of X̃k .

Note that, by definition of well-covered, for any Y ⊂ X̃k there is a graph � ⊂ Y ×
Xi , |�| � η(ε′)2|Y ||Xi |, such that each line {y, xi } meets X j whenever (y, xi ) ∈ �.
By Lemma 6.11 and the trivial bound |X j | � n, this implies that

|{φk,i, j (y)/φ̃k,i, j (xi ) : (y, xi ) ∈ �}| � n.

Suppose that |Y | � ηn. Then |�| � η2(ε′)3n2 � n2− 1
200 . By Corollary A.2 there

are sets Y ′ ⊂ Y and X ′
i ⊂ Xi , |Y ′|, |X ′

i | � n1− 1
200 , such that |Q(φi, j,k(Y ′))| < n1+ 1

10 .
Applying this argument repeatedly, we see that all of X̃k except for a set of size at
most ηn can be covered by disjoint sets Y ′ with these properties. There are at most

Cn
1

200 < n
1

30 of these sets, and so the union of them, Xk say, is a φi, j,k-grid.
Finally, note that the number of pairs (xi , x j ) for which {xi , x j } passes through

X̃k \ Xk is at most n|X̃k \ Xk | � ηn. For all other pairs, {xi , x j } passes through the
grid Xk .

At last, this completes the proof of the lemma. ��
We are now in a position to complete the proof of Proposition 6.7 and hence of all

the other results in this section.

Proof of Proposition 6.7 Suppose that P lies on �1 ∪ · · · ∪ �m , with at least εn points

on each line and not all of the lines through a single point. Suppose that m, 1
ε

� n
1

10000 .
By Lemma 6.12 we are done unless there are two values i, j ∈ {1, . . . ,m} such that

P ∩ �i , P ∩ � j both contain grids of size at least ε′n, with ε′ � ε4/m2 > n− 1
1000 .

Suppose without loss of generality that �i contains the largest grid amongst all grids in
P; call this Xi . Let X j be a grid in P ∩ � j of size at least ε′n, and apply Lemma 6.13
to these two grids Xi , X j . If the first conclusion of that lemma holds then P contains
� (ε′)3n2 � ε12n2/m6 ordinary lines, and we are done. Otherwise there is a line �k ,
not passing through �i ∩ � j , and a grid Xk ⊂ P ∩ �k , such that for all (xi , x j ) in a set
� of size at least (1 − 4η)|Xi ||X j |, the line {xi , x j } meets �k in a point of Xk .

By Lemma 6.11 we have

|{φi, j,k(xi )/φ̃i, j,k(x j ) : (xi , x j ) ∈ �}| � |Xk |.

It follows from Lemma A.4 that

|Xk | � |Xi | + |X j | − 4 − 4
√

2η|Xi ||X j |.
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Since η = ε′/100 and n is sufficiently large, this is strictly greater than |Xi |, contrary
to the assumption that Xi was a grid in P of largest size. ��

In this rather long section, we have proved results about sets P , contained in a union
�1 ∪ · · · ∪ �m of lines, spanning few ordinary lines. They are plausibly of independent
interest. Let us now, however, return to our main task and combine what we have
established with the main results of previous sections. By combining Proposition 6.1
(using the bound on n0(m, K ) noted after Proposition 6.3) with Proposition 5.3 we
obtain the following structural result. From the qualitative point of view at least, this
supersedes all previous results in the paper (and, in particular, implies Theorem 1.4 as
a corollary).

Proposition 6.14 Suppose that P is a set of n points in RP
2 for some n � 100

spanning at most K n ordinary lines, where 1 � K � c(log log n)c for some sufficiently
small absolute constant c. Then P differs in at most O(K O(1)) points from a subset
of a set of one of the following three types:

(i) An irreducible cubic curve;
(ii) The union of an irreducible conic and a line;

(iii) A line.

Proof We apply Proposition 5.3. In case (i) we are already done. In cases (ii) and
(iii) we see that, after removing an irreducible conic if necessary, that we have �
n/2 − O(K O(1)) points on O(K O(1)) lines determining at most O(K O(1))n ordinary
lines. By Proposition 6.1 and the hypothesis K � (log log n)c, all but O(K O(1)) of
these points lie on a single line, and the claim follows. ��

7 The Detailed Structure Theorem

We turn now to the proof of the detailed structure theorem, Theorem 1.5. We first
establish a slightly weaker version in which the linear bounds O(K ) have been relaxed
to polynomial bounds O(K O(1)). This somewhat weaker statement is already sufficient
for our main application, the proof of the Dirac–Motzkin conjecture for large n. At
the end of this section we indicate how to recover the full strength of Theorem 1.5.

Theorem 7.1 Suppose that P is a finite set of n points in the projective plane RP
2.

Suppose that P spans at most K n ordinary lines for some K � 1, and suppose
that n � exp exp(C K C ) for some sufficiently large absolute constant C. Then, after
applying a projective transformation if necessary, P differs by at most O(K O(1))

points from an example of one of the following three types:

(i) n − O(K O(1)) points on a line;
(ii) The set X2m defined in (1.1) for some m = 1

2 n − O(K O(1));
(iii) A coset H ⊕ x, 3x ∈ H, of some finite subgroup H of the real points on an

irreducible cubic curve with H having cardinality n + O(K O(1)).

We now prove this theorem. We already know from Proposition 6.14 that a set with
at most K n ordinary lines must mostly lie on a line, the union of a conic and a line, or
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an irreducible cubic curve, and the proof of Theorem 1.5 proceeds by analysing the
second two possibilities further.

The key to doing this is the fact that collinearities on (possibly reducible) cubic
curves are related to group structure. This is particularly clear in the case of an irre-
ducible cubic, as we briefly discussed in Sect. 2. However, one can see some group
structure even in somewhat degenerate cases.

An important ingredient in our analysis is the following result of a fairly standard
type from additive combinatorics, which may be thought of as a kind of structure
theorem for triples of sets A, B,C with few “arithmetic ordinary lines”.

Proposition A.5 Suppose that A, B,C are three subsets of some abelian group G, all
of cardinality within K of n, where K � εn for some absolute constant ε > 0. Suppose
that there are at most K n pairs (a, b) ∈ A × B for which a + b /∈ C . Then there is a
subgroup H � G and cosets x + H, y + H such that |A�(x + H)|, |B�(y + H)|,
|C�(x + y + H)| � 7K .

This result will not be at all surprising to the those initiated in additive combina-
torics, but we do not know of a convenient reference for it. We supply a complete
proof in Appendix A.

Suppose that P is mostly contained in a cubic curve γ which is not a line. We
subdivide into two cases according to whether γ is irreducible or not.

Lemma 7.2 (Configurations mostly on an irreducible cubic) Suppose that P is a set
of n points in RP

2 spanning at most K n ordinary lines. Suppose that all but K of the
points of P lie on an irreducible cubic curve γ , and suppose that n � C K for a suitably
large absolute constant C. Then there is a coset H ⊕ x of γ with 3x = x ⊕ x ⊕ x ∈ H
such that |P�(H ⊕ x)| = O(K ). In particular, γ is either an elliptic curve or an
acnodal cubic.

Proof Let γ ∗ be the smooth points of γ , which we give a group law as in Sect. 2.
Set P ′ := P ∩γ ∗. Then |P ′| = |P|+ O(K ), and P ′ spans at most O(K n) ordinary

lines. If p1, p2 ∈ γ ∗ are distinct then the line joining p1 and p2 meets γ ∗ again in the
unique point �p1 � p2. This assumption implies that �p1 � p2 ∈ P ′ for all but at
most O(K n) pairs p1, p2 ∈ P ′. Applying Proposition A.5, it follows that there is a
coset H ⊕ x of γ ∗ such that |P�(H ⊕ x)| = O(K ) and also |P�(H �2x)| = O(K ).
From this it follows that |(H ⊕ x)�(H � 2x)| = O(K ), which implies that 3x ∈ H
if n � C K is large enough.

If γ is not an elliptic curve or an acnodal cubic then the group γ ∗ is isomorphic
to R or to R × Z/2Z, and neither of these groups has a finite subgroup of size larger
than 2. ��

We turn now to the consideration of sets P which are almost contained in the union
of an irreducible conic σ and a line �. The union σ ∪ � is a reducible cubic and so
does not have a bona fide group law. There is, however, a very good substitute for one
as the following proposition shows. In what follows we write σ ∗ := σ \ (σ ∩ �) and
�∗ := � \ (σ ∩ �). Note that the intersection σ ∩ � has size 0, 1 or 2.

Proposition 7.3 (Quasi-group law) Suppose that σ is an irreducible conic and that
� is a line. Then there is an abelian group G = Gσ,� with operation ⊕ and bijective
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maps ψσ : G → σ ∗, ψ� : G → �∗ such that ψσ (x), ψσ (y) and ψ�(z) are collinear
precisely if x ⊕ y ⊕ z = 0. Furthermore Gσ,� is isomorphic to Z/2Z×R if |σ ∩�| = 2,
to R if |σ ∩ �| = 1 and to R/Z if |σ ∩ �| = 0.

Proof This is certainly a known result, but it is also an easy and fun exercise to
work through by hand, as we now sketch. If |σ ∩ �| = 2, we may apply a projective
transformation to move the two points of intersection to [0, 0, 1] and [0, 1, 0], and σ ∗
to the parabola {[a, a2, 1] : a ∈ R

×} and �∗ to {[0,−b, 1] : b ∈ R
×}. We note that

[a1, a2
1 , 1], [a2, a2

2 , 1] and [0,−b, 1] are collinear if and only if b = a1a2.
Consider the maps ψ� : Z/2Z × R → �∗ defined by ψ�(ε, x) = [0,−b, 1] where

b = (−1)εe−x and ψσ : Z/2Z × R → σ ∗ defined by ψσ (ε, x) = [a, a2, 1] where
a = (−1)εex . Then we see that the maps ψ�,ψσ are bijections and that the claimed
collinearity property holds.

Now suppose that we are in case (ii), that is to say |σ ∩�| = 1. Applying a projective
transformation, we may suppose that the point of intersection is [0, 1, 0] and move σ ∗
to the parabola {[a, a2, 1] : a ∈ R} and �∗ to the line at infinity {[1,−b, 0] : b ∈ R}.
Now note that if [a1, a2

1 , 1], [a2, a2
2 , 1] and [1,−b, 0] are distinct and collinear, then

a1 + a2 + b = 0 [cf. the near-example (2.4)].
Finally suppose that σ and � do not intersect. Applying a projective transforma-

tion we may map � to the line at infinity {[sinπθ, cosπθ, 0] : θ ∈ R/Z}. As σ is
disjoint from � it must be a compact conic section in R

2, that is to say an ellipse.
By a further affine transformation we may assume that it is in fact the unit circle
{[cos 2πθ, sin 2πθ, 1] : θ ∈ R/Z}. By elementary trigonometry it may be verified that
the points [cos 2πα1, sin 2πα1, 1], [cos 2πα2, sin 2πα2, 1] and [sin πβ, cosπβ, 0]
are collinear if and only if α1 + α2 + β = 0, thus in this case the result is true
with ψσ (θ) = [cos 2πθ, sin 2πθ, 1] and ψ�(θ) = [sin πθ, cosπθ, 0]. ��

We may now derive the following consequence, analogously to Lemma 7.2.

Lemma 7.4 (Conic and line) Suppose that P ⊂ RP
2 is a set of n � n0(K ) points,

all except K of which lie on the union of an irreducible conic σ and a line �. Suppose
that P defines at most K n ordinary lines, and suppose that P has n/2 + O(K ) points
on each of σ and �. Then, after a projective transformation, P differs from one of the
sets Xn′ by at most O(K ) points.

Proof Write P ′ := P ∩ (σ ∪ �). Set Pσ := P ∩ σ ∗ and P� := P ∩ �∗. Then
|Pσ | + |P�| = |P| + O(K ), and P ′ spans at most O(K n) ordinary lines. Consider
also the pull-backs A := ψ−1

σ (Pσ ) and B := ψ−1
� (P�), where ψ�,ψσ are the “quasi-

group law” maps introduced in the preceding proposition. Both A and B are subsets
of Gσ,�, a group for which there are three possibilities, detailed in Proposition 7.3.

The assumption about ordinary lines implies that �a1 � a2 ∈ B for all but at most
O(K n) pairs a1, a2 ∈ A. Applying Proposition A.5, it follows that there is a subgroup
H � Gγ and cosets x ⊕ H,−2x ⊕ H such that |A�(x ⊕ H)|, |B�(−2x ⊕ H)| =
O(K ).

If n � C K for large enough C then it follows that |σ ∩�| = 0 since (with reference
to the three possibilities for Gσ,� described in Proposition 7.3) neither Z/2Z × R nor
R has a finite subgroup of size larger than 2. Applying a projective transformation,
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we may assume that � is the line at infinity and, as in the proof of Proposition 7.3,
that σ is the unit circle. We may apply a further rotation so that x = 0, that is to say
|A�H | = O(K ) and |B�H | = O(K ).

All finite subgroups of R/Z are cyclic and so we have H = { j/m : j ∈
{0, 1, . . . ,m − 1}} for some m, that is to say H consists of the (additive) mth roots
of unity. But then ψσ (H) ∪ ψ�(H) is precisely the set Xn′ = X2m described in the
introduction and in the statement of Theorem 1.5. ��

Putting Lemmas 7.2 and 7.4 together with the main result of the previous section,
Proposition 6.14, we immediately obtain Theorem 7.1. The remainder of this section
is devoted to establishing our most precise structure theorem, Theorem 1.5. Let us
remind the reader that this is the same as Theorem 7.1, only the polynomial error
terms O(K O(1)) are replaced by linear errors O(K ). The reader interested in the
proof of the Dirac–Motzkin conjecture for large n may proceed immediately to the
next section, where Theorem 7.1 is already sufficient.

Proof of Theorem 1.5 The converse claim to this theorem already follows from the
analysis in Sect. 2, so we focus on the forward claim. We may assume that the con-
stant C is sufficiently large. We then apply Theorem 7.1 to obtain (after a projective
transformation) that P differs by O(K O(1)) points from one of the three examples (i),
(ii), (iii) listed. Our task is to bootstrap this O(K O(1)) error to a linear error O(K ).

Suppose first that case (i) holds, thus all except O(K O(1)) points of P lie on a
line �. Then every point p in P that does not lie on � forms at least n − O(K O(1))

lines with a point in P ∩ �. At most O(K O(1)) of these can meet a further point in P ,
so each point in P\� produces at least n − O(K O(1)) ordinary lines connecting that
point with a point in P ∩ �. We conclude that the number of ordinary lines is at least
(n − O(K O(1)))|P\�|; since there are at most K n ordinary lines, we conclude that
|P\�| = O(K ), and the claim follows.

Now suppose that case (ii) holds, thus P differs by O(K O(1)) points from X2m for
some m = 1

2 n − O(K O(1)). To analyse this we need the following result, essentially
due to Poonen and Rubinstein [29]. ��

Proposition 7.5 Let �n ⊂ C ≡ R
2 denote the regular n-gon consisting of the nth

roots of unity. Then no point other than the origin or an element of �n lies on more
than C lines joining pairs of vertices in �n, for some absolute constant C.

Actually, in [29] it was shown that C could be taken to be 7 when one restricts
attention to points inside the unit circle. The case of points outside the unit circle was
not directly treated in that paper, but can be handled by a variant of the methods of that
paper. See Appendix B for details. For the purposes of establishing Theorem 1.5, the
full strength of Proposition 7.5 is unnecessary. Indeed, the more elementary weaker
version established in Proposition B.2 would also suffice for this purpose.

Corollary 7.6 Suppose that p ∈ RP
2 does not lie on the line at infinity, is not an mth

root of unity and is not the origin [0,0,1]. Then at least 2m − O(1) of the 2m lines
joining p to a point of X2m pass through no other point of X2m.
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Proof If x ∈ X2m then we say that x is bad if the line {p, x} passes through another
point y ∈ X2m, y �= x . Suppose first that x is an mth root of unity. We claim that if
x is bad then px passes through another mth root of unity, different from x , or else
{p, x} is tangent to the unit circle. If y is already an mth root of unity then we are
done; otherwise y is one of the m points on the line at infinity. But then the line {x, y}
passes through another mth root of unity x ′ unless it is tangent to the unit circle, and
we have proved the claim.

This enables us to count the number of bad x which are mth roots of unity. There
are at most two coming from the possibility that {p, x} is tangent to the unit circle.
Otherwise, {p, x} contains another mth root of unity x ′, whence p lies on the line
{x, x ′}. This gives at most O(1) further possibilities by Proposition 7.5.

Now suppose that x is one of the m points on the line at infinity. If {p, x} passes
through an mth root of unity y then it passes through another such root of unity y′
unless {p, x} is tangent to the unit circle. There are at most 2 points on the line at
infinity corresponding to the tangent lines, and then at most O(1) corresponding to
the chords {y, y′} on which p lies, by another application of Proposition 7.5. ��

We return now to the analysis of case (ii). Let p be a point of P not on either
the unit circle or the line at infinity. Then by Corollary 7.6, only O(K O(1)) of the
n − O(K O(1)) lines connecting p with X2m , also meet another element of X2m . As P
only differs from X2m by O(K O(1)) points, we conclude that there are n − O(K O(1))

ordinary lines of P that connect p with an element of X2m . As in case (i), this implies
that there are at most O(K ) points of P lying outside the union of the unit circle and
the line at infinity. Applying Lemma 7.4, we obtain the claim.

Finally, we consider the case (iii). By Lemma 7.2, it suffices to show that there are
at most O(K ) points of P that do not lie on the curve E , which is either an elliptic
curve or the smooth points of an acnodal singular cubic curve. By the same argument
used to handle cases (i) and (ii), it then suffices to show that each point p in P\E
generates � n ordinary lines in P .

For this, it suffices to establish the following lemma.

Lemma 7.7 Suppose that E is an elliptic curve or the smooth points of an acnodal
singular cubic curve and that H ⊕x is a coset of a finite subgroup of E of size n > 104.
Then, if p /∈ E is a point, there are at least n/1000 lines through p that meet exactly
one element of H ⊕ x. ��
Remark The constant 1/1000 could be improved a little by our methods, but we have
not bothered to perform such an optimisation here. It seems reasonable to conjecture,
in analogy with the results in [29], that in fact there are only O(1) lines through p that
can meet three elements of a coset x ⊕ H of a finite subgroup of an elliptic curve, but
this would seem to lie far deeper.

Proof We first exclude one degenerate case, in which E is the smooth points of an
acnodal singular cubic curve, and p is the isolated (i.e. acnodal) singular point of that
curve. In this case, any line through p meets exactly one point of E , and the claim is
trivial. Thus, we may assume that p does not lie on the cubic curve that contains E .

Suppose the result is false. Then at least 0.999n of the lines joining p to x ⊕ H
meet x ⊕ H in 2 or 3 points. In the former case, the line must be tangent to E . There
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are at most 6 such tangents.7 Thus at least 0.998n of the lines joining p to points of
x ⊕ H meet x ⊕ H in 3 points.

As a topological group, the cubic curve E is isomorphic to either R/Z or R/Z ×
(Z/2Z). Consider all the lines through p that are tangent to E ; there are at most 6
such lines, each meeting E in at most 2 points. These (at most) 12 points partition E
into no more than 13 connected open sets A1, . . . , A13 (topologically, these are either
arcs or closed loops), plus 12 endpoint vertices. From a continuity argument, we see
that for each i one of the following statements is true:

(i) the lines connecting p to points of Ai do not meet E again;
(ii) there exist A j , Ak , distinct from each other and from Ai , such that any line

connecting p and a point in Ai meets E again, once at a point in A j , and once at
a point in Ak .

Suppose that i is of type (i). Then by our supposition that the lemma is false we
may assume that |Ai ∩ (H ⊕ x)| < 0.001n, since all the lines from p to Ai ∩ (H ⊕ x)
contain no other point of E . By the pigeonhole principle there is some i of type (ii)
with |Ai ∩ (H ⊕ x)| > 1

13 (1 − 0.012)n > 0.05n > 3. By property (ii), lines from p
through Ai meet the curve E again in A j and Ak .

Recall that for all except at most 0.002n elements q of Ai ∩ (H ⊕ x), the line {p, q}
meets A j and Ak at elements of H ⊕ x . It is easy to conclude from this, and similar
statements for j, k, that the sizes of Ai ∩ (H ⊕ x), A j ∩ (H ⊕ x) and Ak ∩ (H ⊕ x)
differ by at most 0.004n.

Let φi j : Ai → A j be the map that sends a point q in Ai to the point {p, q} ∩ A j ,
then φi j is a homeomorphism from the set Ai to the set A j ; in particular, φi j is
either orientation-preserving or orientation-reversing, once one places an orientation
on both Ai and A j . Furthermore, φi j maps all but at most 0.002n of the elements of
Ai ∩ (H ⊕ x) to A j ∩ (H ⊕ x) and vice versa. Now as H is a subgroup of E , which
as an abelian topological group is either R/Z or R/Z × (Z/2Z), we see that the sets
Ai ∩ (H ⊕ x), A j ∩ (H ⊕ x), being intersections of arcs in R/Z with the discrete
coset x ⊕ H , are arithmetic progressions in x ⊕ H with a common spacing h.

Now for all but at most 0.002n values of y ∈ Ai ∩ (H ⊕ x), φi j maps y to a point
of A j ∩ (H ⊕ x). For all but at most 1 + 0.002n values of y ∈ Ai ∩ (H ⊕ x), φi j maps
y ⊕ h to a point of A j ∩ (H ⊕ x). (The extra 1 comes from the fact that there is one
endpoint value of y in the progression Ai ∩ (x ⊕ H) for which y ⊕ h does not lie in
this progression.) Of the values of y satisfying both of these statements, for all but at
most 0.004n values we have

φi j (y ⊕ h) = φi j (y)⊕ h′ (7.1)

for h′ equal to either h or �h (depending on whether φi j is orientation-preserving
or orientation-reversing). Thus (7.1) holds for all except at most 0.01n values of
y ∈ Ai ∩ (H ⊕ x).

7 The points of tangency must all lie on the intersection of E with its dual curve with respect to p, which
has degree 2; see also the Plücker Formulæ.
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Similarly, defining φik in exactly the same way as φi j , we see that for all except at
most 0.01n elements y in Ai ∩ (H ⊕ x) we have

φik(y ⊕ h) = φik(y)⊕ h′′ (7.2)

for h′′ equal to either h or �h.
Recalling that |Ai ∩ (x ⊕ H)| > 0.05n, we may thus find y ∈ (x ⊕ H) ∩ Ai such

that both (7.1) and (7.2) hold. On the other hand, as y, φi j (y), φik(y) are collinear, we
have

y ⊕ φi j (y)⊕ φik(y) = O

and similarly

y ⊕ h ⊕ φi j (y ⊕ h)⊕ φik(y ⊕ h) = O.

From these equations and (7.1), (7.2) we conclude that

h ⊕ h′ ⊕ h′′ = O.

Since h′, h′′ are equal to either h or �h, we conclude that h has order at most 3, and
so |Ai ∩ (H ⊕ x)| � 3. However we have already observed that |Ai ∩ (H ⊕ x)| > 3,
a contradiction. ��

The proof of Theorem 1.5 is now complete.

8 The Dirac–Motzkin Conjecture

The Dirac–Motzkin conjecture is the statement that, for n large, a set of P points in
R

2 not all lying on a line spans at least n/2 ordinary lines. The main result of this
paper is a proof of a more precise version of this for large n, Theorem 2.2, together
with a characterization of the extremal examples. We prove the even more precise
Theorem 2.4, of which Theorem 2.2 is an easy consequence, in this section. We
refer the reader to Sect. 2 for a precise statement of these two results and a leisurely
discussion of the relevant examples.

Suppose that P spans at most n ordinary lines and that P is not collinear. We may
apply our main structure theorem, Theorem 1.5, to conclude that P differs in O(1)
points from one of three examples: points on a line, a set Xn′ , and a coset of a subgroup
of an irreducible cubic curve (Sylvester-type example). In fact, the weaker and rather
easier Theorem 7.1 suffices for this purpose.

It is obvious that the first type of set spans at least n − O(1) ordinary lines. Sets
close to a Sylvester example are also relatively easy to handle.

Lemma 8.1 Suppose that P ⊂ RP
2 differs in K points from a coset H ⊕ x of a

subgroup H of some irreducible cubic curve, where 3x = x ⊕ x ⊕ x ∈ H. Then P
spans at least n − O(K ) ordinary lines.
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Proof Write h0 := 3x , thus h0 ∈ H . For every h ∈ H , the line joining h ⊕ x and
(−2h �h0)⊕x is tangent to γ at h ⊕x , since (h ⊕x)⊕(h ⊕x)⊕(−2h �h0 ⊕x) = 0.
Therefore it is an ordinary line unless 3h ⊕h0 = 0, in which case the points h ⊕ x and
−2h � h0 ⊕ x coincide. Thus the only points of H ⊕ x not belonging to an ordinary
line spanned by H ⊕ x correspond to the points of H with 3h ⊕ h0 = 0. Since H is
isomorphic to a subgroup of either R/Z or Z/2Z × R/Z, there are no more than 3
of these. It follows immediately that any set formed by removing at most K points of
H ⊕ x has at least n − O(K ) ordinary lines, and these are all tangent lines to γ . No
point in the plane lies on more than 6 tangent lines to γ , and so the addition of a point
destroys no more than 6 of our n − O(K ) ordinary lines. It follows that P itself spans
at least n − O(K ) ordinary lines, as we wanted to prove. ��

Combining this lemma with the remarks just preceding it, we have now established
the existence of an absolute constant C such that a set of n points, not all on a line,
and spanning at most n − C ordinary lines, differs in O(1) points from a set X2m

consisting of the mth roots of unity plus m corresponding points on the line at infinity.
Now the m tangents to the unit circle at roots of unity pass through only one other
point of X2m , and so X2m has m ordinary lines. Furthermore, since each point not on
the unit circle can be incident to at most two such tangent lines, the addition/deletion
of O(1) points does not affect more than O(1) of these lines. This already establishes
a weak version of the Dirac–Motzkin conjecture: every non-collinear set of n points
spans at least n/2 − O(1) ordinary lines.

To prove Theorem 2.4, a much more precise result, we must analyse configura-
tions close to X2m more carefully. What is needed is precisely the following result
which, together with what we have already said in this section, completes the proof
of Theorem 2.4. Recall from Sect. 2 the examples of Böröczky.

Proposition 8.2 There is an absolute constant C such that the following is true. Sup-
pose that P differs from X2m in at most K points, and that P spans at most 2m − C K
ordinary lines. Then P is a Böröczky example or a near-Böröczky example.

We now prove this proposition. Suppose that P differs from X2m in at most K
points. Suppose first of all that P contains a point p outside X2m , that p does not lie
on the line at infinity and that p �= [0, 0, 1]. Then by Corollary 7.6, the m tangent
lines at the unit circle, as well as at least m − O(1) of the lines {p, x} connecting p
to a point x ∈ X2m , pass through precisely 2 points of X2m ∪ {p}. It is clear that the
addition/deletion of K points other than p cannot add or delete points on more than
O(K ) of these lines, and so P spans 2m − O(K ) ordinary lines.

Now suppose that P contains an additional point p on the line at infinity. Then the
m tangent lines to the mth roots of unity, as well as the at least 2m −2 lines {p, x}, x an
mth root of unity, which are not tangent to the unit circle contain precisely two points
of X2m ∪ {p}. Once again the addition/deletion of K points other than p cannot add
or delete points on more than O(K ) of these lines, and so again P spans 3m − O(K )
ordinary lines.

We have now reduced matters to the case P ⊂ X2m ∪ [0, 0, 1]. Starting from X2m ,
the omission of a point or the addition of [0, 0, 1] creates a certain number of new lines
with precisely two points, and of course no point other than [0, 0, 1] or the omitted
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point is on more than one of these new lines. By inspection in any case there are always
at least m/2 − O(1) of these lines, and so there are at least 2m − O(K ) ordinary lines
unless we do at most one of the operations of adding [0, 0, 1] or removing a point
of X2m . At this point a short inspection of the possibilities leads to the conclusion
that the Böröczky examples and the near-Böroczky examples are the only ones which
do not have at least 3m − O(1) ordinary lines. This, at last, concludes the proof of
Theorem 2.4. ��
Remark We relied on Corollary 7.6, which depended on the result of Poonen and
Rubinstein [29]. For the purposes of proving the Dirac–Motzkin conjecture for large
n, the somewhat easier Proposition B.2 is sufficient.

9 The Orchard Problem

In this section we establish Theorem 1.3, the statement that a set of n points in the
plane contains no more than � 1

6 n(n − 3)�+ 1 3-rich lines when n is sufficiently large.
The sharpness of this bound was established in Proposition 2.6.

If Nk is the number of lines containing precisely k points of P then, by double-
counting pairs of points in P , we have

∑

k�2

( k
2
)
Nk = ( n

2
)
. (9.1)

From this it follows that if N3 > � 1
6 n(n − 3)� + 1 then

N2 +
∑

k�4

( k
2
)
Nk � n, (9.2)

from which we conclude that N2, the number of ordinary lines spanned by P , is at
most n. Furthermore no line contains more than O(

√
n) points.

We may now apply Theorem 1.5, our structure theorem for sets with few ordinary
lines. Since no line contains more than O(

√
n) points of P we see that in fact only

option (iii) of that theorem can occur, that is to say P differs in O(1) points from a
coset H ⊕ x, 3x ∈ H , of a subgroup H of some irreducible cubic curve γ , which is
either an elliptic curve or (the smooth points of) an acnodal singular curve. The rest
of the analysis is straightforward but a little tedious.

Suppose that 3x = h0. As in the proof of Lemma 8.1, the tangent line to γ at h ⊕ x
meets H ⊕ x in the point (−2h � h0)⊕ x , which is distinct from the first point unless
3h ⊕ h0 = 0. There are at most O(1) of these. In creating P from H ⊕ x by the
addition/deletion of O(1) points, at most O(1) of these lines are affected.

Since P spans at most n ordinary lines, it follows that P contains only O(1) ordinary
lines other than these tangent lines. urthermore, since we now know that P contains
at least n + O(1) ordinary lines, that is to say N2 = n + O(1), we conclude from
(9.2) that N4 = O(1). We are going to conclude that P = H ⊕ x , a statement whose
proof we divide into three parts.
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Claim 1 There is no point of P off the curve γ . If p is such a point, all except
O(1) of the lines joining p to points of P ∩ γ must contain precisely two points of
P ∩ γ , or else there would be too many lines containing p with 2 or 4 points of P .
Note that this cannot happen if γ is the smooth points of an acnodal singular cubic
curve and p is the isolated singular point, since every line through p meets at most
one point of γ ; thus p lies outside of the cubic curve containing γ . Consider the
lines � from p to P ∩ γ which are not tangent to γ and which contain precisely two
points of P ∩ γ and precisely two points of H ⊕ x , these points being the same.
Since P ∩ γ differs from H ⊕ x in O(1) points, all except O(1) of the lines from
p have this property. But any line not tangent to γ and containing the two points
h ⊕ x and h′ ⊕ x also contains −(h ⊕ h′ ⊕ h0)⊕ x , a third point of H ⊕ x . This is a
contradiction.

Claim 2 There is no point of P outside the set H ⊕ x . Suppose that k ⊕ x is such a
point. Then if h ∈ H , the line joining k⊕x and h⊕x meets γ again at −(k⊕h⊕h0)⊕x ,
which is not a point of H ⊕ x . This point can thus only lie in P for O(1) values of h,
and hence there are n − O(1) ordinary lines of P emanating from k ⊕ x . In addition
to the n − O(1) tangent lines, this gives at least 2n − O(1) ordinary lines in P , a
contradiction.

Claim 3 P contains all of H ⊕ x . Suppose that h∗ ⊕ x is a point of H ⊕ x not
contained in P . For all except O(1) values of h, the points h⊕x and −(h⊕h∗⊕h0)⊕x
lie in P , and the line joining h∗ ⊕ x to them is not tangent to γ . All such lines then
contain precisely two points of P , and once again we obtain n − O(1) ordinary lines
to add to the n − O(1) tangent lines we already have. Once again a contradiction
ensues.

We have now shown that if P is a set of n points in the plane with N3, the number
of lines in P spanning precisely 3 points, satisfying N3 > � 1

6 n(n − 3)� + 1, then P is
a coset H ⊕ x on γ , an elliptic curve or the smooth points of an acnodal cubic, with
3x ∈ H . But by Proposition 2.6 we have N3 � � 1

6 n(n − 3)�+ 1 in any such case, and
we are done.

Remarks Note that, we have in fact classified (for large n) the optimal configurations
in the orchard problem as coming from cosets in elliptic curves or acnodal cubics. We
note that nothing like the full force of Theorem 1.5 is required for the orchard problem
(as opposed to the Dirac–Motzkin conjecture). Once the much weaker Proposition 5.3
is established, we can immediately rule out possibilities (ii) and (iii) of that proposition
and hence do away with all of the material in Sect. 6 and some of the material in Sect. 7
too.
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Appendix A: Some Tools from Additive Combinatorics

In this section, we collect some more-or-less standard tools from additive combina-
torics used in Sects. 6 and 7.

If A, B are two sets in some abelian group, and if � ⊂ A × B is a set of pairs,
we write A +� B := {a + b : (a, b) ∈ �}. The next result is known as the Balog-
Szemerédi-Gowers theorem. The precise form we use is a variant of Gowers’s version
[19, Proposition 12] due to Sudakov, Szemerédi and Vu [31, Theorem 4.1].

Theorem A.1 (Balog–Szemerédi–Gowers) Suppose that A, B are two sets in an
abelian group, both of size at most n. Suppose that � ⊂ A × B is a set (which may
be thought of as a bipartitie graph) with |�| � n2/K . Suppose that |A +� B| � K ′n.
Then there are sets A′ ⊂ A, B ′ ⊂ B with |A′| � n

4K , |B ′| � n
16K 2 such that

|A′ + B ′| � 212(K ′)3 K 5n.

Proof See [31, Theorem 4.1]. In the statement of that result A and B are both supposed
to have size n, but it easy to see that the proof works under the assumption that they
both have size at most n, for instance by adding dummy elements to A or B (enlarging
the group G if necessary) while keeping � unchanged. ��

On several occasions in Sect. 6 we will apply the preceding theorem together with
Ruzsa’s triangle inequality (see e.g. [35, Lemma 2.6]), which states that |U ||V −W | �
|U − V ||U − W | for any sets U, V,W in an abelian group (in fact, the group does not
even need to be abelian). Let us record, as a corollary, the result of doing this in the
particular context we need.

Corollary A.2 Suppose that A, B are two sets in an abelian group, both of size at most
n. Suppose that� ⊂ A× B is a set with |�| � δn2 for which |A+� B| � n. Then there
are sets A′ ⊂ A, B ′ ⊂ B with |A′|, |B ′| � δ2n such that |A′−A′|, |B ′−B ′| � δ−11n.

Proof This follows immediately from the preceding lemma and the Ruzsa triangle
inequality.

The following is a “robust” version of the elementary sumset estimate |U + V | �
|U | + |V | − 1.

Lemma A.3 Let U, V ⊂ R be sets of size r and s respectively. Suppose that � ⊂
U × V has cardinality at least (1 − δ)rs. Then |U +� V | � r + s − 2 − 2

√
2δrs.

Proof Suppose that U = {u1, . . . , ur } with u1 < . . . < ur , and V = {v1, . . . , vs}
with v1 < . . . < vs . For any 1 � k � min(r, s) we have

u1 + vk < u2 + vk < · · · < ur−k + vk < ur−k + vk+1 < · · · < ur−k + vs,

giving r + s − 2k distinct elements of U + V . As k varies, no pair (ui , v j ) appears in
this listing more than twice. Thus by the pigeonhole principle there is, for any choice
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of positive integer k0, some k � k0 such that at most 2δrs/k0 elements of this listing
come from pairs (ui , v j ) not lying in �. It follows that

|U +� V | � r + s − 2k0 − 2δrs

k0
.

Choosing k0 := �√δrs� confirms the result. ��
We actually need a variant of this result for subsets of the multiplicative group R

∗.
If U, V ⊂ R

∗ and if � ⊆ U × V then we write U ·� V = {uv : (u, v) ∈ �}.
Lemma A.4 Let U, V ⊂ R

∗ be sets of size r and s respectively. Suppose that � ⊂
U × V has cardinality at least (1 − δ)rs. Then |U +� V | � r + s − 4 − 2

√
2δrs.

Proof As an additive group, R
∗ is isomorphic to Z/2Z × R. By abuse of notation, we

identify U and V with subsets of this additive group and use additive notation. Define
U0 = ({0}×R)∩U,U1 = ({1}×R)∩U, V0 = ({0}×R)∩V and V1 = ({1}×R)∩V .
Write r0 = |U0|, r1 = |U1|, s0 = |V0| and s1 = |V1|. Suppose that � ∩ (Ui × Vj ) has
δi, j ri s j edges; then

δ0,0r0s0 + δ0,1r0s1 + δ1,0r1s0 + δ1,1r1s1 = δrs. (10.1)

Clearly

(U +� V ) ∩ ({0} × R) ⊃ U0 +� V0, U1 +� V1

and

(U +� V ) ∩ ({1} × R) ⊃ U1 +� V0, U0 +� V1.

Therefore by the preceding lemma

|U +� V | � max(r0 + s0 − 2
√

2δ0,0r0s0, r1 + s1 − 2
√

2δ1,1r1s1)

+ max(r0 + s1 − 2
√

2δ0,1r0s1, r1 + s0 − 2
√

2δ1,0r1s0)− 4

� r0 + s0 + r1 + s1 −
∑

i, j

√
2δi, j ri s j − 4.

Using the inequality

√
x + √

y + √
z + √

w � 2
√

x + y + z + w

(easily established using Cauchy–Schwarz) together with (10.1), we obtain

|U +� V | � r + s − 2
√

2δrs − 4,

as claimed. ��
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The following result was used heavily in Sect. 7. It is of a fairly standard type and
will be of no surprise to experts in additive combinatorics, but we do not know of a
convenient reference.

Proposition A.5 Suppose that A, B,C are three subsets of some abelian group G,
all of cardinality within K of n, where K � εn for some absolute constant ε > 0.
Suppose that there are at most K n pairs (a, b) ∈ A × B for which a + b /∈ C. Then
there is a subgroup H � G and cosets x + H, y + Hsuch that |A�(x + H)|, |B�(y +
H)|, |C�(x + y + H)| � 7K .

As remarked in Sect. 7, results of this general type are quite familiar to additive
combinatorialists and are of the general form “an almost-group is close to a group”.
We supply a complete proof here for the convenience of the reader. Variants of it are
possible. For the most part the ideas are due to Kneser [23,24], Freiman [17] and
Fournier [16].

We first note that it is enough to prove the following weaker proposition, which
may then be “cleaned up” to give the stated result.

Proposition A.6 Let ε be a positive quantity, less than some absolute constant.
Suppose that A, B,C are three subsets of some abelian group G, all of size
within εn of n. Suppose that there at most εn2 pairs (a, b) ∈ A × B for which
a + b /∈ C. Then there is a subgroup H � G and cosets x + H, y + H such that
|A�(x + H)|, |B�(y + H)|, |C�(x + y + H)| � ε′n, where ε′ can be taken to be
O(εc) for some absolute constant c > 0.

Let us deduce Proposition A.5 from this. Let A, B and C be as in the hypotheses
of that proposition. Provided that ε is small enough, Proposition A.6 applies and
we conclude that there is a subgroup H � G and cosets x + H, y + H such that
|A�(x + H)|, |B�(y + H)|, |C�(x + y + H)| � ε′n with ε′ = O(εc). By translating
A and B if necessary we may assume without loss of generality that x = y = 0.

Suppose that A = (H \ X) ∪ X ′, B = (H \ Y ) ∪ Y ′ and C = (H \ Z) ∪ Z ′,
with X,Y, Z ⊂ H, X ′,Y ′, Z ′ disjoint from H and all of X, X ′,Y,Y ′, Z , Z ′ having
cardinality at most ε′n. Now if a ∈ X ′ then the elements a + b, b ∈ H \ X , are all
distinct and none of them lie in H . If such an element a +b lies in C , it must therefore
lie in Z ′. Thus if a ∈ X ′ then there are at least |H | − |X | − |Z ′| � (1 − 4ε′)n > 1

2 n
elements b ∈ H \ X for which a+b /∈ C . By assumption it follows that 1

2 n|X ′| � K n,
which implies that |X ′| � 2K . Similarly |Y ′| � 2K .

Now note that, since |X |, |Y | < 1
8 |H |, every element of H has at least 3

4 |H | � 1
2 n

representations as a sum a + b. Indeed if h ∈ H then by we have |(h − (H \ X)) ∩
(H \ Y )| > 3

4 |H | by the pigeonhole principle. It follows that if we pass to a subset
of these sums by removing all sums a + b with (a, b) lying in a set of size at most
K n, at least |H | − 2K elements of H are still represented. By assumption, the set C
contains a set of this form, and it follows that |Z | � 2K .

We have now demonstrated the inequalities

|A|, |B| � |H | + 2K , |C | � |H | − 2K .
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Since the sizes of A, B and C differ by at most K , we must in fact have

|H | − 3K � |A|, |B|, |C | � |H | + 3K .

This allows us to conclude that |X |, |Y |, |Z ′| � 5K . Proposition A.5 follows imme-
diately. ��

We turn now to the task of proving Proposition A.6. We require the following result,
which could be deduced from results of Kneser [23,24] and Freiman [17].

Lemma A.7 Let ε < 1
60 . Suppose that A is a subset of an abelian group G with

|A| = n, and suppose that |A − A| � (1 + ε)n. Then there is a subgroup H � G and
a coset x + H such that |A�(x + H)| � 6εn.

Proof This is basically the argument of Fournier [16]. Write (cf. [35]) Symα(A) for
the set of all d which have at least αn representations as a1 −a2, a1, a2 ∈ A. Note that
Sym1−δ1

(A) + Sym1−δ2
(A) ⊂ Sym1−δ1−δ2

(A), and note also that | Sym5/6(A)| �
(1 − 5ε)n � 11

12 n. This follows from double-counting pairs (a1, a2) ∈ A2: we have

n2 = |A|2 =
∑

d∈A−A

|{(a1, a2) : a1, a2 ∈ A, a1 − a2 = d}|

� | Sym5/6(A)||A| + 5
6 |(A − A) \ Sym5/6(A)||A|

� 1
6 | Sym5/6(A)|n + 5

6 (1 + ε)n2.

We claim that H = Sym2/3(A) is a group. Certainly 0 ∈ H , and H + H ⊂
Sym1/3(A), so all we need do is check that Sym2/3(A) = Sym1/3(A). Suppose that

d ∈ Sym1/3(A). Then d = a1 − a2 in at least 1
3 n ways. If t ∈ Sym5/6(A) then

t = a′
1 −a′

2 in at least 5
6 n ways. For at least 1

6 n of these we will have a′
1 = a2 for some

a2 such that d = a1 − a2, and thus d + t = (a1 − a2)+ (a′
1 − a′

2) = a1 − a′
2 ∈ A − A.

That is, |(d + Sym5/6(A))∩ (A − A)| � 1
6 n. In particular, d + Sym5/6(A) intersects

Sym5/6(A) (which has size at least 11
12 n) and therefore d ∈ Sym5/6(A)−Sym5/6(A) ⊂

Sym2/3(A), as required.
To see that A is close to a coset of H , note that a1 − a2 ∈ H for all but at most

|(A − A) \ Sym2/3(A)||A| � 6εn2 of the pairs (a1, a2) ∈ A. In particular there is
some x = a2 such that a1 ∈ x + H for all but at most 6εn values of a1 ∈ A. ��

We also need the following “99 %” version of the Balog–Szemerédi–Gowers
theorem.

Lemma A.8 Suppose that A and B are sets in some abelian group, and that� ⊂ A×B
is a set with |�| � (1− ε)|A||B|. Suppose that |A +� B| � (1+ ε)|A|1/2|B|1/2. Then
there are sets A′ ⊂ A and B ′ ⊂ B with |A′|/|A|, |B ′|/|B| � 1 − ε′ such that
|A′ − B ′| � (1 + ε′)|A|1/2|B|1/2. We can take ε′ = O(εc) for some c > 0.
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Proof This follows from [35, Theorem 2.31]. If one wanted instead the conclusion
|A′ + B ′| � (1 + ε′)|A|1/2|B|1/2 (for comparison with Theorem A.1) then one could
additionally apply [35, Proposition 2.27]. ��

With these lemmas in hand, we can conclude the proof of Proposition A.6. In what
follows ε1, ε2, . . . are all quantities bounded by O(εO(1)). Explicit dependencies could
be given if desired, but this would require Lemma A.8 to be made explicit. With the
hypotheses as in Proposition A.6, first apply Lemma A.8 to conclude that there are
sets A′, B ′ with |A�A′|, |B�B ′| � ε1n and |A′ − B ′| � (1 + ε2)n. Applying the
Ruzsa triangle inequality we obtain |A′ − A′|, |B ′ − B ′| � (1 + ε3)n. By Lemma A.7
(assuming ε is sufficiently small) there are subgroups H, H ′ and cosets x + H, y + H ′
such that |A�(x + H)|, |B�(y + H ′)| � ε4n. In particular (1 − ε5)n � |H |, |H ′| �
(1 + ε5)n.

Now, by assumption, for all except εn2 pairs (a, b) ∈ A × B, a + b lies in a set
C of size at most (1 + ε)n. It follows easily that for all except ε6n2 pairs (h, h′) ∈
H × H ′, h + h′ lies in a set of size (1 + ε7)n. We claim that this forces H = H ′.
To see this, note that the assumption easily implies that there are at least (1 − ε8)n3

additive quadruples h1 − h2 = h′
1 − h′

2, and so for all but ε9n2 pairs (h1, h2) ∈ H
we have h1 − h2 = h′

1 − h′
2 ∈ H ′. This implies that all but ε10n elements of H lie in

H ′, and hence |H�H ′| � ε11n and so |H ∩ H ′| � (1 − ε12)n >
1
2 n, provided ε is

sufficiently small. Invoking Lagrange’s theorem (the order of a subgroup divides the
order of the group), it follows that in fact H = H ∩ H ′ = H ′, as claimed.

Finally, note that since A occupies at least 7|H |/8 of x + H , and B at least 7|H |/8
of y + H , every element of x + y + H is a sum a + b in at least 3|H |/4 > n/2 ways.
It follows that C must contain all but at most ε13n of the elements of x + y + H , and
this concludes the proof.

The next result is due to Elekes et al. [14].

Proposition A.9 Let A ⊂ R be a set of cardinality n, and suppose that there are
x1 < · · · < x10 such that f : R → R is defined except possibly at x1, . . . , x10 and
is strictly concave or convex on each open interval (xi , xi+1). Then either |A − A| or
| f (A)− f (A)| has cardinality at least cn5/4 for some absolute constant c > 0.

Proof Suppose first of all that f is strictly convex or concave on an interval containing
A. Then by [14, Corollary 3.1] we have |A − A|| f (A)− f (A)| � n5/2, and so either
|A − A| or | f (A)− f (A)| has cardinality at least cn5/4. The proposition follows by
applying this to the largest of the sets Ai := A ∩ (xi , xi+1). ��

Appendix B: Intersections of Lines Through Roots of Unity

In this section, we establish Proposition 7.5. Our arguments will be a crude variant of
those used in [29].

It will be convenient to identify the plane R
2 with the complex numbers C. Let

�n be the nth roots of unity, and suppose that p is a point other than the origin or an
element of �n which is incident to m lines �1, . . . , �m , each of which pass through
two points e2π iβ j , e2π iγ j of �n , where 0 � β1, . . . , βm, γ1, . . . , γm < 1 are distinct
rationals with denominator n. Our objective is to show that m = O(1).
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We claim the identity

|p − e2π iβ j |
|p − e2π iβk | = |e2π iβ j − e2π iγk |

|e2π iβk − e2π iγ j |

for any distinct 1 � j, k � m. Indeed, from elementary trigonometry we see
that (p, e2π iβ j , e2π iγk ) and (p, e2π iβk , e2π iγ j ) form a pair of similar triangles, regard-
less of the relative ordering between the points involved. The right-hand side can be
simplified as

| sin(π(β j − γk))|
| sin(π(βk − γ j ))| .

We conclude that

| sin(π(β j − γk))|
| sin(π(βk − γ j ))|

| sin(π(βk − γl))|
| sin(π(βl − γk))|

| sin(π(βl − γ j ))|
| sin(π(β j − γl))| = 1

for any distinct 1 � i, j, k � m, and thus

sin(π(β j − γk)) sin(π(βk − γl)) sin(π(βl − γ j ))

= ± sin(π(βk − γ j )) sin(π(βl − γk)) sin(π(β j − γl))

for some choice of sign ±. Actually, we claim that the sign here is always given by the
+ sign. To see this, let us temporarily forget that the e2π iβ j , e2π iγk were constrained to
be roots of unity, and that p was assumed not to take values at the origin or at infinity
(since we have not yet actually used these hypotheses). We first observe that the sign
does not change if we shift any of the β j or γk by an integer, so we may assume that
these phases take values in R/Z rather than [0, 1). Then we observe that the sign is
stable with respect to continuous perturbations of the β j , γk and p, so long as no two
phases cross each other, and that e2π iβ j , e2π iγ j , p remain collinear for all j . From this
we may reduce to the case when p is at the origin (so that β j = γ j + 1/2 for all j)
or at, say, [1, 0, 0] (so that β j = 1/2 − γ j for all j), and the sign is easily verified in
these cases.

Expanding out sin x as (eix − e−i x )/2i , we conclude that

(eπ i(β j −γk ) − eπ i(γk−β j ))(eπ i(βk−γl ) − eπ i(γl−βk ))(eπ i(βl−γ j ) − eπ i(γ j −βk ))

= (eπ i(βk−γ j ) − eπ i(γ j −βk ))(eπ i(βl−γk ) − eπ i(γk−βl ))(eπ i(β j −γk ) − eπ i(γk−β j )).

Multiplying out both sides, and cancelling the common terms

±e±π i(β j +βk+βl−γ j −γk−γl )

appearing on both sides, one arrives at an identity of the form
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12∑

r=1

εr eπ iαr; j,k,l = 0, (11.1)

where the εr = ±1 are signs depending only on r , and αr; j,k,l are twelve linear
combinations of β j , βk, βl , γ j , γk, γl , each of the form

αr; j,k,l = ±β j ± βk ± βl ± γ j ± γk ± γl

where the six signs ± do not need to be equal, but depend only on the index r . These
signs can of course be worked out explicitly, but we will not need to do so here, save
to note that the linear forms αr; j,k,l are all distinct in r , thus αr; j,k,l − αr ′; j,k,l is a
non-trivial combination of β j , βk, βl , γ j , γk, γl whenever r, r ′ are distinct.

Now we reinstate the hypothesis that the e2π iβ j , e2π iγk are nth roots of unity, which
ensures that the εr eπ iαr; j,k,l are also nth roots of unity. The sets of twelve nth roots of
unity that sum to zero were completely classified in [29, Theorem 3]. The exact classi-
fication is somewhat messy, but we only require the following qualitative consequence
of it.

Proposition B.1 There exists a finite set S of roots of unity with the property that
whenever e2π iα1 , . . . , e2π iα12 are roots of unity with

∑12
r=1 e2π iαr = 0, then one has

e2π i(αr −αr ′ ) ∈ S for some 1 � r < r ′ � 12.

Indeed, one can take S to be the ratios of the roots of unity arising in the minimal
relations of weight up to 12 that were classified in [29, Theorem 3], the key point being
that there were only finitely many (107, to be precise) such relations up to rotation. In
fact, one can take S to consist of 30030th roots of unity if desired.

Applying this proposition, we conclude that for any distinct i, j, k, l with 1 �
i, j, k, l � m, one has

±eπ i(αr; j,k,l−αr ′; j,k,l ) ∈ S

for some r, r ′ with 1 � r < r ′ � 12 and some choice of sign ±. Applying the
pigeonhole principle, we conclude (for m large enough) that there exist r, r ′ with
1 � r < r ′ � 12 and a phase θ such that

αr; j,k,l − αr ′; j,k,l = θ

for � m3 triples of distinct 1 � j, k, l � m.
Fix r, r ′, θ as above. As mentioned earlier, αr; j,k,l − αr ′; j,k,l is a non-trivial linear

form in the β j , βk, βl , γ j , γk, γl . By symmetry, we may then assume that at least
one of the β j , γ j coefficients in this form are non-zero. As these coefficients lie in
{−2, 0,+2}, we may thus write

αr; j,k,l − αr ′; j,k,l = 2aβ j + 2bγ j + ck,l
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for some coefficients a, b ∈ {−1, 0,+1} not both zero, and some phases ck,l indepen-
dent of j . Note that these coefficients are equal to −2, 0, or +2. Pigeonholing in the
k, l, we may then find distinct 1 � k, l � m and a phase θ ′ such that

aβ j + bγ j = θ ′

for � m values of j . But from elementary trigonometry, and the hypothesis that p
is not at the origin (or at infinity) we see that as β, γ ∈ [0, 1) range over the distinct
phases for which e2π iβ, e2π iγ are concurrent with p, the phase aβ + bγ can take on
any specific value θ ′ at most O(1) times, and so m = O(1) as desired. This concludes
the proof of Proposition 7.5. ��

Remark In principle, an explicit computational analysis of the minimal relations that
were classified in [29, Theorem 3] should yield the optimal value of C in Proposi-
tion 7.5. In [29] it was shown that one can take C = 7 if one restricts p to be in the
interior of the circle, and it is likely that the same bound holds in the exterior region
also. However, we will not perform this computation here.

We now give a weaker version of Proposition 7.5 which is completely elementary.
In particular, it avoids the Poonen–Rubinstein classification of tuples of twelve roots
of unity summing to zero. It can be used as a substitute for that proposition in the
proof of Theorem 1.2 (and hence Theorem 2.2), but not in the stronger Theorem 2.4.

Proposition B.2 Let �n ⊂ C ≡ R
2 denote the regular n-gon consisting of the nth

roots of unity. Then no point other than the origin lies on more than O(n5/6) lines
joining pairs of vertices of �n.

Proof The argument here will be similar to that used at the end of Sect. 7, with the
roots of unity �n playing the role of the coset H ⊕ x in that analysis.

Let p be a point other than the origin. Let the vertices of �n be v1, . . . , vn in
order. Suppose that the line connecting p and v j meets the line at infinity in the point
[− sin πθ j , cosπθ j , 0]. As j ranges between 1 and n, the θ j can be taken to be an
increasing sequence in [0, 2].

A Euclidean geometry exercise, left as an exercise to the reader, confirms the fol-
lowing claim: for any fixed integer a and for any φ there are at most two values of j
such that θ j+a − θ j = φ.

Suppose that p lies on δn lines joining pairs of vertices of �n . If v j is one such
vertex, then from elementary trigonometry we see that nθ j is an integer. Thus there
is a set J, |J | = δn, such that all nθ j are integers in {1, . . . , 2n} for j ∈ J . Split
{1, . . . , 2n} into m ∼ 1

5δn intervals of length ∼ 10/δ, and suppose that the number
of points of J in these intervals is N1, . . . , Nm . Since N1 + · · · + Nm = δn, the
Cauchy–Schwarz inequality implies that N 2

1 + · · · + N 2
m � δ2n2/m � 5δn. On the

other hand this sum is at most the number of pairs in J × J differing by at most 10/δ.
The contribution from the diagonal (pairs ( j, j)) is just δn, and so there are at least
4δn pairs in J × J differing by at most 10/δ. By the pigeonhole principle there is
some integer a, 0 < a � 10/δ, such that j, j + a ∈ J for � δ2n values of j . From

123



Discrete Comput Geom (2013) 50:409–468 467

this sequences of js, we may then extract a subsequence j1 < . . . < jd , d � δ3n,
with ji+1 > ji + a, such that once again ji , ji + a ∈ J for each i .

Write xi := n(θ ji +a − θ ji ). Then, since the θ j are increasing as a function of j , all
the xi are positive. Furthermore we have x1 + · · · + xd � n. However the xi are all
integers, and no integer can occur more than twice as a value of xi by the claim we
established at the start of the proof. From this it follows that d � √

n.
Comparing these inequalities yields δ � n−1/6, and this completes the proof. ��
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