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Abstract We prove small-deviation estimates for the volume of random convex sets.
The focus is on convex hulls and Minkowski sums of line segments generated by inde-
pendent random points. The random models considered include (Lebesgue) absolutely
continuous probability measures with bounded densities and the class of log-concave
measures.
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1 Introduction

The focus of this paper is distributional inequalities for the volume of random convex
sets. Typical models involve convex hulls or Minkowski sums of line segments gener-
ated by independent random points in R

n . Specifically, let μ be a probability measure
on R

n . Sample N ≥ n independent points X1, . . . , X N according to μ. Let KN be the
absolute convex hull of the Xi ’s, i.e.,

KN := conv
{ ± X1, . . . ,±X N

}
(1.1)
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and let Z N be the zonotope, i.e., the Minkowski sum of the line segments [−Xi , Xi ],

Z N :=
N∑

i=1

[−Xi , Xi ] =
{ N∑

i=1

λi Xi : λi ∈ [−1, 1], i = 1, . . . , N
}
. (1.2)

The literature contains a wealth of results aimed at quantifying the size of KN and
its non-symmetric analogue conv

{
X1, . . . , X N

}
in terms of metric quantities such as

volume, surface area and mean-width; especially in the asymptotic setting where the
dimension n is fixed and N → ∞. The measure μ strongly determines the corre-
sponding properties of KN and Z N . Common models include the case when μ is the
standard Gaussian measure, see e.g., [10,39]; the uniform measure on a convex body,
see e.g., the survey [7]; among many others, e.g., [71]. These are just a sample of
recent articles and we refer the reader to the thorough list of references given therein.

A different asymptotic setting involves the case when the dimension n is large and
one is interested in precise dependence on N and phenomena that hold uniformly
for a large family of measures μ. In this setting, various geometric properties of KN

and Z N such as Banach–Mazur distance, in-radius and other metric quantities have
been analyzed. For zonotopes, see e.g., [14,15,35]. Concerning KN there have been a
number of recent results with special attention paid to estimates that hold “with high
probability.” These include, for instance, the case when μ is the uniform measure on
the vertices of the cube [29], measures with “Gaussian-like” features [45,50] and the
case when μ is the uniform measure on a convex body [21,30]. We are interested
in distributional inequalities for voln

(
KN

)
and voln

(
Z N

)
, where voln(·) denotes n-

dimensional Lebesgue measure, with precise dependence on n and N for a broad class
of measures.

Let Pn denote the set of all probability measures on R
n that are absolutely con-

tinuous with respect to Lebesgue measure. Our setting involves those μ in Pn whose
densities fμ = dμ

dx are bounded. To fix the normalization, we set

Pb
n := {

μ ∈ Pn : ∥
∥ fμ

∥
∥∞ = 1

}
,

where ‖ f ‖∞ is the essential supremum of f . In particular, our setting includes the
Gaussian measure and the uniform measure on a convex body K ⊂ R

n but not the
case of discrete measures. We assume thatμ1, . . . , μN ∈ Pb

n and that X1, . . . , X N are
independent random vectors with Xi distributed according μi . Since we will compare
KN and Z N (which depend on the Xi ’s) for various underlying measures, we will
write P⊗N

i=1μi
(or simply P⊗μi ) for the product measure associated with μ1, . . . , μN ;

the corresponding expectation by E⊗N
i=1μi

= E⊗μi .
Our main interest is in bounding the quantity

P⊗μi

(
voln

(
KN

)1/n ≤ ε
)
, (1.3)

for small values of ε; in particular, the precise dependence on ε, n and N . Such esti-
mates are often referred to as small-ball probabilities. Our aim is to find and quantify
universal behavior of small-ball probabilities for voln

(
KN

)
, as well as voln

(
Z N

)
, for
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μi ∈ Pb
n . For the expectation E⊗μi voln

(
KN

)
, the behavior can be far from uniform.

Indeed, even for the Euclidean norm |X1| of a single vector, the quantity Eμ|X1|
need not be finite. Thus in such a general setting, searching for uniform concentration
phenomena seems a lost cause. We will show, however, that small-ball-type estimates
always hold and are surprisingly uniform.

To the best of our knowledge, apart from particular cases, general small-ball esti-
mates are unknown. Surveying related results in the literature, it was unclear to us
even the order of magnitude to expect. One reason for this is that the volume problem
is often approached indirectly. Many cases involve stronger statements about, e.g.,
the in-radius of KN or inclusion of other naturally associated sets. For instance, the
main focus of [50] is singular values of certain random matrices; volume estimates
for KN arise as consequences. To put our problem in context, we state a sample result
from the latter paper. Specifically, in [50], KN is the absolute convex hull of the rows
of a random matrix, the entries of which are symmetric, independent and identically
distributed random variables with sub-Gaussian tail-decay. In this case, they prove
that if N ≥ (1 + ζ )n, where ζ > 1/ ln n, and β ∈ (0, 1/2), then

P

(
voln

(
KN

)1/n ≤ c(ζ )

√
β ln(2N/n)

n

)
≤ exp(−c1 N 1−βnβ);

here c(ζ ) is a constant that depends on ζ and the sub-Gaussian constant of the measure
and c1 is a positive numeric constant. The latter is proved by estimating the in-radius of
KN . The factor N 1−βnβ in the exponent is the best possible for the analogous statement
involving the in-radius of KN in the class of measures they consider (see [50, Theorem
4.2 & subsequent remark]). In the class Pb

n , however, the volume voln
(
KN

)
behaves

differently.
A similar result involves the case when μK is the uniform measure on a convex

body K ⊂ R
n of volume one. In this case, it is known that if N ≥ n, then

P⊗μK

(
voln

(
KN

)1/n ≤ c

√
ln(2N/n)

n

)
≤ e−n,

where c is a positive numeric constant. See the discussion in [21, §3.1] (and [68,
Proposition 1] for the case N = n).

The quantity
√

ln(2N/n)
n that appears in both of the latter examples corresponds to

the expectation of voln
(
KN

)1/n for the uniform measure λDn on the Euclidean ball of
volume one. More precisely, for n ≤ N ≤ en , one has

(
E⊗λDn

voln
(
KN

))1/n 

√

ln(2N/n)

n
;

see, e.g., [30] (see also the references in Sect. 4). Here A 
 B means that c1 B ≤ A ≤
c2 B for some positive numeric constants c1 and c2. It is proved in [66] that among
all measures μ ∈ Pb

n the uniform measure λDn on the Euclidean ball of volume one
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minimizes the expected volume of KN , namely,

E⊗μi voln
(
KN

) ≥ E⊗λDn
voln

(
KN

)
. (1.4)

Similarly, it is shown in [66] that

E⊗μi voln
(
Z N

) ≥ E⊗λDn
voln

(
Z N

)
. (1.5)

One can check that for N ≥ n,

(
E⊗λDn

voln
(
Z N

))1/n 
 N√
n
;

(use, e.g., Lemma 4.7; see also [15] as well as (9.4) for a more general result). Thus
it is always meaningful to ask for the dependence on ε, n and N in the following
quantities:

P⊗μi

(
voln

(
KN

)1/n ≤ cε

√
ln(2N/n)

n

)
(1.6)

and

P⊗μi

(
voln

(
Z N

)1/n ≤ cεN√
n

)
(1.7)

for all measures in Pb
n .

Our first main result is the following theorem.

Theorem 1.1 Let n ≤ N ≤ en and let μ1, . . . , μN ∈ Pb
n . Let δ > 1 and ε ∈ (0, 1).

Then

P⊗μi

(
voln

(
KN

)1/n ≤ c1ε

δ

√
ln(2N/n)

n

)
≤ εc2 N 1−1/δ2 n1/δ2

. (1.8)

Moreover, if N ≤ neδ
2
, then

P⊗μi

(
voln

(
KN

)1/n ≤ c3ε

δ

√
ln(2N/n)

n

)
≤ εn(N−n+1−o(1))/4, (1.9)

where the ci ’s are positive numeric constants.

Here and throughout the paper, we use the notation o(1) to denote a quantity in
[0, 1] that tends to 0 as N , n → ∞. For zonotopes, we prove the following theorem.

Theorem 1.2 Let n ≤ N ≤ en and let μ1, . . . , μN ∈ Pb
n . Then for each ε ∈ (0, 1),

P⊗μi

(
voln

(
Z N

)1/n ≤ cεN√
n

)
≤ εn(N−n+1−o(1))/4, (1.10)
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where c is a positive numeric constant.

In Sect. 8, we also give lower bounds for the quantities in Theorems 1.1 and 1.2,
which suggest that the estimates (1.9) and (1.10) are essentially optimal.

It has been observed in various other contexts that achieving the best bounds in
small-ball estimates in high-dimensional geometry often requires different techniques
than those used for proving large deviations e.g., [33, Proposition 3], [43], [45, Propo-
sition 2.6]. To describe the techniques used in this paper, we outline our viewpoint.

As in [66], we adopt an operator-theoretic point of view from the Local Theory of
Banach spaces, e.g., [53–55]. Namely, we view KN and Z N as the image of the cross-
polytope B N

1 and the cube B N∞, respectively, under the random matrix [X1 . . . X N ],
i.e., KN = [X1 . . . X N ]B N

1 and Z N = [X1 . . . X N ]B N∞. In the same way, for any
convex body C ⊂ R

N , we generate a random n-dimensional convex body by applying
[X1 . . . X N ] to C :

[X1 . . . X N ]C =
{ N∑

i=1

ci Xi : c = (ci ) ∈ C
}
. (1.11)

Our first step is to identify the extremal measuresμi ∈ Pb
n that maximize the small-ball

probability

P⊗μi

(
voln

([X1 . . . X N ]C) 1
n ≤ ε

)
.

This is done by means of symmetrization as in [66]. We show that the probability in
question is maximized for μi = λDn , the uniform measure on the Euclidean ball of
volume one. While this simplifies the problem, computing the small-ball probability
directly for λDn is non-trivial. We turn instead to μ = γn , the standard Gaussian
measure. Working with γn allows us to recast the small-ball problem in more geometric
terms by using the Gaussian representation of intrinsic volumes [72,74] and a suitable
extension. A key point in our approach is that purely geometric properties of C—
its intrinsic volumes and natural generalizations—dictate the small-ball behavior for
voln

([X1 . . . X N ]C)
. In this way, we reduce Theorems 1.1 and 1.2 to questions from

the realm of classical convexity about the cross-polytope and the cube. In particular,
Theorem 1.2 depends on verification of an isomorphic version of a conjecture of
Lutwak about affine quermassintegrals; a key tool here is a result due to Grinberg
[37] (see Sect. 5). Wherever possible, we outline proofs for a general convex body
C ⊂ R

N . However, the focus of the paper is on B N
1 and B N∞.

A more common normalization than that which we use (although slightly more
restrictive) is when the covariance matrix of μ is assumed to be the identity, i.e., μ is
isotropic. We prove estimates analogous to those of Theorems 1.1 and 1.2 under this
normalization in Sect. 9; we also treat the important subclass of log-concave measures
(see Sects. 2 and 9 for definitions). In the last several years, there have been many
important results concerning random matrices generated by log-concave measures, see
e.g., [1,2] and the references therein. In this important class we obtain more precise
estimates, such as the following theorem.
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Theorem 1.3 Let n ≤ N ≤ en andμ be an isotropic log-concave probability measure
on R

n with bounded isotropic constant. Then for every ε ∈ (0, 1),

P⊗μ
(

voln
(
Z N

) 1
n ≤ cε

(
E⊗μvoln

(
Z N

)) 1
n
)

≤ εn(N−n+1−o(1))/4 (1.12)

and

P⊗μ
(

voln
(
Z N

)1/n ≤ c1ε
(
E⊗μvoln

(
Z N

)) 1
n
)

≥ εnN , (1.13)

where c and c1 are positive numeric constants.

See Sect. 9 for the definition of the isotropic constant and the corresponding result
for KN .

The paper is organized as follows. In Sect. 2 we give basic notation and definitions
used in the paper. The reduction to the uniform measure on the Euclidean ball via
symmetrization is described in Sect. 3; we simply sketch the main points from [66]. In
Sect. 4 we discuss the Gaussian representation of intrinsic volumes and show how an
extension thereof is connected to the small-ball problem. Generalizations of intrinsic
volumes are discussed in Sect. 5. Section 6 involves technical computations for the
generalized intrinsic volumes of B N

1 and B N∞. In Sect. 7, we transfer the small-ball
estimates obtained for γn to λDn . In Sect. 8 we prove Theorems 1.1 and 1.2 and give
complementary lower bounds. In Sect. 9 we deal with the isotropic normalization
and the log-concave case. We conclude with a discussion in Sect. 10 about general
random convex sets [X1 . . . X N ]C and show how results from the asymptotic theory
of convex bodies [59,67] can be applied to the general problem of small-ball estimates
for random convex sets.

2 Preliminaries

In this section we record notation and definitions used throughout the paper. The setting
is R

n , where n ≥ 2, with the usual inner-product 〈·, ·〉, standard Euclidean norm |·|
and standard unit vector basis e1, . . . , en ; n-dimensional Lebesgue measure voln

(·);
Euclidean ball of radius one Bn

2 with volume ωn = voln
(
Bn

2

)
. We reserve Dn for the

Euclidean ball of volume one, i.e., Dn = ω
−1/n
n Bn

2 ; Lebesgue measure restricted to Dn

is λDn . The unit sphere is Sn−1 and is equipped with the Haar probability measure σ .
The Grassmannian manifold of all n-dimensional subspaces of R

N is denoted G N ,n ,
with Haar probability measure νN ,n . For a subspace F ∈ G N ,n , we write PF for the
orthogonal projection onto F . The standard Gaussian measure is γn , i.e., dγn(x) =
(2π)−n/2e−|x |2/2dx , while γ n is the Gaussian measure with dγ n(x) = e−π |x |2 dx .

Throughout the paper we reserve the symbols c, c1, c2, . . . for positive numeric
constants (not necessarily the same in each occurrence). We use the convention A 
 B
to signify that c1 B ≤ A ≤ c2 B for some positive numeric constants c1 and c2.
Wherever necessary, we assume without loss of generality that n is larger than a fixed
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numeric constant. By adjusting the constants involved one can always force the results
to hold for all n ≥ 2.

A convex body K ⊂ R
n is a compact, convex set with non-empty interior. The

support function of a convex body K is given by

hK (y) = sup{〈x, y〉 : x ∈ K } (y ∈ R
n)

and the mean-width of K is

W (K ) =
∫

Sn−1

hK (θ)dσ(θ)+
∫

Sn−1

hK (−θ)dσ(θ) = 2
∫

Sn−1

hK (θ)dσ(θ).

We say that K is origin-symmetric if K = −K . If the origin is an interior point of K ,
the polar body K ◦ of K is defined by K ◦ = {y ∈ R

n : hK (y) ≤ 1}. A convex body is
isotropic if its volume is one, its center of mass is the origin and

∫

K

〈x, θ〉2dx = L2
K ∀θ ∈ Sn−1; (2.1)

the constant L K is called the isotropic constant of K . We say that a convex body
K ⊂ R

n is 1-symmetric (with respect to the standard basis e1, . . . , en), if

(αξ(1)xξ(1), . . . , αξ(n)xξ(n)) ∈ K (2.2)

whenever x = (x1, . . . , xn) ∈ K , αi ∈ [−1, 1] for each i = 1, . . . , n and
ξ : {1, . . . , n} → {1, . . . , n} is a permutation. We say that K is 1-unconditional
if (2.2) holds whenever x = (x1, . . . , xn) ∈ K , αi ∈ [−1, 1] for each i = 1, . . . , N
and ξ is the identity. We also let Bn

p denote the unit-ball in �n
p.

Let Pn denote the class of all probability measures on R
n that are absolutely con-

tinuous with respect to Lebesgue measure. The subclass Pb
n ⊂ Pn consists of all those

measures μ in Pn whose densities fμ := dμ
dx

satisfy
∥
∥ fμ

∥
∥∞ = 1, where ‖·‖∞ is the

essential supremum.
A Borel measure μ on R

n is said to be log-concave if for any compact sets A, B ⊂
R

n and t ∈ [0, 1],

μ(t A + (1 − t)B) ≥ μ(A)tμ(B)1−t .

Similarly, a function f : R
n → R

+ is log-concave if log f is concave on its support.
It is known that if μ is a log-concave measure on R

n that is not supported on any
proper affine subspace, then μ ∈ Pn and its density fμ is log-concave [13].

If A ⊂ R
n is a Borel set with finite volume, the symmetric rearrangement A∗ of

A is the (open) Euclidean ball centered at the origin whose volume is equal to that of
A. The symmetric decreasing rearrangement of χA is defined by χ∗

A := χA∗ . If f :
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R
n → R

+ is an integrable function, we define its symmetric decreasing rearrangement
f ∗ by

f ∗(x) =
∞∫

0

χ∗{ f>t}(x)dt =
∞∫

0

χ{ f>t}∗(x)dt.

The latter should be compared with the “layer-cake representation” of f :

f (x) =
∞∫

0

χ{ f>t}(x)dt. (2.3)

see [47, Theorem 1.13]. The function f ∗ is radially-symmetric, decreasing and
equimeasurable with f , i.e., { f > α} and { f ∗ > α} have the same volume for
each α ≥ 0. By equimeasurability and (2.3), one has ‖ f ‖p = ‖ f ∗‖p for each
1 ≤ p ≤ ∞, where ‖·‖p denotes the L p-norm. If μ ∈ Pb

n has density fμ, we let
μ∗ denote the measure in Pb

n with density f ∗
μ . See [18,47] for further background

material on rearrangements.
For the reader’s convenience, we list a few basic linear algebra facts used in the

paper.

Proposition 2.1 Suppose that N ≥ n and that T : R
N → R

n is a linear operator.
Denote the adjoint of T by T ∗.

(i) (Polar decomposition) There is an isometry U : R
n → R

N such that T ∗ =
U (T T ∗)1/2.

(ii) If v1, . . . , vn ∈ R
N denote the columns of T ∗ (as a matrix with respect to the

standard unit vector basis), then

voln
(
T ∗[0, 1]n) = det (T T ∗)1/2 (2.4)

= |v1||PV ⊥
1
v2||PV ⊥

2
v3| · · · |PV ⊥

n−1
vn|, (2.5)

where

Vk := span{v1, . . . , vk} V0 = {0},

for k = 1, . . . , n − 1.
(iii) Let E = ker(T )⊥ and let T |E be the restriction of T to E. If B ⊂ R

N is a compact
set then

voln
(
T B

) = |det(T |E )|voln
(
PE B

)
, (2.6)

where |det(T |E )| = det (T T ∗)1/2.
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For (i) see, e.g., [24, §3.2]; (2.4) follows from (i), while (2.5) is the well-known
formula for the volume of the parallelpiped spanned by v1, . . . , vn , which follows from
Gram–Schmidt (see, e.g., [4, Theorem 7.5.1]). For (iii), note that E = Range(T ∗) and

det(T T ∗) = voln
(
T T ∗[0, 1]n)

= |det(T |E )|voln
(
T ∗[0, 1]n)

= |det(T |E )|det(T T ∗)1/2,

hence det(T |E ) = det(T T ∗)1/2; (2.6) follows from the fact that T B = T |E PE B.

3 Distributional Inequalities via Symmetrization

The main goal of this section is to show that the small-ball probabilities in Theorems
1.1 and 1.2 are maximized for λDn . This is done by adapting [66, Theorem 1.1], which
(in the notation of the introduction) asserts that if μ1, . . . , μN ∈ Pb

n and C ⊂ R
N is

a convex body, then

E⊗μi voln
([X1 . . . X N ]C) ≥ E⊗λDn

voln
([X1 . . . X N ]C)

. (3.1)

The next theorem is a distributional form of (3.1) in the case when C is 1-unconditional
(which suffices for our purposes).

Theorem 3.1 Let N ≥ n and let μ1, . . . , μN ∈ Pb
n . Suppose that C ⊂ R

N is a
1-unconditional convex body. Then

P⊗μi

(
voln

([X1 . . . X N ]C) ≥ α
) ≥ P⊗λDn

(
voln

([X1 . . . X N ]C) ≥ α
)
.

Remark 3.2 The analogous result for the convex hull of random points sampled in a
convex body of volume one was proved by Giannopoulos and Tsolomitis [32, Lemma
3.3].

Remark 3.3 In Theorem 3.1, one can replace voln
(·) by other intrinsic volumes (see

[66, Remark 4.4]). In this paper we focus all of our efforts on voln
(·).

The proof of Theorem 3.1 is a straightforward modification of that of (3.1). To
clarify the role of the extra unconditionality assumption in the present context, we
sketch the main points. Recall that if μ ∈ Pb

n has density fμ, then μ∗ denotes the
measure in Pb

n whose density is the symmetric decreasing rearrangement f ∗
μ .

Theorem 3.4 Let N and n be positive integers. Let μ1, . . . , μN ∈ Pb
n and let α > 0.

Suppose that F : (Rn)N → R
+ satisfies the following condition: for each z ∈ Sn−1,

for all y1, . . . , yN ∈ z⊥, the level set

{
t ∈ R

N : F(y1 + t1z, . . . , yN + tN z) ≤ α
}
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is origin-symmetric and convex. Then

P⊗μi

({F > α}) ≥ P⊗μ∗
i

({F > α}). (3.2)

The latter theorem makes use of the Brascamp–Lieb–Luttinger rearrangement
inequality [17] (see also [20]); the proof is given in detail in [66, Proposition 3.2]

(use the fact that P⊗μi

(
{F > α}

)
= E⊗μi1{F>α}).

If K ⊂ R
n is a compact set of volume one and all μi are equal to the uniform

measure on K , then Theorem 3.4 gives immediately

P⊗μi

({F > α}) ≥ P⊗λDn

({F > α}). (3.3)

For general measures μ ∈ Pb
n , an additional step is required to pass to the uniform

measure on the ball. We say that F : (Rn)N → R
+ is coordinate-wise increasing if

for all x1, . . . , xN in R
n ,

F(s1x1, . . . , sN xN ) ≤ F(t1x1, . . . , tN xN ), (3.4)

whenever 0 ≤ si ≤ ti , i = 1, . . . , N . For such functions, one can pass from
rotationally-invariant measures μ ∈ Pb

n to λDn . Here and elsewhere, we use the term
“increasing” in the non-strict sense.

Proposition 3.5 Let μ1, . . . , μN ∈ Pb
n and suppose that μi = μ∗

i for each i =
1, . . . , N. Assume that F is coordinate-wise increasing as in (3.4). Then

P⊗μi

({F > α}) ≥ P⊗λDn

({F > α}).

Proof Using spherical coordinates xi = riθi , where ri ∈ R
+ and θi ∈ Sn−1 and

writing dr = dr1 . . . drN and dθ = dσ(θ1) . . . dσ(θN ), we have

P⊗μi

(
{F > α}

)
=

∫

Rn

. . .

∫

Rn

1{F>α}(x1, . . . , xN )

N∏

i=1

fi (xi )dx1 . . . dxN

= (nωn)
N

∫

(R+)N

∫

(Sn−1)N

1{F>α}(r1θ1, . . . , rN θN )

N∏

i=1

fi (riθi )dθdr .

By our assumption on F ,

R
+ � r j �→ 1{F≥α}(r1θ1, . . . r jθ j , . . . , rN θN )
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is increasing, hence

∞∫

0

1{F>α}(r1θ1, . . . , r jθ j , . . . , rN θN ) f j (r jθ j )dr j

≥
ω

1/n
n∫

0

1{F>α}(r1θ1, . . . , r jθ j , . . . , rN θN )dr j ;

(see, e.g., [66, Lemma 3.5]). Applying the latter inequality for each j , together with
Fubini’s Theorem, yields the result. ��
Proof of Theorem 3.1 Let F : (Rn)N → R

+ be defined by

F(x1, . . . , xN ) := voln
([x1 . . . xN ]C)

.

Using an argument due to Groemer [38], it is shown in [66, Proposition 4.1] that
F satisfies the assumption in Theorem 3.4, hence (3.2) holds. The unconditionality
assumption on C guarantees that for each x1, . . . , xN in R

n ,

[s1x1 . . . sN xN ]C ⊂ [t1x1 . . . tN xN ]C,

whenever 0 ≤ si ≤ ti , for i = 1, . . . , N , hence F is coordinate-wise increasing and
Proposition 3.5 applies. ��

While Theorem 3.1 reduces Theorems 1.1 and 1.2 to the case of P⊗λDn
, our path

will involve first calculating the small-ball probability for the Gaussian measure, to
which we now turn our attention.

4 An Extension of the Gaussian Representation of Intrinsic Volumes

This section is our first step towards estimating the small-ball probabilities in Theorems
1.1 and 1.2 forμ = γn , the standard Gaussian measure. As in the previous section, we
work with random sets of the form [X1 . . . X N ]C for a general convex body C ⊂ R

N .
When N = n, the small-ball problem for any C reduces to estimates for random

determinants. Indeed, voln
([X1 . . . Xn]C) = |det [X1 . . . Xn]|voln

(
C

)
. As in [53, Fact

1.5], one can bound

P⊗γn

(|det [X1 . . . Xn]| ≤ ε
)
,

by estimating moments E⊗γn |det [X1 . . . Xn]|−p for p > 0 (see also [68, Proposition
2] for such estimates beyond the Gaussian setting).

As we mentioned in the introduction, for the random polytope KN , the in-radius is
well-studied, see [34,50] and the references therein. Aside from implications stemming
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from in-radius estimates, we are not aware of small deviations for the volume voln
(
KN

)

for the full range of parameters n, N and ε considered in this paper.
As in the case N = n, our approach will involve estimation of moments

E⊗γn voln
([X1 . . . X N ]C)−p for p > 0. Unlike the case N = n, however, the geome-

try of C plays a crucial role, which we quantify through intrinsic volumes and suitable
extensions.

Recall that the intrinsic volumes of a convex body C ⊂ R
N can be defined via the

Steiner formula for the outer parallel volume of C :

volN
(
C + αB N

2

) =
N∑

n=0

ωn VN−n(C)α
n . (4.1)

The quantities Vn, n = 1, . . . , N , are the n-th intrinsic volumes of C (we set V0 ≡
1). Of particular interest are V1, VN−1 and VN , which are multiples of the mean-
width, surface area and volume, respectively. Intrinsic volumes are also referred to
as quermassintegrals (under an alternate labelling and normalization). For further
background on intrinsic volumes, we refer the reader to [70]. We will make use of the
following fact, which is a special case of Kubota’s integral recursion:

Vn(C) =
(

N

n

)
ωN

ωnωN−n

∫

G N ,n

voln
(
PE C

)
dνN ,n(E). (4.2)

There is a version of the latter formula that uses Gaussian random matrices, termed
the Gaussian representation of intrinsic volumes in [74] and which appeared previously
in another context in [72]. If G = [γi j ] is an n × N matrix with independent standard
Gaussian entries, then the nth intrinsic volume of C ⊂ R

N is given by

Vn(C) = (2π)n/2

ωnn! E voln
(
GC

)
. (4.3)

(Here we have omitted the subscript on E⊗γn and will do so when the context is clear.)
The next proposition is an extension of (4.3), which connects powers of voln

(
GC

)

and the following parameter W[n,p](C), defined in [22],

W[n,p](C) :=
( ∫

G N ,n

voln
(
PF C

)pdνN ,n(F)
) 1

np
, (4.4)

for p ∈ [−∞,∞]. In the latter expression, the p = 0 case is interpreted as
lim p→0 W[n,p](C); a similar convention is made for 0th moments throughout the
paper. The quantities W[n,p](C) are discussed in greater detail in Sect. 5. The proof
we give below is the same as that of [72, Theorem 6], although presented differently;
see also [73, Theorem 1] for a probabilistic derivation of the Steiner formula (4.1),
which led us to the connection.
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Proposition 4.1 Let n ≤ N and let G be an n × N random matrix with independent
standard Gaussian entries. Let C ⊂ R

N be a compact set with non-empty interior and
p > −(N − n + 1). Then

(
E voln

(
GC

)p
) 1

p =
(
E det (GG∗)

p
2
) 1

p W n[n,p](C). (4.5)

If C is a convex body and p = 1, then (4.5) reduces to

E voln
(
GC

) = 1

(2π)n/2
N !

(N − n)!
ωN

ωN−n

∫

G N ,n

voln
(
PE C

)
dνN ,n(E),

which is the Gaussian representation of intrinsic volumes. The random matrix GG∗ in
Proposition 4.1 is distributed according to the Wishart density and explicit formulas for
Edet(GG∗)p/2 are well-known, e.g., [4, Chap. 7]; a direct argument giving the order
of magnitude of Edet(GG∗)p/2 is given below in Lemma 4.2. For a strong stochastic
equivalence involving projections of regular simplices on G N ,n and Gaussian vectors,
see [11, Theorem 1].

In a different context, passage between Gaussian random operators and random
projections on the Grassmannian manifold has been used to great effect in studying
volumetric invariants that arise in Banach–Mazur distance investigations; see [53,55].

Proof of Proposition 4.1 Let h1, . . . , hn ∈ R
N be the columns of G∗. Then G∗[0, 1]n

is the parallelpiped generated by h1, . . . , hn and voln
(
G∗[0, 1]n

) = det(GG∗)1/2, by
Proposition 2.1(ii). Let H be the subspace spanned by h1, . . . , hn so that

H = Range(G∗) = ker(G)⊥.

Let U be a random matrix distributed uniformly on the orthogonal group O(N ),
independent of G. Note that (GU )∗[0, 1]n is the parallelpiped spanned by the vectors
U∗h1, . . . ,U∗hn , hence

voln
(
(GU )∗[0, 1]n) = det((GU )(GU )∗)1/2 = det(GG∗)1/2.

Combining the latter equality with Proposition 2.1(iii), we have

voln
(
GUC

) = det(GG∗)
1
2 voln

(
PU∗ H C

)
.

Let E⊗N
i=1γn

= E⊗n
i=1γN denote expectation with respect to G; similarly let EU

denote expectation with respect to U . By rotational invariance of γN ,G and GU have
the same distribution, hence
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E⊗n
i=1γN voln

(
GC

)p = E⊗n
i=1γN EU voln

(
GUC

)p

= E⊗n
i=1γN

(
det(GG∗)

p
2 EU voln

(
PU∗ H C

)p
)

= E⊗n
i=1γN det(GG∗)

p
2

∫

G N ,n

voln
(
PE C

)pdνN ,n(E).

��
As mentioned above, we give the order of magnitude of E det (GG∗)p/2. Since the

resulting estimate is closely connected to the small-ball estimate in the Gaussian case,
we include a detailed proof.

Lemma 4.2 Let N ≥ n and let G be an n × N random matrix with independent
standard Gaussian entries. Then for all p ∈ [−(N − n + 1 − e−n(N−n+1)), N ],

(
E det (GG∗)

p
2
) 1

pn 
 √
N .

Proof Let X = (x1, . . . , xN ) be an N -dimensional standard Gaussian vector. Let
m ∈ {1, . . . , N } and F ∈ G N ,m . For each η > 0 and for all p ∈ [−(m − e−ηm),m],
we have

ce−η√m ≤ (
E|PF X |p)

1
p ≤ c1

√
m. (4.6)

Indeed, note that for a ∈ (0, 1),Eγ1 |x1|−a 
 1
1−a . Then, for p0 = m −e−ηm , we have

(
E|PF X |−p0

)− 1
p0 = (

Eγm |(x1, . . . , xm)|−p0
)− 1

p0

=
( mωm

(2π)
m
2

∞∫

0

rm−(m−e−ηm )−1e− r2

2 dr
)− 1

p0

= 1

(mωm)
1
p0

(2π)
m−1
2p0

(1

2
Eγ1 |x1|−(1−e−ηm )

)− 1
p0

≥ ce−η√m.

For the positive range,

(
E|PF X |m) 1

m = (
Eγm |(x1, . . . , xm)|m

) 1
m

=
( mωm

(2π)
m
2

∞∫

0

r2m−1e− r2

2 dr
) 1

m


 √
m.
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As in the proof of Proposition 4.1, let h1, . . . , hn ∈ R
N be the columns of G∗. Let

H0 = {0}. For k = 1, . . . , n − 1, set

Hk := span{h1, . . . , hk}.

By Proposition 2.1 (ii), we have

det (GG∗)
p
2 =

n∏

k=1

|PH⊥
k−1

hk |p. (4.7)

Let p1 = −(
N − n + 1 − e−n(N−n+1)

)
. Integrating first with respect to hn , then hn−1

and so forth, at each stage applying (4.6) with m = N − k +1 and ηk = 2−k for k ≥ 2
and η1 = n, we obtain

(
E det(GG∗)

p1
2

) 1
p1n =

(
E

n∏

k=1

|PH⊥
k−1

hk |p1
) 1

p1n

≥
( n∏

k=1

(N − k + 1)
) 1

2n e− 1
n

∑n
k=1 ηk

≥
((

N

n

)
n!

) 1
2n e−n−1/2

≥ c
√

N .

Similarly, for the positive range, we have

(
E det(GG∗)

N
2

) 1
N 
 √

N .

The result follows by Hölder’s inequality. ��
The following proposition will be used to show that Theorem 1.2 is sharp for the

Gaussian measure (cf. Proposition 6.7). As the proof is similar to the latter lemma, we
include it here.

Proposition 4.3 Let N ≥ n and let G be an n × N random matrix with independent
standard Gaussian entries. Then for any ε ∈ (0, 1/2),

P

(
det(GG∗)1/(2n) ≤ cε

√
N

)
≥ εn(N−n+1),

where c is a positive numeric constant.

Proof Let X be an N -dimensional standard Gaussian vector. Let m ∈ {1, . . . , N } and
F ∈ G N ,m . By Chebyshev’s inequality,

P

(
|PF X | ≤ √

2m
)

≥ 1

2
. (4.8)
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Moreover, a direct computation shows that for any ε ∈ (0, 1/2),

P

(
|PF X | ≤ c1ε

√
m

)
≥ εm, (4.9)

where c1 is a positive numeric constant (see Proposition 9.5 for a more general result).
As in the previous proof, let h1, . . . , hn denote the columns of G∗; set H0 = {0}

and Hk = span{h1, . . . , hk}. For each k = 1, . . . , n −1, let ak = √
2(N − k + 1) and

let an = εn
√

N − n + 1. Using (4.7), we have

P
(
det(GG∗)

1
2n ≤ cε

√
N

) ≥ P
(|PH⊥

k−1
hk | ≤ cak for each k = 1, . . . , n

)
,

where c is a positive numeric constant. Applying Fubini’s theorem iteratively (inte-
grating first with respect to hn , then hn−1 and so on), using (4.9) with m = N − n + 1
and (4.8) for m = N − k + 1 (for k = n − 1, . . . , 1) gives the desired result. ��

Proposition 4.1 and Lemma 4.2 reduce the small-ball problem for γn to capturing the
asymptotics of the quantities W[n,p](C). We make this explicit in the next subsection.

4.1 Connection to Small-Ball Estimates for the Gaussian Case

For a convex body C ⊂ R
N , positive integers n ≤ N , and p ∈ [−1,∞], we define

An,p(C) := W[n,1](C)
W[n,−p](C)

=
( ∫

G N ,n
voln

(
PF C

)
dνN ,n(F)

) 1
n

( ∫
G N ,n

voln
(
PF C

)−pdνN ,n(F)
)− 1

pn

. (4.10)

By Hölder’s inequality, An,p(C) ≥ 1 and

[−1,∞) � p �→ An,p(C)

is an increasing function.

Proposition 4.4 Let N ≥ n and let G be an n × N random matrix with independent
standard Gaussian entries. Let C ⊂ R

N be a convex body and p ∈ [0, N − n + 1 −
e−n(N−n+1)]. Then

(
E⊗γn voln

(
GC

)−p
)− 1

pn ≥
(
E⊗γn voln

(
GC

)) 1
n

c0 An,p(C)
, (4.11)

where c0 is a positive numeric constant. Consequently, for each ε ∈ (0, 1),

P⊗γn

(
voln

(
GC

)1/n ≤ ε

cAn,p(C)

(
E⊗γn voln

(
GC

))1/n)
≤ ε pn, (4.12)
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where c is a positive numeric constant.

Proof By Proposition 4.1 and Lemma 4.2, we get

An,p(C) 

(
E voln

(
GC

)) 1
n

(
E voln

(
GC

)−p
)− 1

pn

, (4.13)

which implies (4.11). Using the latter equivalence and Markov’s inequality, for any
η > 0, we have

P

(
voln

(
GC

)1/n ≤ η

An,p(C)

(
Evoln

(
GC

)) 1
n
)

≤ P

(
voln

(
GC

)1/n ≤ cη
(
Evoln

(
GC

)−p)− 1
pn

)

≤ (cη)pn,

where c is a positive numeric constant. The small-ball estimate (4.12) follows on
substituting ε = cη. ��

As (4.12) indicates, we have reduced the small-ball problem to bounding the ratio

An,p(C) = W[n,1](C)
W[n,−p](C)

.

For C = B N
1 and C = B N∞, bounds for the numerators W[n,1](B N

1 ) and W[n,1](B N∞)
are well-known. We state them here in their Gaussian form (cf. (4.3)) as this is more
convenient for our purpose. These are also well-known results from the perspective
of Gaussian random polytopes.

Proposition 4.5 Let N ≥ n and let G be an n × N matrix with independent standard
Gaussian entries. Then, for N ≤ en, we have

(
E voln

(
G B N

1

)) 1
n 


√
ln(2N/n)

n
. (4.14)

For any N ≥ n, we have
(
E voln

(
G B N∞

)) 1
n 
 N√

n
. (4.15)

The intrinsic volumes of B N
1 are computed explicitly in [12]. For B N∞, one has

Vn(B N∞) = 2n
(N

n

)
. Alternatively, taking the view of random sets generated by the

Gaussian measure, the estimates in Proposition 4.5 have been proved by numerous
methods. One approach for the upper bounds involves volume estimates for the convex
hull and Minkowski sum of arbitrary points in R

n . As these will be needed again in
Sect. 8, we record them here.
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Theorem 4.6 Let N ≥ n and let x1, . . . , xN ∈ R
n with |xi | ≤ M for i = 1, . . . , N.

Then
(

voln
([x1 . . . xN ]B N

1

))1/n ≤ cM
√

ln(2N/n)

n
,

where c is a positive numeric constant.

The latter theorem can be proved in a number of ways, see [6,8,9,19,34]. For
zonotopes, we use the following elementary lemma. Here we use |I | to denote the
cardinality of the set I .

Lemma 4.7 Let N ≥ n and let x1, . . . , xN ∈ R
n. Then

voln
( N∑

i=1

[−xi , xi ]
)

= 2n
∑

I⊂{1,...,N }
|I |=n

|det[xi ]i∈I |. (4.16)

Moreover, if |xi | ≤ M for each i = 1, . . . , N, then

voln
([x1 . . . xN ]B N∞

)1/n ≤ cN M

n
,

where c is a positive numeric constant.

Remark 4.8 Analogous volume estimates for voln
([x1 . . . xN ]B N

p

)
, where 1 ≤ p ≤

∞, are proved in [36].

Proof (Sketch) The first assertion (4.16) is the well-known zonotope volume formula
(see, e.g., [58, p. 73]). The second assertion follows from the first since

voln
([x1 . . . xN ]B N∞

) = 2n
∑

|I |=n

dI ≤ 2n
(

N

n

)
max
i∈I

dI

where dI = |det([xi ]i∈I )|. We conclude by using the estimate
(N

n

) ≤ (eN/n)n together
with Hadamard’s determinant inequality: dI ≤ ∏

i∈I |xi |. ��
Thus if g1, . . . , gN denote the columns of G in Proposition 4.5, then the upper bound

for E voln
(
G B N

1

)
follows from Theorem 4.6 and the fact that with high probability,

|gi | 
 √
n (cf. (4.6)). The lower bound, for N ≥ 2n, follows from Gluskin’s lemma

[34] (see also [48,61]) or by computing the in-radius of G B N
1 as in [30] (which treats

the case of vectors distributed according to λDn ); for N = n, one can simply estimate
the determinant: (E|det([g1 . . . gn])|)1/n 
 √

n (e.g., take N = n in Lemma 4.2).
For asymptotic values as N → ∞ (in the non-symmetric case), see [3]. Similarly, for
G B N∞ = ∑N

i=1[−gi , gi ] one applies (4.16) and the fact that (E|det([g1 . . . gn])|)1/n 
√
n.
To estimate the quantities W[n,−p](B N

1 ) and W[n,−p](B N∞), we require additional
machinery which we describe in the next two sections.
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5 Generalized Intrinsic Volumes

In this section we delve further into properties of the quantities W[n,p](C) for an
arbitrary convex body C ⊂ R

N . As in Sect. 4, for every p ∈ [−∞,∞] and 1 ≤ n ≤
N − 1, we set

W[n,p](C) :=
( ∫

G N ,n

voln
(
PF C

)pdνN ,n(F)
) 1

np
. (5.1)

Note that W[n](C) := W[n,1](C) is simply a constant multiple (depending on N and

n) of the nth intrinsic volume of C . We also set W[N ](C) := volN
(
C

)1/N . The
Aleksandrov–Fenchel inequality (e.g., [70, Chap. 6]) implies that for 1 ≤ n1 ≤
n2 ≤ N ,

W[n2](C)
W[n2](B N

2 )
≤ W[n1](C)

W[n1](B N
2 )
.

The latter inequality, together with the fact that volN
(
B N

2

)1/N 
 1√
N

, implies that

c1

√
N

n
volN

(
C

) 1
N ≤ W[n](C) ≤ c2√

n
W (C). (5.2)

We now define variants of the normalized affine quermassintegrals, introduced by
Lutwak [51]. For a convex body C ⊂ R

N of volume one, set

�[n](C) := W[n,−N ](C) :=
( ∫

G N ,n

voln
(
PF C

)−N dνN ,n(F)
)− 1

nN
. (5.3)

The fact that�[n](C) is invariant under volume-preserving affine transformations was
proved by Grinberg [37, Theorem 2] (see also [26]). It was conjectured by Lutwak in
[52] that if C ⊂ R

N is a convex body of volN
(
C

) = 1, then for 1 < n < N − 1,

�[n](C) ≥ �[n](DN ), (5.4)

where DN ⊂ R
N is the Euclidean ball of volume one, with equality if and only if

C is an ellipsoid. Here we follow the normalization used in [22]. When n = N − 1,
inequality (5.4) is true and known as the Petty projection inequality; when n = 1 and
the centroid of C is the origin, (5.4) is the Blaschke–Santalo inequality; see [27, Chap.
9] and the references and notes therein. In [22], it is conjectured that the quantities
�[n](C) are asymptotically of the same order as�[n](DN ), i.e., if C ⊂ R

N is a convex
body of volN

(
C

) = 1, then for 1 < n < N − 1,

�[n](C) 

√

N

n
.
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In [22], the upper bound is shown to be correct up to a logarithmic factor. In this
section, we verify that the lower bound holds as well.

Theorem 5.1 Let C ⊂ R
N be a convex body of volume one. Then for 1 ≤ n ≤ N −1,

�[n](C) ≥ c

√
N

n
,

where c is a positive numeric constant.

The proof uses a duality argument. The first ingredient is the following theorem
due to Grinberg [37]; see also [28].

Theorem 5.2 Let K ⊂ R
N be a compact set of volume 1. Then

( ∫

G N ,n

voln
(
K ∩ F

)N
dνN ,n(F)

) 1
nN ≤

( ∫

G N ,n

voln
(
DN ∩ F

)N
dνN ,n(F)

) 1
nN
.

We will also use the Blaschke–Santaló inequality [69].

Theorem 5.3 Let C ⊂ R
N be a convex body with center of mass at the origin.

Then

(volN
(
C

)
volN

(
C◦))

1
N ≤ ω

2
N
N , (5.5)

with equality if and only if C is an ellipsoid.

The proof in the origin-symmetric case can be found in, e.g., [27], together with
additional notes and references; we also refer to the introduction of [31] for a discussion
relating the role of the center of mass and the Santalo point of C .

The reverse inequality, proved by Bourgain and Milman [16], will also be used.

Theorem 5.4 Let C ⊂ R
N be a convex body with the origin in its interior. Then

cω
2
N
N ≤ (volN

(
C

)
volN

(
C◦))

1
N , (5.6)

where c is a positive numeric constant.

See [44] for the best-known constant c in the latter theorem in the origin-symmetric
case; for recent developments and further references, see [31].

Proof of Theorem 5.1 Without loss of generality we can assume that the center of
mass of C is the origin. Let F ∈ G N ,n . Applying Theorem 5.4, we have

voln
(
PF C

)− 1
n ≤ cnvoln

(
(PF C)◦

) 1
n = cnvoln

(
C◦ ∩ F

) 1
n ,
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where c is a positive numeric constant. Set K = C◦ and write K̃ := K/volN
(
K

)1/N .

Since volN
(
C

) = 1, Theorem 5.3 gives the upper bound volN
(
K

)1/N ≤ c/N , where
c is a positive numeric constant, hence

voln
(
K ∩ F

) 1
n = volN

(
K

) 1
N voln

(
K̃ ∩ F

) 1
n ≤ c

N
voln

(
K̃ ∩ F

) 1
n .

The latter two inequalities imply that

( ∫

G N ,n

voln
(
PF C

)−N dνN ,n(F)
) 1

Nn ≤ c1n

N

( ∫

G N ,n

voln
(
K̃ ∩ F

)N
dνN ,n(F)

) 1
nN
,

where c1 is a positive numeric constant. Now we apply Theorem 5.2 to obtain

( ∫

G N ,n

voln
(
PF C

)−N dνN ,n(F)
) 1

Nn ≤ c1n

N

( ∫

G N ,n

voln
(
DN ∩ F

)N dνN ,n(F)
) 1

nN

≤ c2

√
n

N
,

where c2 is a positive numeric constant, from which the result follows. ��
Lastly, we will make use of a result from [22] (Theorem 3.2 and the subsequent

remark (3.22)). For completeness, we give the proof. If C ⊂ R
N is a convex body

with the origin in its interior and p ∈ [−∞,∞], define its generalized mean-width by

Wp(C) :=
( ∫

SN−1

hC (θ)
pdσ(θ)

) 1
p
. (5.7)

Proposition 5.5 Let C ⊂ R
N be a convex body with the origin in its interior. Then

for each p ≥ 1,

W[n,−p](C) ≥ c√
n

W−np(C), (5.8)

where c is a positive numeric constant.

Proof Let F ∈ G N ,n and write SF = SN−1 ∩ F ; let σF denote the Haar probability
measure on SF . By Theorem 5.4,

voln
(
PF C

)−p ≤ voln
(
(PF C)◦

)p

cnpω
2p
n

.
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Using the fact that h PF C (θ) = hC (θ) for θ ∈ SF , together with Hölder’s inequality,
we have

voln
(
(PF C)◦

)p =
(
ωn

∫

SF

h−n
C (θ)dσF (θ)

)p ≤ ω
p
n

∫

SF

h−np
C (θ)dσF (θ).

The latter two inequalities imply that

( ∫

G N ,n

voln
(
PF C

)−pdνN ,n(F)
) 1

np ≤ c1
√

n
( ∫

G N ,n

∫

SF

h−np
C (θ)dσF (θ)dνN ,n(F)

) 1
np

= c1
√

n
( ∫

SN−1

h−np
C (θ)dσ(θ)

) 1
np

= c1
√

nW −1−np(C),

where c1 is a positive numeric constant. ��

We refer the reader to [22] for further information on the quantities W[n,p](C).

6 Bounds for Generalized Intrinsic Volumes of BN
1 and BN∞

By Proposition 4.4, we can obtain small-ball estimates in the Gaussian case by bound-
ing the quantities An,p(B N

1 ) and An,p(B N∞). We will invoke Proposition 5.5, which
relates W[n,−p](C) and the generalized mean-width W−p(C) (defined in (5.7)) and
thus we start by estimating W−p(B N

1 ).

Proposition 6.1 Let 1 ≤ p ≤ N. Then

W−p(B
N
1 ) 


√
ln 2N

p√
N

. (6.1)

Proof Using integration in spherical coordinates, one may verify that

W−p(C) 
 1√
N

( ∫

RN

h−p
C (x)dγN (x)

)− 1
p

for all 0 < p ≤ N
2 . Note that for all r > 0,

γN

(
{x : hB N

1
(x) ≤ r}

)
= γN

(
r [−1, 1]N

)
= (

1 − 2�(r)
)N
,
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where

�(r) := 1√
2π

∞∫

r

e−x2/2dx .

Assume first that p ≤ c1 N for some numeric constant c1 ∈ (0, 1) to be specified
later. Write

∫

RN

h−p
B N

1
(x)dγN (x) = p

∞∫

0

(
1 − 2�(s)

)N

s p+1 ds

= p

1∫

0

(
1 − 2�(s)

)N

s p+1 ds + p

∞∫

1

(
1 − 2�(s)

)N

s p+1 ds.

Using the inequality 1−2�(r) ≤
√

2
π

r for r ∈ [0, 1], we choose c1 ∈ (0, 1) to ensure
that

p

1∫

0

(
1 − 2�(s)

)N

s p+1 ds ≤ p
( 2

π

) N
2

1∫

0

s N−p−1ds ≤
( 2

π

) N
2
.

For the remainder of the integral, we use the rough estimate

p

∞∫

1

(
1 − 2�(s)

)N

s p+1 ds ≤ p

∞∫

1

(1 − 2e−8s2
)N

s p+1 ds.

A routine calculation shows that the integrand

g(s) := (1 − 2e−8s2
)N

s p+1

is increasing on (1, s0) where s0 := 1
3

√
ln(2N/p). Thus

p

s0∫

1

g(s)ds ≤ p(s0 − 1)g(s0) ≤ p

s p
0

and

p

∞∫

s0

1

s p+1 ds = 1

s p
0

.
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Combining each of the estimates yields

p

∞∫

0

(
1 − 2�(s)

)N

s p+1 ds ≤ p + 2

s p
0

. (6.2)

The reverse inequality is proved similarly.
Lastly, we treat the case c1 N ≤ p ≤ N . Note that

W−N (B
N
1 ) =

( volN
(
B N

2

)

volN
(
B N∞

)
) 1

N 
 1√
N
,

hence Hölder’s inequality yields

1√
N


 W−c1 N (B
N
1 ) ≥ W−p(B

N
1 ) ≥ W−N (B

N
1 ) 
 1√

N
.

��

Proposition 6.2 Let N ≥ n and let δ ≥ 1. Then for 1 ≤ p ≤ ( N
n

)1− 1
δ2 , we have

An,p(B
N
1 ) ≤ c′δ.

Moreover, for N ≤ neδ
2
,

An,N (B
N
1 ) ≤ c′′δ,

where c′ and c′′ are positive numeric constants.

Proof Set p0 = ( N
n

)1− 1
δ2 . By Proposition 5.5 and Hölder’s inequality, for p ≤ p0,

we have

W[n,p](B N
1 ) ≥ c√

n
W−np(B

N
1 ) ≥ c√

n
W−np0(B

N
1 ).

By Proposition 6.1, the latter quantity is at least as large as

c′√ln (2N/(np0))√
nN

= c′

δ

√
ln (2N/n)√

nN
.

Moreover, by Proposition 4.1, Lemma 4.2 and Proposition 4.5, we have

W[n,1](B N
1 ) 


√
ln (2N/n)√

nN
. (6.3)
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Combining the latter two estimates, we have

An,p(B
N
1 ) = W[n,1](B N

1 )

W[n,−p](B N
1 )

≤ cδ.

Finally, for any p ≤ N , Hölder’s inequality and Theorem 5.1 imply that

W[n,−p](B N
1 ) ≥ W[n,−N ](B N

1 ) = W[n,−N ](B̃ N
1 )volN

(
B N

1

) 1
N ≥ c√

nN
, (6.4)

where B̃ N
1 is the volume-one homothet of B N

1 . Thus by (6.3), (6.4) and the definition
of An,p we get that

An,p(B
N
1 ) ≤ c

√
ln (2N/n) ≤ c′′δ,

provided that N ≤ neδ
2
. ��

Proposition 6.3 Let n ≤ N and let 0 < p ≤ N. Then

An,p(B
N∞) ≤ c0,

where c0 is a positive numeric constant.

Proof Since W (B N∞) ≤ diam(B N∞) = 2
√

N , (5.2) yields

W[n,1](B N∞) = W[n](B N∞) ≤ c2√
n

W (B N∞) ≤ 2c2

√
N

n
.

By Theorem 5.1, we have

W[n,−N ](B N∞) = 2�[n]((1/2)B N∞) ≥ c1

√
N

n
,

where c1 is a positive numeric constant. Since W[n,−p](B N∞) ≥ W[n,−N ](B N∞) when-
ever 0 < p ≤ N , we obtain
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An,p(B
N∞) = W[n,1](B N∞)

W[n,−p](B N∞)
≤ 2c2

c1
.

��
Remark 6.4 The proof of Proposition 6.3 shows that if C ⊂ R

N is a convex body with
volN

(
C

) = 1 and W (C) ≤ c
√

N , then for any 0 < p ≤ N we have An,p(C) ≤ c′,
where c′ is a constant that depends only on c. Any zonoid in Lowner’s position satisfies
this property (see [62]). In particular, there is a positive numeric constant c1 such that
An,p(B N

q ) ≤ c1 whenever 0 < p ≤ N and 2 ≤ q ≤ ∞. Note that by Urysohn’s

inequality (see, e.g., [67, Corollary 1.4]), the inequality W (C) ≥ c
√

N holds for any
convex body C satisfying volN

(
C

) = 1.

6.1 Small-Ball Estimates in the Gaussian Case

The results of the previous subsection lead to the following small-ball estimates.

Proposition 6.5 Let n ≤ N ≤ en and let ε ∈ (0, 1) and δ > 1. Then

P⊗γn

(
voln

(
KN

) 1
n ≤ ε

c1δ
E⊗γn voln

(
KN

) 1
n
)

≤ εN 1−1/δ2 n1/δ2

,

where c1 is a positive numeric constant. Moreover, if N ≤ neδ
2
, then

P⊗γn

(
voln

(
KN

) 1
n ≤ ε

c2δ
E⊗γn voln

(
KN

) 1
n
)

≤ εn(N−n+1−o(1)),

where c2 is a positive numeric constant.

Proof Let p0 = ( N
n

)1−1/δ2
. Then p0 ≤ N − n + 1, hence Propositions 4.4 and 6.2

imply that

P⊗γn

(
voln

(
KN

) 1
n ≤ ε

c1δ
E⊗γn voln

(
KN

) 1
n
)

≤ P⊗γn

(
voln

(
KN

) 1
n ≤ ε

cAn,p0(B
N
1 )

(
E⊗γn voln

(
KN

)) 1
n
)

≤ εnp0 ,

where c1 is a positive numeric constant. If N ≤ neδ
2
, we take p1 = N − n + 1 −

e−n(N−n+1) and argue as above. ��
For zonotopes generated by the Gaussian measure we have the following.

Proposition 6.6 Let N ≥ n and let ε ∈ (0, 1). Then

P⊗γn

(
voln

(
Z N

) 1
n ≤ ε

c1
E⊗γn voln

(
Z N

) 1
n
)

≤ εn(N−n+1−o(1)),

where c1 is a positive numeric constant.
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Proof Use Propositions 4.4 and 6.3 and argue as in the proof of the previous
proposition. ��

We conclude this section with a complementary lower bound that shows Proposition
6.6 is essentially optimal.

Proposition 6.7 Let N ≥ n and let ε ∈ (0, 1/2). Then

P⊗γn

(
voln

(
Z N

) 1
n ≤ ε

c2
E⊗γn voln

(
Z N

) 1
n
)

≥ εn(N−n+1),

where the c2 is a positive numeric constant.

Proof Let G be an n × N matrix with independent standard Gaussian entries. Then
Z N = G B N∞ ⊂ √

N G B N
2 , hence

voln
(
Z N

) ≤ N n/2det(GG∗)1/2ωn .

Using the latter inequality and Proposition 4.5, we have

P⊗γn

(
voln

(
Z N

) 1
n ≤ ε

c2
E⊗γn voln

(
Z N

) 1
n
)

≥ P⊗γn

(
det(GG∗)

1
2n ≤ ε

c2

√
N

)
,

where c2 is a positive numeric constant. The result follows from Proposition 4.3. ��
Unlike the case of Z N , we do not know whether the probabilities in Proposition

6.5 are optimal. In Sect. 9.1, we prove lower bounds for such probabilities in a more
general setting.

7 From the Gaussian Measure to the Ball

With estimates for Gaussian-measure in hand, we proceed to transfer them to the
uniform measure on the Euclidean ball. Let γ n be the Gaussian measure on R

n with
density dγ n(x) = e−π |x |2 dx ; in particular, γ n belongs to the class Pb

n .
The main goal of this section is to establish the following proposition.

Proposition 7.1 Let n < N ≤ en and set m = N/2 + (n − 1)/2. Then for any
p ∈ (0, (N − n + 1)/4), we have

(
E⊗m

i=1γ n
voln

(
Km

)−p
)− 1

pn ≤ c
(
E⊗N

i=1λDn
voln

(
KN

)−p
)− 1

pn (7.1)

and

(
E⊗m

i=1γ n
voln

(
Zm

)−p
)− 1

pn ≤ c
(
E⊗N

i=1λDn
voln

(
Z N

)−p
)− 1

pn
, (7.2)

where c is a positive numeric constant.
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For the case when N = n, see Remark 7.3. For simplicity, we assume throughout
that m = N/2 + (n − 1)/2 is an integer; simple modifications will yield the result for
all n and N .

As in the previous sections, we will prove a more general statement. Let C ⊂ R
N be

a 1-symmetric convex body. For convenience of notation, we write x = (x1, . . . , xN ) ∈
(Rn)N and set

F(x) := F(x1, . . . , xN ) := voln
([x1 . . . xN ]C)

. (7.3)

The main properties of F used here are the following:

(i) F is coordinate-wise increasing: for fixed x1, . . . , xN ∈ R
n and for 0 < si ≤

ti , i ≤ N , we have

F(s1x1, . . . , sN xN ) ≤ F(t1x1, . . . , tN xN ); (7.4)

see the proof of Theorem 3.1.
(ii) F is n-homogeneous, i.e., F(ax) = an F(x) for a > 0;

(iii) F is invariant under permutation of its coordinates, i.e., F(x1, . . . , xN ) =
F(xξ(1), . . . , xξ(N )) for any permutation ξ : {1, . . . , N } → {1, . . . , N }.

Proposition 7.2 Let F : (Rn)N → R
+ be defined by (7.3). Let n < N ≤ en and set

m = N/2 + (n − 1)/2. If p ∈ (0, (N − n + 1)/4), then

(
E⊗m

i=1γ n
F(X1, . . . , Xm, 0, . . . , 0)−p

)− 1
pn ≤c

(
E⊗N

i=1λDn
F(X1, . . . , X N )

−p
)− 1

pn
,

(7.5)

where c is a positive numeric constant.

The complementary inequality

(
E⊗N

i=1γ n
F(X1, . . . , X N )

−p
)− 1

pn ≥
(
E⊗N

i=1λDn
F(X1, . . . , X N )

−p
)− 1

pn

follows from Theorem 3.1.
To prove the proposition, we will express the expectations in (7.5) in spherical

coordinates and compare them with the corresponding expectations on the N -fold
product of spheres SN

n := Sn−1 × · · · × Sn−1, equipped with the product of the Haar
probability measures σ , denoted here by P⊗N

i=1σ
. Before doing so, we discuss the case

N = n.

Remark 7.3 If N = n, then F(x1, . . . , xn) = |det([x1 . . . xN ])|voln
(
C

)
. In this case,

if X1, . . . , Xn are independent and distributed according γ n , then one can write Xi =
|Xi |θi , where θi = Xi/|Xi | is uniformly distributed on the sphere and is independent
of |Xi |. Thus for any p ∈ (0, 1),

E⊗n
i=1γ n

F(X1, . . . , Xn)
−p = E⊗n

i=1γ n
|X1|−p . . . |Xn|−p

E⊗n
i=1σ

F(θ1, . . . , θn)
−p.
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Similarly, if the Xi ’s are independent and sampled according to λDn , we have

E⊗n
i=1λDn

F(X1, . . . , Xn)
−p = E⊗n

i=1λDn
|X1|−p . . . |Xn|−p

E⊗n
i=1σ

F(θ1, . . . , θn)
−p.

Thus equality holds

(
E⊗n

i=1γ n
F(X1, . . . , Xn)

−p
)− 1

pn = cn,p

(
E⊗n

i=1λDn
F(X1, . . . , Xn)

−p
)− 1

pn
,

for all p ∈ (0, 1), where

cn,p =
( E⊗n

i=1γ n
|X1|−p . . . |Xn|−p

E⊗n
i=1λDn

|X1|−p . . . |Xn|−p

)− 1
pn =

(
Eγ n

|X1|−p

EλDn
|X1|−p

)− 1
p 
 1.

In particular, the constant 4 in Proposition 7.2 is not needed when N = n.

Proof of Proposition 7.2 Assume first that X1, . . . , X N are independent random vec-
tors distributed according to γ n and write X = (X1, . . . , X N ). Then for each t0 > 0,
we have

E⊗N
i=1γ n

F(X)−p

≥
∫

t0 Bn
2

. . .

∫

t0 Bn
2

F−p(x1, . . . , xN )dγ n(xN ) . . . dγ n(x1)

= (nωn)
N

∫

[0,t0]N

∫

SN
n

F−p(r1θ1, . . . , rN θN )

N∏

i=1

rn−1
i e−πr2

i dσ N
n (θ)dr

≥ (nωn)
N

∫

[0,t0]N

∫

SN
n

F−p(t0θ1, . . . , t0θN )

N∏

i=1

rn−1
i e−πr2

i dσ N
n (θ)dr

= t−pn
0 (nωn)

N
∫

[0,t0]N

N∏

i=1

rn−1
i e−πr2

i dr
∫

SN
n

F−p(θ1, . . . , θN )dσ
N
n (θ)

= t−pn
0 γ n(t0 Bn

2 )
N

E⊗N
i=1σ

F(θ)−p, (7.6)

where θ = (θ1, . . . , θN ) is distributed according to P⊗N
i=1σ

.

At this point, we choose t0 such that γ n(t0 Bn
2 ) = 1 − e−n ; one can check that

t0 
 √
n. Then, for N ≤ en , we have

1 ≥ (
γ n(t0 Bn

2 )
)N = (1 − e−n)N ≥ 1

e
. (7.7)
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Combining (7.6) and (7.7) yields

(
E⊗N

i=1γ n
F−p(X)

)− 1
pn ≤ c

√
n
(
E⊗N

i=1σ
F−p(θ)

)− 1
pn
, (7.8)

where c > 0 is a positive numeric constant.
Assume now that X1, X2, . . . , X N are independent random vectors distributed uni-

formly in Dn and write X = (X1, . . . , X N ). Note that for each i = 1, . . . , N , we can
write Xi = |Xi |θi , where |Xi | is the Euclidean norm of Xi , and θi = Xi/|Xi | is
distributed uniformly on the sphere Sn−1 and is independent of |Xi |.

Let s0 be such that PλDn

(
|X1| ≥ s0

)
= 1 − e−n and note that s0 
 √

n. Since

N ≤ en ,

P⊗N
i=1λDn

(
|Xi | ≥ s0 for each i = 1, . . . , N

)
= (1 − e−n)N ≥ 1

e
.

Denote the decreasing rearrangement of the sequence (|Xi |) by (|Xi |∗). Then

E⊗N
i=1λDn

|X N |∗ = E⊗N
i=1λDn

min
i≤N

|Xi | ≥ s0/e. (7.9)

Since F is invariant under permutations, we have

F(X1 . . . X N ) = F(θ1|X1|∗, . . . , θN |X N |∗).

We partition the sequence (|Xi |∗) into three blocks as follows:

|X1|∗, . . .︸ ︷︷ ︸
n−1

, |Xn|∗ . . .︸ ︷︷ ︸
(N−n+1)/2

, . . . , |X N |∗︸ ︷︷ ︸
(N−n+1)/2

.

Taking m = n − 1 + (N − n + 1)/2 = N/2 + (n − 1)/2 and using monotonicity and
homogeneity of F , we have

F(X1 . . . X N ) ≥ (|Xm |∗)n F(θ1, . . . , θm, 0, . . . , 0). (7.10)

Since N − m = (N − n + 1)/2, we have

P⊗N
i=1λDn

(
|Xm |∗ ≤ cε

√
n
)

≤
∑

|I |=(N−n+1)/2

P⊗N
i=1λDn

( ⋂

i∈I

{|Xi | ≤ cε
√

n}
)

≤
(

N

(N − n + 1)/2

)
PλDn

(
|X1| ≤ cε

√
n
)(N−n+1)/2

≤
( 2eN

N − n + 1

)(N−n+1)/2
εn(N−n+1)/2.
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By the distribution formula for non-negative random variables, we obtain

(
E⊗N

i=1λDn
(|Xm |∗)−pn

)− 1
pn ≥ c0E⊗N

i=1λDn
|Xm |∗ (7.11)

for all 0 < p ≤ (N − n + 1)/4, where c0 is a positive numeric constant. By (7.9) we
have

E⊗N
i=1λDn

|Xm |∗ ≥ E⊗N
i=1λDn

|X N |∗ ≥ c1
√

n,

where c1 is a positive numeric constant. Taking powers and then expectations in (7.10)
and applying (7.11), we get that for 0 < p < (N − n + 1)/4,

(
E⊗N

i=1λDn
F(X)−p

)− 1
pn ≥ c1

√
n
(
E⊗m

i=1σ
F(θ)−p

)− 1
pn
,

where θ = (θ1, . . . , θm, 0, . . . , 0) and θ1, . . . , θm are independent and uniformly
distributed on the sphere Sn−1. The proposition now follows by applying (7.8) (with
N replaced by m). ��
Remark 7.4 (1) The assumption N ≤ en in Proposition 7.1 is essential for KN since
after this point E⊗γ n

voln
(
KN

)
is much larger than E⊗λDn

voln
(
KN

)
.

(2) We do not believe the constant 4 in Proposition 7.1 is necessary; perhaps the
optimal constant is 1 + o(1). Any improvement here will lead to better constants in
the exponents of the small-ball estimates in Theorems 1.1–1.3.

8 Proof of the Main Theorems and Further Remarks

We are now ready to prove the two main results of this paper.

Theorem 8.1 Let n ≤ N ≤ en and letμ1, . . . , μN ∈ Pb
n . Let δ > 1 and let ε ∈ (0, 1).

Then

P⊗μi

(
voln

(
KN

)1/n ≤ cε

δ

√
ln(2N/n)

n

)
≤ εc1 N 1−1/δ2 n1/δ2

(8.1)

and, if N ≤ neδ
2
, then

P⊗μi

(
voln

(
KN

)1/n ≤ cε

δ

√
ln(2N/n)

n

)
≤ εn(N−n+1−o(1))/4. (8.2)

Proof Let m = N/2 + (n − 1)/2 and let p0 = (m
n

)1−1/δ2
. By (4.13) and Proposi-

tion 6.2,
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(
E⊗m

i=1γn voln
(
Km

)) 1
n

(
E⊗m

i=1γn voln
(
Km

)−p0
)− 1

p0n


 An,p0(B
m
1 ) ≤ c′δ, (8.3)

where c′ is a positive numeric constant. Since p0 ≤ (N − n + 1)/4, by Proposition
7.2 and (8.3), we have

(
E⊗N

i=1λDn
voln

(
KN

)−p0
)− 1

p0n ≥ c0

(
E⊗m

i=1γ n
voln

(
Km

)−p0
)− 1

p0n

≥ c1

(
E⊗m

i=1γn voln
(
Km

)−p0
)− 1

p0n

≥ c2

δ

(
E⊗m

i=1γn voln
(
Km

))1/n

≥ c3

δ

√
ln(2N/n)

n
.

By Markov’s inequality, we obtain

P⊗N
i=1λDn

(
voln

(
KN

)1/n ≤ cε

δ

√
ln(2N/n)

n

)
≤ εc1 N 1−1/δ2 n1/δ2

.

Lastly, apply Theorem 3.1. The proof of (8.2) follows the same argument. ��
Theorem 8.2 Let n ≤ N ≤ en and let μ1, . . . , μN ∈ Pb

n . Then for each ε ∈ (0, 1),

P⊗μi

(
voln

(
Z N

)1/n ≤ cεN√
n

)
≤ εn(N−n+1−o(1))/4. (8.4)

Proof Argue as in the proof of the previous theorem and apply Proposition 6.3 instead
of Proposition 6.2. ��
Remark 8.3 Note that when N = 2n the estimate in (8.2) is much stronger than the
estimate in (8.1), which suggests that a better exponent can be achieved in general. As
we will see in the next subsection, the estimates in (8.2) and (8.4) are sharp up to the
numeric constants involved.

Remark 8.4 We wish to emphasize several points regarding the exponent n(N − n +
1 − o(1))/4 in (8.2) and (8.4). Firstly, as we mentioned in Remark 7.4, the constant 4
is an artifact of the proof of Proposition 7.2 and N − n + 1 − o(1) is the best possible
in (8.4) (cf. Proposition 6.7). Secondly, the o(1)-term can be estimated to a high
degree of accuracy (cf. Proposition 6.5 and its proof). Finally, the ‘+1’ in the exponent
accommodates the case N = n, in which case n(N − n + 1 − o(1)) = n(1 − o(1)) is
the best that can be achieved in general; note also that the 4 is not needed in this case
(cf. Remark 7.3).
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8.1 Complementary Small-Ball Estimates

In this section we give lower bounds for the probabilities in Theorems 8.1 and 8.2. We
make use of known bounds for the volume of the convex hull and zonotope generated
by arbitrary points in R

n (which we stated in Sect. 4).
Letμ ∈ Pb

n and assume that fμ(0) = ∥
∥ fμ

∥
∥∞ = 1. Suppose there exists ε0 = ε0(μ)

such that

Pμ

(
|X | ≤ cε

√
n
)

≥ εn whenever ε < ε0, (8.5)

where c is a positive numeric constant. For instance, if fμ is continuous at 0 then there
exists ε0 = ε0(μ) such that | fμ(x)| ≥ 1/2 whenever |x | ≤ ε0c

√
n, hence (8.5) holds

(with c replaced by 21/nc). Given ε0(μ), we can apply Theorem 4.6 to obtain, for each
ε ≤ ε0(μ),

P⊗μ
(

voln
(
KN

)1/n ≤ cε

√
ln(2N/n)

n

)
≥ P⊗μ

(
|Xi | ≤ cε

√
n for i = 1, . . . , N

)

= Pμ

(
|X1| ≤ cε

√
n
)N

≥ εnN .

Similarly, for Z N we apply Lemma 4.7: for any ε ≤ ε0(μ),

P⊗μ
(

voln
(
Z N

)1/n ≤ cεN√
n

)
≥ P⊗μ

(
|Xi | ≤ cε

√
n for i = 1, . . . , N

)

= Pμ

(
|X1| ≤ cε

√
n
)N

≥ εnN .

Thus even though ε0(μ)depends onμ and inf{ε0(μ) : μ ∈ Pb
n } = 0, the asymptotic

behavior of the small-ball estimates for KN and Z N as ε → 0 is at least εnN . In some
classes of measures, one can control the value of ε0(μ); in particular, for the class of
isotropic log-concave probability measures (see Sect. 9.1).

9 Isotropicity and Log-Concavity

In many cases, the literature on volumetric bounds for random convex sets involves
isotropic measures rather than those in Pb

n . However, one can easily deduce results
for isotropic measures from our main theorems.

Let Pcov
n denote the set of measures μ ∈ Pn with bounded densities such that the

covariance matrix of μ is well-defined. We say that a probability measure μ ∈ Pcov
n

is isotropic if its covariance matrix is the identity. When μ is isotropic, we define its
isotropic constant Lμ by
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Lμ := ∥
∥ fμ

∥
∥1/n

∞ ,

where fμ is the density ofμ. Given any measureμ ∈ Pcov
n with barycenter at the origin,

one can find a linear map T : R
n → R

n (unique modulo orthogonal transformations)
of determinant one such that μ ◦ T −1 is an isotropic probability measure; in this way,
the isotropic constant is uniquely defined for all μ ∈ Pcov

n .
Let a > 0 and μ ∈ Pcov

n with density fμ. We define a new probability measure μa

on R
n as the measure that has density fμa (x) = an fμ(ax). Obviously,

∥
∥ fμa

∥
∥∞ = an

∥
∥ fμ

∥
∥∞ .

Moreover, if F : (Rn)N → R
+ is p-homogeneous, then

E⊗μF(X1, . . . , X N ) = a p
E⊗μa F(X1, . . . , X N ).

Thus if μ ∈ Pcov
n is isotropic then μ′ := μ 1

Lμ
satisfies

∥
∥ fμ′

∥
∥∞ = 1,

(
E⊗μvoln

([X1 . . . X N ]C)) 1
n = 1

Lμ

(
E⊗μ′voln

([X1 . . . X N ]C)) 1
n .

and

(
E⊗μvoln

([X1 . . . X N ]C)) 1
n

(
E⊗μvoln

([X1 . . . X N ]C)p) 1
pn

=
(
E⊗μ′voln

([X1 . . . X N ]C)) 1
n

(
E⊗μ′voln

([X1 . . . X N ]C)p) 1
pn

.

By a change of variables, note that for any S ∈ SL(n), we have

E⊗μ◦S−1 voln
([X1 . . . X N ]C)p = E⊗μvoln

([X1 . . . X N ]C)p

for any p for which the expressions are defined. Thus there is no loss in generality in
assuming that μ is isotropic.

Following the proof of our main theorem we obtain a corresponding result for
isotropic probability measures.

Theorem 9.1 Let n ≤ N ≤ en. Let μ ∈ Pcov
n and assume that μ is isotropic. Then

for every ε ∈ (0, 1),

P⊗μ
(

voln
(
KN

)1/n ≤ cε

δLμ

√
ln(2N/n)

n

)
≤ εc1 N 1−1/δ2 n1/δ2

and, if N ≤ neδ
2
, then

P⊗μ
(

voln
(
KN

)1/n ≤ cε

δLμ

√
ln(2N/n)

n

)
≤ εn(N−n+1−o(1))/4,
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where c and c1 are positive numeric constants. Similarly, for each ε ∈ (0, 1),

P⊗μ
(

voln
(
Z N

) 1
n ≤ c2ε

Lμ

N√
n

)
≤ εn(N−n+1−o(1))/4,

where c2 is a positive numeric constant.

It is known that inf{Lμ : μ ∈ Pcov
n } ≥ c, where c is a positive numeric constant

(see [5,58]). On the other hand, Lμ does not admit a uniform upper bound as μ varies
in Pcov

n . However, in the important class of log-concave probability measures LPn it
has been conjectured that

sup{Lμ : n ∈ N, μ ∈ LPn} ≤ c, (9.1)

where c > 0 is a positive numeric constant. This is known to be equivalent to a famous
open problem in convex geometry, namely, the Hyperplane Conjecture. We refer to
[58] for an introductory survey and to [23,40,42] for the best known results. In many
large subclasses of LPn , it has been verified that Lμ admits a uniform upper bound,
independent of the dimension; see, e.g., the references given in [63]. Henceforth, we
say that μ ∈ LPn has bounded isotropic constant if Lμ ≤ c, where c is a positive
numeric constant (independent of μ and n).

It is known that if μ is an isotropic log-concave probability measure on R
n with

bounded isotropic constant and n ≤ N ≤ en , then

(
E⊗μvoln

(
KN

)) 1
n 


√
ln (2N/n)√

n



(
E⊗λDn

voln
(
KN

)) 1
n ;

see [21]. In this case, we obtain the following result.

Theorem 9.2 Let n ≤ N ≤ en and let μ be an isotropic log-concave probability
measure on R

n with bounded isotropic constant. Then for every ε ∈ (0, 1),

P⊗μ
(

voln
(
KN

) 1
n ≤ cε

δ

(
E⊗μvoln

(
KN

)) 1
n
)

≤ εc1 N 1−1/δ2 n1/δ2

(9.2)

and, if N ≤ neδ
2
, then

P⊗μ
(

voln
(
KN

) 1
n ≤ cε

δ

(
E⊗μvoln

(
KN

)) 1
n
)

≤ εn(N−n+1−o(1))/4, (9.3)

where c and c1 are positive numeric constants.

A similar theorem is true for random zonotopes. If μ is an isotropic log-concave
probability measure on R

n , then

E⊗μvoln
(
Z N

)1/n 
 N√
n
; (9.4)
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the latter equivalence is proved in [68, Proposition 6 & Remark 3]. For the reader’s
convenience we sketch the proof. Note that for any subspace E ⊂ R

n , the isotropicity
of μ implies that

Eμ|PE X1|2 = dim(E).

Thus

E⊗μ|det[X1 . . . Xn]|2 = n!

(apply (2.5) and use Fubini’s theorem, integrating with respect to Xn , then Xn−1, and
so on). For I ⊂ {1, . . . , N }, write dI := |det([Xi ]i∈I )| and apply the zonotope volume
formula (4.16) and Jensen’s inequality:

E⊗μ
( ∑

|I |=n

dI

)1/n ≤
(

N

n

)1/n

(E⊗μdI0)
1/n ≤ eN

n
(n!)1/(2n) ≤ cN√

n
,

where c is a positive numeric constant and I0 = {1, . . . , n}. For the lower bound, we
use concavity of x �→ x1/n in (4.16):

E⊗μ
( ∑

|I |=n

dI

)1/n ≥
(

N

n

)1/n−1 ∑

|I |=n

E⊗μd1/n
I ≥ N

n
E⊗μd1/n

I .

One completes the proof of (9.4) by using the fact that E⊗μ|det([X1 . . . Xn])|1/n 
 √
n

(see [68, Corollary 1]).
Theorem 9.1 and the equivalence in (9.4) leads to the following.

Theorem 9.3 Let n ≤ N ≤ en and let μ be an isotropic log-concave probability
measure on R

n with bounded isotropic constant. Then, for every ε ∈ (0, 1),

P⊗μ
(

voln
(
Z N

) 1
n ≤ cε

(
E⊗μvoln

(
Z N

)) 1
n
)

≤ εn(N−n+1−o(1))/4. (9.5)

where c is a positive numeric constant.

9.1 Complementary Lower Bounds

In this section we prove that the small-ball probabilities in (9.3) (for N = 2n) and
(9.5) (for N ≥ 2n) are essentially sharp (up to the numeric constants involved).

Proposition 9.4 Let n ≤ N ≤ en and let μ be an isotropic log-concave probability
measure on R

n. Then for every ε ∈ (0, c0),

P⊗μ
(

voln
(
KN

) 1
n ≤ c1ε

√
ln(2N/n)

n

)
≥ εNn,
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and

P⊗μ
(

voln
(
Z N

) 1
n ≤ c2εN√

n

)
≥ εNn,

where the ci ’s are positive numeric constants.

Note that a sharper bound for the Gaussian measure γn was given in Proposition
6.7. The proof is analogous to the general case, which we gave in Sect. 8.1. All that
remains is to show the following proposition.

Proposition 9.5 Let μ be an isotropic log-concave probability measure on R
n. Let X

be a random vector distributed according to μ. Then for every ε ∈ (0, c0),

Pμ

(
|X | ≤ c1ε

√
n
)

≥ εn,

where c0 and c1 are positive numeric constants.

Proposition 9.5 shows that for any isotropic log-concave probability measure μ
on R

n the quantity ε0(μ) defined in Sect. 8.1 satisfies ε0(μ) ≥ c0 (with c = c1 in
(8.5)). By the argument given in Sect. 8.1, the small-ball estimates in (9.3) and (9.5)
are essentially sharp.

The first step in the proof of Proposition 9.5 involves covering numbers. Recall that
if C and D are convex bodies in R

N , the covering number of C with respect to D is
the minimum number N (C, D) of translates of D whose union covers C , i.e.,

N (C, D) := inf
{

M : ∃x1, . . . , xM ∈ R
N , C ⊂

M⋃

i=1

(D + xi )
}
. (9.6)

For further information on covering numbers see, e.g., [67].
The second ingredient is the following technical lemma about log-concave func-

tions, which is essentially shown in [41, Lemmas 4.4, 5.2].

Lemma 9.6 Let f : R
+ → R

+ be a C2log-concave function with
∫ ∞

0 f (t)dt < ∞.
Suppose that ‖ f ‖∞ ≤ en f (0). Then for n ≥ 2 and any b > 0,

b∫

0

tn−1 f (t)dt ≥ cn min
{ ∞∫

0

tn−1 f (t)dt, f (0)bn
}

(9.7)

Proof For convenience, let g(t) = tn−1 f (t) and h := ∫ ∞
0 g(t)dt . Let tn be the

(unique) positive real such that g′(tn) = 0. Let ε ∈ (0, 1) and a ≥ 5. Set t0 :=
sup{s > 0 : f (s) ≥ e−an f (0)}. It is shown in [41, Lemmas 4.4, 5.2] that

tn(1+ε)∫

tn(1−ε)
tn−1 f (t)dt ≥

(
1 − c1e−cε2n

) ∞∫

0

tn−1 f (t)dt (9.8)
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where c1 > 1 and 0 < c < 1 are positive numeric constants, and

t0∫

0

tn−1 f (t)dt ≥
(

1 − e−an/8
) ∞∫

0

tn−1 f (t)dt. (9.9)

Taking ε = 1/2 in (9.8) and using the definition of tn , we have

h ≤ c2

3tn
2∫

tn/2

tn−1 f (t)dt ≤ c2tn
n f (tn) ≤ c2tn

n ‖ f ‖∞ ≤ cn
3 tn

n f (0), (9.10)

where c2 and c3 are positive numeric constants. Taking a = 5 in (9.9) and using (9.8),
we have t0 ≥ tn/2, which means that for s ≤ tn/2,

f (s) ≥ e−5n f (0). (9.11)

Applying (9.8) once more, together with (9.11), we have

hc1e− c
4 n ≥

tn/2∫

0

tn−1 f (t)dt ≥ e−5n f (0)

tn/2∫

0

tn−1dt = e−5n

n2n
f (0)tn

n ,

which implies h ≥ cn
1 f (0)tn

n . Finally, if 0 < b ≤ tn/2, then (9.11) yields

b∫

0

tn−1 f (t)dt ≥ e−5n

n
f (0)bn .

On the other hand, if b ≥ tn/2, we apply (9.10) to get

b∫

0

tn−1 f (t)dt ≥
tn/2∫

0

tn−1 f (t)dt ≥ e−5n

n
f (0)tn

n ≥ cnh, (9.12)

from which the result follows. ��
Proof of Proposition 9.5 Let K be an isotropic convex body with isotropic constant
L K (cf. (2.1)). We will first show that for every ε ∈ (0, 1),

voln
(
K ∩ εL K Dn

) ≥ (cε)n, (9.13)

where c > 0 is a positive numeric constant. By [49, Lemma 4], the covering number
N (K , L K Dn) satisfies

N (K , L K Dn) ≤ ec0n,
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where c0 > 0 is a positive numeric constant. Standard volumetric arguments (as in,
e.g., [31, Lemma 4.2]) yield

N (K , εL K Dn) ≤ 4nvoln
(
K + εL K Dn

)

εnvoln
(
L K Dn

) ≤ 4nvoln
(
K + L K Dn

)

εnvoln
(
L K Dn

)

≤
(c1

ε

)n
N (K , L K Dn) ≤

(c2

ε

)n
.

By the Brunn–Minkowski inequality and [25, Theorem 4], if C1,C2 ⊂ R
N are convex

bodies such that the center of mass of C1 is the origin, voln
(
C1

) = 1, and C2 is origin-
symmetric, then

1 ≤ max
x∈Rn

voln
(
C1 ∩ (x + C2)

)
N (C1,C2) ≤ envoln

(
C1 ∩ C2

)
N (C1,C2).

Thus

voln
(
K ∩ εL K Dn

) ≥ e−n

N (K , εL K Dn)
≥ (cε)n,

which establishes (9.13).
Without loss of generality we may assume that the density f of μ is C2. Let

bn := ω
−1/n
n and set

ρK (θ) :=
( n

f (0)

∞∫

0

tn−1 f (tθ)dt
) 1

n

By [5], ρK is the radial function of a convex body K . It is known that voln
(
K

)1/n =
f (0)−1/n, L K 
 f (0)1/n and there exists T ∈ SL(n) satisfying |T x | 
 |x | for all
x ∈ Sn−1 such that T K is an isotropic convex body (see, e.g., [64, Propositions 3.3,
3.5]). Thus if K̃ is the volume-one homothet of K , we have

ρK̃ (θ) = n
1
n
( ∞∫

0

tn−1 f (t)dt
) 1

n
.

Note that

ρ
K̃∩ε f (0)

1
n Dn

(θ) = min
{

n
1
n
( ∞∫

0

tn−1 f (t)dt
) 1

n
, ε f (0)

1
n bn

}
. (9.14)

Since μ is isotropic, [25, Theorem 4] gives ‖ f ‖∞ ≤ en f (0). Using Lemma 9.6
and (9.14) we have
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μ(εDn) = nωn

∫

Sn−1

εbn∫

0

tn−1 f (tθ)dtdσ(θ)

≥ cnωn

∫

Sn−1

min{ρn
K̃
(θ), εn f (0)bn

n}dσ(θ)

= cnωn

∫

Sn−1

ρn

K̃∩ε f (0)
1
n Dn

(θ)dσ(θ)

= cnvoln
(
K̃ ∩ ε f (0)

1
n Dn

)

≥ cnvoln
(
K̃ ∩ εc′L K Dn

)
.

By adjusting the constants and applying Lemma 9.6 and (9.13) for K̃ , we conclude
the proof. ��

10 Bounds for a General Convex Body C

A large part of this paper has involved general random convex sets [X1 . . . X N ]C and
we have emphasized the small-ball probabilities for C = B N

1 and C = B N∞ only.
The approach of applying a random linear operator [X1 . . . X N ] to a general convex
body C has led to several applications [65,66, §4,5] and we feel it is of interest to
outline how to obtain small-ball probabilities for voln

([X1 . . . X N ]C)
in the general

case.
If C ⊂ R

N is nearly degenerate, one cannot expect to control the small-ball prob-
ability

P⊗μi

(
voln

([X1 . . . X N ]C)1/n ≤ ε
)
.

To ensure that C is not degenerate, we make assumptions about its “position.” By a
position of a convex body, we mean a linear image, chosen to satisfy certain condi-
tions. As Proposition 4.4 indicates, a key part of the proof is to bound the quantity
An,p(C). As we did for B N

1 and B N∞, we will give nearly optimal estimates when N
is proportional to n, assuming that C is in a suitable position. We will also provide
non-trivial estimates in the general case.

10.1 M-Position and the Proportional Case

Our first method for bounding An,p(C) is applicable when N is proportional to n and
depends on a deep result due to Milman [57]; see also [67, Chap. 7]. Milman proved
that given any convex body C , one can find a suitable position such that the covering
number of C by a ball of the same volume is of minimal possible order. As in Sect.
9.1, we use N (C, D) to denote the covering number of C with respect to D (cf. (9.6)).
Using the above notation, Milman’s theorem reads as follows.
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Theorem 10.1 There exists a constant β > 0 such that for any convex body C ⊂ R
N

there exists a linear operator T : R
N → R

N such that volN
(
T C

) = 1 and

N (T C, DN ) ≤ eβN . (10.1)

We say that C is in M-position if T is the identity operator. We refer to [67] for
further information about M-position.

The following proposition is a well-known property of bodies in M-position; the
proof is included for completeness.

Proposition 10.2 Let C ⊂ R
N be an origin-symmetric convex body in M-position

with constant β > 0. Let λ ∈ (0, 1) and set n = λN. Then

maxF∈G N ,n voln
(
PF C

) 1
n

minF∈G N ,n voln
(
PF C

) 1
n

≤ c(λ, β), (10.2)

where c(λ, β) > 0 depends only on λ, β.

Proof Let F ∈ G N ,n . Then

voln
(
PF C

)

voln
(
PF DN

) ≤ N (PF C, PF DN ) ≤ N (C, DN ) ≤ eβN ,

hence

voln
(
PF C

) 1
n ≤ eβ

N
k voln

(
PF DN

) 1
n . (10.3)

Since volN−n
(
C ∩ F⊥)

voln
(
PF C

) ≥ 1, we have

volN−n
(
C ∩ F⊥) ≥ 1

voln
(
PF C

) ≥ 1

eβN voln
(
PF DN

) .

Thus for every 1 ≤ � < N and E ∈ G N ,N−� we obtain

volN−�
(
PE C

) ≥ volN−�
(
C ∩ E

) ≥ e−βN 1

vol�
(
PE⊥ DN

) .

Applying the latter inequality for � := N − n and E ∈ G N ,n yields

voln
(
PE C

) 1
n ≥ e−β N

n
1

volN−n
(
PE⊥ DN

) 1
n

= e−β N
n

1

volN−n
(
DN ∩ E⊥) 1

n

≥ ce−βN
n . (10.4)
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By (10.3), (10.4) and the fact that voln
(
PF DN

) 1
n 
 √

N/n, we conclude that

maxF∈G N ,n voln
(
PF C

) 1
n

minF∈G N ,n voln
(
PF C

) 1
n

≤ ce2 βN
n

√
N

n
.

This yields (10.2) with c(λ, β) := c√
λ

e
2β
λ . ��

Proposition 10.3 Let C ⊂ R
N be an origin-symmetric convex body in M-position

with constant β. Let λ ∈ (0, 1) and let n = λN. Then for all p ∈ [1,∞],

An,p(C) ≤ c1e3β/λ. (10.5)

Proof Recalling the definition of An,p(C) (cf. (4.10)), we have

An,p(C) ≤ maxF∈G N ,n voln
(
PF C

) 1
n

minF∈G N ,n voln
(
PF C

) 1
n

.

Applying Proposition 10.2 gives the result. ��
By applying Proposition 4.4, one obtains small-ball estimates for voln

(
GC

)
when

N is proportional to n and C is in M-position. Proceeding to the case of arbitrary
measures μi ∈ Pb

n then depends on the comparison in Proposition 7.2 (where we
have assumed C is 1-symmetric) and the proof follows that of Theorem 8.1. It is not
difficult to show that any 1-symmetric convex body of volume one is in M-position.

10.2 Small-Ball Estimates for Norms: Implications for Generalized Intrinsic
Volumes

Our second method for bounding An,p(C) involves Proposition 5.5 and therefore
depends on lower bounds for generalized mean-widths W−p(C); this, in turn, depends
on small-ball estimates for norms. The study of small-ball probabilities for norms was
initiated in [43,46] and shown to have close connections to Milman’s proof of Dvoret-
zky’s theorem on nearly-Euclidean sections of convex bodies. We will give bounds
for An,p(C) in terms of the Dvoretzky dimension of C (defined below). Actually, one
can replace the Dvoretzky dimension by a potentially larger quantity. For this we will
make use of a theorem from [43], which we state below in terms of support functions
(dual to the setting there).

If C ⊂ R
N is a convex body, the Dvoretzky dimension k∗(C) is defined by

k∗(C) = N
( W (C)

diam(C)

)2
,

where diam(C) is the diameter of C and W (C) is the mean-width of C . As shown by
Milman [56] (see also [60]), the parameter k∗(C) is the dimension up to which “most”
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projections of C are nearly Euclidean; more precisely, for n ≤ k∗(C) the νN ,n-measure
of subspaces E ∈ G N ,n satisfying

c1W (C)PE B N
2 ⊂ PE C ⊂ c2W (C)PE B N

2 (10.6)

for some positive numeric constants c1 and c2 is at least 1 − e−n ; see [59] or [67] for
further background information.

It has been observed that if one requires only the left-hand inclusion of (10.6), then
the dimension at which this holds can increase dramatically. The critical dimension
depends on the following quantity, introduced in [43],

d∗(C) := min{− ln σ {θ ∈ SN−1 : hC (θ) ≤ W (C)/2}, N }.

One has d∗(C) ≥ c1k∗(C) for some positive numeric constant c1 > 0, see [43].

Theorem 10.4 [43] Let C be an origin-symmetric convex body in R
N . Assume that

0 < p ≤ d∗(C). Then

c1W (C) ≤ W−p(C) ≤ c2W (C)

where c, c1, c2 are positive numeric constants.

When C is in a suitable position, for instance when C◦ is in John’s position (see,
e.g., [59, Chap. 3]), we have k∗(C) ≥ c ln N , where c is a positive numeric constant.

Proposition 10.5 Let C ⊂ R
N be an origin-symmetric convex body. If np ≤ k∗(C) ≤

d∗(C), then

An,p(C) ≤ c, (10.7)

where c is a positive numeric constant. In particular, if C is a convex body such that
C◦ is in John’s position and 0 ≤ p ≤ ln N

n , then (10.7) holds.

Proof By (5.2), we have

W[n,1](C) ≤ c2√
n

W (C).

On the other hand, Proposition 5.5 gives

W[n,−p](C) ≥ c1√
n

W−np(C).

Thus

An,p(C) = W[n,1](C)
W[n,−p](C)

≤ c2W (C)

c1W−np(C)

Applying Theorem 10.4 yields An,p(C) ≤ c. ��
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Remark 10.6 It is shown in [43] that d∗(B N
1 ) is much larger than k∗(B N

1 ). In fact, the
calculation in [43, Remark 2 on page 204] led us to consider Proposition 6.1 and our
proof is based on similar estimates.
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