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Abstract The contact graph of an arbitrary finite packing of unit balls in Euclidean
3-space is the (simple) graph whose vertices correspond to the packing elements and
whose two vertices are connected by an edge if the corresponding two packing ele-
ments touch each other. One of the most basic questions on contact graphs is to find
the maximum number of edges that a contact graph of a packing of n unit balls can
have. Our method for finding lower and upper estimates for the largest contact num-
bers is a combination of analytic and combinatorial ideas and it is also based on some
recent results on sphere packings. In particular, we prove that if C(n) denotes the
largest number of touching pairs in a packing of n > 1 congruent balls in Euclidean

3-space, then 0.695 <
6n−C(n)

n
2
3

<
3
√

486 = 7.862 . . . for all n = k(2k2+1)
3 with k ≥ 2.

Keywords Congruent sphere packing · Contact number · Density · (truncated)
Voronoi cell · Union of balls · Isoperimetric inequality · Spherical cap packing

1 Introduction

Let E
d denote the d-dimensional Euclidean space. Then the contact graph of an arbi-

trary finite packing of unit balls (i.e., of an arbitrary finite family of non-overlapping
balls having unit radii) in E

d is the (simple) graph whose vertices correspond to the
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packing elements and whose two vertices are connected by an edge if and only if the
corresponding two packing elements touch each other. One of the most basic ques-
tions on contact graphs is to find the maximum number of edges that a contact graph
of a packing of n unit balls can have in E

d . In 1974 Harborth [6] proved the following
optimal result in E

2: the maximum number c(n) of touching pairs in a packing of n

congruent circular disks in E
2 is precisely �3n − √

12n − 3� implying that

lim
n→+∞

3n − c(n)√
n

= √
12 = 3.464 . . . .

Some years later the author [2] has proved the following estimates in higher dimen-
sions. The number of touching pairs in an arbitrary packing of n > 1 unit balls in E

d ,
d ≥ 3 is less than

1

2
τd n − 1

2d
δ
− d−1

d

d n
d−1
d ,

where τd stands for the kissing number of a unit ball in E
d (i.e., it denotes the max-

imum number of non-overlapping unit balls of E
d that can touch a given unit ball

in E
d ) and δd denotes the largest possible density for (infinite) packings of unit balls

in E
d . Now, recall that on the one hand, according to the well-known theorem of

Kabatiansky and Levenshtein [7] τd ≤ 20.401d(1+o(1)) and δd ≤ 2−0.599d(1+o(1)) as
d → +∞ on the other hand, τ3 = 12 (for the first complete proof see [12]) moreover,
according to the recent breakthrough result of Hales [5] δ3 = π√

18
. Thus, by combin-

ing the above results together we find that the number of touching pairs in an arbitrary
packing of n > 1 unit balls in E

d is less than

1

2
20.401d(1+o(1))n − 1

2
2−0.401(d−1)(1−o(1))n

d−1
d

as d → +∞ and in particular, it is less than

6n − 1

8

(
π√
18

)− 2
3

n
2
3 = 6n − 0.152 . . . n

2
3

for d = 3. The main purpose of this note is to improve further the latter result. In
order, to state our theorem in a proper form we need to introduce a bit of additional
terminology. If P is a packing of n unit balls in E

3, then let C(P ) stand for the
number of touching pairs in P , that is, let C(P ) denote the number of edges of the
contact graph of P and call it the contact number of P . Moreover, let C(n) be the
largest C(P ) for packings P of n unit balls in E

3. Finally, let us imagine that we
generate packings of n unit balls in E

3 in such a special way that each and every
center of the n unit balls chosen, is a lattice point of the face-centered cubic lattice
Λfcc with shortest non-zero lattice vector of length 2. Then let Cfcc(n) denote the
largest possible contact number of all packings of n unit balls obtained in this way.
Before stating our main theorem we make the following comments. First, recall that
according to [5] the lattice unit sphere packing generated by Λfcc gives the largest
possible density for unit ball packings in E

3, namely π√
18

with each ball touched by
12 others such that their centers form the vertices of a cuboctahedron. Second, it is
easy to see that Cfcc(2) = C(2) = 1, Cfcc(3) = C(3) = 3, Cfcc(4) = C(4) = 6. Third,
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it is natural to conjecture that Cfcc(9) = C(9) = 21. If this were true, then based on the
trivial inequalities C(n+1) ≥ C(n)+3, Cfcc(n+1) ≥ Cfcc(n)+3 valid for all n ≥ 2,
it would follow that Cfcc(5) = C(5) = 9, Cfcc(6) = C(6) = 12, Cfcc(7) = C(7) = 15,
and Cfcc(8) = C(8) = 18. Furthermore, we note that C(10) ≥ 25, C(11) ≥ 29, and
C(12) ≥ 33. In order to see that, one should take the union U of two regular octahedra
of edge length 2 in E

3 such that they share a regular triangle face T in common and
lie on opposite sides of it. If we take the unit balls centered at the nine vertices of U,
then there are exactly 21 touching pairs among them. Also, we note that along each
side of T the dihedral angle of U is concave and in fact, it can be completed to 2π

by adding twice the dihedral angle of a regular tetrahedron in E
3. This means that

along each side of T two triangular faces of U meet such that for their four vertices
there exists precisely one point in E

3 lying outside U and at distance 2 from each
of the four vertices. Finally, if we take the twelve vertices of a cuboctahedron of
edge length 2 in E

3 along with its center of symmetry, then the thirteen unit balls
centered about them have 36 contacts implying that C(13) ≥ 36. Whether in any
of the inequalities C(10) ≥ 25, C(11) ≥ 29, C(12) ≥ 33, and C(13) ≥ 36 we have
equality is a challenging open question. In the rest of this note we give a proof of the
following theorem.

Theorem 1.1

(i) C(n) < 6n − 0.695n
2
3 for all n ≥ 2.

(ii) Cfcc(n) < 6n − 3 3√18π
π

n
2
3 = 6n − 3.665 . . . n

2
3 for all n ≥ 2.

(iii) 6n − 3
√

486n
2
3 < Cfcc(n) ≤ C(n) for all n = k(2k2+1)

3 with k ≥ 2.

As an immediate result we get

Corollary 1.2

0.695 <
6n − C(n)

n
2
3

<
3
√

486 = 7.862 . . .

for all n = k(2k2+1)
3 with k ≥ 2.

The following was noted in [2]. Due to the Minkowski difference body method
(see for example, Chap. 6 in [11]) the family PK := {t1 + K, t2 + K, . . . , tn + K}
of n translates of the convex body K in E

d is a packing if and only if the family
PKo := {t1 + Ko, t2 + Ko, . . . , tn + Ko} of n translates of the symmetric difference
body Ko := 1

2 (K+ (−K)) of K is a packing in E
d . Moreover, the number of touching

pairs in the packing PK is equal to the number of touching pairs in the packing PKo .
Thus, for this reason and for the reason that if K is a convex body of constant width
in E

d , then Ko is a ball of E
d , Theorem 1.1 extends in a straightforward way to

translative packings of convex bodies of constant width in E
3.

For the sake of completeness we mention that the nature of contact numbers
changes dramatically for non-congruent sphere packings in E

3. For more details on
that we refer the interested reader to the elegant paper [8] of Kuperberg and Schramm.
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Last but not least, it would be interesting to improve further the estimates of The-
orem 1.1. In the last section of this paper we mention a particular packing conjecture
that could lead to a significant improvement on the estimate (i) in Theorem 1.1.

2 Proof of Theorem 1.1

2.1 Proof of (i)

Let B denote the (closed) unit ball centered at the origin o of E
3 and let P := {c1 +

B, c2 + B, . . . , cn + B} denote the packing of n unit balls with centers c1, c2, . . . , cn

in E
3 having the largest number C(n) of touching pairs among all packings of n unit

balls in E
3. (P might not be uniquely determined up to congruence in which case

P stands for any of those extremal packings.) Now, let r̂ := 1.81383. The following
statement shows the main property of r̂ that is needed for our proof of Theorem 1.1.

Lemma 2.1 Let B1,B2, . . . ,B13 be 13 different members of a packing of unit balls
in E

3. Assume that each ball of the family B2,B3, . . . ,B13 touches B1. Let B̂i be
the closed ball concentric with Bi having radius r̂ , 1 ≤ i ≤ 13. Then the boundary
bd(B̂1) of B̂1 is covered by the balls B̂2, B̂3, . . . , B̂13, that is,

bd(B̂1) ⊂
13⋃

j=2

B̂j .

Proof Let oi be the center of the unit ball Bi , 1 ≤ i ≤ 13 and assume that B1 is tangent
to the unit balls B2,B3, . . . ,B13 at the points tj ∈ bd(Bj ) ∩ bd(B1), 2 ≤ j ≤ 13.

Let α denote the measure of the angles opposite to the equal sides of the isosceles
triangle �o1pq with dist(o1,p) = 2 and dist(p,q) = dist(o1,q) = r̂ , where dist(·, ·)
denotes the Euclidean distance between the corresponding two points. Clearly,
cosα = 1

r̂
with α < π

3 .

Proposition 2.2 Let T be the convex hull of the points t2, t3, . . . , t13. Then the radius
of the circumscribed circle of each face of the convex polyhedron T is less than sinα.

Proof Let F be an arbitrary face of T with vertices tj , j ∈ IF ⊂ {2,3, . . . ,13} and let
cF denote the center of the circumscribed circle of F . Clearly, the triangle �o1cF tj
is a right triangle with a right angle at cF and with an acute angle of measure βF at o1
for all j ∈ IF . We have to show that βF < α. We prove this by contradiction. Namely,
assume that α ≤ βF . Then either π

3 < βF or α ≤ βF ≤ π
3 . First, let us take a closer

look of the case π
3 < βF . Reflect the point o1 about the plane of F and label the point

obtained by o′
1. Clearly, the triangle �o1o′

1oj is a right triangle with a right angle
at o′

1 and with an acute angle of measure βF at o1 for all j ∈ IF . Then reflect the
point o1 about o′

1 and label the point obtained by o′′
1 furthermore, let B′′

1 denote the
unit ball centered at o′′

1. As π
3 < βF therefore dist(o1,o′′

1) < 2, and so one can simply
translate B′′

1 along the line o1o′′
1 away from o1 to a new position say, B′′′

1 such that it
is tangent to B1. However, this would mean that B1 is tangent to 13 non-overlapping
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unit balls namely, to B′′′
1 ,B2,B3, . . . ,B13, clearly contradicting to the well-known

fact [12] that this number cannot be larger than 12. Thus, we are left with the case
when α ≤ βF ≤ π

3 . By repeating the definitions of o′
1, o′′

1, and B′′
1, the inequality βF ≤

π
3 implies in a straightforward way that the 14 unit balls B1,B′′

1,B2,B3, . . . ,B13 form
a packing in E

3. Moreover, the inequality α ≤ βF yields that dist(o1,o′′
1) ≤ 4 cosα =

4
r̂

= 2.205278333691 . . . < 2.205279217705. Finally, notice that the latter inequality
contradicts to the following recent result of Böröczky and Szabó [3].

Lemma 2.3 Let B1,B2, . . . ,B14 be 14 different members of a packing of unit balls
in E

3. Assume that each ball of the family B2,B3, . . . ,B13 touches B1. Then the
distance between the centers of B1 and B14 is at least

2.205279217705.

This completes the proof of Proposition 2.2. �

Now, we are ready to prove Lemma 2.1. First, we note that by projecting the faces
F of T from the center point o1 onto the sphere bd(B̂1) we get a tiling of bd(B̂1)

into spherically convex polygons F̂ . Thus, it is sufficient to show that if F is an ar-
bitrary face of T with vertices tj , j ∈ IF ⊂ {2,3, . . . ,13}, then its central projection
F̂ ⊂ bd(B̂1) is covered by the closed balls B̂j , j ∈ IF ⊂ {2,3, . . . ,13}. Second, in
order to achieve this it is sufficient to prove that the projection ĉF of the center cF of
the circumscribed circle of F from the center point o1 onto the sphere bd(B̂1) is cov-
ered by each of the closed balls B̂j , j ∈ IF ⊂ {2,3, . . . ,13}. Indeed, if in the triangle
�o1oj ĉF the measure of the angle at o1 is denoted by βF , then Proposition 2.2 im-
plies in a straightforward way that βF < α. Hence, based on dist(o1,oj ) = 2 and
dist(o1, ĉF ) = r̂ , a simple comparison of the triangle �o1oj ĉF with the triangle
�o1pq yields that dist(oj , ĉF ) < r̂ holds for all j ∈ IF ⊂ {2,3, . . . ,13}, finishing
the proof of Lemma 2.1. �

Next, let us take the union
⋃n

i=1(ci + r̂B) of the closed balls c1 + r̂B, c2 +
r̂B, . . . , cn + r̂B of radii r̂ centered at the points c1, c2, . . . , cn in E

3.

Lemma 2.4

nvol3(B)

vol3(
⋃n

i=1(ci + r̂B))
< 0.7785,

where vol3(·) refers to the 3-dimensional volume of the corresponding set.

Proof First, partition
⋃n

i=1(ci + r̂B) into truncated Voronoi cells as follows. Let Pi

denote the Voronoi cell of the packing P assigned to ci + B, 1 ≤ i ≤ n, that is, let Pi

stand for the set of points of E
3 that are not farther away from ci than from any other

cj with j = i,1 ≤ j ≤ n. Then, recall the well-known fact (see for example, [11])
that the Voronoi cells Pi , 1 ≤ i ≤ n just introduced form a tiling of E

3. Based on this
it is easy to see that the truncated Voronoi cells Pi ∩ (ci + r̂B), 1 ≤ i ≤ n generate
a tiling of the non-convex container

⋃n
i=1(ci + r̂B) for the packing P . Second, as
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√
3
2 = 1.2247 . . . < r̂ = 1.81383 therefore the following recent result (Corollary 3

in [1]) of the author applied to the truncated Voronoi cells Pi ∩ (ci + r̂B), 1 ≤ i ≤ n

implies the inequality of Lemma 2.4 in a straightforward way.

Lemma 2.5 Let F be an arbitrary (finite or infinite) family of non-overlapping unit
balls in E

3 with the unit ball B centered at the origin o of E
3 belonging to F . Let P

stand for the Voronoi cell of the packing F assigned to B. Moreover, let r :=
√

3
2 =

1.2247 . . . and let rB denote the (closed) ball of radius r centered at the origin o
of E

3. Then

vol3(B)

vol3(P)
≤ vol3(B)

vol3(P ∩ rB)

≤ 20
√

6 arctan(
√

2
2 ) − 2(2

√
6 − 1)π

5
√

2 + 3π − 15 arctan(
√

2
2 )

= 0.77842 . . . < 0.7785.

This finishes the proof of Lemma 2.4. �

The well-known isoperimetric inequality [10] applied to
⋃n

i=1(ci + r̂B) yields

Lemma 2.6

36πvol23

(
n⋃

i=1

(ci + r̂B)

)
≤ svol32

(
bd

(
n⋃

i=1

(ci + r̂B)

))
,

where svol2(·) refers to the 2-dimensional surface volume of the corresponding set.

Thus, Lemmas 2.4 and 2.6 generate the following inequality.

Corollary 2.7

14.849236n
2
3 < 14.84923634 . . . n

2
3 = 4π

(0.7785)
2
3

n
2
3

< svol2

(
bd

(
n⋃

i=1

(ci + r̂B)

))
.

Now, assume that ci + B ∈ P is tangent to cj + B ∈ P for all j ∈ Ti , where Ti ⊂
{1,2, . . . , n} stands for the family of indices 1 ≤ j ≤ n for which dist(ci , cj ) = 2.
Then let Ŝi := bd(ci + r̂B) and let ĉij be the intersection of the line segment cicj

with Ŝi for all j ∈ Ti . Moreover, let C
Ŝi

(ĉij ,
π
6 ) (resp., C

Ŝi
(ĉij , α)) denote the open

spherical cap of Ŝi centered at ĉij ∈ Ŝi having angular radius π
6 (resp., α with 0 <

α < π
2 and cosα = 1

r̂
). Clearly, the family {C

Ŝi
(ĉij ,

π
6 ), j ∈ Ti} consists of pairwise

disjoint open spherical caps of Ŝi ; moreover,∑
j∈Ti

svol2(CŜi
(ĉij ,

π
6 ))

svol2(
⋃

j∈Ti
C

Ŝi
(ĉij , α))

=
∑

j∈Ti
svol2(C(uij ,

π
6 ))

svol2(
⋃

j∈Ti
C(uij , α))

, (1)
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where uij := 1
2 (cj − ci ) ∈ S

2 := bd(B) and C(uij ,
π
6 ) ⊂ S

2 (resp., C(uij , α) ⊂ S
2)

denotes the open spherical cap of S
2 centered at uij having angular radius π

6 (resp.,
α). Now, Molnár’s density bound (Satz I in [9]) implies that∑

j∈Ti
svol2(C(uij ,

π
6 ))

svol2(
⋃

j∈Ti
C(uij , α))

< 0.89332. (2)

In order to estimate svol2(bd(
⋃n

i=1(ci + r̂B))) from above let us assume that m

members of P have 12 touching neighbors in P and k members of P have at most
nine touching neighbors in P . Thus, n − m − k members of P have either 10 or
11 touching neighbors in P . (Here we have used the well-known fact that τ3 = 12,
that is, no member of P can have more than 12 touching neighbors.) Without loss of
generality we may assume that 4 ≤ k ≤ n − m.

First, we note that svol2(C(uij ,
π
6 )) = 2π(1 − cos π

6 ) = 2π(1 −
√

3
2 ) and

svol2(CŜi
(ĉij ,

π
6 )) = 2π(1 −

√
3

2 )r̂2. Second, recall Lemma 2.1 according to which
if a member of P say, ci + B has exactly 12 touching neighbors in P , then
Ŝi ⊂ ⋃

j∈Ti
(cj + r̂B), i.e., svol2(bd(

⋃n
i=1(ci + r̂B))) has zero contribution coming

from Ŝi . These facts together with (1) and (2) imply the following estimate.

Corollary 2.8

svol2

(
bd

(
n⋃

i=1

(ci + r̂B)

))
<

32.04253

3
(n − m − k) + 32.04253k.

Proof

svol2

(
bd

(
n⋃

i=1

(ci + r̂B)

))

<

(
4πr̂2 − 10 · 2π(1 −

√
3

2 )r̂2

0.89332

)
(n − m − k) +

(
4πr̂2 − 3 · 2π(1 −

√
3

2 )r̂2

0.89332

)
k

< 10.34119(n − m − k) + 32.04253k <
32.04253

3
(n − m − k) + 32.04253k. �

Hence, Corollary 2.7 and Corollary 2.8 yield in a straightforward way that

1.39026n
2
3 − 3k < n − m − k. (3)

Finally, as the number C(n) of touching pairs in P is obviously at most

1

2

(
12n − (n − m − k) − 3k

)
,

therefore (3) implies that

C(n) ≤ 1

2

(
12n − (n − m − k) − 3k

)
< 6n − 0.69513n

2
3 < 6n − 0.695n

2
3 ,

finishing the proof of (i) in Theorem 1.1.
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2.2 Proof of (ii)

Although the idea of the proof of (ii) is similar to that of (i) they differ in the com-
binatorial counting part (see (9)) as well as in the density estimate for packings of
spherical caps of angular radii π

6 (see (8)). Moreover, the proof of (ii) is based on the

new parameter value r̄ := √
2 (replacing r̂ = 1.81383). The details are as follows.

First, recall that if Λfcc denotes the face-centered cubic lattice with shortest non-
zero lattice vector of length 2 in E

3 and we place unit balls centered at each lattice
point of Λfcc, then we get the fcc lattice packing of unit balls, labeled by Pfcc, in
which each unit ball is touched by 12 others such that their centers form the vertices
of a cuboctahedron. (Recall that a cuboctahedron is a convex polyhedron with 8 tri-
angular faces and 6 square faces having 12 identical vertices, with 2 triangles and
2 squares meeting at each, and 24 identical edges, each separating a triangle from
a square. As such it is a quasiregular polyhedron, i.e. an Archimedean solid, being
vertex-transitive and edge-transitive.) Second, it is well known (see [4] for more de-
tails) that the Voronoi cell of each unit ball in Pfcc is a rhombic dodecahedron (the
dual of a cuboctahedron) of volume

√
32 (and of circumradius

√
2). Thus, the density

of Pfcc is
4π
3√
32

= π√
18

.

Now, let B denote the unit ball centered at the origin o ∈ Λfcc of E
3 and let

P := {c1 + B, c2 + B, . . . , cn + B} denote the packing of n unit balls with centers
{c1, c2, . . . , cn} ⊂ Λfcc in E

3 having the largest number Cfcc(n) of touching pairs
among all packings of n unit balls being a sub-packing of Pfcc. (P might not be
uniquely determined up to congruence in which case P stands for any of those
extremal packings.) As the Voronoi cell of each unit ball in Pfcc is contained in
a ball of radius r̄ = √

2 therefore, based on the corresponding decomposition of⋃n
i=1(ci + r̄B) into truncated Voronoi cells, we get

nvol3(B)

vol3(
⋃n

i=1(ci + r̄B))
<

π√
18

= 0.7404 . . . . (4)

As a next step we apply the isoperimetric inequality [10]:

36πvol23

(
n⋃

i=1

(ci + r̄B)

)
≤ svol32

(
bd

(
n⋃

i=1

(ci + r̄B)

))
. (5)

Thus, (4) and (5) in a straightforward way yield

15.3532 . . . n
2
3 = 4 3

√
18πn

2
3 < svol2

(
bd

(
n⋃

i=1

(ci + r̄B)

))
. (6)

Now, assume that ci + B ∈ P is tangent to cj + B ∈ P for all j ∈ Ti , where Ti ⊂
{1,2, . . . , n} stands for the family of indices 1 ≤ j ≤ n for which dist(ci , cj ) = 2.
Then let S̄i := bd(ci + r̄B) and let c̄ij be the intersection of the line segment cicj

with S̄i for all j ∈ Ti . Moreover, let CS̄i
(c̄ij ,

π
6 ) (resp., CS̄i

(c̄ij ,
π
4 )) denote the open

spherical cap of S̄i centered at c̄ij ∈ S̄i having angular radius π
6 (resp., π

4 ). Clearly, the
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family {CS̄i
(c̄ij ,

π
6 ), j ∈ Ti} consists of pairwise disjoint open spherical caps of S̄i ;

moreover, ∑
j∈Ti

svol2(CS̄i
(c̄ij ,

π
6 ))

svol2(
⋃

j∈Ti
CS̄i

(c̄ij ,
π
4 ))

=
∑

j∈Ti
svol2(C(uij ,

π
6 ))

svol2(
⋃

j∈Ti
C(uij ,

π
4 ))

, (7)

where uij = 1
2 (cj − ci ) ∈ S

2 and C(uij ,
π
6 ) ⊂ S

2 (resp., C(uij ,
π
4 ) ⊂ S

2) denotes the
open spherical cap of S

2 centered at uij having angular radius π
6 (resp., π

4 ). Now, the
geometry of the cuboctahedron representing the 12 touching neighbors of an arbitrary
unit ball in Pfcc implies in a straightforward way that∑

j∈Ti
svol2(C(uij ,

π
6 ))

svol2(
⋃

j∈Ti
C(uij ,

π
4 ))

≤ 6

(
1 −

√
3

2

)
= 0.8038 . . . (8)

with equality when 12 spherical caps of angular radius π
6 are packed on S

2.
Finally, as svol2(C(uij ,

π
6 )) = 2π(1 − cos π

6 ) and svol2(CS̄i
(c̄ij ,

π
6 )) = 2π ×

(1 −
√

3
2 )r̄2 therefore (7) and (8) yield that

svol2

(
bd

(
n⋃

i=1

ci + r̄B

))
≤ 4πr̄2n − 1

6(1 −
√

3
2 )

2

(
2π

(
1 −

√
3

2

)
r̄2

)
Cfcc(n)

= 8πn − 4π

3
Cfcc(n). (9)

Thus, (6) and (9) imply that

4 3
√

18πn
2
3 < 8πn − 4π

3
Cfcc(n). (10)

From (10) the inequality Cfcc(n) < 6n − 3 3√18π
π

n
2
3 = 6n − 3.665 . . . n

2
3 follows in

a straightforward way for all n ≥ 2. This completes the proof of (ii) in Theorem 1.1.

2.3 Proof of (iii)

It is rather easy to show that for any positive integer k ≥ 2 there are n(k) := 2k3+k
3 =

k(2k2+1)
3 lattice points of the face-centered cubic lattice Λfcc such that their convex

hull is a regular octahedron K ⊂ E
3 of edge length 2(k − 1) having exactly k lattice

points along each of its edges. Now, draw a unit ball around each lattice point of
Λfcc ∩ K and label the packing of the n(k) unit balls obtained in this way by Pfcc(k).
It is easy to check that if the center of a unit ball of Pfcc(k) is a relative interior
point of an edge (resp., of a face) of K, then the unit ball in question has seven
(resp., nine) touching neighbors in Pfcc(k). Last but not least, any unit ball of Pfcc(k)

whose center is an interior point of K has 12 touching neighbors in Pfcc(k). Next
we note that the number of lattice points of Λfcc lying in the relative interior of the
edges (resp., faces) of K is 12(k − 2) = 12k − 24 (resp., 8( 1

2 (k − 3)2 + 1
2 (k − 3)) =

4(k − 3)2 + 4(k − 3)). Furthermore the number of lattice points of Λfcc in the interior
of K is equal to 2

3 (k − 2)3 + 1
3 (k − 2). Thus, the contact number C(Pfcc(k)) of the

packing Pfcc(k) is equal to
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12

2

(
2

3
(k − 2)3 + 1

3
(k − 2)

)
+ 9

2

(
4(k − 3)2 + 4(k − 3)

) + 7

2
(12k − 24) + 24

2

= 4k3 − 6k2 + 2k.

As a result we get

C
(

Pfcc(k)
) = 6n(k) − 6k2. (11)

Finally, as 2k3

3 < n(k) therefore 6k2 <
3
√

486n
2
3 (k), and so (11) implies (iii) of

Theorem 1.1 in a straightforward way.

3 On Improving (i) in Theorem 1.1

Let δ(K) denote the largest density of packings of translates of the convex body K in
E

d , d ≥ 3. The following result has been proved by the author in [2].

Lemma 3.1 Let Ko be a convex body in E
d , d ≥ 2 symmetric about the origin o of E

d

and let {c1 + Ko, c2 + Ko, . . . , cn + Ko} be an arbitrary packing of n ≥ 1 translates
of Ko in E

d . Then

nvold(Ko)

vold(
⋃n

i=1(ci + 2Ko))
< δ(Ko).

Let B denote the unit ball centered at the origin o of E
3 and let P := {c1 + B, c2 +

B, . . . , cn + B} denote the packing of n unit balls with centers c1, c2, . . . , cn having
the largest number C(n) of touching pairs among all packings of n unit balls in E

3.
(P might not be uniquely determined up to congruence in which case P stands for
any of those extremal packings.) The well-known result of Hales [5] according to
which δ3 = π√

18
and Lemma 3.1 imply in a straightforward way

Lemma 3.2
nvol3(B)

vol3(
⋃n

i=1(ci + 2B))
< δ(B) = π√

18
.

The isoperimetric inequality [10] yields

Lemma 3.3

36πvol23

(
n⋃

i=1

(ci + 2B)

)
≤ svol32

(
bd

(
n⋃

i=1

(ci + 2B)

))
.

Thus, Lemmas 3.2 and 3.3 generate the following inequality.

Corollary 3.4

4 3
√

18πn
2
3 < svol2

(
bd

(
n⋃

i=1

(ci + 2B)

))
.
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Now, assume that ci + B ∈ P is tangent to cj + B ∈ P for all j ∈ Ti , where Ti ⊂
{1,2, . . . , n} stands for the family of indices 1 ≤ j ≤ n for which ‖ci − cj‖ = 2. Then
let Si := bd(ci + 2B) and let CSi

(cj ,
π
6 ) denote the open spherical cap of Si centered

at cj ∈ Si having angular radius π
6 . Clearly, the family {CSi

(cj ,
π
6 ), j ∈ Ti} consists

of pairwise disjoint open spherical caps of Si ; moreover,∑
j∈Ti

svol2(CSi
(cj ,

π
6 ))

svol2(
⋃

j∈Ti
CSi

(cj ,
π
3 ))

=
∑

j∈Ti
svol2(C(uij ,

π
6 ))

svol2(
⋃

j∈Ti
C(uij ,

π
3 ))

,

where uij := 1
2 (cj − ci ) ∈ S

2 and C(uij ,
π
6 ) ⊂ S

2 (resp., C(uij ,
π
3 ) ⊂ S

2) denotes the
open spherical cap of S

2 centered at uij having angular radius π
6 (resp., π

3 ). Now, we
are ready to state the main conjecture of this section.

Conjecture 3.5 Let {C(um, π
6 ), 1 ≤ m ≤ M} be a family of M pairwise disjoint

open spherical caps of angular radii π
6 in S

2. Then∑
1≤m≤M svol2(C(um, π

6 ))

svol2(
⋃

1≤m≤M C(um, π
3 ))

≤ 6

(
1 −

√
3

2

)
= 0.8038 . . .

with equality when M = 12 spherical caps of angular radii π
6 are packed on S

2.

Clearly, M ≤ τ3 = 12. Moreover, if true, then Conjecture 3.5 can be used to im-
prove the upper bound for C(n) in (i) of Theorem 1.1 as follows. First, Conjecture 3.5
implies in a straightforward way that

svol2

(
bd

(
n⋃

i=1

(ci + 2B)

))

≤ 16πn − 1

6(1 −
√

3
2 )

16π

(
1 −

√
3

2

)
C(n) = 16πn − 8π

3
C(n).

Second, the above inequality combined with Corollary 3.4 yields

4(18π)
1
3 n

2
3 < 16πn − 8π

3
C(n),

from which the inequality

C(n) < 6n − 3 3
√

18π

2π
n

2
3 = 6n − 1.8326 . . . n

2
3

follows. Clearly, this would be a significant improvement on (i) in Theorem 1.1.
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