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Abstract We address the problem of localizing homology classes, namely, finding
the cycle representing a given class with the most concise geometric measure. We
study the problem with different measures: volume, diameter and radius.

For volume, that is, the 1-norm of a cycle, two main results are presented. First,
we prove that the problem is NP-hard to approximate within any constant factor.
Second, we prove that for homology of dimension two or higher, the problem is
NP-hard to approximate even when the Betti number is O(1). The latter result leads
to the inapproximability of the problem of computing the nonbounding cycle with
the smallest volume and computing cycles representing a homology basis with the
minimal total volume.

As for the other two measures defined by pairwise geodesic distance, diameter
and radius, we show that the localization problem is NP-hard for diameter but is
polynomial for radius.

Our work is restricted to homology over the Z; field. Results over other fields have
been studied recently by Dey et al.: In STOC, pp. 221-230 (2010).
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1 Introduction

The problem of computing the topological features of a space has recently drawn
much attention from researchers in various fields, such as high-dimensional data
analysis [5], graphics [17], networks [12] and computational biology [11]. Topo-
logical features are often preferable to purely geometric features, as they are more
qualitative and global, and tend to be more robust. If the goal is to characterize a
space, therefore, features which incorporate topology seem to be good candidates.

While topological features are global, the need to “localize” them has been raised
in a variety of applications. In graphics and manifold learning, one wants to detect and
remove topological noise such as the small holes and handles that are introduced in
data acquisition; this is often done in the context of traditional signal-noise analysis
and finite sampling of continuous spaces [21, 25, 29]. In the area of sensor networks,
holes of the coverage region, caused by physical constraints, should be accurately
identified and described so as to produce a network as robust as possible [20, 26].
In the study of shape, 3D shapes may be enriched with properties such as curvatures
associated with tangent vectors at each tangent plane. The new augmented shape lives
in high dimension, whose topological features can be localized and reveal geometric
features of the original shape [4].

In this paper, we will address the localization problem, namely, finding the small-
est representative cycle of a homology class with regard to a given natural criterion
of the size of a cycle. The criterion should be deliberately chosen so that the corre-
sponding smallest cycle is concise in not only mathematics but also intuition. Such a
cycle is a “well-localized” representative cycle of its class. See Fig. 1 for examples.
In a disk with three holes (Fig. 1(a)), cycles z; and z» are well localized; z3 is not. In
a 2-handled torus (Fig. 1(b)), the concise cycle z; is a better representative (than z5)
of its class and describes the small handle better.

In Sect. 4.1, we use volume, the number of simplices of a cycle, as the criterion
to minimize. For a one-dimensional (resp. two-dimensional) cycle, the volume is its
length (resp. area).

We have two main results. First, we prove that localizing a given class with the
minimal volume cycle is NP-hard to approximate within any constant factor. The
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Fig.1 Motivating examples for localization
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proof is a strict reduction from the nearest codeword problem [2]. We prove the inap-
proximability for homology of any dimension.

Second, we prove that for homology of dimension two or higher, computing the
nonbounding cycle with the smallest volume is NP-hard to approximate within any
constant factor. This is true even when the Betti number is fixed. This result leads to
the inapproximability of two other problems concerning homology of dimension two
or higher, namely,

e localizing a given class with the minimal volume cycle, when Betti number is fixed,
and
e computing a homology cycle basis with the minimal total volume.

We conclude the paper with a discussion of other minimization criteria, including
diameter and radius (Sect. 5). In specific, we show that localization with diameter
cost function is NP-hard, where as with radius is polynomial.

Throughout this paper, the topological features we use are homology classes over
7 field. (Thus, all the additions are mod 2 additions.)

2 Preliminaries
2.1 Homology Groups

We briefly describe some background knowledge from algebraic topology. Refer to
[24] for more details. We restrict our discussion to the combinatorial framework of
simplicial homology over Z; field.

Given a simplicial complex K, a d-chain is a formal sum of d-simplices, ¢ =
ZUE Kk 400, a5 € Zp. All the d-chains form the group of d-chains, C4(K). The
boundary of a d-chain is the sum of the (d — 1)-faces of all the d-simplices in the
chain. The boundary operator d; : C4(K) — C4—1(K) is a group homomorphism.

A d-cycle is a d-chain without boundary.! The set of d-cycles forms a subgroup
of the chain group, which is the kernel of the boundary operator, Z;(K) = ker(dg).
A d-boundary is the boundary of a (d + 1)-chain. The set of d-boundaries forms a
group, which is the image of the boundary operator, B;(K) = img(dg+1). It is not
hard to see that a d-boundary is also a d-cycle. Therefore, B;(K) is a subgroup of
Z4(K). A d-cycle which is not a d-boundary, z € Z;(K)\By(K), is a nonbounding
cycle. In our case, the coefficients belong to a field, namely Z;; when this is the case,
the groups of chains, boundaries and cycles are all vector spaces. Note that this is not
true when the homology is over a ring which is not a field, such as Z.

The d-dimensional homology group is defined as the quotient group Hy(K) =
Z4(K)/Bg(K). An element in Hy (K) is a homology class, which is a coset of By (K),
[z] = z 4+ B4(K) for some d-cycle z € Z;(K). If z is a d-boundary, [z] = B4(K) is
the identity element of H;(K). Otherwise, when z is a nonbounding cycle, [z] is a
nontrivial homology class, and z is called a representative cycle of [z]. Cycles in the

IFor those unfamiliar with homology, we emphasize that a 1-cycle is different from the cycle defined in
graph theory. For the former definition, a 1-cycle can be a disjoint union of arbitrarily many 1-cycles. But
this is not true for the latter definition.
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same homology class are homologous to each other, which means their difference is
a boundary.
The dimension of the homology group, which is referred to as the Betti number,

Ba = dim(Hg(K)) = dim(Z4(K)) — dim(By(K)).

As the dimension of the chain group is upperbounded by the cardinality of K, n, so
are the dimensions of B;(K), Z;(K) and Hgz (K'). The Betti number can be computed
with a reduction algorithm based on row and column operations of the boundary
matrices [24]. Various reduction algorithms have been devised for different purposes.

A homology basis is a set of B, classes generating the group Hy(K). We call a
set of B; nonbounding cycles representing a homology basis a homology cycle basis.
Any d-cycle can be written as a linear combination of a homology cycle basis and
boundaries. Given a homology cycle basis {z1, z2, ..., zg,}, any homology class can

be written as Zf ¢

aj =
o= |: ]
ag,

Note that since the field is Z,, the set of d-chains is in one-to-one correspondence
with the set of subsets of the set of d-simplices. A d-chain corresponds to an n4-
dimensional vector, whose nonzero entries correspond to the included d-simplices.
Here ng4 is the number of d-simplices in K. Computing the boundary of a d-chain
corresponds to multiplying the chain vector with a boundary matrix [by, ..., by,],
whose column vectors are boundaries of d-simplices in K. By slightly abusing nota-
tion, we call the boundary matrix 9.

We call a subset of simplices of a given simplicial complex a subcomplex if this
subset itself is a simplicial complex. We define the d-skeleton of K as the subcomplex
consisting of all the d-simplices and their faces. The following notation will prove
convenient. We say that a d-chain ¢ € C4(K) is carried by a subcomplex K¢ when
all the d-simplices of ¢ belong to Ko. We denote by vert(K) the set of vertices of the
simplicial complex K and by vert(c) that of the chain c. Denote by | K | the underlying
space of K and by |c| that of the chain c.

Replacing simplices by their continuous images in a given topological space gives
singular homology. The simplicial homology of a simplicial complex is naturally
isomorphic to the singular homology of its geometric realization. This implies, in
particular, that the simplicial homology of a space does not depend on the particular
simplicial complex chosen for the space. In figures of this paper, we often ignore the
simplicial complex and only show the continuous images of chains.

1 @ilzi]. Tts cycles can be written as [z1, ..., 2g,lo + 0g41y, where

The Discrete Geodesic Distance To introduce the diameter and radius functions,
we need a notion of distance. As we will deal with a simplicial complex K, it
is most natural to introduce a discrete metric and corresponding distance func-
tions. We define the discrete geodesic distance from a vertex p € vert(K), f) :
vert(K) — R, as follows. Suppose that each edge in K has a nonnegative weight
and, for any vertex g € vert(K), f},(g) = dist(p, q) is the length of the shortest path
connecting p and ¢ in the 1-skeleton of K. We may then extend this distance func-
tion from vertices to higher-dimensional simplices naturally. For any simplex o € K,
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fp(o) is the maximal function value of the vertices of o, f,(0) = maxgevert(o) fp(q)-
This extension has the same effect as linearly interpolating the function on the inte-
riors of the simplices (the sublevel sets of the two extensions are homotopy equiva-
lent). Finally, we define the geodesic ball B;, p € vert(K), r > 0, as the subset of K,
B; ={o € K| fp(0) <r}.Itis straightforward to show that these subsets are in fact
subcomplexes.

2.2 Terminology from Coding Theory

We focus on binary linear codes and thus only use matrices over the Z, field. For
consistency, we switch the roles of the row and column indices from the standard
definition. Refer to [23] for details.

Given an m x k (m > k) full-rank matrix A, we define a linear code as the k-
dimensional column space of A, namely, span(A). Each element of the linear code
is called a codeword. This matrix is called the generator matrix as it is a basis of the
linear code. By slightly abusing notation, we call a full-rank matrix AL the parity-
check matrix if its nullspace is the linear code generated by A.

Given a generator matrix A, A1 may be computed in polynomial time. Its dimen-
sion is (m — k) x m. In specific, A~ A =0, and thus AT (A1)T = 0. Any basis of
the solution space of the linear equation system A”x = 0 would form a valid A™.
This could be computed by a Gauss—Jordan elimination. For example, the generator
matrix and its parity-check matrix could be

=

Il
e Nl
O = O = =
SO = O O

=

—

|
S = O O =
—_—0 O = =

2.3 The Hardness of Approximability and Strict Reductions

We will prove that several optimization problems are NP-hard to approximate within
any constant factor. Relevant definitions will be presented in this section. See [3] for
more details. For ease of exposition, we only discuss minimization problems. The
definitions can be extended to maximization problems easily.

An NP optimization problem I1 is a three-tuple (Z, Sol, m) in which 7 is the set of
instances. For each instance I € Z, Sol(I) denotes the set of feasible solutions of I,
and the cost function m(1, S) produces a value for each feasible solution S € Sol(7).
Any instance can be recognized in time polynomial in its size, card([/). It is also
polynomial to verify whether any given S is a feasible solution or evaluate the cost
function m.

For an instance I and one of its feasible solutions S € Sol(/), we define the per-
formance ratio prp(1, S) as the ratio of the value m(7, §) (assume that m(-,-) > 0)
over the value of the optimal solution; formally,

m(l,S)

PH(I,S):M,
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where S$*(I) is the optimal solution of /. The quality of a polynomial approxima-
tion algorithm A is measured by the approximation ratio ps(I) = pg (I, A(I)). For
minimization problems, therefore, the approximation ratio is in [1, 00).

An NP optimization problem I7 belongs to the class APX if there exists a polyno-
mial approximation algorithm A and a value r € Q such that given any instance / of
I1, ps(I) <r.In such case, A is called an r-approximation algorithm of /7.

Given two problems [1; and [T, we reduce I1 to II, by providing two
polynomial-time computable functions f and g such that f transforms any instance
11 in I into an instance Iy = f(I1) in I1p, and g transforms any feasible solution
S> of this I, into a feasible solution g(S$>) of the initial instance I;.

We say that the reduction is strict (I11 <g IIp) if in addition, for any instance
I1 € ITp7, and any feasible solution S of f(/1), the performance ratios satisfy

om (11, 8(82) < pm, (f 1), $2). (D

Given such a strict reduction, the optimal solution of f (/1) would lead to an optimal
solution of /1, and furthermore, any feasible solution of f (/1) would lead to a feasible
solution of /1 with better performance ratio. It is straightforward to see that an r-
approximation algorithm of IT, would lead to an r-approximation algorithm of I7;.
Therefore, strict reduction preserves the membership of APX. The following lemma
will be useful for our inapproximability proof.

Lemma 2.3.1 If [T <g IT> and IT, ¢ APX, then IT, ¢ APX.

In other words, if I7; is strictly reducible to IT and cannot be approximated within
any constant factor, neither can I7;.

3 Related Work

Researchers have been interested in localizing one-dimensional homology classes
with the minimal volume cycle, namely, the shortest representative cycle. Using
Dijkstra’s shortest path algorithm, Erickson and Whittlesey [19] computed the short-
est homology basis of 2-manifolds, namely, the one-dimensional homology cycle
basis whose elements have the minimal total volume. Dey et al. [16] provided a
polynomial-time algorithm to compute such basis when the input is a general sim-
plicial complex.

These polynomial-time algorithms cannot localize an arbitrarily given class. To
fill this void, Chambers et al. [7] (see [18] for a recent improvement) devised an
algorithm to localize a given class when the input is a 2-manifold, with or without
boundary. Their method precomputes the shortest representative cycles of all 281 — |
nontrivial classes and thus, is exponential in the one-dimensional Betti number S .

It has been demonstrated that when 81 = @ (n), localizing a given one-dimensional
class with its shortest cycle is NP-hard, both in the cases that the topological space is
a general complex [8] and a 2-manifold [7].

Due to the difficulties in localizing with the minimal volume criterion, re-
searchers have focused on other criteria or heuristics. Some have computed one-
dimensional cycles closely related to handles which are much more meaningful in
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low-dimensional applications such as graphics and CAD. Guskov and Wood [21, 29]
detected small handles of a 2-manifold using the Reeb graph of the manifold. Given
a 2-manifold embedded in S3, Dey et al. [14] computed these handle-related cycles
by computing the deformation retractions of the two components of the embedding
space bounded by the given 2-manifold. A recent extension [15] improved their result
based on geometric heuristics and persistent homology. Their work facilitates handle
detection in real applications.

All of the aforementioned works are restricted to one-dimensional homology.
Zomorodian and Carlsson [30] took a different approach to solving the localization
problem for general dimension. Their method starts with a topological space and a
cover, which is a set of spaces whose union contains the original space. They com-
puted a homology basis and localized classes of it, using tools from algebraic topol-
ogy and persistent homology. However, both the quality of the localization and the
complexity of the algorithm depend strongly on the choice of cover; there is, as yet,
no suggestion of a canonical cover.

Chen and Freedman [10] presented a polynomial-time algorithm for localizing a
homology class of general dimension with the minimal radius cycle. Their algorithm
can also compute a homology cycle basis with the minimal total radius. The cycle
with the minimal radius, however, may be quite complicated in terms of geometry.
See Sect. 5 for detailed discussion.

In terms of homology over other fields, Chambers et al. [6] addressed the localiza-
tion problem of one-dimensional homology over other fields by formulating a max-
imization problem. They view a 1-chain as a flow of the 1-skeleton of a simplicial
complex. The localization problem is formalized as finding a maximal flow homolo-
gous to a given flow under a given constraint of the edge capacities. Two 1-chains are
homologous if their difference is a 1-boundary. Their algorithm is exponential in S
for real coefficients and O(,317n log? nlog® C) for integer coefficients, where C is the
total sum of all the edge capacities.

Dey et al. [13] showed that the localization problem with minimal volume is
polynomial-time solvable for a class of spaces when the homology is defined over
the integers Z. In particular, they showed that when the input space is an orientable
(d + 1)-dimensional manifold and the homology class in question is d-dimensional,
the localization problem is polynomial over Z, despite its being NP-hard over the Z,
field [7].

4 Localization with Volume

4.1 Problem Formalization and a List of Existing Results

Given a cost function defined on all the d-cycles, cost: Z;(K) — R, we formalize
the localization problem as a combinatorial optimization problem.

Problem 4.1.1 (Localizing Homology)

INPUT: a simplicial complex K with size n, a d-dimensional nontrivial homology
class h =[z0], 0 <d <dim(K)
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OUTPUT: acyclezeh
MINIMIZE:  cost(z)

In this section, we use volume as the cost function. Other cost functions would be
discussed in Sect. 5.

Definition 4.1.2 (Volume) The volume of a cycle is the number of its simplices,

vol(z) = card(z).

For example, the volume of a 1-cycle, a 2-cycle and a 3-cycle are the numbers of
their edges, triangles and tetrahedra, respectively. The cycle with the smallest vol-
ume, denoted as z,, agrees intuitively with the notion of a “well-localized” cycle. For
convenience, we denote LocHomVol as the problem of localizing a homology class
with its minimal volume cycle, z,.

More generally, we can extend the volume definition to be the sum of the weights
assigned to simplices of the cycle, given an arbitrary weight function w : K — R,
defined on all the simplices of K; formally,

volg(z) = Z w(o).

o€z

Computing z, using this general volume definition is at least as hard as using Defi-
nition 4.1.2, which is in fact a special case (w(c) = 1 Vo € K). Therefore, we will
only treat the unweighted volume function.

There are two other variations, which are supposed to be easier than LocHomVol,
namely, computing a nonbounding cycle with the minimal volume and computing a
homology cycle basis with the minimal total volume; formally:

Problem 4.1.3 (Min-Vol Nonbounding Cycle)

INPUT: a simplicial complex K with size n
OUTPUT: a nonbounding d-cycle z,0 <d < dim(K)
MINIMIZE: vol(z)

Problem 4.1.4 (Min-Vol Basis)
INPUT: a simplicial complex K with size n
OUTPUT: a homology cycle basis {z1,22,...,28,}, 0 <d < dim(K)

MINIMIZE: Z 2, vol(z;)

We name these two problems MinVoINBCyc and MinVolBasis, respectively. For
clarity, we show in Fig. 2 the difference between MinVolBasis and LocHomVol. The
former is easier than the latter.

There are some existing hardness results, when the homology classes in question
are one-dimensional.

e When B; = ®(n), LocHomVol is proved to be NP-hard by polynomial reduc-
tions from a special case of MAX-2SAT [8] and MIN-CUT with negative edge
weights [7].

@ Springer



Discrete Comput Geom (2011) 45: 425-448 433

Fig. 2 A rectangle with two

holes. The output of |
MinVolBasis is the two blue Z1
1-cycles, z1 and z;. However, 22
the minimal volume cycle in |
[z1 + z2] is the red cycle, which

cannot be computed using the

optimal homology cycle basis

Table 1 Existing results for

one-dimensional homology LocHomVol, 1 = ©(n) NP-hard
LocHomVol, 81 = O(1), 2-manifolds Polynomial
LocHomVol, 81 = O(1), general complexes Unknown
MinVoINBCyc Polynomial
MinVolBasis Polynomial

e Chambers et al. [7] provided a polynomial-time algorithm for LocHomVol when
B1 is fixed (the algorithm is improved in [18]). The algorithm computes the short-
est representative cycle for each of the 2#1 — 1 nontrivial classes. This work is
restricted to triangulations of 2-manifolds with or without boundaries. The prob-
lem remains open when the input is a general simplicial complex.

e Erickson and Whittlesey [19] devised a polynomial-time algorithm for
MinVolBasis, even when 81 = ®(n). This work is restricted to triangulations of
2-manifolds. Dey et al. [16] provided a polynomial-time algorithm when the input
is a general simplicial complex.

We summarize these results in Table 1.

All these existing results are about one-dimensional homology. In this paper, we
will study whether LocHomVol is difficult in general dimension and, more impor-
tantly, how difficult it is.

The existing results suggest that the localization problem might be easier if we
assume fixed Betti number, or if we compute MinVolINBCyc or MinVolBasis in-
stead. Therefore, we would also like to find out how difficult these problems could
be. We prove the inapproximability of a special case of MinVoINBCyc, namely, when
Ba = 1, which in turn shows that all the problems we are interested in are NP-hard to
approximate when the homology is two-dimensional or higher.

For the sake of clarity, we list all the new results as follows.

e When the homology in question is one-dimensional or higher and the Betti num-
ber is ®(n), it is NP-hard to approximate LocHomVol within any constant factor
(Theorem 4.2.4).

e When the homology in question is two-dimensional or higher, we prove that
MinVoINBCyc is NP-hard to approximate within any constant factor (Theo-
rem 4.3.3). So do LocHomVol with 8; = O(1) and MinVolBasis (Corollary 4.3.4).

e A polynomial-time algorithm to compute the minimal volume nonbounding cycle
for a special case where the pertinent space is embedded in RY and the pertinent
homology is (N — 1)-dimensional.
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Fig. 3 The constructed cell p—
complex, T. Two 2-cells (pipes) il
share four 1-cells (thickened /
circles), corresponding to two . / \
I [
/ / &
! I|I \\ [

columns and four rows of A

=

4.2 LocHomVol is NP-hard to Approximate Within any Constant Factor

We prove by a strict reduction from the nearest codeword problem
(NearestCodeword), which cannot be approximated within any constant factor [2].
Problems used in previous reductions to LocHomVol [7, 8] have constant approxi-
mation ratios and thus cannot be used for our proof.

Problem 4.2.1 (Nearest Codeword Problem)

INPUT: anm x k generator matrix A over Zy and a vector yy € 7'\ span(A)
OUTPUT: avectory € yy+ span(A)

MINIMIZE: the Hamming weight of y

Lemma 4.2.2 For one-dimensional homology, LocHomVol cannot be approximated
within any constant factor.

Proof We prove by a strict reduction from NearestCodeword, namely,
NearestCodeword <g LocHomVol.

Given an instance of NearestCodeword, namely, a generator matrix A and a vector
Yo, we first construct a cell complex 7" whose two-dimensional boundary matrix is A.
T has m 1-cells and k 2-cells corresponding to the m rows and k columns of A. Each
1-cell is a one-dimensional cycle. Each 2-cell is a pipe with multiple openings. Note
that we are abusing notation when we call T a cell complex, as these cells may not
be homeomorphic to closed balls. See Fig. 3 for an example with a 4 x 2 generator
matrix

0
1
1
1

OO = =

The column space span(A) one-to-one corresponds to the set of boundaries of 7.
The m-dimensional binary vector space Z5' one-to-one corresponds to the set of 1-
cycles of T. Therefore, NearestCodeword is identical to the problem of computing
the minimal volume representative cycle of a given one-dimensional class of 7', [yg].
However, this problem, denoted as LocHomVol-T', is different from LocHomVol,
whose input is a simplicial complex. We will prove in Lemma 4.2.3 that we can
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strictly reduce LocHomVol-T" to LocHomVol by subdividing 7" into a simplicial com-
plex K. This concludes the proof. d

For convenience, we introduce some notation before proving Lemma 4.2.3. We
call a 1-chain ¢ a simple path if card(c) = card(vert(c)) + 1, and there is a nonre-
peating sequence of vert(c), (vi, v2, ..., V), such that any two consecutive vertices
in the sequence is connected by an edge of ¢.? The first and last vertices are the end
vertices. If we identify the two end vertices, that is, v| = vg, the chain c is called a
simple cycle. In this case, card(c) = card(vert(c)). We extend the definition of ho-
mologous to chains. Two chains are homologous to each other if their difference is a
boundary.

Lemma 4.2.3
LocHomVol-T <5 LocHomVol.

Proof We prove by subdividing 7 into a simplicial complex K, whose size is poly-
nomial to the size of T'. Recall m is the number of 1-cells of T. For each 2-cell of T,
o, we triangulate it as follows.

1. Cut o into a polygon with 2a sides, where a is the cardinality of do. For example,
in Fig. 4, o is cut into an octagon.

2. Triangulate each of the a sides corresponding to 1-cells of T into 7 edges.

3. Triangulate the interior of the polygon fine enough so that for any two vertices
from two nonadjacent sides of the polygon, any path connecting them has at least
tim edges. See Fig. 4 for the case where card(do) =4, =4 and m =5.

Note that the size of K is polynomial to the size of T and thus can be produced in
polynomial time.

For convenience, we denote the triangulation of all 1-cells of T as Kp, which
is a subcomplex of K. The number of edges in K; is mt;. There is a one-to-one
correspondence between 1-cycles of T and 1-cycles of K1, denoted as ¢. For any
I-cycle of T', y, and its corresponding 1-cycle of K1, ¢ (y), the ratio of their volumes
isl:f.

Our construction provides a polynomial transformation of every instance of
LocHomVol-T, (T, yo), into an instance of LocHomVol, (K, zo = ¢ (yp)). For any
such instance and any feasible solution z € [z¢], we will show a polynomial-time al-
gorithm transforming z into a cycle z’ € [z¢] carried by K| and such that vol(z") <
vol(z). This leads to a solution of LocHomVol-T', ¢~ (z"). For convenience, we de-
note this solution g(z).

This reduction is strict. First, the optimal solution of LocHomVol, z,, is a cycle
of K1, whose corresponding solution of LocHomVol-T', g(z,) = ¢>’1 (zv), 1s the op-
timal solution of LocHomVol-T . The ratio of their volumes is vol(z,) : vol(g(zy)) =
t1 : 1. Second, for any feasible solution z, the volume of its corresponding solution in

2This definition is consistent with the definition in graph theory.
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(a) The 2-cell o is cut into an oc- (b) The octagon has 8 sides. 4
tagon along the red curves. Oo is of them correspond to 1-cells of T'.
highlighted with thickened lines. Note that the other 4 sides (drawn in

red) are not drawn as straight lines.

(c) A fine triangulation of the polygon. For simplicity, we only
draw 1/4 of the triangulation. The size of this triangulate is poly-
nomial to m and ¢;.

Fig. 4 The triangulation of a 2-cell of 7', o, with card(do) =4, ) =4andm =5

LocHomVol-T is

vol(g(2)) =vol(¢p™'(z)) = % vol(z') < % vol(z),

vol(g(z)) - vol(z)

and therefore, = .
vol(g(zy)) ~ vol(zy)
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/I 4100

(a) Case 1: a simple cycle (red) (b ) Case 2: a simple path (red)

is homologous to a 1-cycle (blue) whose end vertices are from the

carried by Kj. Note the latter cy- triangulation of a same 1-cell is

cle has two components. homologous to a 1-chain (blue)
carried by K7j.

(c) Case 3: a simple path (red)
connecting vertices from the tri-
angulation of two 1-cells is at
least mt; long.

Fig. 5 Different cases for generating 7’

This guarantees Inequality (1) and thus the strictness of the reduction.

To conclude this proof, we show that for any given cycle of K, z € [z0] with zo
carried by K, there is a polynomial-time algorithm which computes a cycle 7’ € [z0]
carried by K and such that vol(z’) < vol(z). We partition z into simple cycles and
simple paths by finding all repeating vertices and vertices of K. Each simple cycle
has no vertex from K. Each simple path has no vertices from K| except for the two
end vertices. Next, we deal with these simple cycles and simple paths one by one. For
each simple cycle or simple path, which is carried by the triangulation of one 2-cell
o of T, we find a 1-chain homologous to it and carried by K. The new chain has a
smaller or equal volume.

There are three cases. Recall that ¢ maps a 1-chain of T to its subdivision.

1. If a simple cycle is trivial, replace it with an empty chain. Otherwise, this cycle is
homologous to a cycle carried by the triangulation of do, ¢ (do) € K. The latter
cycle has a smaller or equal volume, due to the way we subdivide o. See Fig. 5(a)
for an example.

2. For a simple path whose both end vertices are from the triangulation of a same
I-cell of T, T € do, it is homologous to a path connecting the two end vertices
within ¢ () plus cycles which are triangulations of other cells of do. The latter
chain has a smaller or equal volume, due to the way we subdivide o. See Fig. 5(b).

3. Suppose that it is a simple path connecting vertices from the triangulations of two
different 1-cells (Fig. 5(c)). Such path has a volume of at least m¢. In such case,
we let 7/ be the input zg, whose volume is not greater than m¢; and thus not greater
than vol(z).
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7’ is computed after we transform all simple paths and simple cycles into homol-
ogous chains and cycles carried by K1, or we let 7’ = z¢ if Case 3 happens. g

Lemma 4.2.2 is about one-dimensional homology. We extend the result to homol-
ogy of any higher dimension.

Theorem 4.2.4 For any d > 1, LocHomVol for d-dimensional homology cannot be
approximated within any constant factor.

Proof We show that when d > 2, LocHomVol for (d — 1)-dimensional homol-
ogy can be strictly reduced to LocHomVol for d-dimensional homology, namely,
LocHomVol;_; <s LocHomVol,;. Together with Lemma 4.2.2, the theorem is
proved.

Next, we explain the reduction. Given a simplicial complex of LocHomVol;_1,
we build a suspension of it, namely, two cones of the complex glued together at their
base [28]. There is a one-to-one correspondence between the (d — 1)-dimensional
cycle group of the original complex and the d-dimensional cycle group of the new
complex. This correspondence also works for the boundary groups. Since the volume
of each (d — 1)-cycle is 1/2 of the volume of its corresponding d-cycle, this is a strict
reduction. g

Restriction to a manifold A natural question is whether the localization problem
could be made easier if we restrict the input to be the triangulation of a manifold.
We could modify Lemma 4.2.2 and its proof to accommodate this manifold assump-
tion. Specifically, we embed the cell complex T in RY. By thickening the underlying
space of T and taking its boundary as a new topological space, we get an (N — 1)-
manifold (one less dimension than the ambient space). This manifold can be triangu-
lated in a similar way as we triangulate 7 and thus leads to the inapproximability of
LocHomVol for one-dimensional homology when the input is the triangulation of an
(N — 1)-manifold. We omit a formal description of such reduction. See Fig. 4(b) for
an example when 7 is one-dimensional and N =2.

A classical result suggests that we can embed the two-dimensional cell complex
T in R3. Using an analog of book embedding an arbitrary graph in R3 [27], we can
embed T in R*. Therefore, we prove the problem is NP-hard to approximate for one-
dimensional homology when the input is the triangulation of a 3-manifold. This raises
the open question that whether localizing a one-dimensional class of a 2-manifold is
NP-hard to approximate (it has already been proved to be NP-hard to compute).

A similar argument can be applied to other problems we will discuss in the next
section, except that in Lemma 4.3.1, the relevant homology is two-dimensional, the
cell complex T is three-dimensional, and the manifold is four-dimensional.

4.3 MinVoINBCyc is NP-hard to Approximate Within any Constant Factor

In the previous section, the simplicial complex we constructed for LocHomVol has
© (n) Betti number. It has been revealed for one-dimensional homology that

e MinVoINBCyc and MinVolBasis can be solved in polynomial time, and
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(a) The 1-dimensional cell com- (b) Triangulate T into a simpli-
plex T, embedded in R2. cial complex, according to the
scheme in Lemma 4.2.3.

(c) Take the boundary of the (d) Triangulate the l-manifold according
thickened T as the new topologi- to the way T is triangulated. The trian-
cal space, which is a 1-manifold.  gulation is polynomial.

Fig. 6 An example of modifying proof of Lemma 4.2.3 to accommodate the manifold assumption

e LocHomVol with 8 = O(1) can be solved in polynomial time when the input is
the triangulation of a 2-manifold, with or without boundary.

This raises the question of whether these three problems are hard for homology of
dimension two or higher. Our main result in this section is the inapproximability
proof of a special case of MinVoINBCyc (Theorem 4.3.3). This trivially leads to the
inapproximability of all the aforementioned problems (Corollary 4.3.4).

Lemma 4.3.1 For 2-dimensional homology, even when B>, = 1, MinVoINBCyc is
NP-hard to approximate within any constant factor.

Proof We prove by a strict reduction from NearestCodeword, namely,
NearestCodeword <g MinVoINBCyc.

Given an instance of NearestCodeword, we consider the generator matrix C =
[A, yo] and its parity-check matrix C L (the dimension is (m —k — 1) x m). Following
a scheme similar to Lemma 4.2.2 (illustrated in Fig. 3), we construct a cell complex
T» using C* as the two-dimensional boundary matrix. T» has m — k — 1 1-cells and
m 2-cells. There is a one-to-one correspondence between the two-dimensional cycle
group of T» and nullspace(C+) = span(C). This cycle group has dimension k + 1
and is spanned by the column vectors of A and yy.

Next, for each column vector of A, we seal the corresponding 2-cycle in 7, with
a 3-cell. T is the 2-skeleton of the augmented complex, which is denoted as 7.
The one and only nontrivial two-dimensional homology class of T is identical to
the coset yp + span(A). Finding the smallest volume nonbounding 2-cycle of T, de-
noted as MinVoINBCyc-T, is equal to finding the minimal Hamming weight vector
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in this coset and thus equal to solving NearestCodeword. It suffices to show that
MinVoINBCyc-T can be strictly reduced to MinVoINBCyc by subdividing 7.

In order to triangulate 7 into a simplicial complex K, we first subdivide the 2-
skeleton 75 into a simplicial complex K>, in which all 2-cells are triangulated into
the same number of triangles (say, 2). There is a one-to-one correspondence between
the two-dimensional cycle groups Z;(K»>) and Zp(T>) = Z5(T'). The volume of each
2-cycle of K3 is t times that of its corresponding cycle.

Next, while keeping K> intact, we triangulate interior of the 3-cells fine enough so
that for any nonbounding 2-cycle of K, z € [z0] with zg carried by K7, we can always
find in polynomial time a nonbounding 2-cycle of K7, 7z’ € [zo], with a smaller or
equal volume. (This is similar to the triangulation strategy in Lemma 4.2.3.) Due to
the one-to-one correspondence between Z;(K») and Z,(T') and the #,:1 ratio of their
volumes, we have a strict reduction from MinVoINBCyc-T to MinVoINBCyc. U

Remark 4.3.2 Whereas > and B3 of the constructed K are 1 and O, respectively, the
one-dimensional Betti number $; could be linear in the size of K. However, we can
remedy this by computing an arbitrary one-dimensional homology cycle basis and
seal all its elements with additional triangles. This will not influence the reduction.
This way, we prove the inapproximability for complexes with bounded Betti numbers
of all dimensions.

Similar to Theorem 4.2.4, we can extend the result to any higher dimension by a
suspension-building-based strict reduction of any MinVoINBCyc problem for (d —
1)-dimensional homology to that for the d-dimensional homology.

Theorem 4.3.3 Even when the relevant Betti number is 1, MinVoINBCyc is NP-hard
to approximate within any constant factor for homology of dimension two or higher.

So far the inapproximability proof is for MinVoINBCyc with S; = 1. This trivially
leads to the inapproximability of the general MinVoINBCyc. Furthermore, we extend
the inapproximability to the other two problems.

Corollary 4.3.4 For homology of dimension two or higher, the following problems
are NP-hard to approximate within any constant factor:

1. MinVolBasis;
2. LocHomVol with fixed Betti number.

Proof We show that the special case MinVoINBCyc can be computed in polynomial
time from the output of the other two problems. This leads to the inapproximability.
Given the output of MinVolBasis, the homology cycle basis with the minimal total
volume, the minimal volume nonbounding cycle is in this basis.
For LocHomVol with fixed Betti number, we enumerate all nontrivial classes and
find their minimal volume representatives. The minimal volume nonbounding cycle
is one of those representatives. O
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4.4 A Polynomial Special Case

There is, however, a special case in which MinVoINBCyc can be computed in poly-
nomial time, even with linear Betti number: when K is an N-dimensional complex
embedded in RY, and the pertinent nonbounding cycle is (N — 1)-dimensional. In
this section, we provide a polynomial-time algorithm, inspired by [7, 22]. It is not
hard to generalize this algorithm to MinVolBasis and LocHomVol.

We add new N-cells to K to get a new complex K’, whose underlying space is
RY . Each new cell covers one component of R¥\|K|. There are Sy_1 + 1 new cells,
one of which covers the infinity component. The boundary of each new cell is one
component of the (N — 1)-dimensional boundary of K. Here we are abusing notation
again as the new cells may not be homeomorphic to closed balls.

We use the MIN-CUT algorithm on the dual graphs to solve the problem. The dual
graph G of K is a subgraph of the dual G’ of K'. Denote vertex sets of G and G’ as V
and V', respectively. The set of new vertices V/\V is dual to the set of new N-cells.
See Fig. 7 for an example when N = 2.

We call a cycle minimal if none of its nonempty subsets is a cycle. We denote by
C(G’, G) the set of minimal edge cuts (cuts whose subsets are not cuts) of G’ which
cut G’ into two partitions each of which contains at least one vertex of V’\ V. There is
a one-to-one correspondence between the set of minimal nonbounding (N — 1)-cycles
of K and the set of cuts C(G’, G). The volume of each cycle is equal to the cardinality
of its corresponding cut. As the nonbounding (N — 1)-cycle with the smallest volume
has to be one of the minimal cycles, it can be computed by computing the cut in
C(G’, G) with the smallest cardinality.

To compute the minimal cardinality cut in C(G’, G), we enumerate all pairs of
vertices, (vy, v2) € (V/\V) x (V/\V). Compute the minimal (v;—v;)-cut for each
pair. The one with the smallest cardinality is the desired one.

Since the cardinality of V'\V is By—_1 + 1, the complexity of this algorithm is
0(,312\,_1 f(n)) where n is the size of the simplicial complex, and f(n) is the com-
plexity of the MIN-CUT algorithm. Using MIN-CUT algorithms whose complexity
is O(n?logn), the whole algorithm has complexity 0(,812\,_1n2 logn).

Remark 4.4.1 The idea can be carried over to the case of a weighted volume function,
but only if the weight function is nonnegative.

Fig. 7 A two-dimensional Ps
simplicial complex embedded in

R2. The dual graph G and G’

are drawn in solid lines and

vertices. Their difference G'\G

includes vertices pp, p2, p3 and

their incident edges ~..’
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5 Localization with Other Geometric Criteria
5.1 Diameter

When LocHomVol is proved to be NP-hard to approximate, we resort to discrete
geodesic distance related cost functions, diameter and radius.

Definition 5.1.1 (Diameter) The diameter of a cycle is the diameter of its vertex set,
diam(z) = diam(vert(z)), in which the diameter of a set of vertices is the maximal
discrete geodesic distance between them; formally,

diam(S) = max dist(g).
P.q€S

Intuitively, a representative cycle of & with the minimal diameter, denoted zg4, is
the cycle whose vertices are as close to each other as possible. The intuition will
be further illustrated in Sect. 5.2 by comparison against other criteria. We prove in
Theorem 5.1.4 that computing z4 of & is NP-hard, by reduction from a special case
of the NP-hard Multiple-Choice Cover Problem (MCCP) of Arkin and Hassin [1].
The theorem has been stated in our previous paper [9]. But the proof has not been
published.

Remark 5.1.2 'We do not address the approximability of LocHomDiam, as we realize
that z4 suffers from a “wiggling problem” and consequently may be geometrically
complex (see Sect. 5.2). However, it is not hard to see that the reduction in Theo-
rem 5.1.4 is strict, which implies that LocHomDiam cannot be approximated any
better than this special case of MCCP, which cannot be approximated within 2 — €
for any € > 0, though we do not establish this formally.

Problem 5.1.3 (Multiple-Choice Cover Problem)

INPUT: a set of vertices, V = {v1, va, ..., v,}; a distance function dist: V x V —
R satisfying triangular inequality; Disjoint subsets of V, S1, Sz, ..., Sy, such that
UL Si=V

OUTPUT: a cover C CV containing one and exactly one vertex from each subset
Si
MINIMIZE:  diam(C)

Note that the original MCCP problem of Arkin and Hassin only requires the cover
to have nonempty intersection with each subset S;. We revise the problem to facilitate
our proof, without influencing the NP-hardness. The reason is that the optimal result
of the revised problem is clearly an optimal result of the original problem.

Theorem 5.1.4 LocHomDiam is NP-hard to compute.
Proof We present a polynomial-time algorithm transforming an input of MCCP into
an input of LocHomDiam. Later we will show that the solution of LocHomDiam

gives us the solution of MCCP. As part of the input of LocHomDiam, the constructed
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simplicial complex K consists of m tubes T1,..., T, and extra edges connecting
vertices.

We first embed the vertex set V in any metric space preserving the pairwise dis-
tance dist(-, -). Without loss of generality, for ease of explanation, we assume that
V is embedded in the Euclidean plane R?. For each vertex subset S;, we find a
simple path in R?, going through each vertex of S; once without self-intersection,
& = (v1,v2, ..., Vcard(s;)), Which contains card(S;) — 1 edges. The edge lengths are
the same as the distances between corresponding vertices. See Fig. 8(a). We construct
a slender threadlike tube 7;, which carries the path &;. 7; has (3 card(S;)) vertices,
S; US;US!, where

/A WA / (/2 G/ /7
Si_{vl’vZ""’vcard(Si)} and Si_{vlva""’vcard(S,')}'

For any j, v’. and v”/ lie very close to v;. Corresponding to the card(S;) — 1 edges in
&, T; consists of card(S;) — 1 triangular cylinders concatenated together. By a trian-
gular cylinder we mean the surface of a 3-prism with the two end triangles missing.
To facilitate the concatenation, corresponding edges of the end triangles may not be
parallel to each other, as in a standard 3-prism. Each edge v;v; corresponds to a
triangular cylinder with vertices v;, v}, v}’ Vgl v;. 41 and v7 ;. In the triangular
cylinder, the short edges are very short, say, no longer than €. The long edges have
the length similar to the length of edge v;v; 1. See Fig. 8(b) for one such triangular
cylinder.

We construct the simplicial complex K as follows. For any i, 7; € K. For any two
vertices vy, vz € V, if they are not neighbors, add an edge connecting them, whose
length is their Euclidean distance in the Euclidean plane R>. See Fig. 8(c) for the

A

Sy s, S5 s
(a) An input of MCCP: 3 disjoint vertex sub- (b) A triangular cylinder
sets in Euclidean plane, S, S2 and S3. The corresponding to the edge
simple paths, &1, &2 and €3, are also shown, VU1

although they are not part of the input.

(¢) The constructed simplicial complex K. For ease of presentation, we only show
the new edges connecting vertices in S2 U S3; however, note that there are other
edges in K which are omitted in this figure.

Fig. 8 Explanation of Theorem 5.1.4 proof
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complex constructed from the input in Fig. 8(a). Note that although in the figure,
the embedding of K in R3 has self-intersection, the simplicial complex K can be
embedded in Euclidean space of higher dimension, as we did in previous proofs.

For the constructed complex K, we use LocHomDiam to localize the one-
dimensional class ;- ; h;, where h; is the only one-dimensional class carried by
the tube 7;. We need a cycle to represent it as the input for LocHomDiam. We use
Z0 = Y it Ziy» Where zj, is the 1-cycle whose vertices are vj,, vlfo and vlf(/) , in which
v, 1s an arbitrary vertex in ;.

Next, we construct a cover C from the solution of LocHomDiam, z, and show that
C is the solution of MCCP. We construct an intermediate vertex set Co € V as fol-
lows. A vertex v belongs to Cy if and only if any of v;, v/ and v}’ belongs to the vertex
set of z, vert(z). The solution z is in the form Z;"zl z;i, where z; represents class 5;.
Therefore, Cp has nonempty intersection with each vertex set S;. We compute the
cover C by picking one vertex from each S; N Co.

Within the simplicial complex,

diam(C) = diam(Co) and |diam(Cp) — diam(z)| < 2e.

Furthermore, C has the same diameter in the simplicial complex K and in the Euclid-
ean plane, R2. Since ¢ is arbitrarily small, we can see that C is the cover with the
minimal diameter in the Euclidean plane and thus, is the solution of MCCP. O

5.2 Radius
Another option for the cost function is radius.

Definition 5.2.1 (Radius) The radius of a cycle is the radius of the smallest geodesic
ball carrying it; formally,

rad(z) = min r.
pevert(K),nglr,

Given a homology class, the representative cycle with the minimal radius, denoted
as z,, is the same as the localized cycle defined in our previous work [9, 10]. In-
tuitively, z, is the cycle whose vertices are as close to a vertex of K as possible.
Theorem 5.2.3 shows that z,- can be computed in polynomial time.

However, in spite of its ease of computation, z, may not necessarily be concise in
an intuitive sense. It wiggles freely inside the smallest geodesic ball carrying it. See
Fig. 9(a) for example, in which we localize the only nontrivial homology class of an
annulus (the light gray area). The dark gray area is the smallest geodesic ball carrying
the class, whose center is p. Note that the geodesic ball of the annulus may not seem
like a disc in the embedded Euclidean plane.

By contrast, the cycle with the minimal diameter z4 avoids this wiggling problem
in this case and is concise in an intuitive sense (Fig. 9(b)). This figure also illustrates
that the radius and the diameter of a cycle are not strictly related. For the cycle z, in
Fig. 9(a), its diameter is twice of its radius. For the cycle z4 in Fig. 9(b), its diameter
is equal to its radius.

We prove that z, is a 2-approximation of z4.
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(a) The cycle with the minimal ra-  (b) The cycle with the minimal di-
dius, zr. ameter, zq4.

(¢) A cross-section of a 3-dimensional
ball with a bone shape void. z4, which
is 2-dimensional, wiggles near the mid-
dle of the bone.

Fig. 9 Cycles with the minimal radius and diameter

Theorem 5.2.2 diam(z,) < 2diam(zy).

Proof First, the triangle inequality of the geodesic distance suggests that for any two
vertices of z,, p1 and p», their geodesic distance is

dist(p1, p2) < dist(p1, po) + dist(po, p2) < 2rad(z,),

where pg is the center of the smallest geodesic ball carrying the cycle z, and the

class. This implies that the diameter of z, is no greater than twice of its radius.
Second, the diameter of z,; is no less than its radius. To see this, pick a geodesic

ball centered at any vertex of z; with radius diam(zy). This ball carries z4. Finally,

diam(z,) < 2rad(z,) < 2rad(zy) < 2diam(zg). O
As shown in Figs. 9(a) and 9(b), this bound is a tight bound.
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However, in general, the minimal diameter cycle also suffers from the wiggling
problem. In Fig. 9(c), we show an example in which the topological space is a closed
three-dimensional ball with a bone shape void in the middle. The minimal-diameter
2-cycle zq4, representing the only nontrivial two-dimensional class, can freely wiggle
near the middle of the bone, as the diameter is determined by the distance of the
two ends of the bone. The reason for this phenomenon is that in finding the minimal
diameter cycle, we minimize the maximum of all pairwise geodesic distances. It is
not hard to see that z; does not wiggle only if for any v € vert(z,), its longest distance
from other vertices in z4 is close to diam(zy).

We conclude this section by showing that z, can be computed in polynomial
time. The proof is a short sketch of a polynomial-time algorithm of Chen and Freed-
man [10].

Theorem 5.2.3 We can compute z, in polynomial time.

Proof For each vertex p, we find the smallest geodesic ball centered at p carrying
any cycle in [zo], namely, B,r,(p ) , as well as the carried cycle. Iterating through all
vertices p € vert(K), the one with the smallest r(p) gives us z,.

To compute B;(p ), we apply persistent homology on the complex using f), as the
filter function. Persistent homology algorithm computes a homology cycle basis {z,

22, ..., 28,1}, sorted according to the time they enter the sublevel set. We find the
smallest index i so that zg is a linear combination of boundaries and z1, z2, ..., Zi,
namely,

20 =[0d4+1, 21,22, .-+, ZilY,s (2)

where d is the dimension of the class in question. This can be computed by applying
the persistence reduction to the matrix [0441, 21, 22, . - ., 28,]. The time z; enters the
sublevel set is the radius r(p). Replacing 9,41 with 0, we get a representative cycle
of [z0] carried by B,r)(p), [0,21,22,...,2]y.

The algorithm applies persistent homology algorithm O (card(vert(K))) times.
Therefore, the complexity is O (n*), where n is the size of the simplicial complex. (]

6 Conclusion

In this paper, we have addressed the localization problem with regard to three differ-
ent measures. For volume, we have proved inapproximability results. We have also
proved the inapproximability of computing the nonbounding cycle with the minimal
volume and computing the homology cycle basis with the minimal total volume. A
special case in which a polynomial-time algorithm exists has also been discussed.

For diameter, we have proved that the localization problem is NP-hard; for radius,
by contrast, we have stated a polynomial-time algorithm. Both of these two mea-
sures, however, suffer from the “wiggling problem”, namely, that the output of the
localization may be geometrically quite complex.

We summarize all the constructed strict reductions in this paper as follows. The ar-
guments of a problem—specifically, the dimension d of the relevant homology group
and Betti numbers of the input simplicial complex—are contained in square brackets.
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NearestCodeword <g LocHomVol-T[d = 1] <5 LocHomVol[d = 1]
<gs LocHomVol[d > 1]

e LocHomVol <g LocHomVol, with manifold assumption
e NearestCodeword <g MinVoINBCyc[d =2, 8, = 1]

<s MinVoINBCyc[d > 2, B4 = 1]

e MinVoINBCyc[d > 2, B; = 1] <s MinVolBasis[d > 2]
e MinVoINBCyc[d > 2, B4 = 1] <5 LocHomVol[d > 2, 8, = O(1)]
e MCCP <5 LocHomDiam

An open question is whether we can use other discrete geodesic distance-related

measures, besides diameter and radius, which do not suffer from the wiggling prob-
lem. For example, can we use the normalized sum of the pairwise geodesic distances?
Furthermore, what if we restrict the geodesic distance to be within the cycle (rather
than the entire complex)? It is conceivable that these distance-related measures might
be easier to compute, as localization with the volume measure has been shown to be
extremely hard.
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