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Abstract In this paper we present a new algorithm for computing the homology of
regular CW-complexes. This algorithm is based on the coreduction algorithm due to
Mrozek and Batko and consists essentially of a geometric preprocessing algorithm for
the standard chain complex generated by a CW-complex. By employing the concept
of S-complexes the original chain complex can—in all known practical cases—be
reduced to a significantly smaller S-complex with isomorphic homology, which can
then be computed using standard methods. Furthermore, we demonstrate that in the
context of non-uniform cubical grids this method significantly improves currently
available algorithms based on uniform cubical grids.

Keywords Homology algorithm · Reduction methods · Non-uniform cubical sets ·
S-complexes · CW-complexes

1 Introduction

Homology has long been accepted as an important and computable tool for the analy-
sis of topological spaces. The classical approach for computing homology is based on
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the celebrated Smith normal form, as described for example in [22]. For this method,
computing the homology is basically reformulated as a linear algebra problem over
the integers. The complexity of the Smith normal form algorithm, and consequently
the homology algorithm based on Smith normal form, is O(n3.376...), see [24]. This
is sufficient in the case of spaces with small representation. Unfortunately, in modern
scientific applications the size of the structures of interest frequently renders this ap-
proach infeasible due to the enormous size of the resulting matrices, and this fact is
only exacerbated by modern data acquisition techniques. For example, in the context
of materials science one might be interested in understanding the topology of ex-
tremely large complex microstructures, and computing their homology via the Smith
normal form would easily lead to computations which cannot be handled on modern
equipment. For some applications of topological methods in materials applications
we refer the reader to [2, 10, 21, 25], as well as the references therein.

Based on these limitations of the Smith normal form algorithm, it is not surprising
that more efficient algorithms for the computation of homology have been developed
over the years, see for example [6–9, 12–14, 19, 20], as well as the references therein.
These algorithms and their implementations vary by the type of the requested input.
Many algorithms require the topological space of interest represented as a simplicial
complex, in some cases with certain dimensional restrictions. A different approach
is employed in [12, 14, 19, 20], where the topological spaces are represented as cu-
bical complexes, i.e., they are assembled from a finite collection of unit cubes. This
framework is well-suited for the study of experimental and numerical data which is
provided in pixel or voxel form, such as digital images or three-dimensional struc-
tures generated via experimental slicing techniques.

The success of many of these algorithms, for example [6, 19, 20], rests on min-
imizing or entirely avoiding the algebraization, i.e., the process of constructing the
matrices of the boundary map followed by the Smith algorithm. One way of mini-
mizing the algebraization consists in substantially reducing the representation of the
topological space on input without changing its homology. A simple way to reduce
the space is to collapse every face and its coboundary whenever the coboundary con-
tains exactly one element. The collapsed space has the same homotopy type, so the
homology does not change. Unfortunately, this method rarely leads to substantial re-
ductions. However, the size of space significantly decreases after applying the dual
concept of coreductions. The coreduction homology algorithm has been introduced
in [19].

In the cubical setting, numerical experiments have shown that the coreduction
algorithm is currently the fastest available method. In particular, it computes Betti
numbers in a small fraction of the time used by other algorithms only to construct the
boundary matrices, i.e., even before they start applying the Smith algorithm. It has
been proved in [11] that Z2-homology of weak 2-pseudomanifolds may be computed
by a variant of the coreduction algorithm in O(nα(n)), i.e., almost linear time. The
coreduction algorithm is defined in the general framework of S-complexes, which
will be described in more detail below.

Despite its efficiency, there are situations where the current form of the cubical
coreduction algorithm does not allow for a timely homology computation. For exam-
ple, in [4, 5] a rigorous computational technique was developed for finding the ho-
mology of nodal sets of smooth functions, a situation which is frequently encountered
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Fig. 1 Two non-uniform cubical approximations: The left image contains a non-uniform grid that can be
used to validate the nodal domain shown in dark blue, and the right image shows an efficient representation
of a topological space with a singularity

in applications. See for example [1, 16, 17] and the references therein. The method
presented in [5], which will be explained in more detail in Sect. 4 below, is used to
generate a non-uniform cubical grid which represents the considered nodal domain.
An example of such a non-uniform grid is shown in the left image of Fig. 1. Similarly,
the right image in this figure shows an efficient representation of a topological space
with a singularity.

While the method of [5] computes efficient non-uniform decompositions, the only
way to compute the homology of the nodal sets using currently available homology
codes is to embed the non-uniform grid into a fine uniform grid, whose size is de-
termined by the smallest square in the non-uniform decomposition. As was pointed
out in [5], this severely limits the practical applicability of the method. Similarly, in
the context of computing the homology of maps it has been shown in [18] that the
restriction to uniform cubical grids leads to inefficiencies which in principle can be
addressed by representing the objects of interest in a less stringent way.

In the current paper we adapt the coreduction homology algorithm of [19] to the
setting of regular CW-complexes. This allows us to prove that the Betti numbers of
planar CW-complexes may be computed in linear time. We also introduce the concept
of a rectangular CW-complex of arbitrary dimension and show that the coreduction
algorithm is particularly useful for such complexes.

Our method may be compared with the recent work [23] on computing the gener-
ators of image homology using graph pyramids. Although our main goal is somewhat
different than the goal of [23], in the common setting of computing Betti numbers of
two-dimensional images the time and memory complexity of our algorithm is O(p)

with p the number of pixels, whereas the time complexity of building the graph pyra-
mid alone is O(p logp). Therefore, in those applications where the graph pyramid is
only a tool for finding Betti numbers and not part of a general goal, our approach to
computing Betti numbers is superior. Our algorithm may also be adapted to compute
the homology generators and in that case the time complexity is O(pg) with g the
number of generators. Since the complexity of the respective algorithm in [23] is at
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least O(p logp + g2), the comparison in this case is in favor of our algorithm when
the number of generators is bounded.

The remainder of the paper is organized as follows. In Sect. 2 we recall results
and definitions from the theory of S-complexes and coreductions. Our main result on
extending the coreduction method to regular CW-complexes is the subject of Sect. 3.
We also demonstrate there that the necessary incidence indices can be determined
easily in the non-uniform cubical setting of rectangular CW-complexes. Also here
we show the complexity results concerning the planar case by proving that, in this
case, the coreduction method always produces final S-complexes with trivial bound-
ary operators, which eliminates the necessity to run a Smith normal form algorithm
after the reduction. Finally, Sect. 4 contains some numerical examples.

2 S-Complexes and Elementary Coreductions

In this section we collect basic definitions and results for our underlying algebraic
framework, i.e., the theory of S-complexes which was introduced in [19] as a refor-
mulation of the concept of a free chain complex with a fixed basis in a manner suitable
for computational reduction. Our discussion includes the notions of regular subsets
of S-complexes, as well as of elementary coreductions and elementary reductions.

2.1 Preliminaries

We begin with fixing some terminology and notation. Throughout the paper we
write Z, R, and R to denote the set of integers, the set of reals, and a fixed ring
with unity, respectively. Given a set A we denote by |A| its cardinality and by R(A)

the free module over R generated by A.
Given an object X of a category C , a sequence (Xq)q∈Z of objects of C is a gra-

dation of X, if X decomposes as the direct sum of the objects Xq .
An abstract chain complex is a free R-module C with a gradation (Cn)n∈Z in the

category of R-moduli and a collection of homomorphisms ∂n : Cn → Cn−1 called
boundary maps, such that ∂n−1∂n = 0 for all n. The elements of Cn are referred to as
n-chains or simply chains. If c ∈ Cn is a chain, then n is the dimension of c, denoted
dim c.

Given a basis S of C with gradation (Sn)n∈Z we denote the associated scalar prod-
uct of chains c1, c2 ∈ C by 〈c1, c2〉S . We usually drop the index S if the basis S is
clear from the context. The incidence index of basis elements s, t ∈ S is defined as
〈∂s, t〉 ∈ R if dim t = dim s − 1 and is zero otherwise. If the incidence index of s, t is
nonzero, then t is called a facet of s. This defines a relation in S × S, which will be
referred to as facet relation. For any subset A ⊂ S let us define

bdS A = {t ∈ S | t is a facet of s for some s ∈ A},
cbdS A = {s ∈ S | there is a t ∈ A such that t is a facet of s}.

The weight of a generator s ∈ S is given by

wS(s) := max
(|bdS s|, | cbdS s|),



Discrete Comput Geom (2011) 46:361–388 365

and the weight of the basis S by

w(S) := max
{
wS(s) | s ∈ S

}
.

Given a topological space X and a set A ⊂ X, we denote the closure and the boundary
of A, respectively, by A and ∂A.

2.2 S-Complexes and Regular S-Complexes

We first recall the definition of S-complexes as well as some basic results on the
important special case of regular S-complexes.

Let S denote a finite set, and let (Sq)q∈Z be a gradation of S with Sq = ∅ for all
integers q < 0. Then the sequence (R(Sq))q∈Z is a gradation of the module R(S) in
the category of moduli over the ring R. Let κ : S × S → R be a map such that

dim s = 1 + dim t is satisfied whenever κ(s, t) �= 0.

With κ we associate the map ∂κ : R(S) → R(S) which is defined on generators s ∈ S

via

∂κ(s) =
∑

t∈S

κ(s, t)t. (1)

The pair (S, κ) is called an S-complex if (R(S), ∂κ ) is a free chain complex with
base S and boundary map ∂κ .

For a given S-complex (S, κ), its homology is defined as the homology of the chain
complex (R(S), ∂κ), and it is denoted by H(S,κ) = H(R(S), ∂κ) or simply by H(S).
In the following, we will drop the superscript κ in ∂κ whenever the meaning of κ is
clear from the context.

One can easily observe that mathematically speaking an S-complex is just a chain
complex with a fixed basis and the map κ provides the incidence indices with respect
to this basis. The reason to introduce the terminology of S-complexes is to shift the
emphasis from algebra to combinatorics. In the algebra setting, the moduli are given
first and the bases are selected arbitrarily, leading to incidence indices obtained as
respective entries in the matrices of boundary homomorphisms. In the setting of S-
complexes we start with a collection of combinatorial objects (for instance simplices
or cubes) for which a facet relation is somehow defined. Then, for each pair (s, t)

of objects such that t is a facet of s we assign, in an algorithmic way, the incidence
indices and use them to build the chain complexes. The shift of emphasis serves
stressing some algorithmic aspects of our approach. As we will see in the sequel, in
many situations only some or even no incidence indices are needed to compute the
homology of an S-complex. Instead, the facet relation suffices. This fact may be used
to speed up homology computations, because in many situations the facet relation is
more straightforward and computationally cheaper than finding the incidence index.
In particular, the computation of the incidence indices may be delayed so that only
those indices are computed which are really needed.

However, to make this work we need a method of computing the incidence index
after completing the reductions. We say that an S-complex is effective, if there is a
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formula or an algorithm which computes the incidence index κ(s, t) by using the in-
formation in s and t only, i.e., without using the information in the whole S-complex.
The two main examples of effective S-complexes are simplicial complexes and cubi-
cal complexes. In both of these cases one can readily derive explicit formulas for the
incidence index κ(s, t). For more details we refer the reader to [21]. As we will see in
Sect. 3.1 a general CW-complex is not an effective S-complex. A detailed discussion
of the case of non-uniform cubical complexes, which are effective S-complexes, will
be given in Sect. 3.

In order to simplify a given S-complex through a reduction step, one is interested
in replacing the original set of generators S by a subset S′ ⊂ S, and the original in-
cidence index κ by the restriction κ ′ = κ|S′×S′ . This has to be done in such a way
that (S′, κ ′) is still an S-complex, that no evaluation of κ(s, t) is needed to con-
struct S′, and that H(S) ∼= H(S′).

Characterizations of these requirements were obtained in [19]. We recall from
there some terminology and the main result. A subset S′ ⊂ S is called closed in S if
we have bdS S′ ⊂ S′, and it is called open in S if S \ S′ is closed in S. If S′ ⊂ S is
such that for all s, u ∈ S′ and t ∈ S, t ∈ bdS s and u ∈ bdS t implies t ∈ S′, then S′ is
called regular subset of S. For further details consult [19]. A regular subset T ⊂ S is
called a nullset of S, provided that T is closed or open in S and that H(T ) = 0. The
following result follows immediately from [19, Theorems 3.4 and 3.5].

Corollary 2.1 [19, Corollary 3.6] Let (S, κ) denote an S-complex over the ring R,
and let T ⊂ S be a nullset of S. Then the homologies H(S) and H(S \ T ) are iso-
morphic.

In other words, any nullset in an S-complex can be removed without changing the
homology of S.

2.3 S-Reduction Pairs

We now describe a simple method for locating nullsets in an S-complex. This method
is based on the concept of a reduction pair of a finitely generated free chain com-
plex C, which was introduced in [13, 14] and which we now briefly recall. Given a
free chain complex C with basis S we say that a pair (a, b) of elements of S is a
reduction pair in C, if 〈∂b, a〉 is invertible in the ring R. Notice that any reduction
pair (a, b) satisfies dimb = 1 + dima. For every such reduction pair one can define
an associated chain complex (C̄, ∂̄) via

C̄q =
⎧
⎨

⎩

Cq for q �∈ {dima,dimb},
{v ∈ Cq | 〈v, a〉 = 0} for q = dima,
{v ∈ Cq | 〈v, b〉 = 0} for q = dimb,

as well as

∂̄qv =
⎧
⎨

⎩

∂qv for q − 1 �∈ {dima,dimb},
∂qv − 〈∂qv,a〉

〈∂qb,a〉∂qb for q − 1 = dima,
∂qv − 〈∂qv, b〉b for q − 1 = dimb.
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In other words, one has to remove all chains from C which contain either a or b

in their representation, and then update the boundary operator accordingly. One can
show that the chain complexes (C, ∂) and (C̄, ∂̄) are chain equivalent. We call the
chain complex (C̄, ∂̄) a reduction of (C, ∂) through the reduction pair (a, b).

The fundamental philosophy behind reduction methods is the fact that in many
cases it is advantageous to perform a sequence of reductions before applying the
Smith normal form algorithm. In fact, experiments show that frequently the decrease
in size of the chain complex is significant [19, 20]. From a computational point of
view it is desirable to be able to identify reduction pairs quickly and then to be able
to perform the reduction efficiently. This naturally leads to considering only specific
types of reduction pairs. In this paper, we concentrate on the notions of elementary
reduction pairs and elementary coreduction pairs, which were introduced in [19].
Let (S, κ) denote an S-complex. Then a reduction pair (a, b) of elements of S is
called an elementary reduction pair if we have cbdS a = {b}, and in this case a is
called a free face in S. Furthermore, the reduction pair (a, b) is called an elementary
coreduction pair if we have bdS b = {a}, and in this case b is called a free coface
in S. Finally, we will use the term S-reduction pair to denote either an elementary
reduction pair or an elementary coreduction pair. It turns out that S-reduction pairs
give rise to nullsets in an S-complex, and we can therefore use them as the basis
of a reduction algorithm for S-complexes which preserves homology. The following
result is established in [19].

Theorem 2.2 [19, Theorem 4.1, Corollary 4.2] Let (S, κ) denote an S-complex over
the ring R, and let a, b ∈ S. Then the following holds:

(a) If (a, b) is an elementary reduction pair, then {a, b} is open in S and a nullset.
(b) If (a, b) is an elementary coreduction pair, then {a, b} is closed in S and a nullset.
(c) If (a, b) is an S-reduction pair, then the homologies H(S) and H(S \ {a, b}) are

isomorphic.

Note that to detect an S-reduction pair only the knowledge of the facet relation is
needed. In particular, there is no need to compute the incidence index.

The basic usage of reduction pairs can be described as follows. A reduction se-
quence of a chain complex C is a sequence of generator pairs α = {(ai, bi)}i=1,2,...n

in S such that (ai, bi) is a reduction pair in Ci−1, where the chain complexes (Ci, ∂i)

are defined recursively by letting (C0, ∂0) = (C, ∂), and then letting (Ci, ∂i) denote
the reduction of (Ci−1, ∂i−1) through (ai, bi), for i = 1,2, . . . n. We then use the no-
tation (Cα, ∂α) for the last chain complex in the sequence {(Ci, ∂i)}i=1,2,...n and call
this chain complex an α-reduction of (C, ∂).

One can easily reformulate this concept in the framework of S-complexes. An
S-reduction sequence of an S-complex (S, κ) is a sequence of S-reduction pairs
α = {(ai, bi)}i=1,2,...n such that (ai, bi) is an S-reduction pair in (Si−1, κi−1),
where the S-complexes (Si, κi) are defined recursively by letting (S0, κ0) = (S, κ),
and then letting (Si, κi) denote the reduction of (Si−1, κi−1) through (ai, bi), for
i = 1,2, . . . n. We then use the notation (Sα, κα) for the last S-complex in the se-
quence {(Si, κi)}i=1,2,...n and call this S-complex an α-reduction of (S, κ).
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Before closing this section, we would like to reiterate the main reason for intro-
ducing the concept of S-complexes and S-reduction pairs. At first glance it seems
too restrictive to only consider these special cases of general reduction pairs. How-
ever, from the algorithmic point of view one has to be able to both quickly identify
reduction pairs, and then to efficiently perform the reduction step. In the case of S-
reduction pairs this does not require any algebraic operations. In particular, there is
even no need to compute the incidence index. This contributes significantly to the
speedup of homology computations.

2.4 Homology Generators

While Theorem 2.2 shows that performing a sequence of reductions via S-reduction
pairs allows one to reduce the size of a chain complex without affecting its homology,
even more is true. For every reduction step one can in fact explicitly write down the
isomorphism guaranteed by Theorem 2.2. For this, let (a, b) denote a reduction pair.
For the chain complex (C̄, ∂̄) the relevant chain maps are given by

ψ
(a,b)
k (c) =

⎧
⎨

⎩

c − 〈c,a〉
〈∂b,a〉∂b for k = dimb − 1,

c − 〈c, b〉b for k = dimb,
c otherwise,

and

ι
(a,b)
k (c) =

{
c − 〈∂c,a〉

〈∂b,a〉b for k = dimb,
c otherwise,

and it is shown in [21, Theorem 2.8] that these chain maps are in fact mutually inverse
chain equivalences. In the case of an S-reduction pair (a, b) these maps can be used
also for the chain complex (C′, ∂ ′) obtained from the regular subset S′ = S \{a, b} via
the definitions C′ = R(S′) and ∂ ′ = ∂κ |C′ . In fact, it is shown in [21, Theorem 2.9]
that the chain complexes (C̄, ∂̄) and (C′, ∂ ′) coincide.

Given a reduction sequence α in S we let

ια = ι(a1,b1) ◦ ι(a2,b2) ◦ · · · ◦ ι(an,bn), (2)

ψα = ψ(an,bn) ◦ ψ(an−1,bn−1) ◦ · · · ◦ ψ(a1,b1). (3)

The chain maps ια and ψα described above allow one easily to track generators as
well. Namely, once the representatives of homology generators are computed in the
complex Sα , one can use the map ια to find the representatives of the homology
generator in the initial complex S0. Therefore storing the elementary reduction and
coreduction pairs enables to obtain information about the representatives of homol-
ogy generators. Moreover, in the case of S-complexes, the cost of finding the image
of a generator in the map ια is O(|S|w(S)), see [21, Theorem 3.1].

3 Coreduction Algorithm for CW-Complexes

In this section we describe how S-reduction pairs can be employed in the context of
CW-complexes, and demonstrate its applicability specifically for the case of planar
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CW-complexes, as well as for non-uniform cubical complexes in arbitrary dimen-
sions. In particular, for planar CW-complexes we show that the coreduction algorithm
completely reduces the underlying S-complex, thereby eliminating the need for the
Smith normal form algorithm altogether. For non-uniform rectangular complexes we
show that the incidence indices of two cubes can be determined immediately from
the representation of the involved rectangular boxes.

3.1 CW-Complexes as S-Complexes

We begin by recalling basic results on CW-complexes, including a discussion of reg-
ular CW-complexes and incidence indices. For this, we essentially follow the presen-
tation in [15]. First, given a Hausdorff space X, an n-cell e is a subset of X homeo-
morphic to the open n-dimensional unit ball Bn

1 ⊂ R
n. We call n the dimension of e

and write dim e = n. An n-cell e is attached to a closed subset K ⊂ X, if e ∩ K = ∅
and there is a continuous map f : Bn

1 → e, called characteristic map, sending the
open ball Bn

1 homeomorphically onto e and such that f (∂Bn
1 ) ⊂ K .

For the purposes of this paper, we only consider finite CW-complexes which are
defined as follows. A closed subset K ⊂ X is a finite CW-complex of dimension N ,
if there exists an ascending sequence of closed subspaces K0 ⊂ K1 ⊂ · · · ⊂ KN =
K such that K0 is a finite set consisting of 0-cells, also called vertices, and Kn is
obtained from Kn−1 by attaching a finite collection of n-cells for n = 1, . . . ,N . The
collection of n-cells of K is denoted by Kn. We put Kn := ∅ for n �∈ {0,1, . . .N}. The
graded set K := (Kn)n∈Z is called the CW-complex structure of K . The subset Kn

of X is the n-skeleton. An N -dimensional CW-complex is regular, if for each cell
e ∈ Kn, where n = 0,1, . . . ,N , there exists a characteristic map f : Bn

1 (0) → e which
is a homeomorphism. In this case, given two cells e, e′ we say that e′ is a face of e and
write e′ < e, if e′ �= e and the inclusion e′ ⊂ e holds. If e′ < e and dim e′ = dim e − 1,
then we say that e′ is a facet of e.

One of the main reasons of the importance of CW-complexes is that they repre-
sent a wider class of spaces than simplicial and cubical sets, while preserving enough
combinatorial structure to define the associated chain complex and homology in the
combinatorial spirit of simplicial and cubical complexes. For the detailed definition
of the chain complex structure associated with a CW-complex K we refer the reader
to [15]. In the sequel we refer to this chain complex as the standard chain complex
of K and denote it by C(K). Here we only recall a few central ideas which will be
used later. The first fact is that the homology of C(K) coincides with the singular
homology of K , so that C(K) may be used to compute the homology of K . Next,
the group of n-chains of C(K) is generated by Kn, so that we can we can consider
the CW-complex structure K := (Kn)n∈Z as an S-complex. However, to make this
approach computationally useful, we need a method of determining the incidence
indices κ(e, f ). For general CW-complexes the standard way of obtaining these is
either by computing the Brouwer degree of an appropriate map as described in [3] or,
equivalently, by computing relative homology. Unfortunately, neither of these meth-
ods is feasible in the context of a computational approach.

However, if one restricts attention to the special case of regular CW-complexes,
the situation is different. Recall from [15] that for every pair (f, e) ∈ Kn × Kn+2 of
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Table 1 An algorithm for determining the incidence indices of cells in regular CW-complex which is
based on Theorem 3.1

1. for every one-dimensional cell e in the complex:
(a) Let f and g be the facets of e. Set αef := 1, αeg := −1;

2. for i = 2 to the maximal dimension of cells in the complex:
(a) for every i-cell e in the complex

i. pick any f which is a facet of e and set αef := 1;
ii. Let Q be an empty queue;

iii. push(Q,f );
iv. while Q �= ∅:

• f := pop(Q);
• for every facet g of e such that αeg is not yet set and f and g are sharing a facet h ∈

Ki−2:
– Set αeg := −αef αf h/αgh

– push(Q,g);

a regular CW-complex K such that f < e, there are exactly two (n + 1)-cells gk ,
with k = 1,2, such that f < gk < e. In the case of regular CW-complexes the fol-
lowing characterization of incidence indices, following immediately from [15, Theo-
rem IX.7.2] is useful in the computational context.

Theorem 3.1 Let K be a finite regular CW-complex on the Hausdorff space X. For
each pair (e, f ) ∈ Kn × Kn−1 let there be given an integer αef ∈ {0,±1} such that
the following four conditions hold:

(a) If f is not a facet of e, then αef = 0.
(b) If f is a facet of e, then αef = ±1.
(c) If f and g are the two vertices of the 1-cell e, then αef + αeg = 0.
(d) Let e ∈ Kn and f ∈ Kn−2 be two cells of K such that f < e. Furthermore,

let g1, g2 ∈ Kn−1 denote the unique (n − 1)-cells such that f < gi < e for
i = 1,2. Then the identity αeg1αg1f + αeg2αg2f = 0 holds.

Then, defining the boundary operator by (1) with

κ(e, f ) :=
{

αef if f is a face of e,
0 otherwise.

leads to a well-defined chain complex isomorphic to the standard chain complex of K .

Theorem 3.1 enables the computation of incidence indices for any regular CW-
complex. In fact, Theorem 3.1 leads directly to an algorithm for the computation of
incidence indices of arbitrary regular CW-complexes. The algorithm is presented in
Table 1.

The algorithm provides a means for the direct Smith normal form computation for
arbitrary regular CW-complexes. Moreover, it follows that reduction and coreduction
methods can be applied to speed up the homology computations. We would like to
point out that the incidence indices provided by the algorithm in Table 1 can be ob-
tained by one of the standard methods described for instance in [3]. The correctness
of the algorithm in Table 1 is established in the following theorem.
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Theorem 3.2 For an arbitrary regular CW-complex structure K the algorithm in
Table 1 returns a collection of indices αef for f a facet of e, such that the assumptions
of Theorem 3.1 are satisfied.

Proof By [15, Lemma IX.7.1], nonzero incidence index can only occur for a pair
of a cell and its facet. Therefore, the algorithm only considers pairs of this type.
If the value αef was not set by the algorithm, it is assumed to be 0. Moreover,
it is straightforward to see that for the incidence indices between one- and zero-
dimensional cells as defined in line (1.a) of the algorithm the condition (c) of Theo-
rem 3.1 holds.

We now turn our attention to i-dimensional cells with i ≥ 2, and assume that
all lower-dimensional cells have already been taken care of. Let i ≥ 2 be fixed and
consider an i-cell e. Moreover, let E (e) denote the set of all equations in condition
(d) in Theorem 3.1 which contain e as the highest-dimensional cell. In order to es-
tablish the theorem, one only has to show that for every facet g of the given cell e

the variable αeg is set by the algorithm in such a way that the equations in E (e)

hold.
In line (2.a.i) of the algorithm, a facet f of e is (arbitrarily) distinguished. Set-

ting the incidence index αef equal to 1 is easily seen to be equivalent to choos-
ing the orientation of the given i-cell e. We would like to point out that accord-
ing to [15, Sect. IX.5], this choice of orientation uniquely determines all incidence
indices of the form αeg , where g denotes a facet of e. In particular, this shows
that the system E (e) of equations in condition (d) in Theorem 3.1 which involve e

and lower-dimensional cells has a unique solution satisfying αef = 1. See also [15,
Lemma IX.7.1].

Now let us consider lines (2.ii–iv). As we mentioned in the previous paragraph,
it follows from [15, Sect. IX.5, Lemma IX.7.1] that the solution of the system E (e)

exists and is unique, due to the choice made in line (2.i). In course of executing
lines (2.ii–iv), the algorithm solves a subset Ealg(e) ⊂ E (e) of these equations. More-
over, it follows from the structure of the algorithm that as the loop in (2.iv) is ex-
ecuted, every equation in Ealg(e) has a unique solution. If we now assume for the
moment that the execution of lines (2.ii–iv) sets the values αeg for all facets g of e,
then these values in fact have to solve all equations in E (e)—the algorithm auto-
matically avoids unnecessary equations in this overdetermined, yet consistent, sys-
tem.

To complete the proof of the theorem we still have to show that the execution of
lines (2.i–iv) in the algorithm actually determines the incidence indices αeg for all
facets g of e. For this, let P denote the set of all facets g of e for which the incidence
indices αeg has been set by the algorithm, and let N denote the set of the remaining
facets of e. Suppose that in fact we have N �= ∅. The definition of the algorithm then
implies that for every cell g ∈ P , every cell g′ ∈ N , and every (i − 2)-dimensional
face f of e, the cell f cannot be a common facet of both g and g′. Consequently,
the equations in E (e) from condition (d) in Theorem 3.1 can be partitioned into two
sets, one which only provides relations involving cells in P , and another one which
only concerns cells in N . This, however, implies that the initial cell g′ ∈ N can be
(arbitrarily) picked and the incidence index αeg′ can be set either to 1 or −1. Then the
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Fig. 2 Example 3.4
demonstrates the effect of
S-coreductions on a simple
regular CW-complex. Notice
that in order to start the
coreduction sequence we add
the empty set in dimension −1.
(White circles indicate missing
vertices.)

while loop in line (2.iv) of the algorithm can be rerun. Thus, by possibly repeating
the above procedure several times, we can construct at least two distinct solutions to
the set of equations E (e) which satisfy αeg = 1 (one of them with αeg′ set to 1, another
with αeg′ set to −1)—and this of course contradicts the uniqueness of the solution
mentioned above. In other words, we have to have N = ∅, and this completes the
proof of the theorem. �

Theorem 3.3 If the implementation of the algorithm in Table 1 uses pointers to ac-
cess the elements in the boundary or coboundary of a cell, then the time complexity
of the algorithm is O(|K|w(K)4).

Proof First observe that in the for loop in line (1) and in the nested for loops in
lines (2), and (2.a) of the algorithm each cell from the complex K is considered just
once. The number of iterations of the for loops in line (1) and in lines (2), and (2.a)
is therefore O(|K|). The actions taken in the points i., ii. and iii. of the algorithm,
due to the used pointer data structure, require constant time. There remains to cal-
culate the computational cost of the while loop in the point iv. of the algorithm.
There are at most w(K) elements g being the facets of e. Each such element g will
be considered in the while loop in the point iv. of the algorithm just once. The total
number of iterations of while loop is therefore bounded by w(K). It is straightfor-
ward to observe that the total number of iterations of the for loop inside the while
loop is O(w(K)3), therefore the total complexity of the while loop is O(w(K)4).
Consequently, the time complexity of the whole algorithm is O(|K|w(K)4), as re-
quired. �

Note that in most applications the number w(K) is constant and small when com-
pared with |K| and consequently, in such situations, the total complexity of the algo-
rithm is linear with respect to the number of cells in the CW-complex.

Example 3.4 In order to illustrate the S-reduction procedure in the context of regu-
lar CW-complexes, consider the simple CW-complex shown in the upper left part of
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Fig. 3 Example 3.5 demonstrates the necessity of a-priori knowledge of the incidence index κ . For the
torus representation shown on the lef, the coreduction algorithm results in the S-complex shown in the mid-
dle, which contains no vertices any more. Thus, the equations of Theorem 3.1 do not pose any restrictions,
and the boundary operator defined in the picture gives the wrong homology

Fig. 2. Upon adding the empty set in dimension −1 of the associated chain complex
(as indicated), one can apply a coreduction to remove one of the vertices of this com-
plex. This yields the S-complex in the upper right part. Subsequently, a sequence of
edge-vertex coreductions removes all the remaining vertices, as well as all the edges
in a spanning tree of the 1-skeleton, resulting in the S-complex on the lower left.
Finally, after two more coreductions between a 2-cell and an edge, one obtains the
final complex shown in the lower right part of Fig. 2. Notice that this S-complex has
empty chain groups in dimensions 0 and 2, so the homology can be read off with-
out any further computations: It is the homology of a pointed circle, i.e., it equals R

in dimension 1 and is 0 otherwise. We will see in the next section that this is not a
coincidence.

Before closing this section, let us point out once more that in order for the above
coreduction algorithm to provide a significant improvement we need to be able to
determine the incidence index κ in an efficient and easy way, unless the final chain
complex is trivial. In the next two sections, these issues will be discussed in more
detail. Notice, however, that it is in general not possible to determine κ by only satis-
fying the equations of Theorem 3.1 for the cells in the final S-complex.

Example 3.5 Consider for example the standard torus, represented by the regular
CW-complex shown on the left of Fig. 3. As usual, vertices and edges marked with
the same letters are being identified.

By adding the empty set as before and performing coreductions as far as possible,
one can easily see that the final S-complex is basically given by the complex shown
in the middle of Fig. 3. This complex consists of the five 2-cells A, B , C, D, and E,
as well as the six 0-cells α, β , γ , δ, ε, and ζ . Yet, the coreduction process removed
all zero-cells from the S-complex. Thus, in order to find the incidence indices which
satisfy all the conditions (a)–(d) of Theorem 3.1, one only has to make sure that (a)
and (b) are satisfied; the equations in parts (c) and (d) cannot occur. In particular, if
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Fig. 4 This example shows that in general it is not possible to completely reduce a planar CW-complex
using only elementary reductions

we choose the incidence index κ via

κ A B C D E

α −1 0 0 0 +1
β +1 0 −1 0 0
γ 0 0 +1 0 −1
δ 0 +1 0 +1 0
ε 0 −1 +1 0 0
ζ 0 0 +1 −1 0

then all restrictions in conditions (a)–(d) in Theorem 3.1 are satisfied. This choice of
incidence index results in the boundary operator ∂ presented in the right part of Fig. 3.
However, one can easily check that over the ring of integers, the S-complex shown
in the middle of the figure, equipped with this boundary operator ∂ , has the trivial
homology groups H0 = 0 and H2 = 0, as well as the nontrivial one H1 = Z ⊕ Z2.
Due to the presence of torsion, this does clearly not furnish the (reduced) homology
of the torus.

The last example shows that a general CW-complex cannot be considered as an ef-
fective S-complex. This, of course, does not mean that the S-reductions cannot be ap-
plied to such a general complex. However, in such a case all incidence indices have to
be determined by applying the algorithm in Table 1 before applying any S-reduction.
But, as we will see in Sect. 3.3, there is an important case of CW-complexes, which
is effective.

3.2 Reductions of Planar CW-Complexes

In this section we describe a situation in which S-reductions allow the complete re-
duction of the original S-complex. In this situation, one can determine the homology
of the underlying CW-complex by just counting the number of remaining generators.
It will turn out that this can always be achieved for planar regular CW-complexes.

Before we turn to the proof of this result, notice that in order to achieve such a
complete reduction one usually has to employ both elementary reductions and ele-
mentary coreductions. To see this, Fig. 4 shows a planar CW-complex and a reduc-
tion sequence which uses only elementary reductions. For the final complex shown
on the right, no further elementary reductions are possible. Similarly, Fig. 5 shows
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Fig. 5 This example shows that in general it is not possible to completely reduce a planar CW-complex
using only elementary coreductions. In order to start the coreduction sequence from the CW-complex
shown on the left we add the empty set in dimension −1

a planar CW-complex and a reduction sequence which uses only elementary core-
ductions. Also here, the final S-complex does not allow for any further elementary
coreductions.

In order to completely reduce the S-complex associated with a planar regular CW-
complex a few preparations are necessary. It was already mentioned at the end of the
last section that in order to start the coreduction sequence, one has to add the empty
set to the associated chain complex in dimension −1. Thus, an elementary coreduc-
tion can be used to remove one vertex from the S-complex. In a homological sense
this of course means that one computes the reduced homology groups, rather than the
original one. It is therefore not too hard to see that for a disconnected CW-complex,
one has to add several elements to the associated chain complex in dimension −1,
namely one for each component, in order to finally arrive at a trivial zero-dimensional
homology group. From an algorithmic point of view, this can easily be achieved. One
simply removes a vertex,1 and applies elementary coreductions as long as possible.
If the resulting S-complex still has generators in dimension 0, one just repeats the
process, and so on. By keeping track how many times this process has to be started,
one can keep track of the number of components in the underlying CW-complex.

We turn our attention to the main result of this section. For this, we call a regular
CW-complex planar, if it can be embedded into R

2. The following result now shows
that every such complex can be completely reduced by using only elementary S-
reduction pairs.

Theorem 3.6 Let K denote a finite planar regular CW-complex and let K denote the
associated CW-complex structure. Based on the discussion preceding this theorem,
we may assume without loss of generality that K is connected. Then there exists an
S-reduction sequence α of K such that the α-reduction of K has trivial chain groups
except in dimension one. Furthermore, the cardinality of Kα

1 is exactly the first Betti
number of K .

Proof In general there are many different S-reduction sequences which achieve the
goal of the theorem, and we present only one particular example. In a first step, one
can remove all 2-cells of K via a sequence of elementary reductions. To see this, note
that as a consequence of the Jordan curve theorem, any planar CW-complex must
have a 2-cell with a free edge—one just has to pick a 2-cell at the outer boundary of
the complex. Applying an elementary reduction not only gives a reduced S-complex,
but in fact a reduced planar CW-complex which is still connected. By applying this

1It is straightforward to see that every CW-complex has to contain at least one 0-cell.



376 Discrete Comput Geom (2011) 46:361–388

argument successively, one 2-cell after another can be removed from the planar CW-
complex, without leaving the category of planar CW-complexes which are connected.

After the first step, one is left with a connected planar CW-complex of dimension
one. The addition of the empty set to the associated chain complex in dimension −1
then allows one to perform a first coreduction, which removes a vertex from the S-
complex. From this point onwards, one is no longer working with CW-complexes,
but rather with S-complexes. Using a succession of edge-vertex coreductions it is
now possible to remove all the remaining vertices of the S-complex, as well as all
the edges in a spanning tree for the 1-skeleton of K , i.e., the resulting α-reduced
S-complex Kα has the structure stated in the theorem. Finally, since S-reductions
preserve the homology of the chain complex and since the final S-complex has a van-
ishing boundary map, the number of remaining 1-cells equals the first Betti number
of the original CW-complex. This completes the proof of the theorem. �

In fact, the following theorem follows easily from our above discussion.

Theorem 3.7 Let K be a planar regular CW-complex with a CW-complex struc-
ture K. Then the homology of K can be computed in O(|K|) time. For this, the Smith
normal form algorithm does not have to be employed and no knowledge of the inci-
dence indices of cells of K is necessary.

Let us remark that the results of Theorems 3.6 and 3.7 may be extended to the
case of homology generators. To see this observe that in the setting of Theorem 3.6
the set of generators of the α-reduction coincides with the set of the homology gen-
erators of the α-reduction. Therefore, to obtain the set of generators of the original
S-complex (S, κ) it is enough to find the images of these generators in the map ια

given by (2). By [21, Theorem 3.1] the cost of finding this image is O(|K|w(K)).
Therefore we have the following theorem.

Theorem 3.8 Let K be a planar regular CW-complex with a CW-complex struc-
ture K. Then the time complexity of computing the generators of the homology of K

is O(|K|w(K)g(K)), where g(K) denotes the number of homology generators of K .

In particular, in the setting of two-dimensional raster images the cost is
O(|K|g(K)).

Before closing this section, we would like to point out that the conclusion of Theo-
rem 3.6 and Theorem 3.7 are in general not true for two-dimensional non-planar CW-
complexes. To see this, consider the torus represented by the CW-complex shown in
the left image of Fig. 6. As usual, vertices with the same letter are identified, as well
as the corresponding edges between them. After appending the empty set in dimen-
sion −1 as before, one can remove the center vertex of the CW-complex. Subsequent
edge-vertex coreductions then allow one to remove all the remaining vertices, as well
as all the edges in a spanning tree of the 1-skeleton, resulting in the S-complex shown
in the center image of Fig. 6. Finally, a sequence of 2-cell-edge coreductions can be
used to remove nine of the 2-cells, and this furnishes the S-complex on the right.
Notice that for this S-complex, no further elementary reductions or coreductions are
possible.
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Fig. 6 This example shows that in general it is not possible to completely reduce a two-dimensional
non-planar CW-complex using elementary coreductions or elementary reductions. The image shows a
CW-complex representing a torus, where vertices with identical letters are identified, as well as edges
between them. In order to start the coreduction sequence we add the empty set in dimension −1

3.3 Rectangular CW-Complexes

The previous section identified a situation in which the coreduction algorithm always
leads to a final S-complex with trivial boundary operators. In such a case, the homol-
ogy of the underlying CW-complex can be determined directly from the generators of
the remaining chain groups, and no application of the Smith normal form algorithm is
necessary at all. In most situations, however, the final S-complex after the coreduction
step does contain nontrivial boundary operators. In order to then efficiently apply the
Smith normal form algorithm, one has to be able to determine the matrix represen-
tations for the boundary operators quickly, and this in turn depends on the efficient
computability of the incidence index κ . Since the reduced S-complex is no longer
a regular CW-complex, we cannot use the equations in (c) and (d) of Theorem 3.1.
We demonstrated this in Example 3.5. We can always use the algorithm in Table 1
to obtain the incidence index κ before we start the reductions and use them after the
reductions to build the matrices of the boundary map in the remaining complex. It
will be shown in this section that CW-complexes in a special class, called rectangular
CW-complexes, are effective S-complexes. Therefore, in this case the computation of
all incidence numbers before the S-reductions start is not needed, because the inci-
dence index κ can easily be computed directly from the representation of the cells,
even though the S-complex obtained after the reduction process is no longer a rectan-
gular cell complex. The explicit formula for the incidence of two cells which can be
used for the remaining cells in the reduced complex is provided in this section.

In the following, the term interval is always used for a compact interval I = [a, b]
in R with a ≤ b. We say that the interval I is degenerate if a = b, otherwise it is
called nondegenerate. A facet of an interval is defined as follows: If the interval I

is degenerate, then it has no facets; if I is nondegenerate, then it has two facets,
which are given by the degenerate intervals [a] := [a, a] and [b] := [b, b]. The class
of regular CW-complexes which is studied in this section is formed via rectangles.
For this, a rectangle in R

d is a product Q = Q1 × Q2 × · · · × Qd of d intervals
Q1,Q2, . . . ,Qd . The dimension of Q, which is denoted by dimQ, equals the number
of nondegenerate intervals in the sequence Q1,Q2, . . . ,Qd . Next, we need to define
the notion of facets for rectangles. For this, assume d > 1, and let P = P1 × P2 ×
· · ·×Pd denote a second rectangle in R

d . Then we say that P is a facet of Q, which is
denoted by P < Q, if P ⊂ Q, the dimensions satisfy dimP = dimQ − 1, and there
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exists a j such that Pj is a facet of Qj . It can easily be seen that in this case the
index j is unique and that dimPi = dimQi for all i �= j . Finally, P is called a face
of Q, if either there is a descending sequence of facets joining Q to P , or P ∈ {∅,Q}.
The round of preparatory definitions is completed by the notion of boundary. For an
interval [a, b] we define its boundary as

bdr[a, b] :=
{ {a, b} if a �= b,

∅ if a = b.

Now let d > 1 and consider a rectangle Q = Q1 ×Q2 ×· · ·×Qd . Then its boundary
is defined as bdr Q := ⋃d

i=1 Q1 × · · · × bdr Qi × · · · × Qd . It can easily be verified
that if one thinks of an n-dimensional rectangle Q as an n-dimensional manifold with
boundary which is embedded in R

d , then the set bdr Q contains exactly the boundary
points of the manifold.

After the preparations of the previous paragraph, we can now define the central ob-
ject for this section. A rectangular structure is a finite collection Q of rectangles such
that for any choice of P,Q ∈ Q one has either P ∩Q = ∅, or P ∩Q is a common face
of both P and Q which in addition belongs to Q. Moreover, we assume that for any
rectangle Q ∈ Q, its boundary satisfies bdr Q = ⋃{P ∈ Q : P is facet of Q}. Finally,
a rectangular CW-complex is given by the union of some rectangular structure, i.e., it
is the subset of Euclidean space which is occupied by the rectangles in Q. Any zero-
dimensional rectangle Q ∈ Q is called a vertex, and if Q ∈ Q is an n-dimensional
rectangle, then the set Q \ bdr Q is called an n-cell. For rectangular CW-complexes,
we have the following theorem.

Theorem 3.9 Any rectangular CW-complex is a regular CW-complex.

Proof Any rectangular CW-complex is the finite union of closed rectangles, and
therefore it is a compact subset of R

d with respect to the standard topology. In par-
ticular, it is a Hausdorff space.

Let Q denote the rectangular structure that induces the rectangular CW-complex
and let Qn denote the set of n-dimensional rectangles in Q. Then Kn := ⋃{Q ∈ Q :
dimQ ≤ n} is an n-dimensional skeleton of the rectangular CW-complex. Obviously,
Qn ⊂ Q is finite for all n = 0,1, . . . , d .

Now consider a rectangle Q = Q1 × Q2 × · · · × Qd ∈ Qn. It is well-known
that there exists a homeomorphism ĥn : Bn

1 (0) → (0,1)n that can be extended to a
homeomorphism hn : Bn

1 (0) → [0,1]n. Thus, it suffices to construct a homeomor-
phism fQ : [0,1]n → Q which attaches Q to Kn−1. Due to dimQ = n, there exists
{i1, . . . , in} ⊂ {1, . . . , d} such that Qi1, . . . ,Qin are the nondegenerate intervals in Q.
For i �∈ {i1, . . . , in} we write Qi = [qi], and for j ∈ {i1, . . . , in} we let Qj = [aj , bj ],
where aj �= bj . Using this notation, consider the map fQ : [0,1]n → Q which is
defined on points (x1, . . . , xn) ∈ [0,1]n by

(
fQ(x1, . . . , xn)

)
j

:=
{

aj + xl(bj − aj ) for j = il ∈ {i1, . . . , in},
qj for j /∈ {i1, . . . , in},
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where (fQ(x1, . . . , xn))j denotes the j th component of the vector fQ(x1, . . . , xn).
One can readily see that the inverse map f −1

Q : Q → [0,1]n is given by

(
f −1

Q (q1, . . . , qd)
)
j

= qij − aij

bij − aij

∈ [0,1]n,

for j = 1, . . . , n and (q1, . . . , qd) ∈ Q. Both mappings fQ and f −1
Q are continuous

bijections, and therefore fQ : [0,1]n → Q is a homeomorphism for any Q ∈ Q. The
fact that fQ(∂[0,1]n) = bdr Q ⊂ Kn−1 follows readily from the definition of fQ and
the assumption that bdr Q = ⋃{P ∈ Q : P is facet of Q}. �

The next result shows that for rectangular CW-complexes, the incidence index κ

can be computed easily and efficiently.

Theorem 3.10 Consider a rectangular CW-complex given by a rectangular struc-
ture Q. Let P and Q denote two arbitrary rectangles in Q with dimQ = 1 + dimP ,
and define the number αQP as follows. For d = 1 and Q = [a, b] let

αQP :=
{−1 if P = [a],

1 if P = [b],
0 otherwise,

and for d > 1 set

αQP :=
{

(−1)
∑j−1

i=1 dimQi αQj Pj
if P < Q and j satisfies Pj < Qj ,

0 otherwise.
(4)

Then the numbers αQP are incidence indices for the given rectangular CW-complex,
i.e., they satisfy all the conditions of Theorem 3.1.

Proof The above definition of αQP immediately implies that (a) and (b) of Theo-
rem 3.1 are satisfied. In addition, condition (c) is clear in the case d = 1, and it
follows easily also for d > 1, since the index j and the corresponding exponent

ε(Q,P ) :=
j−1∑

i=1

dimQi

in (4) are the same for the two vertices of a 1-cell. Thus, we only have to establish
the validity of condition (d) in Theorem 3.1. For this, consider d > 1 and let Q, P ,
R, and S denote rectangles with dimensions n, n − 1, n − 1, and n − 2, respectively.
Furthermore, assume that P and R are facets of Q, and that S is the unique facet of
both P and R. Finally, let Qi , Pi , Ri , and Si denote the ith component interval of Q,
P , R, and S, respectively. Using this setting, we have to verify the identity

αQP αPS + αQRαRS = 0 (5)

in order to establish assumption (d) in Theorem 3.1. For this, we distinguish the
following two cases.
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Fig. 7 Illustrations of Case 1 (left) and Case 2 (right) in the proof of Theorem 3.10

Case 1 (See Fig. 7 left): Assume that the index j in the definition of a facet is the
same for both R < Q and P < Q.

Under this additional assumption, one obviously has ε(Q,P ) = ε(Q,R). More-
over, since P ∩ R ⊃ S �= ∅, we see that Pj = Rj = Sj and they coincide with one
of the endpoints of Qj . This results in αQP = αQR , and therefore it remains to be
shown that we have

αPS + αRS = 0.

Since S < P and S < R, there exist unique integers k and l such that Sk < Pk and
Sl < Rl . In fact, we must have k = l, since otherwise one would obtain dimS = n−3,
which contradicts our hypothesis. Thus, one can readily see that ε(P,S) = ε(R,S).
In addition, we have Sk = Pk ∩ Rk = [b] for some real number b. Without loss of
generality, Pk = [a, b] and Rk = [b, c], and therefore

αPS = (−1)ε(P,S)αPkSk
= (−1)ε(P,S), αRS = (−1)ε(R,S)αRkSk

= (−1)ε(P,S)+1.

From this the conclusion follows.

Case 2 (See Fig. 7 right): There are two distinct indices j �= k such that Pk < Qk

and Rj < Qj .

Under this assumption, the intervals Pk and Rj are degenerate, and all other inter-
val components of P and R with coordinates i for which dimQi = 1 are nondegen-
erate. Without loss of generality, we may assume k < j . The degenerate interval Pk

may be either a left or a right endpoint of the nondegenerate interval Qk , and Rj may
be either a left or a right endpoint of the nondegenerate interval Qj . This gives rise to
four distinct possibilities of which we only describe one in detail; the remaining cases
can be treated analogously and are left to the reader. Consider the two-dimensional
rectangle in the k × j coordinates given by

Q′ := Qk × Qj = [a, b] × [c, d],
as well as the edge parts

P ′ := Pk × Pj = [a] × [c′, d ′], with c ≤ c′ < d ′ ≤ d,
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R′ := Rk × Rj = [a′, b′] × [c], with a ≤ a′ < b′ ≤ b.

Due to P ∩ R ⊃ S �= ∅, we then must have

S′ := Sk × Sj = [a] × [c].
This in turn is only possible if c′ = c and a′ = a, i.e., the interval P ′ intersects the
interval R′ in the lower-left corner of Q′. (Notice that the above-mentioned remaining
three cases correspond to the remaining three corners of Q′.) The definitions

p = ε(Q,P ) =
k−1∑

i=1

dimQi and r = ε(Q,R) =
j−1∑

i=1

dimQi

then furnish

αQP = (−1)pαQkPk
= (−1)p+1 and αQR = (−1)rαQj Rj

= (−1)r+1.

According to dimPk = dimSk = 0, the sum in the formula for the exponent ε(P,S)

extends up to the index j − 1, analogously to the case of the exponent r defined
above. In other words, we have

ε(P,S) =
j−1∑

i=1

dimPi.

Now observe that dimPi = dimQi for all i ≤ j − 1—except for the choice i = k,
which corresponds to dimQk = 1 and dimPk = 0. Hence, the identity ε(P,S) =
r − 1 holds and we obtain

αPS = (−1)r−1αPj Sj
= (−1)r .

In addition, we have dimRi = dimQi for all i ≤ j − 1. Combined with the assump-
tion k < j and Sk < Rk , this furnishes

ε(R,S) =
k−1∑

i=1

dimRi =
k−1∑

i=1

dimQi = p,

as well as

αRS = (−1)pαRkSk
= (−1)p+1.

This finally implies

αQP αPS + αQRαRS = (−1)p+1(−1)r + (−1)r+1(−1)p+1 = 0,

which completes the proof of the theorem. �

Remark 3.11 The formula (4) is inspired by the boundary operator formula for cubi-
cal sets which was derived in [13, Corollary 2.35]. In fact, an alternative presentation
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of rectangular CW-complexes can be given in terms of rescaling of cubical sets as
defined in [13, Sect. 6.4.2]. Suppose that Q is a rectangular structure for X ⊂ Rd

such that every cube Q ∈ Q is the product of intervals with rational coordinates.
This hypothesis is not restrictive in practice, because the interval arithmetic always
produce such intervals. Let αi be a common multiple of all denominators present
in the ith coordinate intervals of all these cubes. Consider the scaling isomorphism
Λα : R

d → R
d defined by Λα(x) := (α1x1, α2x2, . . . , αdxd). Then the image Xα

of X under the mapping Λα is a cubical set. Moreover, it can be seen that the chain
complex associated with X is isomorphic to the cubical subcomplex of C(Xα) whose
nth chain group is generated by the chains

Q̂ :=
∑{

P̂ : P ∈ Kn

(
Qα

)}

over Q ∈ Q, where Kn(Q
α) denotes the set of elementary n-cubes in Qα and P̂ is

the dual generator corresponding to P ∈ Kn(X
α). We do not present the proof of this

fact because it is not used in the computations of this paper.

4 Numerical Experiments

In this final section of the paper we present a first application of the coreduc-
tion method for regular CW-complexes in the context of planar rectangular CW-
complexes. For this, we consider again the study of topological properties of nodal
domains of functions, which has been considered before in [1, 4, 5, 10, 16, 17]. In
particular, we will improve on the numerical studies presented in [5]. As was already
mentioned in the introduction, the latter study developed a rigorous computational
technique for finding the homology of nodal sets of smooth functions. In order to
determine and rigorously validate the boundary of nodal sets in the plane, the method
of [5] finds a non-uniform cubical decomposition of the underlying two-dimensional
domain of the function in such a way that the signs of the function values on the cor-
ners of any square in the decomposition completely describe the structure of the nodal
line within this square: If all signs are the same, the nodal line has an empty inter-
section with the square; if exactly one corner has a different sign from the remaining
three corners, then the nodal line is a simple curve which originates/ends at the two
edges adjacent to the exceptional corner, etc. Once the algorithm has determined a
non-uniform decomposition of this type, the only way to compute the homology of
the nodal sets using homology codes which were available at the time was to embed
the non-uniform grid into a fine uniform grid, whose size is determined by the small-
est square in the non-uniform decomposition. It was already pointed out in [5], that
this approach severely limits the practical applicability of the method.

In order to address these shortcomings with respect to the homology computa-
tion in [5] we have implemented a coreduction algorithm for planar rectangular CW-
complexes. According to Theorem 3.6 and Theorem 3.7, in this particular situation it
is possible to employ elementary reductions and coreductions to completely reduce
the underlying S-complex, i.e., at the end of the algorithm all boundary operators are
trivial and there is no need for an application of the Smith normal form algorithm.
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In the remainder of this section, we describe the improvements that the coreduction
method brings over the homology computation method employed in [5]. As men-
tioned above, in [5] the homology of the nodal domains was computed using a uni-
form cubical approximation, whose grid size was determined by the smallest cube
in the non-uniform adaptive grid, and whose homology was then computed using
the standard coreduction algorithm for uniform cubical complexes developed in [19].
While the latter algorithm is extremely efficient, the insistence on uniform cubical
grids puts severe restrictions on the largest possible problem size that could be tack-
led in [5]. For the case of nodal domains of doubly-periodic random trigonometric
polynomials, which will be described in more detail below, it was only possible to
consider fine uniform grids of sizes up to 650002. In order to compare the coreduc-
tion algorithm for rectangular non-uniform CW-complexes to the one for uniform
cubical complexes, we consider the test case of random trigonometric polynomials.
In previous theoretical work [16], rigorous bounds on the probability of a correct ho-
mology computation using uniform cubical grids of certain sizes were derived—and
the validity of these estimates as a function of the grid size for random trigonomet-
ric polynomials of certain degrees was established in [5]. These studies are concerned
with a special class of random periodic Gaussian fields, namely, with random trigono-
metric polynomials on the base domain 
 = [0,1]2 of the form

f (x1, x2,ω) =
K∑

k,�=0

αkα� · (gk,�,1(ω) cos(2πkx1) cos(2π�x2)

+ gk,�,2(ω) cos(2πkx1) sin(2π�x2)

+ gk,�,3(ω) sin(2πkx1) cos(2π�x2)

+ gk,�,4(ω) sin(2πkx1) sin(2π�x2)
)
. (6)

In (6), the degree of the trigonometric polynomial is given by K ≥ 3, and the fac-
tors gk,�,m are random variables defined over a common probability space (Ω, F ,P)

which are independent and normally distributed with mean 0 and variance 1. See
also [4, 17].

Studying the nodal domains of random trigonometric polynomials of the form (6)
provides an excellent testing ground for the new coreduction algorithm for non-
uniform planar rectangular CW-complexes. This is due to the fact that with increas-
ing degree K both the topological complexity of the resulting nodal domains, and the
complexity of the non-uniform adaptive grid produced by the algorithm of [5] grows.
In fact, our simulations—which are described in more detail below—show that the
averaged Betti numbers β0(K) and β1(K) of random trigonometric polynomials of
degree K roughly follow the proportionalities

β0(K) ∼ K1.337 and β1(K) ∼ K2.272.

Furthermore, the size of the adaptive validated grid grows exponentially via

adaptive grid size ∼ 1.306K.
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Fig. 8 (Color online) Sample nodal domain patterns for random trigonometric polynomials in two di-
mensions. From left to right the images correspond to the degrees K = 16,20,24 in (6). In each image, a
yellow outline is selected, whose blow-up is shown in the second row. These blow-ups contain the adaptive
numerical grid which is used for homology verification

Fig. 9 (Color online) The left image shows the growth of the averaged 0th Betti numbers (blue curve) and
1st Betti numbers (red curve) of the nodal domains of random trigonometric polynomials given by (6);
both axes in this image use a logarithmic scale. The image on the right shows the average number of
validated rectangles in the final adaptive grid generated by the validation algorithm in [5] as a function
of the degree K of the random trigonometric polynomial; in this image, only the vertical axis is using
logarithmic scaling

Thus, for the largest simulations that are included in the discussion below, we are
dealing with non-uniform rectangular CW-complexes with millions of cells. Never-
theless, even in these extreme cases the runtime of our homology algorithm turns out
to be only a few seconds.
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Fig. 10 Timings for the coreduction algorithm for planar rectangular CW-complexes. The left image
shows the ratio of computational time over the actual size of the considered non-uniform planar rectangular
CW-complex, averaged over the samples of a random ensemble of trigonometric polynomials, as a function
of the degree K . This image indicates linear time complexity, except for the increase in computational time
around K ≈ 15 which is caused by memory paging effects. The right image shows the average and median
speedups which were observed in comparison with the uniform grid method employed in [5]. Notice that
no comparisons could be made for K ≥ 23

The graphs shown in Figs. 10 and 11 contain basic timings of the coreduction
algorithm for non-uniform planar rectangular CW-complexes, as well as comparisons
with the method employed in [5]. To obtain these graphs, we applied the validation
algorithm of [5] to random ensembles of trigonometric polynomials of the form (6),
for values of the degree K between 3 and 32. The sizes of the random ensembles
varied between 3000 for small values K and 5 for the largest few values. The selection
of the ensemble sizes was dictated by the running time of the validation algorithm.
Once the non-uniform validated adaptive grid has been determined, we applied the
coreduction algorithm for non-uniform planar rectangular CW-complexes to the non-
uniform grid to determine the Betti numbers. In addition, whenever possible—i.e., if
the size 1/M of the smallest cube in the adaptive grid was not too small—we applied
the homology algorithm used in [5].

The first set of timings obtained in this way can be found in the left image of
Fig. 10. This image shows the ratio of computational time of the coreduction algo-
rithm for non-uniform planar rectangular CW-complexes divided by the actual size of
the considered non-uniform rectangular CW-complex, averaged over the samples of
a random ensemble of trigonometric polynomials, as a function of the degree K . This
image indicates that the runtime complexity of the algorithm is linear in the complex
size, as indicated by the almost constant ratios as a function of K . At first glance, the
sudden increase of this ratio around K ≈ 15 seems to contradict the linearity. How-
ever, for degrees less than this threshold the resulting complexes are so small that
they can be completely dealt with without memory paging. Once the degree of the
random trigonometric polynomial exceeds the threshold value, memory paging has
to be employed by the C++ program to deal with the larger complex size—and this
results in the increased computational effort.

In order to compare the new algorithm with the homology algorithm used in [5],
we also computed the mean and median speedups for the runtimes of the two algo-
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Fig. 11 Further comparisons of the coreduction algorithm for planar rectangular CW-complexes with the
uniform grid method employed in [5]. The top left image shows the percentage of samples for which the
algorithm in [5] could not compute the homology due to memory constraints. The top right image gives
the maximal speedup which was observed within the random ensembles for each value of the degree K

(notice the logarithmic scale on the vertical axis). The decay of the maximal speedup for K-values ap-
proaching 23 is due to the fact that the algorithm in [5] is able to compute the homology of nodal domains
of trigonometric polynomial of such degrees only if the topology of the nodal domain is very simple. In
these cases, one cannot see the huge advantage of the new approach when compared with the uniform grid
method. The lower left image shows the distribution of log2 M , where 1/M is the size of the smallest cube
in the adaptive grid, for various degrees K , and the lower right image presents the averaged speedups as a
function of log2 M , for K-values between 3 and 21

rithms. The results of these computations can be found in the right image of Fig. 10.
The data shows that significant average speedups of two orders of magnitude can be
observed for degrees K larger than 10, while the speedups are more moderate for
smaller values of K—due to the low complexity of the nodal domains. We would
like to point out, however, that for K ≥ 23 no speedup data could be obtained. An ex-
planation of this fact is given in the top left image of Fig. 11. As a function of K , this
image depicts the percentage of samples within each ensemble of random trigono-
metric polynomials with fixed degree K , for which it was impossible to determine
the homology using the method of [5]. In fact, for none of the considered functions
of degrees K ≥ 23 the old method could be applied, since the size 1/M of the small-
est cube in the validated adaptive grid was many orders of magnitudes too small. This
failure was the reason to restrict the studies in [5] to K ≤ 16. Nevertheless, in all of
these cases, the new algorithm could produce the Betti numbers in no time.
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As a final measure of the performance of the two algorithms we show the maximal
observed speedup within each ensemble of random trigonometric polynomials with
fixed degree K in the top right image of Fig. 11. These maximal speedups were
about four orders of magnitude for smaller values of K , and decrease to two orders
of magnitude as K increases from 10 to 22. Notice, however, that the latter numbers
do not give an accurate picture. This is due to the fact that the range of K-values
were the maximal speedups decrease corresponds exactly to the range of K-values
for which the failure rate of the old homology code increases. In other words, for
these degrees, comparisons can only be made if the nodal domain geometry is simple
enough to allow for the application of the homology algorithm of [5]—and these of
course are exactly the cases where we do not expect large speedups from the new
code. In fact, this statement is illustrated more in the bottom pictures of Fig. 11. In
these images, we take into account the size M2 of the homogeneous grid which is
used for the homology computations in [5], where again 1/M denotes the side length
of the smallest cube in the validated adaptive grid. The image in the lower left shows
the distribution of log2 M for various degrees K , which indicates a fairly narrow
range for each K , which of course shifts to the right as K increases. In the lower
right image we then present the averaged speedups as a function of log2 M , for K-
values between 3 and 21. This image clearly shows that the decay in the upper right
image of Fig. 11 is due to the lack of comparison data from the old algorithm.
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