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Abstract. We study two notions. One is that of spindle convexity. A set of circumradius
not greater than one is spindle convex if, for any pair of its points, it contains every short
circular arc of radius at least one, connecting them. The other objects of study are bodies
obtained as intersections of finitely many balls of the same radius, called ball-polyhedra.
We find analogues of several results on convex polyhedral sets for ball-polyhedra.

1. Introduction

The main goal of this paper is to study the geometry of intersections of finitely many
congruent balls, say of unit balls, from the viewpoint of discrete geometry in Euclidean
space. We call these sets ball-polyhedra. Some special classes have been studied in the
past; see, e.g., [12], [13] and [42]. For Reuleaux polygons see [34] and [35]. Nevertheless,
the name ball-polyhedra seems to be a new terminology for this special class of linearly
convex sets. In fact, there is a special kind of convexity entering along with ball-polyhedra
which we call spindle convexity. We thank the referee for suggesting this name for this
notion of convexity that was first introduced by Mayer [42] as “Überkonvexität”.

The starting point of our research described in this paper was a sequence of lectures
of the first named author on ball-polyhedra given at the University of Calgary in the fall
of 2004. Those lectures have been strongly motivated by the following recent papers that
proved important new geometric properties of intersections of finitely many congruent
balls: a proof of the Borsuk conjecture for finite point sets in three-space based on
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the combinatorial geometry of “spherical polytopes” [1, p. 215]; Sallee’s theorem [46]
claiming that the class of the so-called “Reuleaux polytopes” is dense in the class of
sets of constant width in R3; a proof of the Kneser–Poulsen conjecture in the plane by
K. Bezdek and Connelly [8] including the claim that under any contraction of the center
points of finitely many circular disks of R2 the area of the intersection cannot decrease;
and finally an analogue of Cauchy’s rigidity theorem for triangulated ball-polyhedra
in R3 [11]. In addition it should be noticed that ball-polyhedra play an essential role
in the proof of Grünbaum–Heppes–Straszewicz theorem on the maximal number of
diameters of finite point sets in R3; see [36].

This paper is not a survey on ball-polyhedra. Instead, it lays a rather broad ground
for future study of ball-polyhedra by proving several new properties of them and raising
open research problems as well.

The structure of the paper is the following. First, notations and basic results about
spindle convex sets are introduced in Sections 2 and 3. Some of these results demonstrate
the techniques that are different from the ones applied in the classical theory. It seems
natural that a more analytic investigation of spindle convexity might belong to the realm
of differential geometry.

In Section 4 we find analogues of the theorem of Kirchberger for separation by
spheres. In Section 5 we prove spindle convex analogues of the classical theorems of
Carathéodory and Steinitz regarding the linear convex hull.

In Section 6 we make the first steps in understanding the boundary structures of
ball-polyhedra. We present examples that show that the face-structure of these objects
is not at all obvious to define. Section 7 contains our results on intersections of unit
spheres in Rn . The questions discussed there are motivated primarily by a problem of
Maehara [38] and are related to the goal of describing faces of ball-polyhedra. Also, we
construct a counterexample to a conjecture of Maehara in dimensions at least four. Then,
in Section 8, we discuss variants of the important Kneser–Poulsen problem. In Section 9
we provide a partial characterization of the edge-graphs of ball-polyhedra in R3, similar
to the theorem of Steinitz regarding convex polyhedra in R3.

Then, in Section 10, a conjecture of the first named author about convex bodies in R3

with axially symmetric sections is proved for ball-polyhedra in R3. We extend an illu-
mination result inR3 of Lassak [37] and Weissbach [50] in Section 11. In Section 12 we
prove various analogues of Dowker-type isoperimetric inequalities for two-dimensional
ball-polyhedra based on methods of L. Fejes Tóth [27]. Finally, in Section 13, we examine
spindle convex variants of Erdős–Szekeres-type questions.

2. Notations and Some Basic Facts

Let (Rn, ‖ ‖), where n ≥ 2, be the standard Euclidean space with the usual norm
and denote the origin by o. The Euclidean distance between a ∈ Rn and b ∈ Rn is
‖a− b‖. The closed line segment between two points is denoted by [a, b], the open line
segment is denoted by (a, b). For the closed, n-dimensional ball with center a ∈ Rn

and of radius r > 0 we use the notation Bn[a, r ] := {x ∈ Rn: ‖a − x‖ ≤ r}. For the
open n-dimensional ball with center a ∈ Rn and of radius r > 0 we use the notation
Bn(a, r) := {x ∈ Rn: ‖a−x‖ < r}. The (n−1)-dimensional sphere with center a ∈ Rn
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and of radius r > 0 is denoted by Sn−1(a, r) := {x ∈ Rn: ‖a − x‖ = r}. Any sphere or
ball in the paper is of positive radius. When r is omitted, it is assumed to be one. Using
the usual conventions, let card, conv, int, bd and diam denote cardinality, convex hull,
interior, boundary and diameter of a set, respectively. We note that a zero-dimensional
sphere is a pair of distinct points.

We introduce the following additional notations. For a set X ⊂ Rn let

B[X ] :=
⋂
x∈X

Bn[x] and B(X) :=
⋂
x∈X

Bn(x). (2.1)

Definition 2.1. Let a and b be two points inRn . If ‖a−b‖ < 2, then the closed spindle
of a and b, denoted by [a, b]s , is defined as the union of circular arcs with endpoints a
and b that are of radii at least one and are shorter than a semicircle. If ‖a− b‖ = 2, then
[a, b]s := Bn[(a + b)/2]. If ‖a − b‖ > 2, then we define [a, b]s to be Rn .

The open spindle, denoted as (a, b)s , in all cases is the interior of the closed one.

Remark 2.2. If ‖a−b‖ ≤ 2, then [a, b]s := B[B[{a, b}]], and (a, b)s := B(B[{a, b}]).

Definition 2.3. The circumradius cr(X) of a bounded set X ⊆ Rn is defined as the
radius of the unique smallest ball that contains X (also known as the circumball of X );
that is,

cr(X) := inf{r > 0: X ⊆ Bn[q, r ] for some q ∈ Rn}.
If X is unbounded, then cr(X) = ∞.

Now, we are ready to introduce two basic notions that are used throughout this paper.

Definition 2.4. A set C ⊂ Rn is spindle convex if, for any pair of points a, b ∈ C , we
have [a, b]s ⊆ C .

Definition 2.5. Let X ⊂ Rn be a finite set such that cr(X) ≤ 1. Then we call P :=
B[X ] �= ∅ a ball-polyhedron. For any x ∈ X we call Bn[x] a generating ball of P
and Sn−1(x) a generating sphere of P . If n = 2, then we call a ball-polyhedron a
disk-polygon.

Remark 2.6. A spindle convex set is clearly convex. Moreover, since the spindle of two
points has non-empty interior (if it exists), a spindle convex set is either zero-dimensional
(if it is one point) or full-dimensional. Also, the intersection of spindle convex sets is
again a spindle convex set.

Definition 2.7. The arc-distance of a, b ∈ Rn is the arc-length of either shorter unit
circular arcs connecting a and b, when ‖a − b‖ ≤ 2; that is,

ρ(a, b) := 2 arcsin

(‖a − b‖
2

)
.

If ‖a − b‖ > 2, then ρ(a, b) is undefined.
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Remark 2.8. If a, b, c ∈ Rn are points such that ‖a − b‖ < ‖a − c‖ ≤ 2, then
ρ(a, b) < ρ(a, c).

The proof of the following claim is straightforward.

Claim 2.9 (Euclidean Arm-Lemma). Given two triangles with vertices a, c, b and
a, c, b′, respectively, in R2 such that ‖c − b‖ = ‖c − b′‖ and the angle at c in the
first triangle is less than in the second. Then ‖a − b‖ < ‖a − b′‖.

In general, the arc-distance is not a metric. The following lemma describes how the
triangle-inequality holds or fails in some situations. This lemma and the next corollary
are from [10], and they are often applicable, as in Lemma 12.1.

Lemma 2.10. Let a, b, c ∈ R2 be points such that ‖a − b‖, ‖a − c‖, ‖b − c‖ ≤ 2.
Then

(i) ρ(a, b)+ ρ(b, c) > ρ(a, c)⇐⇒ b /∈ [a, c]s;
(ii) ρ(a, b)+ ρ(b, c) = ρ(a, c)⇐⇒ b ∈ bd[a, c]s;

(iii) ρ(a, b)+ ρ(b, c) < ρ(a, c)⇐⇒ b ∈ (a, c)s .

Corollary 2.11. Let a, b, c, d ∈ R2 be vertices of a spindle convex quadrilateral in
this cyclic order. Then

ρ(a, c)+ ρ(b, d) > ρ(a, b)+ ρ(c, d),

that is, the total arc-length of the diagonals is greater than the total arc-length of an
opposite pair of sides.

3. Separation

This section describes results dealing with the separation of spindle convex sets by unit
spheres motivated by the basic facts about separation of convex sets by hyperplanes as
they are introduced in standard textbooks; e.g., [16].

Lemma 3.1. Let a spindle convex set C ⊂ Rn be supported by the hyperplane H in
Rn at x ∈ bd C . Then the closed unit ball supported by H at x and lying in the same
side as C contains C .

Proof. Let Bn[c] be the unit sphere that is supported by H at x and is in the same closed
half-space bounded by H as C . We show that Bn[c] is the desired unit ball.

Assume that C is not contained in Bn[c]. So, there is a point y ∈ C, y /∈ Bn[c].
Then, by taking the intersection of the configuration with the plane that contains x, y
and c, we see that there is a shorter unit circular arc connecting x and y that does
not intersect Bn(c) (Fig. 1). Hence, H cannot be a supporting hyperplane of C at x , a
contradiction.
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Fig. 1

Corollary 3.2. Let C ⊂ Rn be a spindle convex set. If cr(C) = 1 then C = Bn[q] for
some q ∈ Rn . If cr(C) > 1 then C = Rn .

Proof. Observe that if C has two distinct support unit balls then cr(C) < 1. Thus, the
first assertion follows. The second is clear.

Definition 3.3. If a ball Bn[c] contains a set C ⊂ Rn and a point x ∈ bd C is on
Sn−1(c), then we say that Sn−1(c) or Bn[c] supports C at x .

The following corollary appears in [36] without proof.

Corollary 3.4. Let A ⊂ Rn be a closed convex set. Then the following are equivalent:

(i) A is spindle convex.
(ii) A is the intersection of unit balls containing it; that is, A = B[B[A]].

(iii) For every boundary point of A, there is a unit ball that supports A at that point.

Theorem 3.5. Let C, D ⊂ Rn be spindle convex sets. Suppose C and D have disjoint
relative interiors. Then there is a closed unit ball Bn[c] such that C ⊆ Bn[c] and
D ⊂ Rn\Bn(c). Furthermore, if C and D have disjoint closures and one, say C , is
different from a unit ball, then there is a closed unit ball Bn[c] such that C ⊂ Bn(c) and
D ⊂ Rn\Bn[c].

Proof. Since C and D are spindle convex, they are convex, bounded sets with disjoint
relative interiors. So, their closures are convex, compact sets with disjoint relative inte-
riors. Hence, they can be separated by a hyperplane H that supports C at a point, say x .
The closed unit ball Bn[c] of Lemma 3.1 satisfies the conditions of the first statement.

For the second statement, we assume that C and D have disjoint closures, so Bn[c] is
disjoint from the closure of D and remains so even after a sufficiently small translation.
Furthermore, C is a spindle convex set that is different from a unit ball, so c /∈ conv(C ∩
Sn−1(c)). Hence, there is a sufficiently small translation of Bn[c] that satisfies the second
statement.

Definition 3.6. Let C, D ⊂ Rn , c ∈ Rn and r > 0. We say that Sn−1(c, r) separates C
from D if C ⊆ Bn[c, r ] and D ⊆ Rn\Bn(c, r), or D ⊆ Bn[c, r ] and C ⊆ Rn\Bn(c, r).
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If C ⊆ Bn(c, r) and D ⊆ Rn\Bn[c, r ], or D ⊆ Bn(c, r) and C ⊆ Rn\Bn[c, r ], then we
say that C and D are strictly separated by Sn−1(c, r).

4. A Kirchberger-Type Theorem for Ball-Polyhedra

The following theorem of Kirchberger is well known (e.g., [5]). If A and B are finite
(resp. compact) sets in Rn with the property that for any set T ⊆ A∪ B of cardinality at
most n+ 2 the two sets A∩ T and B ∩ T can be strictly separated by a hyperplane, then
A and B can be strictly separated by a hyperplane. We show that no similar statement
holds for separation by unit spheres.

We construct two sets A and B showing that there is no analogue of Kirchberger’s
theorem for separation by a unit sphere. Then we prove an analogue for separation by a
sphere of radius at most one. Let A := {a} ⊂ Rn be a singleton set and let b0 ∈ Rn be
a point with 0 < ‖a − b0‖ =: δ < 1. Then Bn[a]\Bn(b0) is a non-convex, closed set
bounded by two closed spherical caps: an inner one C that belongs to Sn−1(b0) and an
outer one that belongs to Sn−1(a) (Fig. 2). Now we choose points b1, b2, . . . , bk−1 such
that for every i the set Bn[bi ] ∩ C is a spherical cap of radius ε and we also have

C ⊂
k−1⋃
j=1

Bn[bj ] and C �⊂
k−1⋃

j=1, j �=i

Bn[bj ] for i = 1, 2, . . . , k − 1. (4.1)

Let B := {b0, b1, . . . , bk−1}. From (4.1) it easily follows that

Bn(a) ⊂
k−1⋃
j=0

Bn[bj ] and Bn(a) �⊂
k−1⋃

j=0, j �=i

Bn[bj ]

for i = 0, 1, . . . , k − 1. (4.2)

From the first part of (4.2) it is clear that there is no c ∈ Rn with the property
that a ∈ Bn(c) and B ⊂ Rn\Bn[c]. On the other hand, if ε is sufficiently small, then
a ∈ conv B. Hence, there is no c ∈ Rn such that B ⊂ Bn(c) and a /∈ Bn[c]. So we have
shown that A and B cannot be strictly separated by a unit sphere.

However, by the second part of (4.2), for any T ⊂ A ∪ B of cardinality at most k,
there is a c ∈ Rn such that T ∩ A ⊂ Bn(c) and T ∩ B ⊂ Rn\Bn[c]. This shows that
there is no Kirchberger-type theorem for separation by unit spheres.

Fig. 2
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In Theorem 4.4 we provide a weaker analogue of Kirchberger’s theorem. For its
proof we need the following version of Kirchberger’s theorem, which is a special case
of Theorem 3.4 of Houle [32], and a lemma.

Theorem 4.1. Let A, B ⊂ Rn be finite sets. Then A and B can be strictly separated
by a sphere Sn−1(c, r) such that A ⊂ Bn(c, r) if, and only if, for every T ⊂ A ∪ B with
card T ≤ n + 2, T ∩ A and T ∩ B can be strictly separated by a sphere Sn−1(cT , rT )

such that T ∩ A ⊂ Bn(cT , rT ).

Lemma 4.2. Let A, B ⊂ Rn be finite sets and suppose that Sn−1(o) is the smallest
sphere that separates A from B such that A ⊆ Bn[o]. Then there is a set T ⊆ A ∪ B
with card T ≤ n + 1 such that Sn−1(o) is the smallest sphere Sn−1(c, r) that separates
T ∩ A from T ∩ B and satisfies T ∩ A ⊂ Bn[c, r ].

Proof. First observe that A �= ∅. Assume that Sn−1(o) separates A from B such that
A ⊂ Bn[o]. Now, let us note also that Sn−1(o) is the smallest sphere separating A and B
such that A ⊂ Bn[o] if, and only if, there is no closed spherical cap of radius less than
π/2 that contains A∩Sn−1(o) and whose interior with respect to Sn−1(o) is disjoint from
B ∩ Sn−1(o). Indeed, if there is a sphere Sn−1(x, r) that separates A and B and satisfies
r < 1 and A ⊂ Bn[x, r ], then we may choose Sn−1(o) ∩ Bn[x, r ] as such a spherical
cap, a contradiction. On the other hand, if C is such a closed spherical cap then, by the
finiteness of A and B, we can move Sn−1(o) to a sphere Sn−1(x, r) that separates A and
B such that Bn[x, r ] ∩ Sn−1(o) = C and r < 1, a contradiction.

We may assume that A, B ⊂ Sn−1(o). Let us take a point q ∈ Bn[o]\{o}. Observe
that the closed half-space that does not contain o and whose boundary contains q and is
perpendicular to q intersects Sn−1(o) in a closed spherical cap of radius less than π/2.
Let us denote this spherical cap and its interior with respect to Sn−1(o) by Cq and Dq ,
respectively. Observe that we have defined a one-to-one mapping between Bn[o]\{o}
and the family of closed spherical caps of Sn−1(o) with radius less than π/2.

Let us consider a point p ∈ Sn−1(o). Note that p ∈ Cq for some q ∈ Bn[o]\{o} if,
and only if, the straight line passing through p and q intersects Bn[o] in a segment of
length at least 2‖p − q‖.

Set

Fp := {q ∈ Bn[o]\{o}: p ∈ Cq} and

G p := {q ∈ Bn[o]\{o}: p /∈ Dq}.
(4.3)

It is easy to see that

Fp = Bn[p/2, 1
2 ]\{o} and G p = Bn[o]\(Bn(p/2, 1

2 ) ∪ {o}). (4.4)

By the first paragraph of this proof, Sn−1(o) is the smallest sphere separating A and
B and satisfying A ⊂ Bn[o] if, and only if, (

⋂
a∈A Fa) ∩ (

⋂
b∈B Gb) = ∅.

Let f denote the inversion with respect to Sn−1(o); for the definition of this transfor-
mation, we refer to Chapter III of [51]. More specifically, let us define f (x) := x/‖x‖2

for x ∈ Rn\{o}. For any p ∈ Sn−1(o), let H+(p) (resp., H−(p)) denote the closed half-
space bounded by the hyperplane tangent to Sn−1(o) at p that contains (resp., does not
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contain)Sn−1(o). Using elementary properties of inversions, we see that f (Fp) = H−(p)
and f (G p) = H+(p)\Bn(o). Hence, Sn−1(o) is the smallest sphere separating A and B
and satisfying A ⊂ Bn[o] if, and only if,

I :=
(⋂

a∈A

H−(a)

)
∩

(⋂
b∈B

(H+(b)\Bn(o))

)
(4.5)

is empty. Observe that Bn(o) ∩ H−(a) = ∅ for any a ∈ A. Since A �= ∅, we have

I =
(⋂

a∈A

H−(a)

)
∩

(⋂
b∈B

H+(b)

)
. (4.6)

As H−(p) and H+(p) are convex for any p ∈ Sn−1(0), Helly’s theorem yields our
statement.

Remark 4.3. There are compact sets A, B ⊂ Rn such that Sn−1(o) is the smallest
sphere that separates A from B and A ⊆ Bn[o] but, for any finite T ⊆ A ∪ B, there is a
sphere Sn−1(x, r) that separates T ∩ A and T ∩ B such that r < 1 and T ∩ A ⊆ Bn[x, r ].

We show the following three-dimensional example. Let us consider a circleS1(x, r) ⊂
S2(o) with r < 1 and a set A0 ⊂ S1(x, r) that is the vertex set of a regular triangle.
Let B be the image of A0 under the reflection about x . Clearly, S1(x, r) is the only
circle in its affine hull that separates A0 and B. Hence, every 2-sphere that separates
A0 and B contains S1(x, r). Consider two points a ∈ A0 and y ∈ (o, a) and set A =
A0 ∪ B3(y, ‖a − y‖). Then the smallest sphere that separates A and B and contains A
in its convex hull is S2(o). Nevertheless, it is easy to show that, for any finite set T ⊂ A,
there is a sphere S2(cT , rT ) separating T and B such that rT < 1 and T ⊂ B3[cT , rT ].

Theorem 4.4. Let A, B ⊂ Rn be finite sets. Then A and B can be strictly separated
by a sphere Sn−1(c, r) with r ≤ 1 such that A ⊂ Bn(c, r) if, and only if, the following
holds. For every T ⊆ A ∪ B with card T ≤ n + 2, T ∩ A and T ∩ B can be strictly
separated by a sphere Sn−1(cT , rT ) with rT ≤ 1 such that T ∩ A ⊂ Bn(cT , rT ).

Proof. We prove the “if” part of the theorem, the opposite direction is trivial. Theo-
rem 4.1 guarantees the existence of the smallest sphere Sn−1(c′, r ′) that separates A and
B such that A ⊆ Bn[c′, r ′]. According to Lemma 4.2, there is a set T ⊆ A ∪ B with
card T ≤ n + 1 such that Sn−1(c′, r ′) is the smallest sphere that separates T ∩ A from
T ∩ B and whose convex hull contains T ∩ A. By the assumption, we have r ′ < rT ≤ 1.
Note that Theorem 4.1 guarantees the existence of a sphere Sn−1(c∗, r∗) that strictly sep-
arates A from B and satisfies A ⊂ Bn(c∗, r∗). Since r ′ < 1, there is a sphere Sn−1(c, r)
with r ≤ 1 such that Bn[c′, r ′] ∩ Bn(c∗, r∗) ⊂ Bn(c, r) ⊂ Rn\(Bn(c′, r ′) ∪ Bn[c∗, r∗]).
This sphere clearly satisfies the conditions in Theorem 4.4.

Problem 4.5. Prove or disprove that Theorem 4.4 extends to compact sets.
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5. The Spindle Convex Hull: The Theorems of Carathéodory and Steinitz

In this section we study the spindle convex hull of a set and give analogues of the
well-known theorems of Carathéodory and Steinitz to spindle convexity. The theorem of
Carathéodory states that the convex hull of a set X ⊂ Rn is the union of simplices with
vertices in X . Steinitz’s theorem is that if a point is in the interior of the convex hull of
a set X ⊂ Rn , then it is also in the interior of the convex hull of at most 2n points of X .
This number 2n cannot be reduced as shown by the cross-polytope and its center point.
We state the analogues of these two theorems in Theorem 5.7. We note that, unlike in
the case of linear convexity, the analogue of the theorem of Kirchberger does not imply
the analogue of the theorem of Carathéodory.

Motivated by Lemma 3.1 we make the following definition.

Definition 5.1. Let X be a set in Rn . Then the spindle convex hull of X is convs X :=⋂{C ⊆ Rn: X ⊆ C and C is spindle convex in Rn}.

The straightforward proof of the following elementary property of the spindle convex
hull is omitted.

Proposition 5.2. Let P ⊂ H , where H is an affine subspace of Rn . Assume that A
is contained in a closed unit ball. Then the spindle convex hull of P with respect to H
coincides with the intersection of H with the spindle convex hull of P in Rn .

Definition 5.3. Let Sk(c, r) ⊂ Rn be a sphere such that 0 ≤ k ≤ n − 1. A set
F ⊂ Sk(c, r) is spherically convex if it is contained in an open hemisphere of Sk(c, r)
and for every x, y ∈ F the shorter great-circular arc of Sk(c, r) connecting x with y
is in F . The spherical convex hull of a set X ⊂ Sk(c, r) is defined in the natural way
and it exists if, and only if, X is in an open hemisphere of Sk(c, r). We denote it by
Sconv(X,Sk(c, r)).

Remark 5.4. Carathéodory’s theorem can be stated for the sphere in the following way.
If X ⊂ Sk(c, r) is a set in an open hemisphere of Sk(c, r), then Sconv(X,Sk(c, r)) is the
union of spherical simplices with vertices in X . The proof of this spherical equivalent of
the theorem uses the central projection of the open hemisphere to Rk .

Remark 5.5. It follows from Definition 2.1 that if C ⊂ Rn is a spindle convex set such
that C ⊂ Bn[q] and cr(C) < 1 then C ∩ Sn−1(q) is spherically convex on Sn−1(q).

The following lemma describes the surface of a spindle convex hull (Fig. 3).

Lemma 5.6. Let X ⊂ Rn be a closed set such that cr(X) < 1 and let Bn[q] be a closed
unit ball containing X . Then

(i) X ∩ Sn−1(q) is contained in an open hemisphere of Sn−1(q) and
(ii) convs(X) ∩ Sn−1(q) = Sconv(X ∩ Sn−1(q),Sn−1(q)).
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Fig. 3

Proof. Since cr(X) < 1, we obtain that X is contained in the intersection of two
distinct closed unit balls which proves (i). Note that by (i), the right-hand side Z :=
Sconv(X ∩ Sn−1(q),Sn−1(q)) of (ii) exists. We show that the set on the left-hand side is
contained in Z ; the other containment follows from Remark 5.5.

Suppose that y ∈ convs(X) ∩ Sn−1(q) is not contained in Z . We show that there is a
hyperplane H through q that strictly separates Z from y. Consider an open hemisphere
of Sn−1(q) that contains Z , call the spherical center of this hemisphere p. If y is an
exterior point of the hemisphere, H exists. If y is on the boundary of the hemisphere,
then, by moving the hemisphere a little, we find another open hemisphere that contains
Z , but with respect to which y is an exterior point.

Assume that y is contained in the open hemisphere. Let L be a hyperplane tangent to
Sn−1(q) at p. We project Z and y centrally from q onto L and, by the separation theorem
of convex sets in L , we obtain an (n−2)-dimensional affine subspace T of L that strictly
separates the image of Z from the image of y. Then H := aff(T ∪ {q}) is the desired
hyperplane.

Hence, y is contained in one open hemisphere of Sn−1(q) and Z is in the other.
Let v be the unit normal vector of H pointing toward the hemisphere of Sn−1(q) that
contains Z . Since X is closed, its distance from the closed hemisphere containing y is
positive. Hence, we can move q a little in the direction v to obtain the point q ′ such that
X ⊂ Bn[q] ∩ Bn[q ′] and y /∈ Bn[q ′]. As Bn[q ′] separates X from y, the latter is not in
convs X , a contradiction.

We prove the main result of this section.

Theorem 5.7. Let X ⊂ Rn be a closed set.

(i) If y ∈ bd convs X then there is a set {x1, x2, . . . , xn} ⊆ X such that y ∈
convs{x1, x2, . . . , xn}.

(ii) If y ∈ int convs X then there is a set {x0, x1, . . . , xn} ⊆ X such that y ∈
int convs{x0, x1, . . . , xn}.

Proof. Assume that cr(X) > 1. Then B[X ] = ∅ hence, by Helly’s theorem, there is a
set {x0, x1, . . . , xn} ⊆ X such that B[{x0, x1, . . . , xn}] = ∅. By Corollary 3.2, it follows
that convs({x0, x1, . . . , xn}) = Rn . Thus, (i) and (ii) follow.
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Now we prove (i) for cr(X) < 1. By Lemma 3.1, Remark 5.4 and Lemma 5.6 we
obtain that y ∈ Sconv({x1, x2, . . . , xn},Sn−1(q)) for some {x1, x2, . . . , xn} ⊂ X and
some q ∈ Rn such that X ⊆ Bn[q]. Hence, y ∈ convs{x1, x2, . . . , xn}.

We prove (i) for cr(X) = 1 by a limit argument as follows. Without loss of generality,
we may assume that X ⊆ Bn[o]. Let Xk := (1 − 1/k)X for any k ∈ Z+. Let yk be
the point of bd convs(Xk) closest to y. Thus, limk→∞ yk = y. Clearly, cr(Xk) < 1,
hence there is a set {xk

1 , xk
2 , . . . , xk

n } ⊆ Xk such that yk ∈ convs{xk
1 , xk

2 , . . . , xk
n }. By

compactness, there is a sequence 0 < i1 < i2 < · · · of indices such that all the n
sequences {xij

1 : j ∈ Z+}, {xij

2 : j ∈ Z+}, . . . , {xij
n : j ∈ Z+} converge. Let their respective

limits be x1, x2, . . . , xn . Since X is closed, these n points are contained in X . Clearly,
y ∈ convs{x1, x2, . . . , xn}.

To prove (ii) for cr(X) ≤ 1, suppose that y ∈ int convs X . Then let x0 ∈ X∩bd convs X
be arbitrary and let y1 be the intersection of bd convs X with the ray starting from x0 and
passing through y. Now, by (i), y1 ∈ convs{x1, x2, . . . , xn} for some {x1, x2, . . . , xn} ⊆
X . Then clearly y ∈ int convs{x0, x1, . . . , xn}.

The same proof with a simple modification provides the analogue of the “Colorful
Carathéodory Theorem” [41, p. 199]).

Theorem 5.8. Consider n+1 finite point sets X1, . . . , Xn+1 inRn such that the spindle
convex hull of each contains the origin. Then there is an (n + 1)-point set T ⊂ X1 ∪
· · · ∪ Xn+1 with card(T ∩ Xi ) = 1 for each i ∈ {1, 2, . . . , n+ 1} such that o ∈ convs T .

6. The Euler–Poincaré Formula for Standard Ball-Polyhedra

The main result of this section is the Euler–Poincaré formula for a certain family of
ball-polyhedra. However, before developing that, we present Example 6.1 to show that
describing the face lattice of arbitrary ball-polyhedra is a difficult task. The example is
as follows.

We construct a four-dimensional ball-polyhedron P which has a subset F on its
boundary that, according to any meaningful definition of a face for ball-polyhedra,
is a two-dimensional face. However, F is homeomorphic to a band, hence it is not
homeomorphic to a disk. This example demonstrates that even if one finds a satisfactory
definition for the face lattice of a ball-polyhedron that models the face lattice of a convex
polytope, it will not lead to a CW-decomposition of the boundary of ball-polyhedra.

Example 6.1. Take two unit spheres in R4, S3(p) and S3(−p), that intersect in a 2-
sphere S2(o, r) := S3(p) ∩ S3(−p) of R4. Now, take a closed unit ball B4[q] ⊂ R4

that intersects S2(o, r) in a spherical cap S2(o, r) ∩ B4[q] of S2(o, r) which is greater
than a hemisphere of S2(o, r), but is not S2(o, r). Such a unit ball exists, since r < 1.
Let the ball-polyhedron be P := B4[p] ∩ B4[−p] ∩ B4[q] ∩ B4[−q]. Now, F :=
S2(o, r) ∩ B4[q] ∩ B4[−q] is homeomorphic to a two-dimensional band. Also, F is a
subset of the boundary of P that deserves the name of “2-face”.
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Definition 6.2. Let Sl(p, r) be a sphere of Rn . The intersection of Sl(p, r) with an
affine subspace of Rn that passes through p is called a great-sphere of Sl(p, r). Note
that Sl(p, r) is a great-sphere of itself. Moreover, any great-sphere is itself a sphere.

Definition 6.3. Let P ⊂ Rn be a ball-polyhedron with a family of generating balls
Bn[x1], . . . ,Bn[xk]. This family of generating balls is called reduced if removing any of
the balls yields that the intersection of the remaining balls becomes a set larger than P .
Note that, for any ball-polyhedron, distinct from a singleton, there is a unique reduced
family of generating balls. A supporting sphere Sl(p, r) of P is a sphere of dimension l,
where 0 ≤ l ≤ (n − 1), which can be obtained as an intersection of some of the
generating spheres of P from the reduced family of generating spheres of P such that
P ∩ Sl(p, r) �= ∅.

Note that the intersection of finitely many spheres in Rn is either empty, or a sphere
or a point.

In the same way that the faces of a convex polytope can be described in terms of
supporting hyperplanes, we describe the faces of a certain class of ball-polyhedra in
terms of supporting spheres.

Definition 6.4. Let P be an n-dimensional ball-polyhedron. We say that P is standard
if for any supporting sphere Sl(p, r) of P the intersection F := P ∩ Sl(p, r) is home-
omorphic to a closed Euclidean ball of some dimension. We call F a face of P , the
dimension of F is the dimension of the ball that F is homeomorphic to. If the dimension
is 0, 1 or n − 1, then we call the face a vertex, an edge or a facet, respectively.

Note that the dimension of F is independent of the choice of the supporting sphere
containing F .

In Section 9 we present reasons why standard ball-polyhedra are natural, relevant
objects of study in R3. Example 6.1 demonstrates the reason behind studying these
objects in higher dimensions.

For the proof of the next theorem we need the following definition.

Definition 6.5. Let K be a convex body inRn and let b ∈ bd K . Then the Gauss image
of b with respect to K is the set of outward unit normal vectors of hyperplanes that
support K at b. Clearly, it is a spherically convex subset of Sn−1(o) and its dimension is
defined in the natural way.

Theorem 6.6. Let P be a standard ball-polyhedron. Then the faces of P form the
closed cells of a finite CW-decomposition of the boundary of P .

Proof. Let {Sn−1(p1), . . . ,S
n−1(pk)} be the reduced family of generating spheres of

P . The relative interior (resp., the relative boundary) of an m-dimensional face F of P
is defined as the set of those points of F that are mapped to Bm(o) (resp., Sm−1(o)) under
any homeomorphism between F and Bm[o].

For every b ∈ bd P define the following sphere

S(b) :=
⋂
{Sn−1(pi ): pi ∈ Sn−1(b), i ∈ {1, . . . , k}}. (6.1)
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Clearly, S(b) is a support sphere of P . Moreover, if S(b) is an m-dimensional sphere, then
the face F := S(b)∩ P is also m-dimensional as b has an m-dimensional neighborhood
in S(b) that is contained in F . This also shows that b belongs to the relative interior of
F . Hence, the union of the relative interiors of the faces covers bd P .

We claim that every face F of P can be obtained in this way, i.e., for any relative
interior point b of F we have F = S(b) ∩ P . Clearly, F ⊇ S(b) ∩ P , as the support
sphere of P that intersects P in F contains S(b). It is sufficient to show that F is at most
m-dimensional. This is so, because the Gauss image of b with respect to P is at least
(n − m − 1)-dimensional, since the Gauss image of b with respect to

⋂{Bn[pi ]: pi ∈
Sn−1(b), i ∈ {1, . . . , k}} ⊇ P is (n − m − 1)-dimensional.

The above argument also shows that no point b ∈ bd P belongs to the relative interior
of more than one face. Moreover, if b ∈ bd P is on the relative boundary of the face
F then S(b) is clearly of smaller dimension than F . Hence, b belongs to the relative
interior of a face of smaller dimension. This concludes the proof of the theorem.

Corollary 6.7. The reduced family of generating balls of any standard ball-polyhedron
P in Rn consists of at least n + 1 unit balls.

Proof. Since the faces form a CW-decomposition of the boundary of P , it has a vertex
v. The Gauss image of v is (n − 1)-dimensional. So, v belongs to at least n generating
spheres from a reduced family. We denote the centers of those spheres by x1, x2, . . . , xn .
Let H := aff{x1, x2, . . . , xn}. Then B[{x1, x2, . . . , xn}] is symmetric about H . Let σH be
the reflection of Rn about H . Then S := S(x1)∩ S(x2)∩ · · · ∩ S(xn) contains the points
v and σH (v), hence S is a sphere, not a point. Since P is a standard ball-polyhedron,
there is a unit-ball B[xn+1] in the reduced family of generating balls of P that does not
contain S.

Corollary 6.8. Let � be the set containing all faces of a standard ball-polyhedron
P ⊂ Rn and the empty set and P itself. Then � is a finite bounded lattice with respect
to ordering by inclusion. The atoms of � are the vertices of P and � is atomic, i.e., for
every element a ∈ � with a �= ∅ there is a vertex x of P such that x ∈ a.

Proof. First, we show that the intersection of two faces F1 and F2 is another face (or
the empty set). The intersection of the two supporting spheres that intersect P in F1 and
F2 is another supporting sphere of P , say Sl(p, r). Then Sl(p, r) ∩ P = F1 ∩ F2 is a
face of P . From this the existence of a unique maximum common lower bound (i.e., an
infimum) for F1 and F2 follows.

Moreover, by the finiteness of �, the existence of a unique infimum for any two
elements of � implies the existence of a unique minimum common upper bound (i.e.,
a supremum) for any two elements of �, say C and D, as follows. The supremum of
C and D is the infimum of all the (finitely many) elements of � that are above C
and D.

Vertices of P are clearly atoms of�. Using Theorem 6.6 and induction on the dimen-
sion of the face it is easy to show that every face is the supremum of its
vertices.
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Corollary 6.9. A standard ball-polyhedron P in Rn has k-dimensional faces for every
0 ≤ k ≤ n − 1.

Proof. We use an inductive argument on k, where we go from k = n − 1 down to
k = 0. Clearly, P has facets. A k-face F of P is homeomorphic to Bk[o], hence its
relative boundary is homeomorphic to Sk−1, if k > 0. Since the (k − 1)-skeleton of P
covers the relative boundary of F , P has (k − 1)-faces.

Corollary 6.10 (Euler–Poincaré Formula). For any standard n-dimensional ball-poly-
hedron P we have

1+ (−1)n+1 =
n−1∑
i=0

(−1)i fi (P),

where fi (P) denotes the number of i-dimensional faces of P .

Proof. It follows from the above theorem and the fact that a ball-polyhedron in Rn is
a convex body, hence its boundary is homeomorphic to Sn−1(o).

Corollary 6.11. Let n ≥ 3. Any standard ball-polyhedron P is the spindle convex hull
of its (n−2)-dimensional faces. Furthermore, no standard ball-polyhedron is the spindle
convex hull of its (n − 3)-dimensional faces.

Proof. For the first statement, it is sufficient to show that the spindle convex hull of
the (n − 2)-faces contains the facets. Let p be a point on the facet, F = P ∩ Sn−1(q).
Take any great circle C of Sn−1(q). Since F is spherically convex on Sn−1(q), C ∩ F
is a unit circular arc of length less than π . Let r, s ∈ Sn−1(q) be the two endpoints of
C ∩ F . Then r and s belong to the relative boundary of F . Hence, by Theorem 6.6, r
and s belong to an (n − 2)-face. Clearly, p ∈ convs{r, s}.

The proof of the second statement follows. By Corollary 6.9 we can choose a relative
interior point p of an (n − 2)-dimensional face F of P . Let q1 and q2 be the centers of
the generating balls of P from a reduced family such that F := Sn−1(q1)∩Sn−1(q2)∩ P .
Clearly, p /∈ convs((B[q1] ∩ B[q2])\{p}) ⊇ convs(P\{p}).

7. A Counterexample to a Conjecture of Maehara in Dimensions
at Least Four

Helly’s theorem, as stated for convex sets, adds nothing to the current theory. However,
the following result of Maehara [38] is very suggestive.

Theorem 7.1. Let F be a family of at least n+ 3 distinct (n− 1)-spheres in Rn . If any
n + 1 of the spheres in F have a point in common, then all of the spheres in F have a
point in common.

Maehara points out that neither n + 3 nor n + 1 can be reduced. First, we prove a
variant of Theorem 7.1.
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Theorem 7.2. Let F be a family of (n − 1)-spheres in Rn , and let k be an integer such
that 0 ≤ k ≤ n − 1. Suppose that F has at least n − k members and that any n − k of
them intersect in a sphere of dimension at least k+ 1. Then they all intersect in a sphere
of dimension at least k + 1. Furthermore, k + 1 cannot be reduced to k.

Proof. Amongst all the intersections of any n − k spheres from the family, let S be
such an intersection of minimal dimension. By assumption, S is a sphere of dimension
at least k+ 1. Now, one of the n− k spheres is redundant in the sense that S is contained
entirely in this sphere. After discarding this redundant sphere, S is now the intersection
of only (n − k) − 1 members of the family, but any n − k members intersect in a
sphere of dimension at least k + 1. So the remaining members of the family intersect
S. Since the dimension of S is minimal, S is contained in these members. In particular,⋂

F = S.
Fixing n and k, 0 ≤ k ≤ n − 1, we show that k + 1 cannot be reduced to k by

considering a regular n-simplex inRn , with circumradius one, and a family of n+1 unit
spheres centered at the vertices of this simplex. The intersection of any n − k of them
is a sphere of dimension at least k, but the intersection of all of them is a single point
which, as we recall, is not a sphere in the current setting.

Maehara [38] conjectured the following stronger version of Theorem 7.1.

Conjecture 7.3. Let F be a family of at least n + 2 distinct (n − 1)-dimensional unit
spheres inRn , where n ≥ 3. Suppose that any n+1 spheres in F have a point in common.
Then all the spheres in F have a point in common.

After Proposition 3 in [38], Maehara points out the importance of the condition n ≥ 3
by showing the following statement, also known as Ţiţeica’s theorem (sometimes called
Johnson’s theorem). This theorem was found by the Romanian mathematician G. Ţiţeica
in 1908 (for historical details, see also [4] and p. 75 of [33]).

Proposition 7.4. Let S1(c1), S1(c2) and S1(c3) be unit circles in R2 that intersect in
a point p (see Fig. 4). Let {x, p} := S1(c1) ∩ S1(c2), {y, p} := S1(c1) ∩ S1(c3) and
{z, p} := S1(c2) ∩ S1(c3). Then x , y and z lie on a unit circle.

Fig. 4
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In the remaining part of this section, we show that Conjecture 7.3 is false for n ≥ 4.
To construct a suitable family F of unit spheres, we need the following lemma.

Lemma 7.5. The following are equivalent:

(i) There is an n-simplex P ⊂ Rn with circumsphere Sn−1(o, R) and a sphere
Sn−1(x1, r) tangent to all facet-hyperplanes of P such that either R2−2r R = d2

or R2 + 2r R = d2 holds, where d := ‖x1 − o‖.
(ii) There is a family of n + 2 distinct (n − 1)-dimensional unit spheres in Rn such

that any n + 1 of them have a common point but not all of them have a common
point.

Proof. First, we show that (ii) follows from (i). Observe that, from R2 − 2r R = d2,
we have R > d , which implies that x1 ∈ Bn(o, R). Similarly, if R2 + 2r R = d2,
then x1 /∈ Bn[o, R]. Thus, x1 /∈ Sn−1(o, R). Since Sn−1(x1, r) is tangent to every facet-
hyperplane of P , x1 is not contained in any of these hyperplanes.

Consider the inversion f with respect to Sn−1(x1, r). Let ai be a vertex of P and let
Hi denote the facet-hyperplane of P that does not contain ai , for i = 2, 3, . . . , n+2. We
set Sn−1(ci , ri ) := f (Hi ), xi := f (ai ), for i = 2, 3, . . . , n + 2. Finally, Sn−1(c1, r1) :=
f (Sn−1(o, R)).

Let 2 ≤ i ≤ n+ 2. Since Hi is tangent to Sn−1(x1, r), Sn−1(ci , ri ) is a sphere tangent
to Sn−1(x1, r) and contains x1. Hence, the radius of Sn−1(ci , ri ) is ri = r/2. We show
that also r1 = r/2. If x1 ∈ Bn(o, R), then, using the definition of inversion and the
equations in (i), we have

2r1 = diamSn−1(c1, r1) = r2

R + d
+ r2

R − d
= 2r2 R

R2 − d2
= r. (7.1)

If x1 /∈ Bn[o, R], then

2r1 = diamSn−1(c1, r1) = r2

d − R
− r2

d + R
= 2r2 R

d2 − R2
= r. (7.2)

Let F := {Sn−1(ci , r/2): i = 1, . . . , n + 2}. Observe that x1 ∈ Sn−1(ci , r/2), for
every i �= 1, and that xi ∈ Sn−1(c1, r/2) ∩ Sn−1(cj , r/2) for every j �= i . So, F is a
family of n+ 2 spheres of radius r/2 such that any n+ 1 of them have a common point.

We assume y ∈⋂
F. Then y �= x1, since x1 /∈ Sn−1(o, R) and thus x1 /∈ Sn−1(c1, r/2)

= f (Sn−1(o, R)). Hence, z := f (y) = f −1(y) exists. The point z, according to our
assumption, is contained in every facet-hyperplane of P and also in its circumsphere, a
contradiction. So, F′ := {Sn−1(2/r · ci ): i = 1, . . . , n + 2} is a family of unit sphere
that satisfies (ii).

A similar argument shows that (ii) implies (i).

Theorem 7.6. For any n ≥ 4, there exists a family of n+2 distinct (n−1)-dimensional
unit spheres in Rn such that any n + 1, but not all, of them have a common point.

Proof. We use Lemma 7.5 and construct a simplex P and a sphere Sn−1(x1, r) such
that they satisfy Lemma 7.5(i). We set m := n − 1.
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Fig. 5

Consider a line L containing the origin o and a hyperplane H which is orthogonal to
L and is at a given distance t ∈ (0, 1) from o. Let u denote the intersection point of L
and H . We observe that t = ‖u‖ and let b := (1/t)u. Then b ∈ Sn−1(o, 1). Let F be a
regular m-simplex in H whose circumsphere is Sn−1(o, 1)∩ H . Thus, u is the center of
F and the circumsphere of P := conv(F ∪ {b}) is Sn−1(o, 1). Clearly, there is a unique
sphere Sn−1(c, r) tangent to every facet-hyperplane of P such that c ∈ L and c /∈ P . We
set d := ‖c‖.

Our aim is to show that, with a suitable choice of t , P and Sn−1(c, r) satisfy
Lemma 7.5(i). So, in the remaining part of the proof, we calculate gm(t) := d(t)2 +
2r(t)− 1 as a function of t , and show that this function has a root on the interval (0, 1),
for m ≥ 3. We note that if gm(t) = 0, for some t , then P and Sn−1(c, r) satisfy the first
equality in Lemma 7.5(i) for R = 1 and x1 = c.

Consider a vertex a of F and the center f of the facet of F that does not contain a
(see Fig. 5). Then ‖b− u‖ = 1− t and ‖a − u‖ = √1− t2. Since in an m-dimensional
regular simplex the distance of the center from any vertex is m times as large as the
distance of the center and any facet-hyperplane, we have ‖u − f ‖ = √1− t2/m. We
observe that Sn−1(c, r) is tangent to the facet-hyperplane Ha of P that does not contain
a. Let u′ denote the intersection point of Sn−1(c, r) and Ha . Clearly, u′, f and b are
collinear and ‖u− c‖ = ‖u′ − c‖ = r . Furthermore, the two triangles conv{c, u′, b} and
conv{ f, u, b} are co-planar and similar. Hence,

‖b − f ‖
‖b − c‖ =

‖u − f ‖
‖u′ − c‖ . (7.3)

We have that ‖b− f ‖ =
√
(1− t)2 + (1− t2)/m2, ‖b−c‖ = 1+r− t , ‖u′ −c‖ = r

and ‖u − f ‖ = √1− t2/m. So we have an equation for r which yields

r =
√

1+ t

m2

(√
m2 + 1− (m2 − 1)t +√1+ t

)
. (7.4)

Observe that d = |r − t |. From this and (7.4), we have

gm(t) =
(√

1+ t

m2

(√
m2 + 1− (m2 − 1)t +√1+ t

)
− t

)2

+2
√

1+ t

m2

(√
m2 + 1− (m2 − 1)t +√1+ t

)
− 1. (7.5)
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Let us observe that g3
(

1
2

) = 0, and that gm(0) < 0 and gm(1) > 0, for every m > 3.
Since gm is continuous on [0, 1], gm has a root in the interval (0, 1), for all m ≥ 3.
Thus, for every n ≥ 4, we have found a simplex P and a sphere Sn−1(c, r) that satisfy
Lemma 7.5(i).

8. Monotonicity of the Inradius, the Minimal Width and the Diameter of a
Ball-Polyhedron under a Contraction of the Centers

One of the best known open problems of discrete geometry is the Kneser–Poulsen con-
jecture. It involves unions (resp., intersections) of finitely many balls in Rn and states
that, under arbitrary contraction of the center points, the volume of the union (resp., in-
tersection) does not increase (resp., decrease). Recently, the conjecture has been proved
in the plane by K. Bezdek and Connelly in [8] and it is open for n ≥ 3. The interested
reader is referred to [9] and [17]–[19] for further information on this problem. In this
section we investigate similar problems. Namely, we apply an arbitrary contraction to the
center points of the generating balls of a ball-polyhedron, and ask whether the inradius
(resp., the circumradius, the diameter and the minimum width) can decrease.

Theorem 8.1. Let X ⊂ Rn be a finite point set contained in a closed unit ball of Rn

and let Y be an arbitrary contracted image of X in Rn . Then the inradius of B[Y ] is at
least as large as the inradius of B[X ].

Proof. First, observe the following fact. If r denotes the inradius of B[X ] (that is, the
radius of the largest ball contained in B[X ]) and R denotes the circumradius of X (that
is, the radius of the smallest ball containing X ), then r + R = 1. Second, we recall the
following monotonicity result (see, for example, [2]). The circumradius of X is at least
as large as the circumradius of Y . From these two observations our theorem follows
immediately.

The following construction (see Fig. 6) shows that both the diameter and the cir-
cumradius of an intersection of unit disks in the plane can decrease under a continu-
ous contraction of the centers. We describe the construction in terms of polar coordi-
nates. The first coordinate of a vector (that is, a point) is the Euclidean distance of the
point from the origin, the second is the oriented angle of the vector and the oriented
x-axis.

Fig. 6
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Let c1 := (0.5, π/3), c2 := (0.5,−π/3), c′1 := (0.5, π/4) and c′2 := (0.5,−π/4).
Let X be the set of centers X := {o, c1, c2} and Y := {o, c′1, c′2}. Clearly, Y is a continuous
contraction of X . However, a simple computation shows that both the diameter and the
circumradius of B[Y ] is smaller than that of B[X ].

A similar construction shows that the minimal width of an intersection of unit disks
on the plane can decrease under a continuous contraction of the centers.

Let c1 := (0.8, π/10), c2 := (0.8,−π/10) and c′1 := c′2 := (0.8, 0). Let X be the
set of centers X := {o, c1, c2}, and Y := {o, c′1}. Clearly, Y is a continuous contraction
of X . However, a simple computation shows that the minimum width of B[Y ] is smaller
than that of B[X ].

9. The Problem of Finding an Analogue to a Theorem of Steinitz for
Ball-Polyhedra in R3

One may define the vertices, edges and faces of any ball-polyhedron P in R3 in the
natural way, as in [11]. Henceforth in this section, we assume that P is a ball-polyhedron
in R3 with at least three balls in the reduced family of generating balls of P . Then P
has faces that are spherically convex on the generating sphere of P that they belong to.
Edges of P are circular arcs of radii less than one (not full circles) ending in vertices.
Moreover, every vertex is adjacent to at least three edges and at least three faces of P .

In this paper a graph is non-oriented and has finitely many vertices and edges. A
graph is 2-connected (resp., 3-connected) if it has at least three (resp., four) vertices and
deleting any vertex (resp., any two vertices) yields a connected graph. A graph is simple
if it contains no loop (an edge with identical end-points) and no parallel edges (two edges
with the same two end-points).

The edge-graph of P contains no loops, but may contain parallel edges. Moreover, it
is 2-connected and planar.

By the construction given in [11], there is a ball-polyhedron P in R3 with two faces
meeting along a series of edges. The family of vertices, edges and faces of P (together
with the empty set and P itself) do not form an algebraic lattice with respect to contain-
ment.

Remark 9.1. Clearly, a ball-polyhedron P inR3 is standard if, and only if, the vertices,
edges and faces of P (together with ∅ and P) form an algebraic lattice with respect to
containment.

It follows that for any two faces F1 and F2 of a standard ball-polyhedron P inR3, the
intersection F1 ∩ F2 is either empty or one vertex or one edge of P .

In what follows we investigate whether an analogue of the famous theorem of Steinitz
regarding the edge-graph of convex polyhedra holds for standard ball-polyhedra in R3.
Recall that this theorem states that a graph is the edge-graph of some convex polyhedron
in R3 if, and only if, it is simple, planar and 3-connected.

Claim 9.2. Let P̄ be a convex polyhedron in R3 with the property that every face of
P̄ is inscribed in a circle. Let � denote the face lattice of P̄ . Then there is a sequence
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{P1, P2, . . .} of standard ball-polyhedra in R3 with face lattices isomorphic to � such
that limk→∞ k Pk = P̄ in the Hausdorff metric.

Proof. Let F denote the set of the (two-dimensional) faces of P̄; let cF denote the
circumcenter, rF the circumradius and nF the inner unit normal vector of the face F ∈ F .
We define P ′k as the following intersection of closed balls of radius k:

P ′k :=
⋂
F∈F

B
[

cF +
(√

k2 − r2
F

)
nF , k

]
. (9.1)

Clearly, Pk := (1/k)P ′k is a ball-polyhedron in R3. The terms face, vertex and edge of
P ′k are defined in a natural way, exactly as for ball-polyhedra in R3. It is easy to see that
every vertex of P̄ is a vertex of P ′k . Moreover, a simple approximation argument shows
that, for sufficiently large k, P ′k is a standard ball-polyhedron in R3 with a face lattice
that is isomorphic to �. Clearly, limk→∞ P ′k = P̄ . Now we take a k0 ∈ Z+ such that the
face lattice of Pk0 is isomorphic to� and we replace the (finitely many) elements of the
sequence {P1, P2, . . .} that have a face lattice non-isomorphic to� by Pk0 . The sequence
of ball-polyhedra obtained this way satisfies the requirements of the claim.

Corollary 9.3. If � is a graph that can be realized as the edge-graph of a convex
polyhedron P̄ in R3, with the property that every face of P̄ is inscribed in a circle, then
� can be realized as the edge-graph of a standard ball-polyhedron in R3.

We note that not every 3-connected, simple, planar graph can be realized as the edge-
graph of a convex polyhedron inR3 with all faces having a circumcircle. See pp. 286–287
in [29].

Claim 9.4. The edge-graph of any standard ball-polyhedron P inR3 is simple, planar
and a 3-connected graph.

Proof. Let G be the edge-graph of P . It is clearly planar. By a simple case analysis,
one obtains that G has at least four vertices. First, we show that G is simple. Clearly,
there are no loops in G.

Assume that two vertices v andw are connected by at least two edges e1 and e2. From
the reduced family of generating spheres of P , let Q be the intersection of those that
contain e1 or e2. Clearly, Q = {v,w} which contradicts Remark 9.1.

Now we show that G is 3-connected. Let v andw be two arbitrary vertices of G. Take
two vertices s and t of G, both different from v and w. We need to show that there is a
path between s and t that avoids v and w. We define two subgraphs of G, Cv and Cw

as follows. Let Cv (resp., Cw) be the set of vertices of P that lie on the same face as v
(resp., w) and are distinct from v (resp., w). Let an edge e of G connecting two points
of Cv (resp., Cw) be an edge of Cv (resp., Cw) if, and only if, e is an edge of a face that
contains Cv (resp., Cw).

By Remark 9.1, Cv and Cw are cycles. Moreover, v andw are incident to at most two
faces in common.
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Case 1: v andw are not incident to any common face; that is, v /∈ Cw andw /∈ Cv . Since
G is connected, there is a path connecting s and t . We may assume that this path does
not pass through any vertex twice. Assume that this path includes v by passing through
two edges, say e1 and e2 that share v as a vertex. Let the vertex of e1 (resp., e2) different
from v be v1 (resp., v2). Clearly, v1, v2 �= w and they are contained in Cv , which is a
cycle. Thus, the edges e1 and e2 in the path may be replaced by a sequence of edges of
Cv that connects v1 and v2. If the path passes through w then it may be modified in the
same manner to avoid w, thus we obtain the desired path.

Case 2: v and w are incident to one or two common faces. Let C be the subgraph of
Cv ∪ Cw spanned by the union of vertices of Cv and Cw erasing v and w. Since P is a
standard ball-polyhedron, C is a cycle. Similarly to the preceding argument, any path
from s to t may be modified such that it does not pass through v and w using edges
of C .

We pose the following questions.

Problem 9.5. Prove or disprove that every 2-connected planar graph with no loops is
the edge-graph of a ball-polyhedron in R3.

Problem 9.6. Prove or disprove that every 3-connected, simple, planar graph is the
edge-graph of a standard ball-polyhedron in R3.

10. Ball-Polyhedra in R3 with Symmetric Sections

Let K ⊂ R3 be a convex body with the property that any planar section of K is axially
symmetric. The first named author conjectured (see [28]) that, in this case, K is either a
body of revolution or an ellipsoid. A remarkable result related to the conjecture is due to
Montejano [43]. He showed that if K ⊂ R3 is a convex body with the property that, for
some point p ∈ int K , every planar section of K through p is axially symmetric, then
there is a planar section of K through p which is a disk. Unfortunately, the claim of Ódor
(see [28]) that he proved this conjecture turned out to be too optimistic, his approach
was found incomplete. The following theorem shows that the conjecture holds for the
class of ball-polyhedra in R3 with the weaker condition in Montejano’s result.

Theorem 10.1. Let P be a ball-polyhedron in R3 and let p ∈ int P with the property
that any planar section of P through p is axially symmetric. Then P is either one point
or a unit ball or the intersection of two unit balls.

Proof. Assume the contrary; that is, that the minimum number of unit balls needed to
generate P is k ≥ 3. Let the reduced family of generating unit spheres be Sn−1(c1), . . . ,

Sn−1(ck). Since P is generated by at least three unit balls, it has an edge. Let q1 be any
point in the relative interior of some edge e of P and let q2 be a point in the relative
interior of a facet F of P that does not contain e. By slightly moving q1 on e and q2 on
F , we may assume that the plane H spanned by p, q1 and q2 does not contain any vertex
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of P and is neither parallel nor perpendicular to the line passing through ci and cj , for
any 1 ≤ i < j ≤ k.

Since F does not contain e, it follows that H intersects at least three edges of P .
Thus, H ∩ P is a convex planar figure in H bounded by a closed curve that is a series
of at least three circular arcs. Moreover, since H is neither parallel nor perpendicular to
the line passing through ci and cj , for any 1 ≤ i < j ≤ k, the radii of these arcs are
pairwise distinct. This clearly contradicts our assumptions on P as such a planar figure
is not axially symmetric.

11. Illumination of Ball-Polyhedra and Sets of Constant Width in R3

We consider the illumination problem for ball-polyhedra in R3 that contain the centers
of their generating balls. We prove that such bodies are illuminated by three pairs of
opposite directions that are mutually orthogonal. The method we use naturally extends
to bodies obtained as intersections of infinitely many balls, hence it yields a proof of the
known theorem [37], [50] that any set of constant width in R3 is illuminated by six light
sources. For a survey on illumination see [39] and the new paper of K. Bezdek [7]; bodies
of constant width are discussed in the surveys [15] and [40], see also the monograph [52].

Definition 11.1. Let K ∈ Rn be a convex body and let z ∈ bd K be a point on its
boundary. We say that the direction u ∈ Sn−1(o) illuminates K at z if the ray {z+ tu: t >
0} intersects the interior of K . Furthermore, K is illuminated at z ∈ bd K by a set
A ⊆ Sn−1(o) of directions if at least one direction from A illuminates K at x . Then K
is illuminated by A ⊂ Sn−1(o) if K is illuminated by A at every boundary point of K .

Let K be a convex body and let z ∈ bd K . We denote by G(z) the set of inward unit
normal vectors of hyperplanes that support K at z. We note that −G(z) is the Gauss
image of z.

We denote the open hemisphere of Sn−1(o) with center u ∈ Sn−1(o) by D(u) and
its relative boundary (a great sphere of Sn−1(o)) by C(u). Then u, which is in Sn−1(o),
illuminates K at z ∈ bd K if, and only if, G(z) ⊂ D(u). This leads to the following
observation which is an easy special case of the Separation Lemma in [6].

Observation 11.2. The pair of directions {±u} ⊂ Sn−1(o) illuminates the convex body
K ⊂ Rn at z ∈ bd K if, and only if, G(z) ∩ C(u) = ∅.

Now we are ready to state the main result of this section.

Theorem 11.3. Let X ⊂ R3 be a set of diameter at most one, and let u ∈ S2(o) be
given. Then there exist v andw in Sn−1(o) such that u, v andw are pairwise orthogonal,
and the body K := B[X ] is illuminated by the six directions {±u,±v,±w}.

Using the fact that a closed set X ⊂ Rn is of constant width one if, and only if,
B[X ] = X , see [24], we obtain the following corollary.
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Corollary 11.4. Any set of constant width can be illuminated by three pairwise or-
thogonal pairs of opposite directions, one of which can be chosen arbitrarily.

To prove the theorem we need the following lemma.

Lemma 11.5. Let X ⊂ Rn be a set of diameter at most one and let z ∈ bd B[X ]. Then
G(z) ⊂ Sn−1(o) is of spherical diameter not greater than π/3.

Proof. We may assume that X is closed. It is easy to see that G(z) =
Sconv(Sn−1(z) ∩ X,Sn−1(z)) − z. So we have to show that if x1, x2 ∈ Sn−1(z) ∩ X ,
then �(x1zx2) ≤ π/3. It is true, since the Euclidean isosceles triangle conv{x1, z, x2}
has two legs [z, x1] and [z, x2] of length one, and base [x1, x2] of length at most one,
because the diameter of X is at most one. This proves the lemma.

Proof of Theorem 11.3. Let the direction u ∈ S2(o) be given. We call u vertical, and
directions perpendicular to u horizontal. We pick two pairwise orthogonal, horizontal
directions, v1 and v2. Assume that the six directions {±u,±v1,±v2} ⊂ S2 do not
illuminate K . According to Observation 11.2, there is a point z ∈ bd K such that G(z)
intersects each of the three great circles of S2(o): C(u),C(v1) and C(v2). We choose
three points of G(z), one on each great circle: y0 ∈ G(z) ∩ C(u), y1 ∈ G(z) ∩ C(v1)

and y2 ∈ G(z) ∩ C(v2). Note that each of the three great circles is dissected into four
equal arcs (of length π/4) by the two other great circles.

By Lemma 11.5, G(z) ⊂ S2(o) is a spherically convex set of spherical diameter
at most π/3. However, y0, y1, y2 ∈ G(x), so the generalization of Jung’s theorem for
spherical space by Dekster [22] shows that y0, y1 and y2 are the mid-points of the great
circular arcs mentioned above. So, the only way that a point z ∈ bd K is not illuminated
by any of the six directions {±u,±v1,±v2} is the following. The set G(z) contains
a spherical equilateral triangle of spherical side length π/3 and the vertices of this
spherical triangle lie on C(u),C(v1) and C(v2), respectively. Furthermore, each vertex
is necessarily the midpoint of the quarter arc of the great circle on which it lies, and G(z)
does not intersect either of the three great circles in any other point.

Since the set {G(z): z ∈ bd K } is a tiling of S2(o), there are only finitely many
boundary points z ∈ bd K such that G(z) contains an equilateral triangle of side length
π/3 that has a vertex on C(u). We call these tiles blocking tiles.

Now, by rotating v1 and v2 together in the horizontal plane, we can easily avoid all
the blocking tiles; that is, we can find a rotation R about the line spanned by u such that
none of the blocking tiles has a vertex on both circles C(R(v1)) and C(R(v2)). Now,
±u,±R(v1) and±R(v2) are the desired directions finishing the proof of the theorem.

We remark that in the theorem, we can “almost” choose the second direction arbitrarily,
more precisely: Given any two orthogonal vectors u, v1 ∈ S2(o) and ε > 0, we may
find two directions v′1, v

′
2 ∈ S2(o) such that ±u,±v′1 and ±v′2 illuminate K , vu, v1 and

v2 are pairwise orthogonal and ‖v1 − v′1‖ < ε. This statement may be derived from
the last paragraph of the proof. The set of rotations about the line spanned by u is a
one-parameter group parametrized by angle. Each blocking tile rules out at most four
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angles, and there are finitely many blocking tiles. This argument proves the following
statement.

Theorem 11.6. Let X ⊂ R3 be a set of diameter at most one. We choose three pairwise
orthogonal directions u, v and w in S2(o) randomly with a uniform distribution. Then
the body K := B[X ] is illuminated by {±u,±v,±w} with probability one.

Problem 11.7. Let X ⊂ R3 be a set of diameter at most one. Prove or disprove that
B[X ] is illuminated by four directions.

12. Dowker-Type Isoperimetric Inequalities for Disk-Polygons

In this section we examine theorems concerning disk-polygons that are analogous to
those studied by Dowker in [23] and L. Fejes Tóth in [27] for polygons. The arguments
are based on pp. 162–170 of [27], but are adapted to the current setting using [10]
and [20].

Let x0, x1, . . . , xn be points in the plane such that they are all distinct, except for
x0 and xn , which are equal. Furthermore, suppose that the distance between each pair
of consecutive points is at most two. Next, let x̂i xi+1 denote one of the two unit circle
arcs of length at most π with endpoints xi and xi+1. A circle-polygon is the union of
these unit circle arcs, x̂0x1, x̂1x2, . . . , x̂n−1xn . The points x0, x1, . . . , xn are the vertices
of the circle-polygon and the unit circle arcs x̂0x1, x̂1x2, . . . , x̂n−1xn are the edges, or
more commonly the sides, of the circle-polygon. Finally, the underlying polygon is the
polygon formed by joining the vertices, in order, by straight line segments. Observe that
both a circle-polygon and its underlying polygon may have self-intersections.

The definition of a standard ball-polytope implies that a disk-polygon is standard if,
and only if, there are at least three disks in the reduced family of generating disks. Such
a disk-polygon P has well-defined vertices and edges. Clearly, bd P is a circle-polygon
with vertices and edges which coincide with those of P . The underlying polygon of an
n-sided disk-polygon is just the boundary of the convex hull of the vertices. An n-sided
disk-polygon is called regular if the underlying polygon is regular.

Let C be a circle of radius r < 1. A circle-polygon (resp. disk-polygon) P is inscribed
in C if P ⊂ conv C and the vertices of P lie on C . A circle-polygon (resp. disk-polygon)
P is circumscribed about C if C ⊂ P and the interior of each edge of P is tangent to C .
A standard compactness argument ensures the existence of an n-sided disk-polygon of
largest (resp. smallest) perimeter, as well as one of largest (resp. smallest) area, inscribed
in (resp. circumscribed about) C .

Lemma 12.1. Let C be a circle of radius r < 1. Let Pn be an n-sided disk-polygon of
largest perimeter inscribed in C . Then

Perimeter(Pn−1)+ Perimeter(Pn+1) < 2 Perimeter(Pn), for all n ≥ 4. (12.1)

Proof. Let Q be an (n − 1)-sided disk-polygon and let R be an (n + 1)-sided disk-
polygon, both inscribed in C . To prove the theorem we need only construct two n-sided
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Fig. 7

disk-polygons S and T such that

Perimeter(Q)+ Perimeter(R) ≤ Perimeter(S)+ Perimeter(T ). (12.2)

Without loss of generality we make the following assumptions. First, inscribe Q and
R into C so that their respective vertices do not coincide. Second, any arc of C with
length at least πr contains a vertex from each of Q and R. Otherwise, there exists an
(n−1)-sided disk-polygon (resp. (n+1)-sided disk-polygon) with larger perimeter than
Q (resp. R).

Let xi and xi+1 be two consecutive vertices of a circle-polygon P inscribed in C .
Suppose that one of the arcs of C from xi to xi+1 contains neither xi−1 nor xi+2. Let C̄
denote this arc. A cap of C from xi to xi+1, denoted by C(xi , xi+1), is the segment of
conv C bounded by C̄ and the line segment through xi and xi+1. Now, suppose that there
is a cap contained in another cap (see Fig. 7). More precisely, there are four vertices a,
b, l and m such that the vertices a and b (resp. l and m) form an edge âb (resp. l̂m) and
C(l,m) ⊂ C(a, b).

This configuration, where a cap is contained in another cap, may arise when two
circle-polygons, say A and B, are inscribed in a single circle, or when a single self-
intersecting circle-polygon, say U , is inscribed in a circle. Suppose that we start with
the former (resp. latter) and, as in the figure, assume that the cyclic ordering of the
vertices is a, l,m, b. Choosing either of the unit circle arcs joining a to m, we obtain
âm. Similarly, we construct b̂l. After replacing the edges âb and l̂m with âm and b̂l,
respectively, we obtain a single self-intersecting circle-polygon, which we call U (resp.
two circle-polygons, which we call A and B). By the inequality mentioned in Corollary
2.11, the total perimeter of U (resp. A and B) is strictly larger than the total perimeter
of A and B (resp. U ).

Starting from the circle-polygons Q and R, we carry out the preceding algorithm for
each cap contained in another cap. After every odd numbered iteration of the algorithm we
obtain a single, self-intersecting circle-polygon and after every even numbered iteration
we obtain two circle-polygons with no self-intersections. Since we have finitely many
vertices and the perimeter increases strictly with each step, the algorithm terminates.
Furthermore, when it does terminate, there is no cap contained within another cap.

A simple counting argument shows that the process terminates with two circle-
polygons. Each one is an n-sided circle-polygon because no cap of one is contained
within a cap of the other. Let us denote these n-sided circle-polygons by S∗ and T ∗.
Since the perimeter increased at each step of the process,

Perimeter(Q)+ Perimeter(R) < Perimeter(S∗)+ Perimeter(T ∗). (12.3)
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Now, it may be the case that some of the edges of S∗ (resp. T ∗) have relative interior
points that meet the convex hull of the underlying polygon. We replace each such edge
by the other shorter unit circle arc passing through the same two vertices. It is clear that
this produces a disk-polygon with the same perimeter as S∗ (resp. T ∗). This is the desired
S (resp. T ).

Theorem 12.2. Let C be a circle of radius r < 1. Let P be an n-sided disk-polygon of
largest perimeter that can be inscribed in C . Then P is regular.

Proof. Suppose that P is not regular. Starting with P and a suitable rotation of P we
modify the argument in the proof of the preceding lemma to construct two n-sided disk-
polygons Q and R inscribed in C . By construction, Perimeter(Q) + Perimeter(R) >
2 Perimeter(P). Hence, one of Q or R has a larger perimeter than P .

Theorem 12.3. Let C be a circle of radius r < 1. Let P be an n-sided disk-polygon of
largest area that can be inscribed in C . Then P is regular.

Proof. Suppose P is not regular. Let P0 be the regular n-sided disk-polygon with the
same perimeter as P . By the discrete isoperimetric inequality for circle-polygons proved
in [20], Area(P) < Area(P0). Furthermore, by the preceding theorem, P0 is inscribed
in a circle C0 with radius r0 < r . Thus, P1, the regular n-sided disk-polygon inscribed
in C , clearly satisfies Area(P0) < Area(P1) which completes the proof.

In general, the behavior of the areas of disk-polygons inscribed in a circle is difficult
to describe, but we do so in the following special case.

Lemma 12.4. Let C be a circle of radius r < 1. Let Pn be an n-sided disk-polygon of
largest area inscribed in C . Then

Area(Pn−1)+ Area(Pn+1) < 2 Area(Pn), for all odd n and n ≥ 5. (12.4)

Proof. By Theorem 12.3, Pn−1 and Pn+1 are regular. Since n is odd, both Pn−1 and
Pn+1 are symmetric about a line through opposite vertices. After an appropriate rotation,
Pn−1 and Pn+1 share such a line of symmetry d which separates the symmetric sections
of each of Pn−1 and Pn+1 (see Fig. 8).

Fig. 8
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Let Q be one half of Pn−1 lying on one side of d and let R be the half of Pn+1 lying
on the other side of d . The union of Q and R is an n-sided disk-polygon U inscribed in
C . Clearly, Area(Pn−1)+ Area(Pn+1) = 2 Area U < 2 Area(Pn).

There is no straight-forward method to generalize this result to all n-sided disk-
polygons. The method described does not apply and no formula is known to describe
this area. So we make the following conjecture.

Conjecture 12.5. Let C be a circle of radius r < 1. Let Pn be an n-sided disk-polygon
of largest area inscribed in C . Then

Area(Pn−1)+ Area(Pn+1) < 2 Area(Pn), for all n ≥ 4. (12.5)

We now turn our attention to disk-polygons which are circumscribed about a circle. A
modification of p. 163 of [27], similar to the one described above, provides the following
theorem.

Theorem 12.6. Let C be a circle of radius r < 1.

(i) Let Pn be an n-sided disk-polygon of smallest area circumscribed about C . Then

Area(Pn−1)+ Area(Pn+1) > 2 Area(Pn), for all n ≥ 4. (12.6)

Furthermore, Pi is regular for all i ≥ 3.
(ii) Let Pn be an n-sided disk-polygon of smallest perimeter circumscribed about C .

Then

Perimeter(Pn−1)+ Perimeter(Pn+1) > 2 Perimeter(Pn), for all n ≥ 4.
(12.7)

Furthermore, Pi is regular for all i ≥ 3.

13. Erdős–Szekeres-Type Problems for Ball-Polytopes

Definition 13.1. Let A ⊂ Rn be a finite set contained in a closed unit ball. Then convs A
is called a ball-polytope.

In this section we are going to find analogues of some results about convex polytopes
for ball-polytopes. We begin with two definitions.

Definition 13.2. Let A ⊂ Rn be a finite set. If x /∈ conv(A\{x}) for any x ∈ A, we say
that the points of A are in convex position.

Definition 13.3. For any n ≥ 2 and m ≥ n+1, let fn(m)denote the maximal cardinality
of a set A ⊂ Rn that satisfies the following two conditions:

(i) any n + 1 points of A are in convex position,
(ii) A does not contain m points that are in convex position.
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In [25] and [26], Erdős and Szekeres proved the existence of f (m) := f2(m) for every
m, and gave the estimates 2m−2 ≤ f (m) ≤ (2m−4

m−2

)
. They conjectured that f (m) = 2m−2.

Presently, the best known upper bound is f (m) ≤ (2m−5
m−2

) + 1, given by Tóth and Valtr
in [48]. We note that if the projections of m points of Rn to an affine subspace are in
convex position, then the original points are also in convex position. Thus, the results
about f2(m) imply also that fn(m) exists, and fn+1(m) ≤ fn(m), for every n and m.

Definition 13.4. Let A ⊂ Rn be a finite set contained in a closed unit ball. If x �∈
convs(A\{x}), for every x ∈ A, then we say that the points of A are in spindle convex
position.

Definition 13.5. For n ≥ 2 and m ≥ n + 1, let gn(m) be the maximal cardinality of a
set A ⊂ Rn that is contained in a closed unit ball and satisfies the following properties:

(i) any n + 1 points of A are in spindle convex position,
(ii) A does not contain m points in spindle convex position.

To show the importance of (i) in Definition 13.5, we provide the following example.
Let A := {x1, x2, . . . , xk}, where x1, x2, . . . , xk are points of an arc of radius r > 1 in
this cyclic order. Then any n + 1 points of A are affine independent whereas A does not
contain three points in spindle convex position.

In the remaining part of this section, we show that fn(m) = gn(m), for every n and m.
Let us assume that A ⊂ Rn is a set that satisfies (i) and (ii) in Definition 13.3. Observe
that, for a suitably small ε > 0, any n + 1 points of εA are in spindle convex position.
This implies that fn(m) ≤ gn(m). To show the inequality fn(m) ≥ gn(m), we prove the
following stronger version of Theorem 5.7.

Theorem 13.6. Let P ⊂ Rn be contained in a closed unit ball, and let p ∈ convs P .
Then p ∈ conv P or p ∈ convs Q, for some Q ⊂ P with card Q ≤ n.

Proof. We show that if p /∈ convs Q, for any Q ⊂ P with card Q ≤ n, then p ∈
Bn[c, r ], for any ball Bn[c, r ] that contains P . Since conv P is the intersection of all the
balls that contain P and have radii at least one, this will imply our statement. We assume
that there is a ball Bn[q, r ] with r ≥ 1 that contains P but does not contain p.

If p ∈ bd convs P , our statement follows from Theorem 5.7. So let us assume that
p ∈ int convs P . From this and Lemma 3.1, we have p ∈ int Bn[c, 1] = Bn(c, 1)
whenever P ⊂ Bn[c, 1]. If, for every r > 1, there is a ball Bn[cr , r ] that contains P
but does not contain p, then Blaschke’s Selection Theorem guarantees the existence of
a unit ball Bn[c, 1] such that P ⊂ Bn[c, 1] and p /∈ Bn(c, 1), a contradiction. So, there
is an r > 1 such that P ⊂ Bn[c, r ] implies that p ∈ Bn[c, r ]. Clearly, if 1 < r1 < r2

and r2 satisfies this property then r1 also satisfies it. Thus, there is a maximal value R
satisfying this property. Corollary 3.4 suggests the notation

P(r) :=
⋂
{Bn(c, r): P ⊂ Bn(c, r)}. (13.1)

Observe that P(r2) ⊂ P(r1), for every 1 < r1 < r2, and that p ∈ bd P(R). Hence,
applying Corollary 3.4 and Theorem 5.7 for (1/R)P , we obtain a set Q ⊂ P of cardinality
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at most n such that any ball of radius R that contains Q contains also p. We define
Q(r) similarly to P(r) and so we have Q(R) ⊂ Q(1) = convs Q, which implies our
statement.

So, if P ⊂ Rn is contained in a closed unit ball, card P > fn(m) and any n+1 points
of P are in spindle convex position, then P contains m points in convex position, which,
according to our theorem, are in spindle convex position.

We note that our theorem implies the spindle convex analogues of numerous other
Erdős–Szekeres-type results. As examples, we mention [3], [14] and [49].
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Eötvös Sect. Math. 3/4 (1960–61), 53–62.
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51. I. M. Yaglom, Complex Numbers in Geometry, Academic Press, New York, 1968.
52. I. M. Yaglom and V. Boltyanski, Convex Figures, New York, 1961.

Received February 28, 2006, and in revised form October 2, 2006, and November 27, 2006.
Online publication July 13, 2007.


