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Károly J. Böröczky and Imre Z. Ruzsa
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Abstract. Wegner [10] gave a geometric characterization of all so-called Groemer pack-
ing of n ≥ 2 unit discs in E2 that are densest packings of n unit discs with respect to the
convex hull of the discs. In this paper we provide a number theoretic characterization of all n
satisfying that such a “Wegner packing” of n unit discs exists, and show that the proportion
of these n is 23

24 among all natural numbers.

1. Introduction

Given n ≥ 2, we dicuss packings of n unit Euclidean discs in R2, and investigate the
minimum of the area of the convex hull of the discs. Thue proved a certain lower bound
for a special type of packings around 1900 (see [7]–[9]), which estimate actually yields
that the packing density of the unit discs is π/2

√
3. Much later Groemer [5] and Oler

[6] proved that if the convex compact set C contains the centres of n non-overlapping
unit discs then

1

2
√

3
A(C)+ 1

4
P(C)+ 1 ≥ n. (1)

Here A(C) denotes the area and P(C) the perimeter of C . We note that Oler [6] general-
ized (1) to Minkowski planes, and his inequality is known as the Oler inequality. There-
fore we call (1) the Thue–Groemer inequality. For other proofs of the Thue–Groemer
inequality, see [4] or [1].

Actually Groemer [5] described the equality case in (1); namely, either C is a segment
of length 2(n−1), or C is a polygon that can be triangulated using n vertices into regular
triangles of edge length two. In the latter case C is a hexagon. The corresponding packing
of n unit discs is known as the Groemer packing.
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Now the packing minimizing the area of the convex hull of n unit discs is probably
a Groemer packing. On the other hand the Groemer packings of highest densities are
the ones where P(Cn) is minimal. Since Cn has at most six sides, we deduce A(Cn) ≤
(
√

3/24)P(Cn)
2 according to the isoperimetric inequality for hexagons. Therefore the

Thue–Groemer inequality (1) yields that P(Cn) ≥ 2
⌈√

12n − 3− 3
⌉

. If in addition
P(Cn) = 2

⌈√
12n − 3− 3

⌉
then the Groemer packing is called a Wegner packing. A

typical example is when Cn is a regular hexagon. On the one hand, there exist two non-
congruent Wegner packings say of 18 unit discs (see [10]), on the other hand, there may
not exist any Wegner packing for a given n (see Theorem 1.3) where the smallest such
n is 121 (see [10]).

Fejes Tóth conjectured in [3] that if n = 6
(k

2

) + 1 for some k ≥ 2 then the optimal
packing of n unit discs is given by the regular hexagon of side length 2(k − 1). Wegner
[10] proved this conjecture in the following general form:

Theorem 1.1 (Wegner Inequality). If Dn is the convex hull of n non-overlapping unit
discs then

A(Dn) ≥ 2
√

3 · (n − 1)+ (2−
√

3) ·
⌈√

12n − 3− 3
⌉
+ π.

Equality holds if and only if the packing is a Wegner packing.

The lower bound of Theorem 1.1 is a very good estimate even if strict inequality
holds, as we prove.

Theorem 1.2. For any n ≥ 2, there exists a Groemer packing of n unit discs whose
convex hull Dn satisfies

A(Dn) ≤ 2
√

3 · (n − 1)+ (2−
√

3) ·
⌈√

12n − 3− 2
⌉
+ π.

Finally we characterize all n such that a Wegner packing of n unit discs exists, and
show that these numbers constitute 95.83. . .% of N:

Theorem 1.3.

(i) Given n ≥ 2, a Wegner packing of n unit discs exists if and only if
⌈√

12n − 3
⌉2+

3− 12n �= (3k − 1) · 9m for positive k,m ∈ Z.
(ii) Given N ≥ 2, let f (N ) be the number of 2 ≤ n ≤ N such that there exists a

Wegner packing of n unit discs. Then

lim
N→∞

f (N )

N
= 23

24
.

The results above support the following conjecture:

Conjecture 1.4. The packing of n unit discs minimizing the area of the convex hull of
the discs is the Groemer packing of minimal perimeter. In other words, if Dn is the optimal
convex hull of n non-overlapping unit discs then equality holds either in Theorem 1.1
or 1.2.
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2. Proofs

We start with Theorem 1.3. Let Cn be the convex hull of the centres in a Groemer packing
of n unit discs. If the lengths of three non-neighbouring sides are 2a, 2b, 2c then the
other three non-neighbouring sides are of lengths 2(a + d), 2(b+ d), 2(c+ d), and the
latter three sides determine a regular triangle of side length 2(a + b + c + d) for some
integer d . It follows that the perimeter of Cn is 2p for p = 2a + 2b + 2c + 3d,

n = 1

2
√

3
A(Cn)+ 1

2
p + 1,

A(Cn) =
√

3 · ((a + b + c + d)2 − a2 − b2 − c2).

Thus the isoperimetric deficit p2 − 2
√

3 A(Cn) can be expressed as

(p + 3)2 + 3− 12n = p2 − 2
√

3 A(Cn) = (2a − b − c)2 + 3(b − c)2 + 3d2.

Here the left side is never of the form 3k− 1, while x2+ 3y2+ 3z2, x, y, z ∈ Z, is never
of the form (3k − 1) · 9m . Therefore we conclude the necessity condition in (i).

If n ≤ 30 then the condition in (i) is also sufficient, as can be checked by hand. So
let n ≥ 31, and assume that p = ⌈√12n − 3− 3

⌉
is such that A = (p+ 3)2 + 3− 12n

is not of the form (3k − 1) · 9m . Then 3A is not of the form (9k − 3) · 9m , thus 3A can
be written in the form

3A = 3x2 + ỹ2 + z̃2 (2)

for some x, ỹ, z̃ ∈ Z (see p. 97 of [2]). Checking remainders modulo 3, we deduce that
ỹ = 3y and z̃ = 3z for some y, z ∈ Z, and hence

(p + 3)2 + 3− 12n = x2 + 3y2 + 3z2.

Changing x to −x if necessary, we may assume that p ≡ x (mod 3). Since a square
is 0 or 1 (mod 4), and the roles of y and z are symmetric, we may assume that p ≡ z
(mod 2), and hence x ≡ y (mod 2). We define

a= p + 2x − 3z

6
, b= p + 3y − x − 3z

6
, c= p − 3y − x − 3z

6
, d= z.

The divisibility properties imply that a, b, c, d are integers. We want to make a hexagon
(namely 1

2 Cn) with sides a, b, c, a + d, b + d and c + d; to this end we need that they
are all positive. This is equivalent to

2|x | + 3|z| < p and |x | + 3|y| + 3|z| < p. (3)

We have p <
√

12n − 3− 2, which in turn yields that

x2 + 3y2 + 3z2 < (p + 3)2 − (p + 2)2 = 2p + 5. (4)

Here p ≥ 17 follows by n ≥ 31, and hence the conditions in (3) follow by (4) and the
Cauchy–Schwarz inequality. Therefore there exists a Groemer packing of n unit discs
with p boundary discs, completing the proof of (i).
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Turning to (ii), let g(N ) = N − f (N ). It is sufficient to show that for any ε > 0 and
for N large,

g(N ) = 1+ O(ε)

24
· N , (5)

where the implied constant in O(·) is some absolute constant. Given n ≥ 2, we set
s = ⌈√12n − 3

⌉
and define t by the formula

12n − 3 = s2 − t.

The condition s = ⌈√
12n − 3

⌉
is equivalent to s2 − t > (s − 1)2, and hence to

s > (t + 1)/2. On the other hand, n ≤ N is equivalent to s ≤ √12N − 3+ t . Therefore
g(N ) is the number of “good” pairs s, t ∈ N such that t = l · 9m for some positive
l,m ∈ Z with l ≡ −1 (mod 3), n = (s2 − t + 3)/12 is an integer, and

t + 1

2
< s ≤ √12N − 3+ t . (6)

If N is large then t < (1+ ε)2√12N and m < (1+ ε) log9 2
√

12N follows by (6). Now
n is an integer if and only if either l ≡ −4 (mod 12) and s ≡ ±3 (mod 12), or l ≡ −1
(mod 12) and s ≡ 0, 6 (mod 12). We observe that if t is fixed and t < (1 − ε)2√12N
then a “good” pair s of t occurs uniformly and with density 1

6 . Therefore given large N

and 1 ≤ m ≤ (1− ε) log9 2
√

12N , the number of “good” pairs s, t ∈ N is

(1+ O(ε))
∑

2≤l≤(1−ε)2√12N/9m

l≡−1,−4 (mod 12)

1

6
·
(√

12N − l · 9m

2

)
= (1+ O(ε)) · N

3 · 9m
.

We conclude that

g(N ) = (1+ O(ε)) ·
∑
m≥1

N

3 · 9m
= (1+ O(ε)) · N

24
,

completing the proof of Theorem 1.3.
Finally we prove Theorem 1.2. If there exists no Wegner packing for some n then p =

�√12n − 3−3� is divisible by 3 according to Theorem 1.3(i). Thus (p+1+3)2+3−12n
is not equal to (3k − 1) · 9m for any positive k,m ∈ Z, and the proof of the sufficiency
of the condition in Theorem 1.3(i) yields the existence of a Groemer packing of n unit
discs with p + 1 boundary discs. In turn we conclude Theorem 1.2.
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