DOI: 10.1007/s00454-006-1277-4

Note on an Inequality of Wegner[∗]

Károly J. Böröczky and Imre Z. Ruzsa

Rényi Institute of Mathematics, Hungarian Academy of Sciences, Pf. 127, H-1364 Budapest, Hungary {carlos,imre}@renyi.hu

Abstract. Wegner [10] gave a geometric characterization of all so-called Groemer packing of $n \geq 2$ unit discs in \mathbb{E}^2 that are densest packings of *n* unit discs with respect to the convex hull of the discs. In this paper we provide a number theoretic characterization of all *n* satisfying that such a "Wegner packing" of *n* unit discs exists, and show that the proportion of these *n* is $\frac{23}{24}$ among all natural numbers.

1. Introduction

Given $n \geq 2$, we dicuss packings of *n* unit Euclidean discs in \mathbb{R}^2 , and investigate the minimum of the area of the convex hull of the discs. Thue proved a certain lower bound for a special type of packings around 1900 (see [7]–[9]), which estimate actually yields tor a special type of packings around 1900 (see [7]–[9]), which estimate actually yields that the packing density of the unit discs is $\pi/2\sqrt{3}$. Much later Groemer [5] and Oler [6] proved that if the convex compact set *C* contains the centres of *n* non-overlapping unit discs then

$$
\frac{1}{2\sqrt{3}}A(C) + \frac{1}{4}P(C) + 1 \ge n.
$$
 (1)

Here $A(C)$ denotes the area and $P(C)$ the perimeter of C. We note that Oler [6] generalized (1) to Minkowski planes, and his inequality is known as the *Oler inequality*. Therefore we call (1) the Thue–Groemer inequality. For other proofs of the Thue–Groemer inequality, see [4] or [1].

Actually Groemer [5] described the equality case in (1); namely, either *C* is a segment of length 2(*n* −1), or *C* is a polygon that can be triangulated using *n* vertices into regular triangles of edge length two. In the latter case *C* is a hexagon. The corresponding packing of *n* unit discs is known as the *Groemer packing*.

[∗] K. J. B¨or¨oczky was supported by OTKA Grants T 042769, 043520 and 049301, and by the Marie Curie TOK project DiscConvGeo. I. Z. Ruzsa was supported by OTKA Grants T 025617, 038396 and 042750.

Now the packing minimizing the area of the convex hull of *n* unit discs is probably a Groemer packing. On the other hand the Groemer packings of highest densities are the ones where $P(C_n)$ is minimal. Since C_n has at most six sides, we deduce $A(C_n) \leq$ the ones where $P(C_n)$ is minimal. Since C_n has at most six sides, we deduce $A(C_n) \leq (\sqrt{3}/24)P(C_n)^2$ according to the isoperimetric inequality for hexagons. Therefore the ($\sqrt{3}/24$) P (C_n)⁻ according to the isoperimetric inequality tor nexagons. Therefore the Thue–Groemer inequality (1) yields that $P(C_n) \ge 2\lceil \sqrt{12n-3}-3 \rceil$. If in addition *P*(*C_n*) = 2 $\lceil \sqrt{12n-3} - 3 \rceil$ then the Groemer packing is called a *Wegner packing*. A typical example is when C_n is a regular hexagon. On the one hand, there exist two noncongruent Wegner packings say of 18 unit discs (see [10]), on the other hand, there may not exist any Wegner packing for a given *n* (see Theorem 1.3) where the smallest such *n* is 121 (see [10]).

Fejes Tóth conjectured in [3] that if $n = 6\binom{k}{2} + 1$ for some $k \ge 2$ then the optimal packing of *n* unit discs is given by the regular hexagon of side length 2(*k* − 1). Wegner [10] proved this conjecture in the following general form:

Theorem 1.1 (Wegner Inequality). *If D_n* is the convex hull of n non-overlapping unit *discs then*

$$
A(D_n) \ge 2\sqrt{3} \cdot (n-1) + (2 - \sqrt{3}) \cdot \left[\sqrt{12n-3} - 3 \right] + \pi.
$$

Equality holds if and only if the packing is a Wegner packing.

The lower bound of Theorem 1.1 is a very good estimate even if strict inequality holds, as we prove.

Theorem 1.2. *For any n* \geq 2, *there exists a Groemer packing of n unit discs whose convex hull Dn satisfies*

$$
A(D_n) \le 2\sqrt{3} \cdot (n-1) + (2-\sqrt{3}) \cdot \left[\sqrt{12n-3} - 2 \right] + \pi.
$$

Finally we characterize all *n* such that a Wegner packing of *n* unit discs exists, and show that these numbers constitute 95.83...% of N:

Theorem 1.3.

- (i) Given $n \geq 2$, a Wegner packing of n unit discs exists if and only if $\left\lceil \sqrt{12n-3} \right\rceil^2 +$ $3 - 12n \neq (3k - 1) \cdot 9^m$ *for positive k, m* $\in \mathbb{Z}$.
- (ii) *Given* $N \geq 2$, *let* $f(N)$ *be the number of* $2 \leq n \leq N$ *such that there exists a Wegner packing of n unit discs*. *Then*

$$
\lim_{N \to \infty} \frac{f(N)}{N} = \frac{23}{24}.
$$

The results above support the following conjecture:

Conjecture 1.4. *The packing of n unit discs minimizing the area of the convex hull of the discs is the Groemer packing of minimal perimeter*.*In other words*, *if Dn is the optimal convex hull of n non-overlapping unit discs then equality holds either in Theorem* 1.1 *or* 1.2.

Note on an Inequality of Wegner 247

2. Proofs

We start with Theorem 1.3. Let C_n be the convex hull of the centres in a Groemer packing of *n* unit discs. If the lengths of three non-neighbouring sides are $2a$, $2b$, $2c$ then the other three non-neighbouring sides are of lengths $2(a+d)$, $2(b+d)$, $2(c+d)$, and the latter three sides determine a regular triangle of side length $2(a + b + c + d)$ for some integer *d*. It follows that the perimeter of C_n is $2p$ for $p = 2a + 2b + 2c + 3d$,

$$
n = \frac{1}{2\sqrt{3}} A(C_n) + \frac{1}{2} p + 1,
$$

\n
$$
A(C_n) = \sqrt{3} \cdot ((a+b+c+d)^2 - a^2 - b^2 - c^2).
$$

Thus the isoperimetric deficit $p^2 - 2\sqrt{3} A(C_n)$ can be expressed as

$$
(p+3)^2 + 3 - 12n = p^2 - 2\sqrt{3} A(C_n) = (2a - b - c)^2 + 3(b - c)^2 + 3d^2.
$$

Here the left side is never of the form $3k - 1$, while $x^2 + 3y^2 + 3z^2$, *x*, *y*, *z* ∈ Z, is never of the form $(3k - 1) \cdot 9^m$. Therefore we conclude the necessity condition in (i).

If $n \leq 30$ then the condition in (i) is also sufficient, as can be checked by hand. So If *n* ≤ 50 then the condution in (1) is also sufficient, as can be checked by hand. So let *n* ≥ 31, and assume that $p = \lfloor \sqrt{12n - 3} - 3 \rfloor$ is such that $A = (p + 3)^2 + 3 - 12n$ is not of the form $(3k - 1) \cdot 9^m$. Then 3*A* is not of the form $(9k - 3) \cdot 9^m$, thus 3*A* can be written in the form

$$
3A = 3x^2 + \tilde{y}^2 + \tilde{z}^2
$$
 (2)

for some *x*, \tilde{y} , $\tilde{z} \in \mathbb{Z}$ (see p. 97 of [2]). Checking remainders modulo 3, we deduce that $\tilde{y} = 3y$ and $\tilde{z} = 3z$ for some $y, z \in \mathbb{Z}$, and hence

$$
(p+3)^2 + 3 - 12n = x^2 + 3y^2 + 3z^2.
$$

Changing *x* to $-x$ if necessary, we may assume that $p \equiv x \pmod{3}$. Since a square is 0 or 1 (mod 4), and the roles of *y* and *z* are symmetric, we may assume that $p \equiv z$ (mod 2), and hence $x \equiv y \pmod{2}$. We define

$$
a = \frac{p + 2x - 3z}{6}, \qquad b = \frac{p + 3y - x - 3z}{6}, \qquad c = \frac{p - 3y - x - 3z}{6}, \qquad d = z.
$$

The divisibility properties imply that *a*, *b*, *c*, *d* are integers. We want to make a hexagon (namely $\frac{1}{2}C_n$) with sides *a*, *b*, *c*, *a* + *d*, *b* + *d* and *c* + *d*; to this end we need that they are all positive. This is equivalent to

$$
2|x| + 3|z| < p \quad \text{and} \quad |x| + 3|y| + 3|z| < p. \tag{3}
$$

We have $p < \sqrt{12n - 3} - 2$, which in turn yields that

$$
x^{2} + 3y^{2} + 3z^{2} < (p+3)^{2} - (p+2)^{2} = 2p + 5.
$$
 (4)

Here $p \ge 17$ follows by $n \ge 31$, and hence the conditions in (3) follow by (4) and the Cauchy–Schwarz inequality. Therefore there exists a Groemer packing of *n* unit discs with *p* boundary discs, completing the proof of (i).

248 K. J. Böröczky and I. Z. Ruzsa

Turning to (ii), let $g(N) = N - f(N)$. It is sufficient to show that for any $\varepsilon > 0$ and for *N* large,

$$
g(N) = \frac{1 + O(\varepsilon)}{24} \cdot N,\tag{5}
$$

where the implied constant in $O(\cdot)$ is some absolute constant. Given $n \geq 2$, we set where the implied constant in $U(·)$ is some
 $s = \sqrt{12n - 3}$ and define *t* by the formula

$$
12n-3=s^2-t.
$$

The condition $s = \left[\sqrt{12n-3}\right]$ is equivalent to $s^2 - t > (s - 1)^2$, and hence to $s > (t + 1)/2$. On the other hand, $n \leq N$ is equivalent to $s \leq \sqrt{12N - 3 + t}$. Therefore $g(N)$ is the number of "good" pairs *s*, $t \in \mathbb{N}$ such that $t = l \cdot 9^m$ for some positive *l*, *m* ∈ \mathbb{Z} with *l* ≡ −1 (mod 3), *n* = $(s^2 - t + 3)/12$ is an integer, and

$$
\frac{t+1}{2} < s \le \sqrt{12N - 3 + t}.\tag{6}
$$

If *N* is large then $t < (1 + \varepsilon)2\sqrt{12N}$ and $m < (1 + \varepsilon) \log_9 2\sqrt{12N}$ follows by (6). Now *n* is an integer if and only if either $l \equiv -4 \pmod{12}$ and $s \equiv \pm 3 \pmod{12}$, or $l \equiv -1$ *n* is an integer ii and only ii either $t \equiv -4 \pmod{12}$ and $s \equiv \pm 3 \pmod{12}$, or $t \equiv -1 \pmod{12}$ and $s \equiv 0, 6 \pmod{12}$. We observe that if *t* is fixed and $t < (1 - \varepsilon)2\sqrt{12N}$ then a "good" pair *s* of *t* occurs uniformly and with density $\frac{1}{6}$. Therefore given large *N* and $1 \le m \le (1 - \varepsilon) \log_9 2\sqrt{12N}$, the number of "good" pairs $s, t \in \mathbb{N}$ is

$$
(1+O(\varepsilon)) \sum_{\substack{2 \le l \le (1-\varepsilon)2\sqrt{12N}/9^m \\ l \equiv -1, -4 \pmod{12}}} \frac{1}{6} \cdot \left(\sqrt{12N} - \frac{l \cdot 9^m}{2}\right) = (1+O(\varepsilon)) \cdot \frac{N}{3 \cdot 9^m}.
$$

We conclude that

$$
g(N) = (1 + O(\varepsilon)) \cdot \sum_{m \ge 1} \frac{N}{3 \cdot 9^m} = (1 + O(\varepsilon)) \cdot \frac{N}{24},
$$

completing the proof of Theorem 1.3.

Finally we prove Theorem 1.2. If there exists no Wegner packing for some *n* then $p =$ Finally we prove Theorem 1.2. It there exists no wegner packing for some *n* then $p = \sqrt{12n - 3} - 3$ is divisible by 3 according to Theorem 1.3(i). Thus $(p+1+3)^2+3-12n$ is not equal to $(3k - 1) \cdot 9^m$ for any positive $k, m \in \mathbb{Z}$, and the proof of the sufficiency of the condition in Theorem 1.3(i) yields the existence of a Groemer packing of *n* unit discs with $p + 1$ boundary discs. In turn we conclude Theorem 1.2.

Acknowledgements

We are grateful to J. C. Lagarias for helpful discussions, and to an unknown referee whose remarks considerably improved the paper.

References

- 1. K. Böröczky, Jr. *Finite Packing and Covering*, Cambridge University Press, Cambridge, to appear.
- 2. L.E. Dickson. *Modern Elementary Theory of Numbers*. University of Chicago Press, Chicago, IL, 1939.

Note on an Inequality of Wegner 249

- 3. L. Fejes T´oth. Research problems. *Period*. *Math*. *Hungar*., 6:197–199, 1975.
- 4. J.H. Folkman and R.L. Graham. A packing inequality for compact convex subsets of the plane. *Canad*. *Math*. *Bull*., 12:745–752, 1969.
- 5. H. Groemer. Über die Einlagerung von Kreisen in einen konvexen Bereich. *Math. Z.*, 73:285–294, 1960.
- 6. N. Oler. An inequality in the geometry of numbers. *Acta Math*., 105:19–48, 1961.
- 7. A. Thue. On new geometric and number theoretic theorems (in Norwegian). *Forhdl*. *Skand*. *Naturforskermode*, 352–353, 1892.
- 8. A. Thue. Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene. Christiana Vid. *Selsk*. *Skr*., 1:3–9, 1910.
- 9. A. Thue. *Selected Papers*. Universitetsforlaget, Oslo, 1977.
- 10. G. Wegner. Über endliche Kreispackungen in der Ebene. Studia Sci. Math. Hungar., 21:1-28, 1986.

Received December 17, 2004, *and in revised form January* 13, 2006. *Online publication February* 5, 2007.