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Abstract. A chiral polyhedron has a geometric symmetry group with two orbits on the
flags, such that adjacent flags are in distinct orbits. Part I of the paper described the discrete
chiral polyhedra in ordinary euclidean space E3 with finite skew faces and finite skew
vertex-figures; they occur in infinite families and are of types {4, 6}, {6, 4} and {6, 6}. Part II
completes the enumeration of all discrete chiral polyhedra inE3. There exist several families
of chiral polyhedra of types {∞, 3} and {∞, 4} with infinite, helical faces. In particular,
there are no discrete chiral polyhedra with finite faces in addition to those described in
Part I.

1. Introduction

The present paper continues the study of chiral polyhedra in ordinary euclidean space
E

3 begun in [24]. As polyhedra we permit discrete “polyhedra-like” structures in E3

with finite or infinite, planar or skew, polygonal faces or vertex-figures; more precisely,
a polyhedron in E3 is a discrete three-dimensional faithful realization of an abstract
regular polytope of rank 3 (see Chapter 5 of [20]). A polyhedron is (geometrically)
chiral if its geometric symmetry group has exactly two orbits on the flags, such that
adjacent flags are in distinct orbits. Chiral polyhedra are nearly regular polyhedra; recall
that a (geometrically) regular polyhedron has a geometric symmetry group with just one
orbit on the flags.
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author visited I.H.E.S. in Bures-sur-Yvette, France, for two months in 2002. The author thanks I.H.E.S. for
the hospitality.
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The discrete regular polyhedra in E3 were completely enumerated by Grünbaum [11]
and Dress [8], [9]; see Section 7E of [20] (or [19]) for a quick method of arriving at the
full characterization, as well as for presentations of the symmetry groups.

In Part I we described a complete classification of the discrete chiral polyhedra with
finite skew faces and finite skew vertex-figures in E3 [24]. There are three integer-valued
two-parameter families of chiral polyhedra of this kind for each type {4, 6}, {6, 4} or
{6, 6}; some infinite families split further into several smaller subfamilies. Moreover,
there are no chiral polyhedra in E3 which are finite.

The present Part II completes the enumeration of the discrete chiral polyhedra in E3.
All chiral polyhedra not described in Part I have infinite, helical faces and occur again in
infinite families; their types are {∞, 3} or {∞, 4}, and their faces are helices over triangles
or squares. We discuss their geometry and combinatorics in detail in Sections 4–8. The
foundations are laid in Section 3, where we also prove that a chiral polyhedron cannot
have finite planar faces or vertex-figures or an affinely reducible symmetry group; in
effect, this shows that Part I actually enumerated all the chiral polyhedra in E3 with
finite faces. Basic terminology and results are reviewed in Section 2 (following [20]
and [24]).

2. Basic Notions

Although our main interest is in geometric polyhedra, we begin with a brief review of
the underlying abstract theory (see Chapter 2 of [20]). Recall that an abstract polyhedron
P is a partially ordered set of rank 3. For j = 0, 1 or 2, we call its j-faces vertices,
edges and facets, respectively. When there is no possibility of confusion, we use the term
“face” to mean “2-face” (facet). The flags of P each contain one vertex, one edge and
one facet (as well as the minimal face F−1 and maximal face F3, usually omitted from
the notation).

A polyhedronP is chiral if its (automorphism) group�(P) has two orbits on the flags
such that adjacent flags are in distinct orbits. Let � := {F0, F1, F2} be a fixed or base
flag, and let F ′j , with j = 0, 1, 2, denote the j-face with Fj−1 < F ′j < Fj+1 and F ′j 	= Fj .
If P is chiral, then �(P) is generated by distinguished generators σ1, σ2 (with respect
to �), where σ1 fixes F2 and cyclically permutes the vertices and edges of F2 such that
F1σ1 = F ′1, and σ2 fixes F0 and cyclically permutes the vertices and edges in the vertex-
figure at F0 such that F2σ2 = F ′2. A chiral polyhedron occurs in two enantiomorphic
forms (see [25] and [26]); these correspond to the two (conjugacy classes of) pairs of
distinguished generators of �(P), namely the pair σ1, σ2 determined by the original base
flag �, and the pair σ1σ

2
2 , σ

−1
2 determined by the adjacent flag �2 := {F0, F1, F ′2}.

A polyhedron P is regular if �(P) is transitive on its flags. Then �(P) is generated
by distinguished generators ρ0, ρ1, ρ2 (with respect to �), where ρj keeps all but the
j-face of a chosen base flag� fixed. The elements σ1 := ρ0ρ1 and σ2 := ρ1ρ2 generate
the (combinatorial) rotation subgroup �+(P) of �(P). Now the two pairs of generators
of �+(P) are conjugate in �(P) under ρ2, so the two enantiomorphic forms can be
identified.

Let P be an abstract polyhedron, and let Pj denote its set of j-faces. A realization
of P in E3 is a mapping β:P0 → E

3 (see Section 5A of [20]). Define β0 := β and
V0 := V := P0β. Then β recursively induces surjections βj :Pj → Vj , for j = 1, 2, 3,
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with Vj ⊂ 2Vj−1 (the family of subsets of Vj−1) consisting of the elements

Fβj := {Gβj−1 | G ∈ Pj−1 and G � F} (F ∈ Pj ).

A realization β is faithful if each βj is a bijection; otherwise, β is degenerate. In a
symmetric realization β, each automorphism of P induces an isometric permutation of
the vertex-set V ; this yields a representation of �(P) as a group of euclidean isometries.
The realization theory even of simple polyhedra can be rather complicated; see, for
example, Section 5B of [20] or [22].

We mostly work with discrete and faithful realizations. In this case the vertices, edges
and facets of P are in one-to-one correspondence with certain points, line segments and
simple (finite or infinite) polygons in E3, and it is safe to identify a face of P and its
image in E3. The resulting family of points, line segments and polygons is a (discrete)
geometric polyhedron in E3 and is denoted by P; it is understood that P inherits the
partial ordering of P , and when convenient P will be identified with P .

Recall that a geometric polyhedron P inE3 is geometrically regular if its (geometric)
symmetry group G(P) is flag-transitive, and that P is geometrically chiral if G(P) has
two orbits on the flags such that adjacent flags are in distinct orbits (see [24]). In the latter
case the underlying abstract polyhedron P must be (combinatorially) chiral or regular.
Note that there are geometric polyhedra which are not chiral but still have a symmetry
group with only two orbits on the flags (see [15], [29] and [30]). For other classes of
highly symmetric polyhedra see, for example, [13] and [14].

The structure results for abstract polyhedra carry over to geometric polyhedra as
follows. Let P be a discrete (geometrically) chiral or regular (geometric) polyhedron in
E

3. As before, let� := {F0, F1, F2} be a base flag of P , and let F ′j , with j = 0, 1, 2, be
the j-face of P with Fj−1 < F ′j < Fj+1 and F ′j 	= Fj .

If P is chiral, then G := G(P) is generated by distinguished generators S1, S2 (with
respect to �), where S1 fixes the base facet F2 and cyclically permutes its vertices such
that F1S1 = F ′1 (and thus F ′0S1 = F0), and S2 fixes the base vertex F0 and cyclically
permutes the vertices in the vertex-figure at F0 such that F2S2 = F ′2 (and thus F ′1S2 = F1).
Then

S p
1 = Sq

2 = (S1S2)
2 = I, (2.1)

the identity mapping, with p, q given by the type {p, q} of P (see [7]). The involution
T := S1S2 interchanges the two vertices in F1 as well as the two faces meeting at F1.

If P is regular, then G(P) is generated by distinguished generators R0, R1, R2 (with
respect to�), where Rj maps all but the j-face of� to itself. Each Rj is a reflection in a
point, line or plane. If S1 := R0 R1 and S2 := R1 R2, then the subgroup G := 〈S1, S2〉 of
G(P) of index 2 has properties very similar to those of the group of a chiral polyhedron.
Now T := S1S2 = R0 R2, and T again interchanges the two vertices of F1 as well as the
two faces meeting at F1. For a regular polyhedron, the dimension vector

(dim R0, dim R1, dim R2)

records the dimensions of the reflection mirrors for R0, R1, R2. See Section 7E of [20] for
a complete enumeration of the regular polyhedra in E3 (see also [8], [9], [11] and [16]).

For emphasis, throughout the paper, G denotes the subgroup 〈S1, S2〉 of G(P), ir-
respective of whether P is chiral or regular. Then G = G(P) if P is chiral, or G is a
subgroup of index 2 in G(P) if P is regular.
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We require the following lemma, which gives a useful necessary and sufficient con-
dition for a polyhedron to be regular.

Lemma 2.1. Let P be a discrete chiral or regular polyhedron in E3 with associated
group G = 〈S1, S2〉. Let � = {F0, F1, F2} be the corresponding base flag, and let F ′j ,
for j = 0, 1, 2, be the j-face associated with � as above. Then P is regular if and only
if there exists an isometry R of E3 such that

R−1S2 R = S−1
2 , R−1T R = T, F0 R = F0, F1 R = F1, F2 R = F ′2.

Proof. If P is regular, then R := R2 has the required properties. Conversely, suppose
that R is an isometry acting in the way described. Then R−1G R = G because G is
generated by S2 and T , and

(Fi G)R = (Fi R)G = Fi G or F ′i G

according as i = 0, 1 or i = 2. Since there is only one orbit on the i-faces for each i
(even when i = 2), this implies that R must indeed be a symmetry of P , which then
takes� to the adjacent flag�2 = {F0, F1, F ′2}. Hence P must be regular and R = R2.

Note that Lemma 2.1 can be employed to shorten the proof of Theorem 3.1 of [24],
which says that there are no finite chiral polyhedra in E3.

Geometrically chiral or regular polyhedra can be obtained by a variant of Wythoff’s
construction (see [6] or Section 5A of [20]). Let an abstract polyhedron P be chiral
or regular, and let G := 〈S1, S2〉 be a euclidean representation of �(P) or �+(P),
respectively. Each point v which is fixed by S2 can serve as the initial vertex of a
realization P with vertex-set V = vG. Its base vertex, base edge and base face are v,
v〈T 〉 or v〈S1〉, respectively, and the other vertices, edges and faces are their images
under G. In our applications, P will generally be a geometric polyhedron. Note that,
a priori, an abstract regular polyhedron can have a realization which is geometrically
chiral.

Certain operations that can be applied to regular polyhedra have analogs that also
apply to abstract chiral polyhedra and frequently to geometrically chiral polyhedra as
well. Examples are the duality operation δ and the (2nd) facetting operation ϕ2, yielding
the generators for the groups of the dual polyhedron P∗ := Pδ or of Pϕ2 , respectively
(see pp. 192 and 194 of [20]). If an abstract polyhedron P is chiral, then δ and ϕ2 are
given by

δ: (σ1, σ2) �→ (σ−1
2 , σ−1

1 ) and ϕ2: (σ1, σ2) �→ (σ1σ
−1
2 , σ 2

2 ). (2.2)

When applied to the rotation subgroup �+(P) of a regular polyhedron P , the new
generators (on the right) become the distinguished generators for the rotation subgroups
of the polyhedraPδ orPϕ2 of Section 7B of [20], respectively. IfP is a chiral polyhedron,
then moving from one enantiomorphic form to the other corresponds to applying the
enantiomorphism operation

µ: (σ1, σ2) �→ (σ1σ
2
2 , σ

−1
2 ). (2.3)
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The operations δ, ϕ2 and µ are examples of mixing operations (see p. 83 of [20]) and
carry over to geometric polyhedra.

Suppose P (or P) is a chiral polyhedron of type {p, q}with p and q finite. For odd q,
the geometric effect of ϕ2 on P is as described on p. 195 of [20] (for regular polyhedra),
so we do not repeat it here. However, in the present context we are only interested in the
case when q � 6 is even, and specifically when q = 6. Here it is helpful to think of P as
a map on a surface M (compare [2] and [7]), and of�(P) as a group of homeomorphisms
which preservesP and its order complex. The triangles in the order complex correspond
to the flags ofP , so in particular we have a base triangle� and an adjacent triangle�2 as
well as the two pairs of generators σ1, σ2 and σ1σ

2
2 , σ

−1
2 of �(P) associated with them.

Moreover, the union of � and �2 is a fundamental region for the action of �(P) on
M . The map P on M can be recovered from this action by employing (a combinatorial
analogue of) Wythoff’s construction, with initial vertex the base vertex in �; the latter
is fixed by σ2 (and σ−1

2 ).
Now we can find a model for Pϕ2 as follows. By (2.2), the group of Pϕ2 is generated

by σ1σ
−1
2 , σ 2

2 , so we can apply Wythoff’s construction with the same initial vertex as
before. Then the vertices and edges of Pϕ2 are among those of P , and a typical face of
Pϕ2 is a hole (2-hole), which is formed by the edge-path which leaves a vertex by the
second edge from which it entered, in the same sense (keeping always to the right, say,
in some local orientation of M). Generally, since q is even, only every other edge ofP at
a vertex of Pϕ2 belongs to such a face of Pϕ2 , so a vertex of Pϕ2 lies in q/2 faces of Pϕ2 .
The same polyhedron can also be obtained from Wythoff’s construction applied with the
generators σ1σ

3
2 , σ

−2
2 ; this pair is the image under ϕ2 of the alternative pair σ1σ

2
2 , σ

−1
2

of �(P).
With appropriate changes, these considerations extend to regular polyhedra P (or P)

and their rotation subgroups �+(P).
For a survey about realizations of regular or chiral polytopes in euclidean spaces of

low dimensions the reader is also referred to [21]. For a discussion of 4-dimensional
regular polyhedra see [18].

3. The Special Group

We assume from now on that P is a discrete infinite polyhedron, or apeirohedron, which
is chiral or regular; in fact, there are no finite chiral polyhedra in E3 (see Section 3 of
[24] or see [17]), and the finite regular polyhedra are all known. Then G = 〈S1, S2〉
must be an infinite discrete group of isometries. For now we assume that G is (affinely)
irreducible on E3, meaning that there is no non-trivial linear subspace L of E3 which is
invariant in the sense that G permutes the translates of L . It follows that G must be a
crystallographic group.

If R : x �→ x R′ + t is a general element of G, with R′ ∈ O3, the orthogonal group,
and t ∈ E3 is a translation vector, then the linear mappings R′ form the special group
G0 of G. This is a finite subgroup of O3. (See [10] for the complete enumeration of the
finite subgroups of O3.) In particular, if T (G) denotes the subgroup of all translations in
G, then G0

∼= G/T (G). Note that S′2 = S2 and

T ′ = S′1S′2 = S′1S2.
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Moreover,

G0 = 〈S′1, S2〉.
The following refinement of Bieberbach’s theorem (see [1] or Section 7.4 of [23])

applies to G and was proved on p. 220 of [20]. (Note that Lemma 7E6 of [20] states the
lemma in a slightly weaker form, but its proof actually establishes the stronger version.)

Lemma 3.1. The special group of an irreducible infinite discrete group of isometries
in E2 or E3 does not contain rotations of periods other than 2, 3, 4 or 6.

The generators S1 and S2 of G determine the geometry of the faces and vertex-figures
of P , respectively. Part I of the paper dealt with the case that S1 and S2 are rotatory
reflections of finite period. When chiral, the corresponding polyhedra in E3 have finite
skew faces and finite skew vertex-figures; however, when regular, either the faces or the
vertex-figures are planar. Note in this context that an element in G is a rotatory reflection
if and only if its image in G0 is a rotatory reflection (of the same period). We now
investigate the possibility that a generator S′1 or S2 of G0 is a rotation of period at least
3; the corresponding generator S1 or S2 of G would then be a rotation or twist (screw
motion of infinite period), and the faces or vertex-figures of P would be planar or helical.
(Of course, helical vertex-figures are ruled out by our discreteness assumption.)

Before we proceed, note that S′1 could only be a rotation of period 2 if P had (planar)
zigzag faces. We later exclude this possibility (see Lemma 3.7). For now we just observe
that the group G of such a polyhedron P must necessarily act reducibly on E3. In fact,
S1 is necessarily a “half-twist” along the axis of the base (zigzag) face F2 (given by a
half-turn about this axis, followed by a translation along this axis), and T is either the
plane reflection in the perpendicular bisector of the base edge F1, or a half-turn about a
line through the midpoint of F1 and perpendicular to F1. In either case, G0 = 〈S′1, T ′ 〉
acts reducibly (the axis of F2 passes through the midpoint of F1), and so does G.

Moreover, we can also eliminate the possibility that S′1 = I . In fact, in this case P
must have linear apeirogons as faces, forcing P to lie entirely on a line (adjacent faces
must lie on the same line).

Lemma 3.2. Let P be a discrete chiral or regular apeirohedron in E3 with base vertex
o, and let the corresponding group G = 〈S1, S2〉 act irreducibly, with special group
G0 = 〈S′1, S2〉.

(a) The generators S1 and S2 of G cannot both be rotations.
(b) If one of the generators S′1 and S2 of G0 is a rotatory reflection and the other

a rotation of period at least 3, then G0 can only be one of the following three
groups:
(1) [3, 4] (∼= S4 × C2), the group of a cube {4, 3} centered at o;
(2) [3, 3] (∼= S4), the subgroup of [3, 4] associated with a regular tetrahedron
{3, 3} inscribed in {4, 3} (as in Fig. 3.1);

(3) the subgroup

[3, 3]∗ := [3, 3]+ ∪ (−I )[3, 3]+ (∼= A4 × C2)

of [3, 4], obtained by adjoining−I to the rotation subgroup [3, 3]+ of {3, 3}.
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Fig. 3.1. A regular tetrahedron inscribed in a cube.

Proof. Let P be of type {p, q}; clearly, since P is discrete, q must be finite. Let p′

denote the period of S′1. Most values of p, q and p′ can be ruled out by appealing to
Lemma 3.1, or by observing that the group abstractly defined by the relations in (2.1)
would be finite.

First we eliminate the possibility that both generators of G are rotations. If S1 and S2

are rotations, then G0 = 〈S′1, S2〉must be a finite group in E3 generated by two rotations
with distinct axes (recall that G is irreducible). Hence, G0 = [3, 3]+ or [3, 4]+. Since
now p′ = p and every rotation in these groups is of order 3 or 4, we can only have
an infinite group G if G0 = [3, 4]+ with p = q = 4. However, this possibility is also
excluded because the product of two rotations of period 4 about distinct axes in [3, 4]+

cannot be an involution (on the other hand, T ′ = S′1S2 would have to be an involution).
This settles the first part of the lemma.

We now consider the case that S′1 is a rotation of period at least 3 and that S2 = S′2
is a rotatory reflection. Then T ′ is a plane reflection; note that we cannot have T ′ = −I
because G is irreducible. We now apply a similar trick to that in the proof of Theorem
7E4 of [20] and consider the new mapping

−S2 = (−I )S2 = −S′2,

which is a rotation about the same axis as the rotational component of S2. Then

Ĝ0 := 〈S′1,−S2〉

is a finite group generated by two rotations with distinct axes, and so we must have
Ĝ0 = [3, 3]+ or [3, 4]+. Note that G0 is a subgroup of Ĝ0 · 〈−I 〉 and thus of [3, 3]∗ or
[3, 4], respectively; if −S2 is of period 3, then −I = S3

2 ∈ G0 and hence G0 = [3, 3]∗

or [3, 4]. Three cases can occur.
If Ĝ0 = [3, 3]+, then G0 = [3, 3]∗. In this case the elements S′1,−S2 are standard

generators of the rotation group [3, 3]+ of {3, 3}, meaning that S′1 rotates in a face of
{3, 3} and−S2 rotates about a vertex of this face, with orientations such that their product
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is a half-turn about the midpoint of an edge of this face containing the vertex. Now p = 3
or∞, and q = 6 (already the rotational component of S2 is of period 6).

If Ĝ0 = [3, 4]+, then S′1 and −S2 must be rotations of period 3 or 4; however, they
cannot have the same period. In fact, two rotations of period 3 generate a group smaller
than [3, 4]+, and the product of two distinct rotations of period 4 in [3, 4]+ cannot be an
involution. Moreover, we can also rule out the case p = p′ = 3, because then G would
be finite when q = 4. This leaves the two possibilities that either (p′, q) = (3, 4) with
p = ∞ (the case p = 3 would again yield a finite group), or (p′, q) = (4, 6)with p = 4
or∞.

In the first case the elements S′1,−S2 are standard generators (in the above sense) of
[3, 4]+, viewed as the rotation group of an octahedron {3, 4}. Now the generators S′1, S2

of G0 are symmetries of a regular tetrahedron inscribed in {3, 4} (with its vertices at face
centers of {3, 4}), so that G0 = [3, 3].

Similarly, in the second case the elements S′1,−S2 are standard generators of [3, 4]+,
now viewed as the rotation group of the cube {4, 3}. Now G0 = [3, 4], because−S2 has
period 3.

Finally, a similar analysis goes through in the dual case when S′1 is a rotatory reflection
(of period p′ = p) and S2 is a rotation (of period at least 3). Now we take

Ĝ0 := 〈−S′1, S2〉
as the new group.

As before, if Ĝ0 = [3, 3]+, then G0 = [3, 3]∗ and−S′1, S2 are standard generators of
[3, 3]+. Now p = 6 (already the rotational component of S1 is of period 6) and q = 3.

If Ĝ0 = [3, 4]+, then again −S′1 and S2 are rotations of distinct periods, 3 or 4. We
can rule out the case p = 4 (occurring if −S′1 has period 4), because then G would be
finite when q = 3. This only leaves the possibility that (p, q) = (6, 4), obtained when
−S′1, S2 are standard generators of [3, 4]+, viewed as the rotation group of {3, 4}. Now
G0 = [3, 4], because −S′1 has period 3.

In summary, the only possible special groups are [3, 3], [3, 4] and [3, 3]∗, with gen-
erators S′1, S2 specified as above.

The next two lemmas employ the geometry of P to eliminate the possibility of finite
faces in Lemma 3.2(b). In each case we exhibit representations of the putative generators
S1, S2 of G and prove that these generators must actually determine a regular polyhedron
which either has helical faces or is finite; however, the latter possibility is excluded by
our assumptions on P . The results are interesting in their own right.

Lemma 3.3. Let P be a discrete chiral or regular apeirohedron in E3 with base vertex
o, and let the corresponding group G = 〈S1, S2〉 be irreducible, with special group
G0 = 〈S′1, S2〉. If S′1 is a rotation of period at least 3 and S2 a rotatory reflection, then P
is a regular polyhedron with helical faces and S1 is a twist. In particular, P is the Petrial
of a Petrie–Coxeter polyhedron {4, 6 |4}, {6, 4 |4} or {6, 6 |3}; that is,

P = {∞, 6}4,4, {∞, 4}6,4 or {∞, 6}6,3,
respectively (notation as on p. 224 of [20]).



Chiral Polyhedra in Ordinary Space, II 189

Proof. By Lemma 3.2, G0 must be one of the groups [3, 3]∗, [3, 3] or [3, 4]. In each
case G0 is associated with standard generators of Ĝ0 := 〈S′1,−S2〉. We now investigate
the possible generators S1, S2 of G.

We begin with the group [3, 3]∗. Now S′1,−S2 are standard generators of [3, 3]+.
Once S2 has been selected, there are three admissible choices for S′1 such that S′1S2

has period 2; if S′1 is one of them, then the two others are S−1
2 S′1S2 and S−2

2 S′1S2
2 . This

follows directly from Lemma 5.1 of [24], applied to the rotatory reflections S2 and−S′1.
There is also the further possibility of reversing the orientation of the generator S2 and
replacing it by its inverse S−1

2 . However, this simply amounts to replacing the polyhedron
P by its enantiomorphic image; the latter is the same underlying polyhedron, with the
same group, but with the new distinguished generators S1S2

2 , S−1
2 (determined by a new,

adjacent base flag); see Section 2 for more details.
Thus, without loss of generality we may assume that

S′1: x �→ (ξ2,−ξ3,−ξ1),

S2: x �→ −(ξ3, ξ1, ξ2),
(3.1)

described in terms of x = (ξ1, ξ2, ξ3), so that T ′ = S′1S2 is the reflection in the ξ1ξ3-
plane. (Note that−S′1, S2 are the generators for the special group of the group G(a, b) in
(5.1) of [24].) Then T = S1S2 must be a reflection in a plane parallel to the ξ1ξ3-plane,
and since T interchanges the vertices in the base edge F1, this plane must coincide with
the perpendicular bisector of F1. In particular, the vertex v := oT of F1 distinct from o
must be of the form v = (0, a, 0) for some non-zero parameter a. It follows that G is
generated by

S2: x �→ −(ξ3, ξ1, ξ2),

T : x �→ (ξ1,−ξ2, ξ3)+ (0, a, 0).
(3.2)

Since S1 = T S−1
2 , we then have

S1: x �→ (ξ2,−ξ3,−ξ1)+ (−a, 0, 0), (3.3)

so, in particular,

S3
1 : x �→ (ξ1, ξ2, ξ3)+ a(−1,−1, 1), (3.4)

which is a non-trivial translation. Hence, S1 must be a twist and P must have helical
faces (spiraling over an equilateral triangle). Note that P is of type {∞, 6}.

We now employ Lemma 2.1 to show that P must be regular. It is straightforward to
check that the reflection R (in the plane ξ1 = ξ3) given by

R: x �→ (ξ3, ξ2, ξ1) (3.5)

satisfies the conditions required in Lemma 2.1 with

F0 = o, F1 = {o, v}, F2 = o〈S1〉, F ′2 = F2T .

In fact, observe that conjugation by R transforms the pair S1, S2 to the new generating
pair S1S2

2 , S−1
2 , so in particular F2 = o〈S1〉 is mapped to F ′2 = o〈S1S2

2 〉. Hence, P is
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regular and R = R2. Inspection of the list of 12 regular apeirohedra (with an irreducible
group) shows that P = {∞, 6}4,4 (see p. 224 of [20]), the Petrial of the Petrie–Coxeter
polyhedron {4, 6 |4} (see [5]), with Petrie polygons of length 4 (indicated by the first
subscript in the symbol for P); note here that S2

1 S2
2 (= (R0 R1 R2)

2) has period 2.
Next we investigate the possible generators S1, S2 of G when G0 = [3, 4]. Now

S′1,−S2 are standard generators of [3, 4]+, viewed as the rotation group of a cube {4, 3}.
As in the previous case, once S2 has been selected, there are precisely three admissible
choices for S′1 such that S′1S2 has period 2; if S′1 is one of them, then the two others are
S−1

2 S′1S2 and S−2
2 S′1S2

2 . This follows from Lemma 6.1 of [24], applied to the rotatory
reflections S2 and −S′1. Moreover, the same remark as above about replacing S2 by S−1

2
applies in this context.

Thus we may take as generators

S′1: x �→ (ξ1,−ξ3, ξ2),

S2: x �→ −(ξ3, ξ1, ξ2),
(3.6)

so that T ′ is the reflection in the plane ξ1 + ξ2 = 0. (Now −S′1, S2 are the generators for
the special group of the group H(c, d) in (6.1) of [24].) The mirror of T once again is
the perpendicular bisector of F1 and is parallel to the mirror of T ′. Hence, if v := oT ,
then v = (a, a, 0) for some non-zero parameter a. It follows that G is generated by

S2: x �→ −(ξ3, ξ1, ξ2),

T : x �→ (−ξ2,−ξ1, ξ3)+ (a, a, 0).
(3.7)

The element S1 = T S−1
2 is given by

S1: x �→ (ξ1,−ξ3, ξ2)+ (−a, 0,−a), (3.8)

so, in particular,

S4
1 : x �→ (ξ1, ξ2, ξ3)+ a(−4, 0, 0), (3.9)

which is again a non-trivial translation. Hence, S1 must be a twist and P must have
helical faces (spiraling over a square).

As in the previous case we can prove that P is regular. The element R (= R2) is the
reflection (in the plane ξ1 = ξ2) given by

R: x �→ (ξ2, ξ1, ξ3). (3.10)

In this case, P = {∞, 6}6,3, the Petrial of the Petrie–Coxeter polyhedron {6, 6 |3}, with
Petrie polygons of length 6 (again indicated by the first subscript in the symbol for P);
now S2

1 S2
2 has period 3.

Finally, when G0 = [3, 3] (∼= S4), we must take a rotation S′1 of period 3 and a
rotatory reflection S2 of period 4 as generators of G0. Once S2 has been selected, there
are now exactly four admissible choices for S′1; if S′1 is one of them, then the three others
are S− j

2 S′1S j
2 for j = 1, 2, 3. Moreover, the same remark as before about replacing S2

by S−1
2 applies.

Thus, with

S′1: x �→ (ξ2, ξ3, ξ1),

S2: x �→ (−ξ1,−ξ3, ξ2),
(3.11)
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we obtain the same v, T ′ and T as in the previous case. In particular, we have

S1: x �→ (ξ2, ξ3, ξ1)+ (−a, 0,−a),
S3

1 : x �→ (ξ1, ξ2, ξ3)+ a(−2,−2,−2).
(3.12)

Once again, P is regular, by Lemma 2.1. Now R (= R2) is given by the reflection (in
the plane ξ3 = 0)

R: x �→ (ξ1, ξ2,−ξ3), (3.13)

and P = {∞, 4}6,4, the Petrial of {6, 4 |4}, with dimension vector (1, 1, 2) (see p. 224
of [20]).

The three polyhedra occurring in Lemma 3.3 are precisely the pure regular polyhedra
with dimension vector (1, 1, 2) (see p. 225 of [20]). Note that the values 1, 1, 2 for the
dimensions of the mirrors for their generating reflections R0, R1, R2 accord with the
geometric type of the generators of G, namely a twist for S1 (= R0 R1) and a rotatory
reflection for S2 (= R1 R2).

Lemma 3.4. Let P be a discrete chiral or regular apeirohedron in E3, and let the
corresponding group G = 〈S1, S2〉 be irreducible. Then the generators cannot be such
that S1 is a rotatory reflection and S2 a rotation.

Proof. Suppose that S1 (and hence S′1) is a rotatory reflection and S2 a rotation. Then
G0 = [3, 3]∗ or [3, 4], by the proof of Lemma 3.2. We treat these cases separately and
appeal to the discussion of the groups occurring in the proof of Lemma 3.3. Again, o is
the base vertex.

If G0 = [3, 3]∗, then we may take

S′1: x �→ −(ξ2, ξ3, ξ1),

S2: x �→ (−ξ3, ξ1,−ξ2),
(3.14)

which are the inverses of the generators S2 and S′1 of (3.1), respectively, of periods 6
and 3. Then T ′, T and v of (3.1) remain unchanged, because T and T ′ have period 2. In
particular, G is generated by

S2: x �→ (−ξ3, ξ1,−ξ2),

T : x �→ (ξ1,−ξ2, ξ3)+ (0, a, 0),
(3.15)

and S1 = T S−1
2 is given by

S1: x �→ (−ξ2,−ξ3,−ξ1)+ (a, 0, 0). (3.16)

However, then the whole group G fixes the point z := 1
2 (a, a,−a), and so G must be a

finite group, contrary to our assumption that P is infinite. (This finite group consists of
the symmetries of the cube of edge length a centered at z, and the associated polyhedron
is the Petrial {6, 3}4 of {4, 3}; see pp. 192 and 218 of [20].)
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In a similar fashion we deal with the case G0 = [3, 4]. We take

S′1: x �→ −(ξ2, ξ3, ξ1),

S2: x �→ (ξ1, ξ3,−ξ2),
(3.17)

which are the inverses of the generators S2 and S′1 of (3.6), respectively, of periods 6 and
4. Then T ′, T and v of (3.6) remain unchanged and G is generated by any two of

S1: x �→ −(ξ2, ξ3, ξ1)+ (a, 0, a),
S2: x �→ (ξ1, ξ3,−ξ2),

T : x �→ (−ξ2,−ξ1, ξ3)+ (a, a, 0).
(3.18)

Then G fixes z′ := (a, 0, 0), so it must again be a finite group, contrary to our assumptions
on P . (Now this finite group consists of the symmetries of the octahedron with vertices
z′ ± a e1, z′ ± a e2, z′ ± a e3, where e1, e2, e3 is the standard basis of E3; the associated
polyhedron is {6, 4}3, the Petrial of {3, 4}.)

The above analysis shows that, for a discrete chiral apeirohedron P with an irreducible
group G, either the generators S1, S2 of G must be rotatory reflections, or S1 must be a
twist and S2 a rotation.

If P has finite faces, then both generators must be rotatory reflections of finite period,
and P must be among the polyhedra enumerated in Part I [24]. In particular, this com-
pletes the proof of the following theorem, at least in the irreducible case; the reducible
case is settled by Lemma 3.7.

Theorem 3.5. There are no discrete chiral polyhedra with finite faces in E3 other than
those (with skew faces and skew vertex-figures) enumerated in Part I.

For a chiral apeirohedron P with infinite, helical faces, S1 must be a twist and S2 a
rotation. In particular, G0 is generated by the rotations S′1, S2 (with distinct axes), so G0

must be a finite group of rotations in E3. Bearing in mind that S′1S2 must have period 2,
we immediately arrive at

Lemma 3.6. Let P be a discrete chiral or regular apeirohedron inE3 with helical faces,
and let o be its base vertex. Let the corresponding group G = 〈S1, S2〉 act irreducibly,
with special group G0 = 〈S′1, S2〉, and let S2 be a rotation. Then G0 = [3, 3]+ or [3, 4]+.
Moreover, if p′ denotes the period of S′1 and P is of type {∞, q}, then (p′, q) = (3, 3),
(3, 4) or (4, 3), and the faces of P are helices over equilateral triangles or squares
according as p′ = 3 or 4.

In the next three sections we enumerate the discrete chiral apeirohedra with helical
faces. They occur in three real-valued two-parameter families, each of type {∞, 3} or
{∞, 4}. In each case, T = S1S2 is a half-turn whose rotation axis is perpendicular
to the base edge of P; in particular, this accounts for the two independent parameters
describing the base vertex v = oT . By contrast, observe that, in the situations discussed
in Lemmas 3.3 and 3.4, the element T is a plane reflection, so that we have only one
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independent parameter; this accords with P being regular in these cases, and being
determined up to similarity.

Finally, then, we must settle the reducible case. Recall that there are 12 non-planar
regular polyhedra in E3 with a reducible group, namely the blended polyhedra

{p, q} ||= { }, {p, q} ||= {∞}, {p, q}π ||= { }, {p, q}π ||= {∞}, (3.19)

where the first component is either a regular tessellation {p, q} = {4, 4}, {3, 6} or {6, 3},
or the Petrial {p, q}π of {p, q}, and where the second component is either a segment { }
or an apeirogon {∞} (see pp. 221–223 of [20]). The following lemma says that reducible
groups can be eliminated from further discussion.

Lemma 3.7. A discrete chiral apeirohedron in E3 must have an irreducible symmetry
group.

Proof. It is not possible for a discrete chiral polyhedron in E3 to be planar (see Theo-
rem 3.2 of [24] or see [17]), so it suffices to consider non-planar polyhedra. Let P be a
discrete, non-planar polyhedron, and let P be chiral or regular. Suppose the correspond-
ing group G = 〈S1, S2〉 is reducible. We show that P is regular.

Since G is reducible, there exists a plane L through o such that G permutes the
translates of L as well as the translates of L⊥, the orthogonal complement of L at o. In
particular, since oS2 = o, the subspaces L and L⊥ are invariant under S2, and S2 is either
a rotation (about L⊥) or a rotatory reflection (with a rotation about L⊥ as its rotation
component). Moreover, the vertex v of the base edge F1 distinct from o cannot lie in L;
otherwise, the vertex-figure at o, and hence at every vertex, would lie in L , making P
planar. We shall see that the geometric type of S2 determines the second component of
the blend.

Now suppose S2 is a rotation. Let L ′ denote the plane parallel to L through v. Then
P has all its vertices in L or L ′, and the vertex-figure at a vertex in one plane is a flat
(finite or infinite) polygon contained in the other plane; in particular, the edge-graph of
P is bipartite.

If the faces of P are finite (skew) polygons, then the generator S1 is a rotatory
reflection, so T can only be the point reflection in 1

2v; in particular, S′1 = T ′S′−1
2 =

(−I )S′−1
2 . The projection of P on L is discrete, and since S2 and the rotation component

of S′1 must be rotations of periods 2, 3, 4 or 6, it is not hard to see (using basic properties
of Wythoff’s construction) that it must be a tessellation {p, q}; hence P = {p, q} ||= { }.

Similarly, if the faces are infinite (zigzags), then S1 is a half-twist about a line parallel
to L (a half-turn about the axis of the base face, followed by a translation along this
axis), so T must be a half-turn. Now the projection on L is the Petrial {p, q}π , and
P = {p, q}π ||= { }.

Now let S2 be a rotatory reflection. Let Lk denote the plane parallel to L through the
point kv, for k ∈ Z. Now the vertices adjacent to o (∈ L0) alternate between L−1 and
L1. It follows that P has all its vertices in the union of the planes Lk , and that the vertices
adjacent to a vertex in one of the planes alternate between the adjacent planes. Hence
the faces are helices or zigzags, each with one vertex on each plane Lk .

If the faces of P are helices, then S1 is a twist about an axis (of the base face) parallel
to L⊥, which is determined by a rotation of finite period p′ (say) in L and a translation
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along this axis. The projection of P on L is again discrete. This can be seen as follows.
Let D be a circular disc in L centered at o, and let D̂ be a right cylinder over D with
height |t |, where t is the translation vector of the translation S p′

1 . Now, if x is a vertex of

P projecting on D, then x̂ := x + nt = x Snp′
1 , for some n ∈ Z, is a vertex of P in D̂

which projects on the same point as x . Thus the vertices in D̂ represent all the vertices
projecting on D. However, since P is discrete, it only has finitely many vertices in D̂,
so its projection only has finitely many points in D. This proves that the projection of P
on L is discrete. As before we then establish that this projection is a tessellation {p, q}
in L . Hence P = {p, q} ||= {∞}.

Finally, if the faces of P are zigzags, then S1 must be a glide reflection whose respective
reflection mirror is perpendicular to L and contains the axis of the base face. Moreover,
T is a half-turn about a line parallel to L . The projection of P on L is again discrete, for
similar reasons as in the previous case (now S2

1 is a translation). Now this projection is
a Petrial {p, q}π , and P = {p, q}π ||= {∞}. This concludes the proof.

4. Type {∞, 3}, with Helical Faces over Triangles

In this section we enumerate the chiral apeirohedra of type {∞, 3} whose faces are
helices over triangles. They occur when G0 = [3, 3]+ in Lemma 3.6. Throughout we
may assume that the symmetry group G acts irreducibly; we saw in Lemma 3.7 that the
reducible case adds no further polyhedra to the list.

Each polyhedron is obtained from a suitable group G by Wythoff’s construction
with initial (or base) vertex F0 := o. For a polyhedron P of type {∞, 3} with heli-
cal faces over triangles, we must necessarily begin with a group G = 〈S1, S2〉 whose
special group is G0 = [3, 3]+. Then S′1, S2 are standard generators of [3, 3]+, and
each is a rotation of period 3. As in similar situations discussed earlier, once S2 has
been selected, there are three equivalent choices for S′1 such that S′1S2 has period 2;
if S′1 is one of them, then the other two are S−1

2 S′1S2 and S−2
2 S′1S2

2 . Moreover, as
mentioned before, if we substitute S2 by its inverse, we arrive at (the enantiomor-
phic image of) the same underlying polyhedron, so we need not investigate this case
separately.

Thus we may take

S′1: x �→ (−ξ3,−ξ1, ξ2),

S2: x �→ (ξ2, ξ3, ξ1).
(4.1)

Then T ′ = S′1S2 is the half-turn about the ξ2-axis. Since T = S1S2 must be a half-turn
interchanging the two vertices in the base edge F1, its rotation axis must necessarily be
perpendicular to F1 and pass through the midpoint of F1. However, this axis is parallel
to the ξ2-axis, so F1 must lie in the ξ1ξ3-plane. Hence, v := oT = (a, 0, b) for some real
parameters a and b, not both zero, so that we have G = G1(a, b), the group generated
by

S2: x �→ (ξ2, ξ3, ξ1),

T : x �→ (−ξ1, ξ2,−ξ3)+ (a, 0, b).
(4.2)
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From S1 = T S−1
2 we then obtain

S1: x �→ (−ξ3,−ξ1, ξ2)+ (b, a, 0),
S3

1 : x �→ (ξ1, ξ2, ξ3)+ (b − a)(1,−1,−1).
(4.3)

In particular, S3
1 is the translation by (b − a)(1,−1,−1), and is trivial if b = a. Hence

the case b = a is special and yields the finite group

G1(a, a) ∼= [3, 3]+

(with fixed point 1
2 (a, a, a)); the corresponding polyhedron is a regular tetrahedron. It

is often convenient to exclude this case from the discussion.
When necessary, we indicate the parameters a and b more explicitly and write T =

T (a, b), S1 = S1(a, b) and so on; the generator S2 does not actually depend on a, b.
The polyhedron P = P1(a, b) is obtained from G = G1(a, b) by Wythoff’s con-

struction with base vertex F0 = o. The base edge F1 has vertices o and v. If we identify
faces of P with their vertex-sets, then a helical face F (over a triangle) is denoted as
follows: if x, y, z are consecutive vertices of F and t is the translation vector associated
with F , then

F = {x, y, z} + Z · t,
with the understanding that the order in which the vertices of F occur is given by

. . . , x−2t, y−2t, z−2t, x−t, y−t, z−t, x, y, z, x+t, y+t, z+t, x+2t, y+2t, z+2t, . . . .

The same notation, with t = o, is also adopted in the special case b = a; then F =
{x, y, z}, so we usually drop the term Z · t . In particular, for the base face we have

F2 = o〈S1〉 = {(a, 0, b), (0, 0, 0), (b, a, 0)} + Z·c(1,−1,−1), (4.4)

where c := b − a. The remaining vertices, edges and faces of P are the images of F0,
F1 and F2 under G. The vertices adjacent to o are

v = (a, 0, b), vS2 = (0, b, a), vS2
2 = (b, a, 0).

If the polyhedra P1(a, b) are only considered up to similarity, then the two parameters
a, b can be reduced to a single parameter. This is similar to what we observed for the
polyhedra in [24]. In fact, if s is a non-zero scalar and Rs := s I , then conjugation
of the generators S2, T (a, b) for G1(a, b) by Rs gives the generators S2, T (sa, sb) for
G1(sa, sb). It follows that

P1(sa, sb) = P1(a, b)Rs =: s P1(a, b), (4.5)

so P1(sa, sb) and P1(a, b) are similar. In particular, P1(a, b) is similar to P1(1, b/a) or
P1(0, 1) according as a 	= 0 or a = 0.

Before we move on, observe that the polyhedra P1(a, b) of type {∞, 3} are related
to the chiral (or regular) polyhedra P(a, b) of type {6, 6} described in Section 5 of [24]
(their notation has no suffix). These polyhedra have finite skew hexagonal faces and
vertex-figures. The relationship is established by the facetting operation ϕ2 defined in
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(2.2) (or, equivalently, by the operation κ discussed in Section 8). Recall from (5.1) and
(5.2) of [24] that the generators Ŝ1, Ŝ2 (say) and the corresponding element T̂ := Ŝ1 Ŝ2

of the symmetry group G(a, b) of P(a, b) are given by

Ŝ1: x �→ (−ξ2, ξ3, ξ1)+ (0,−b,−a),
Ŝ2: x �→ −(ξ3, ξ1, ξ2),

T̂ : x �→ (−ξ1, ξ2,−ξ3)+ (a, 0, b).
(4.6)

We now have the following:

Lemma 4.1. P1(a, b) = P(a, b)ϕ2 , for all real parameters a and b.

Proof. In the present context, ϕ2 takes the form

ϕ2: (Ŝ1, Ŝ2) �→ (Ŝ1 Ŝ−1
2 , Ŝ2

2). (4.7)

Now observe that, when ϕ2 is expressed in terms of the generators Ŝ2, T̂ of G(a, b), we
obtain

ϕ2: (Ŝ2, T̂ ) �→ (Ŝ2
2 , T̂ ) = (S2, T ). (4.8)

Hence P1(a, b) = P(a, b)ϕ2 and G1(a, b) is a subgroup of G(a, b).

Note that the above relationship between P(a, b) and P1(a, b) holds without any
restriction on the parameters. On the other hand, P(a, b) is known to be discrete only
when a and b can be scaled to a pair of relatively prime integers, whereas there is no such
condition for P1(a, b). Thus we may (in most cases, do) have the interesting phenomenon
that the derived polyhedron P1(a, b) is discrete but the original polyhedron P(a, b) is
non-discrete. We can conclude from this that then there are infinitely many copies of
P1(a, b) inscribed in P(a, b).

We already note here two special cases. If b = −a, then the polyhedra are similar
to those obtained for (a, b) = (1,−1), and are regular. In particular, since P(1,−1) =
{6, 6}4 (see Theorem 5.17 of [24]) and {6, 6}ϕ2

4 = {∞, 3}(a) (notation as on p. 224 of
[20]), we observe that

P1(1,−1) = {∞, 3}(a). (4.9)

Similarly, the case b = a reduces to (a, b) = (1, 1) and yields regular polyhedra. Now
P(1, 1) = {6, 6 |3} and {6, 6 |3}ϕ2 = {3, 3} (again, see Theorem 5.17 of [24] and p. 224
of [20]), so, in particular,

P1(1, 1) = {3, 3}. (4.10)

It follows from our discussion in Section 2 that the faces of the polyhedron P1(a, b)
are among the holes of P(a, b). These holes are helices over triangles, or triangles,
according as b 	= a or b = a.

We now determine the translation subgroup T (G1(a, b)) of G1(a, b). When conve-
nient, we identify a translation with its translation vector. It is convenient to use the
following notation for lattices. Let s be a non-zero real number, let k = 1, 2 or 3 and
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let s := (sk, 03−k), the vector with k components s and 3− k components 0. Following
p. 166 of [20], we write �s for the sublattice of the cubic lattice Z3 generated by s and
its images under permutation and changes of sign of coordinates. Then

�s = s�(1k ,03−k ).

Note that �(1,0,0) = Z3. The lattice �(1,1,0) is the face-centered cubic lattice (the root
lattice D3) consisting of all integral vectors whose coordinate sum is even, and �(1,1,1)

is the body-centered cubic lattice (see [4]).
We know from (4.3) that S3

1 is the translation by c(1,−1,−1), where again c := b−a.
Hence, if R is any element of G = G1(a, b) and R′ is its image in the special group G0,
then R−1S3

1 R is the translation by c(1,−1,−1)R′. Since G0
∼= [3, 3]+, we then have

translations by the vectors c(1, 1, 1), c(1,−1,−1), c(−1, 1,−1), c(−1,−1, 1) in G,
and hence also by their integral linear combinations. It follows that

c�(1,1,1) � T (G).

(The left-hand side is trivial if b = a.) In fact, we have the following stronger result.

Lemma 4.2. The translation subgroup of G1(a, b) is given by T (G1(a, b)) = c�(1,1,1),
with c = b − a.

Proof. Suppose b 	= a. Since G = G1(a, b) = 〈S2, T 〉, we have G = N · 〈S2〉 (as
a product of subgroups), where N := 〈T1, T2, T3〉 with T2 := T , T1 := S−1

2 T S2 and
T3 := S−2

2 T S2
2 . Bearing in mind that the generator S2 for P1(a, b) is just the square of the

generator Ŝ2 for P(a, b) (see (4.8)), we see that T1, T2, T3 are the half-turns occurring
in (5.1) and (5.6) of [24] with the same notation, namely

T1: x �→ (ξ1,−ξ2,−ξ3)+ (0, b, a),
T2: x �→ (−ξ1, ξ2,−ξ3)+ (a, 0, b),
T3: x �→ (−ξ1,−ξ2, ξ3)+ (b, a, 0).

(4.11)

Observe that a translation in G must necessarily belong to N ; in fact, in the special group,
the images of a translation in G or of an element in N must involve an even number of
sign changes but no permutation of coordinates, whereas a non-trivial element in 〈S2〉
involves a non-trivial permutation of coordinates.

It is straightforward to check that each product Ti Tj Tk , with i, j, k distinct, is a
translation in G. The translation vectors of T1T3T2, T2T1T3 and T3T2T1 are c(−1,−1, 1),
c(1,−1,−1) or c(−1, 1,−1), respectively; the three other products yield the negatives
of these vectors. Hence the six products are translations in c�(1,1,1).

Now suppose we have an element R := Tj1 Tj2 · · · Tjn of N , with jm = 1, 2 or 3 for
each m. For a non-trivial translation we must have n � 3. If n � 3 and jn−2, jn−1, jn
are distinct, then we can reduce R modulo c�(1,1,1) to a product with n − 3 terms Tjm
(by splitting off the product of the last three generators), and then proceed by induction.
If n � 3 and jn−2, jn−1, jn are not mutually distinct, then two cases are possible. If
jn−1 = jn , then we directly eliminate the last two generators. If jn−1 	= jn , we first insert
the trivial element Tk Tk with k 	= jn−1, jn into the product between Tjn−2 and Tjn−1 , and
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then split off the product of the last three terms as before. In any case, by induction we
can reduce R modulo c�(1,1,1) to a product with at most two terms, and hence to the
empty product if R is a translation.

Now it follows that each translation in G necessarily belongs to c�(1,1,1).

Note that Lemma 4.2 can be rephrased as

G1(a, b)/c�(1,1,1)
∼= [3, 3]+ ∼= A4, (4.12)

where each term represents the special group. Observe also that the translation subgroup
only depends on the single parameter c = b − a.

Next we determine the vertex-stars of P1(a, b). The vertex-star at a vertex x of
the polyhedron is a (cyclically ordered) set consisting of the vectors y − x , where y
runs through the (cyclically ordered) vertices of the vertex-figure at x . In particular, the
vertex-star at o is given by

V0 := {(a, 0, b), (0, b, a), (b, a, 0)}. (4.13)

If R is any element of G = G1(a, b) and again R′ is its image in the special group G0,
then the vertex-star at the vertex oR of P1(a, b) is given by

V0 R′ = {(a, 0, b)R′, (0, b, a)R′, (b, a, 0)R′}.
It is easy to see that the union of all these vertex-stars comprises the set of (generally
12) vectors

V := {(±a, 0,±b), (±b,±a, 0), (0,±b,±a)}, (4.14)

which is the same set as for the polyhedron P(a, b) from which P1(a, b) is derived by ϕ2

(see (5.9) of [24] and Fig. 4.1). The points in V are the vertices of a convex 3-polytope,
which is combinatorially equivalent to an icosahedron if a, b 	= 0 and a 	= ±b, or is a
cuboctahedron if a = ±b 	= 0, or an octahedron if a = 0 or b = 0.

Now we can find a full set of vertex-stars for P1(a, b). In fact, since G acts transitively
on the vertices of P1(a, b), the vertex-stars of P1(a, b) are images of V0 under the special
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Fig. 4.1. The set V for a = 1 and b = 3. The points in the vertex-star V0 for P1(a, b) are circled. The cubes
are drawn in for reference.
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group G0 (∼= A4), so G0 must act transitively on them. However, since G0 contains S2,
the stabilizer of V0 must be at least of order 3, and hence the number of vertex-stars
cannot exceed 4. In fact, there are precisely four vertex-stars (even if a = 0 or b = 0),
namely V0 of (4.13) and

V1 := V0T ′1 = {(a, 0,−b), (0,−b,−a), (b,−a, 0)},
V2 := V0T ′2 = {(−a, 0,−b), (0, b,−a), (−b, a, 0)},
V3 := V0T ′3 = {(−a, 0, b), (0,−b, a), (−b,−a, 0)}.

(4.15)

They occur as vertex-stars at the vertices o, oT1 = (0, b, a), oT2 = (a, 0, b) and oT3 =
(b, a, 0), respectively. Each vector in V lies in exactly one or exactly two vertex-stars
according as a, b 	= 0, or a = 0 or b = 0.

Recall that the edge-module� of a polyhedron P , with o among its vertices, is defined
by

� := 〈x − y | x, y adjacent vertices of P〉
Z

(4.16)

(see [24]). Then� is theZ-module generated by the “oriented” edges of P; alternatively,
� is the Z-module generated by all the vertex-stars of P . If V (P) denotes the vertex-set
of P , then

V (P) ⊂ �,
because P is connected. Note that the special group of G(P) leaves � invariant.

Now let � := Z[V ] denote the Z-module spanned by the vectors in V . This is the
edge-module of P1(a, b) (and P(a, b)) and has rank at most 12. We proved in Lemma
5.2 of [24] that� is a (discrete) lattice if and only if a or b is zero or a and b are rational
multiples of each other, or, equivalently, if a, b can be scaled to a pair of integers which
are relatively prime. On the other hand, if � is not a lattice, then � is dense in E3. This
follows from general structure results for Z-modules embedded in euclidean spaces (see
p. 265 of [27]); bear in mind that � cannot have a discrete component, because such a
component would have to be invariant under the (irreducible) special group [3, 3]+. For
example, if a = 1 and b = τ , the golden ratio, then � is the (dense) Z-module spanned
by the vertex-set V of a regular icosahedron; similar Z-modules have been studied in the
context of icosahedral quasicrystals (see [3]).

We now determine the vertex-set of P1(a, b). Since P1(a, b) = P(a, b)ϕ2 and P1(a, b)
and P(a, b) share the same base vertex and base edge, the vertices and edges, respectively,
of P1(a, b) are among the vertices and edges of P(a, b). However, by (4.8), the vertex-
stars for P1(a, b) consist only of every other vector in the corresponding vertex-star for
P(a, b). This indicates that the vertex-set and edge-set of P1(a, b) are generally only
“thin” subsets of those of P(a, b). In fact, we have

Lemma 4.3. The vertex-set of P1(a, b) is given by

V (P1(a, b)) = {(0, 0, 0), (a, 0, b), (0, b, a), (b, a, 0)} + c�(1,1,1),

with c := b − a, where the four cosets of c�(1,1,1) occurring are distinct. In particular,
the vertex-set is discrete (it is finite when b = a).



200 E. Schulte

Proof. Set T0 := I . It follows from (4.12) and the proof of Lemma 4.2 that the 12
elements

S j
2 Tk ( j = 0, 1, 2; k = 0, 1, 2, 3)

form a system of representatives of G modulo c�(1,1,1). Hence the vertex-set is the union
of the 12 cosets oS j

2 Tk+c�(1,1,1). However, since S2 fixes the base vertex o, there are only
four cosets, namely oTk + c�(1,1,1) with k = 0, 1, 2, 3. Thus the vertex-set consists of
the cosets of o and its adjacent vertices. Moreover, these four cosets are distinct. In fact,
if (a, 0, b) ≡ (0, 0, 0) (say) modulo c�(1,1,1), then (a/c, 0, b/c) = (a/c, 0, 1+ a/c) ∈
�(1,1,1), so a/c and 1+a/c must both be even integers; however, this is impossible. This
proves the lemma.

Note that the vertex-set of P1(a, b) is discrete, irrespective of the values of a and b.
By contrast, if a and b are non-zero and are not rational multiples of each other, then the
vertex-set of P(a, b) is dense in E3; in fact, since 2� is a subgroup of the translation
group of P(a, b), the vertex-set must contain the points in 2� (see (5.13) of [24]).

Lemma 4.3 also enables us to find the vertex-star at a given vertex x of P1(a, b). In
fact, since c�(1,1,1) is the translation subgroup, the vertex-star at x is the same as the
vertex-star at the representative vertex of x+c�(1,1,1) listed in the lemma. In other words,
first determine which vertex among (0, 0, 0), (a, 0, b), (0, b, a), (b, a, 0) is equivalent
to x modulo c�(1,1,1), and then take its vertex-star, Vj (say). The vertices of P1(a, b)
adjacent to x are then the points in x+Vj . Recall that the vertex-stars at (0, 0, 0), (a, 0, b),
(0, b, a) or (b, a, 0) are given by V0, V2, V1 or V3, respectively, so we have j = 0, 2, 1
or 3.

Lemma 4.4. P1(a, b) is a geometric polyhedron.

Proof. We have altogether four translation classes of vertices and four vertex-stars,
and the vertex-stars at vertices of distinct translation classes are also distinct. Hence
each translation class of vertices is characterized by its unique vertex-star. It follows
that P1(a, b) cannot have multiple vertices; in other words, P1(a, b) must be a faithful
realization of the underlying abstract polyhedron. We can also see this more directly as
follows. Let x be a vertex of P1(a, b) with vertex-star Vj , and let y be a vertex adjacent
to x such that y− x ∈ Vj . We need to show that x − y belongs to the vertex-star Vk (say)
at y, so that x ∈ y + Vk . Since we can reduce x modulo c�(1,1,1), we may assume that
x is among (0, 0, 0), (a, 0, b), (0, b, a) or (b, a, 0). However, now it is straightforward
to verify that the corresponding adjacent vertices and their vertex-stars have the desired
property.

Notice that our methods also provide an alternative description of the edge-graph of
P1(a, b) which does not appeal to the group. In fact, take the set of points described in
Lemma 4.3 as the vertex-set of the graph and place, at each vertex x , the corresponding
vertex-star from the list found by reducing x modulo c�(1,1,1). Then the resulting graph
coincides with the edge-graph of P1(a, b).

The vertex-figures of P1(a, b) are triangles. However, the vertex-stars of P1(a, b) are
generally not planar. In fact, we have the following:
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Lemma 4.5. The vertex-stars of P1(a, b) are planar if and only if b = −a.

Proof. The special group G0 acts transitively on the vertex-stars. The three vectors in
V0 have determinant ±(a3 + b3), so they lie in a plane if and only if b = −a.

Next we determine which polyhedra are regular.

Lemma 4.6. The polyhedron P1(a, b) is geometrically chiral if b 	= ±a, or geometri-
cally regular if b = ±a. In particular, P1(a,−a) is similar to P1(1,−1) = {∞, 3}(a),
and P1(a, a) is similar to P1(1, 1) = {3, 3}.

Proof. The case b = ±a was already settled (see (4.9) and (4.10)), so we may as-
sume that b 	= ±a. Suppose P1(a, b) is regular. Then P1(a, b) must have an involutory
symmetry R (= R2) which fixes o and v and interchanges the neighbors (0, b, a) and
(b, a, 0) of o (see also Lemma 2.1). Since V0 is not planar, R must necessarily be the
(linear) reflection in the plane through o, v with normal vector

n := (0, b, a)− (b, a, 0) = (−b, b − a, a).

Moreover, since R−1T R = T , the rotation axis of T must be invariant under R. However,
the direction vector e2 = (0, 1, 0) of this axis is not a scalar multiple of n, so e2 must
lie in the mirror of R. Hence b − a = n · e2 = 0 (where · denotes the scalar product),
which contradicts our assumption on a, b. (Recall that R2 is a half-turn for {∞, 3}(a), so
a contradiction can only concern the case b = a.) Now the lemma follows.

The two enantiomorphic forms of a chiral polyhedron are represented by different
pairs of generators of its group. If S1(a, b), S2 is the pair associated with the base flag
�(a, b) := {F0(a, b), F1(a, b), F2(a, b)} of P1(a, b), then S1(a, b)S2

2 , S−1
2 is the pair

associated with the adjacent flag�2(a, b) := {F0(a, b), F1(a, b), F ′2(a, b)} of P1(a, b).
Since the product of each pair is T (a, b), we can also represent the two forms by the pairs
of generators T (a, b), S2 and T (a, b), S−1

2 , respectively. When Wythoff’s construction
is applied to G1(a, b) with the new pair of generators T (a, b), S−1

2 and with the same
initial vertex o, which is also fixed by S−1

2 , then we again obtain the same polyhedron
P1(a, b), but now with a new base flag adjacent to the original base flag. We can see this
as follows.

First we claim that

P1(b, a) = P1(a, b)R, (4.17)

where R is the reflection (in the plane ξ1 = ξ3) given by

R: (ξ1, ξ2, ξ3) �→ (ξ3, ξ2, ξ1). (4.18)

In fact, conjugation by R transforms the generators T (a, b), S2 for G1(a, b) to the
generators T (b, a), S−1

2 for G1(b, a), so in particular G1(b, a) = R−1G1(a, b)R. Then

V (P1(b, a))=oG1(b, a)=oR−1G1(a, b)R=oG1(a, b)R=V (P1(a, b))R, (4.19)
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so R maps the vertex-sets of the polyhedra onto each other. Similarly, since

F1(b, a)G1(b, a) = F1(b, a)R−1G1(a, b)R = (F1(a, b)G1(a, b))R, (4.20)

the same holds for the edge-sets. Finally, R takes F2(b, a) to the face F2(a, b)′ (=
F2(a, b)T (a, b)) of �2(a, b) (see (4.4)), so the corresponding statement for face-sets
follows from

F2(b, a)G1(b, a) = F2(b, a)R−1G1(a, b)R = (F2(a, b)′G1(a, b))R. (4.21)

This establishes (4.17). Moreover, notice that

�(b, a)R = �2(a, b), �2(b, a)R = �(a, b).

Now we can complete our argument about enantiomorphism. In fact, bearing in
mind how conjugation by R affects the generators we observe that the polyhedron P
(say) obtained by Wythoff’s construction from G1(a, b) with generators T (a, b), S−1

2 ,
is mapped by R to the polyhedron obtained from G1(b, a) with generators T (b, a), S2.
(Note that we interchanged a and b.) However, the latter is just P1(b, a), so by (4.17) its
preimage under R is P1(a, b) itself. Hence, P = P1(a, b).

These considerations also justify our initial hypothesis that it suffices to concentrate
on only one orientation for the generator S2. The opposite orientation (given by S−1

2 )
then is implied by enantiomorphism.

Alternatively we could have appealed to similar such results for the polyhedra P(a, b),
by observing that conjugation by R commutes with the facetting operation ϕ2 (see (5.18)
of [24]). In particular,

(P(a, b)R)ϕ2 = (P(a, b)ϕ2)R.

We now discuss the question when two polyhedra P1(a, b) and P1(c, d)with parame-
ter sets a, b and c, d , respectively, are affine images of each other. The result is consistent
with Lemma 5.15 of [24], which describes the answer for the polyhedra P(a, b) and
P(c, d).

Lemma 4.7. Let a, b, c, d be real numbers, and let (a, b) 	= (0, 0) 	= (c, d). Then the
polyhedra P1(a, b) and P1(c, d) are affinely equivalent if and only if (c, d) = s(a, b) or
(c, d) = t (b, a) for some non-zero scalars s or t . Moreover, P1(a, b) and P1(c, d) are
congruent if and only if (c, d) = ±(a, b) or (c, d) = ±(b, a).

Proof. We already know that the two polyhedra are affinely equivalent if (c, d) =
s(a, b) or t (b, a) (see (4.5) and (4.17)).

Suppose S is an affine transformation of E3 such that P1(c, d) = P1(a, b)S. Since
G1(c, d) acts transitively on the vertices, and the stabilizer of the vertex o acts transitively
on the vertices adjacent of o, we can assume that oS = o (so S is linear) and (a, 0, b)S =
(c, 0, d). First observe that S and S−1 preserve planarity of vertex-stars, so certainly
b = −a if and only if d = −c; in this case the assertion is obvious. Let b 	= −a, so now
the vertex-stars are not planar. The affine transformation S−1T (a, b)S interchanges the
vertices in the base edge of P1(c, d), as well as the two faces meeting at this base edge.
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Fig. 4.2. The affine classes of polyhedra P1(a, b).

Since this is also true for the symmetry T (c, d) of P1(c, d), we must have S−1T (a, b)S =
T (c, d); recall that an affine transformation is uniquely determined by its effect on four
independent points. Similarly, S−1S2S cyclically permutes the vertices in the vertex-
figure of P1(c, d) at o, so we must also have S−1S2S = S2 or S−1

2 . These properties for
the generators translate into conditions for the matrix entries of S and show that, up to
similarity, there are only the following two possibilities. If S−1S2S = S2, then S = s I
for some scalar s, and hence (c, d) = s(a, b). If S−1S2S = S−1

2 , then S = t R with R as
in (4.18), for some scalar t ; hence (c, d) = t (b, a). Moreover, if S is an isometry, then
necessarily s = ±1 or t = ±1.

Figure 4.2 illustrates the situation described in Lemma 4.7. Each affine equivalence
class of polyhedra is represented by a polyhedron P1(1, b) corresponding to the point
(1, b) on the right side of the square. The equivalence classes of the regular polyhe-
dra {3, 3} and {∞, 3}(a) then occur at the upper right corner and lower right corner,
respectively. The other three sides of the square give alternative representations of the
equivalence classes, as indicated by the four symmetrically related nodes.

The group G1(a, b) associated with P1(a, b) is generated by rotations and thus con-
tains only direct isometries. This implies that the faces of P1(a, b) consist of either all
right-hand helices or all left-hand helices. Note that the faces of P1(a, b) are right-hand
helices if and only if the faces of P1(b, a) are left-hand helices; in fact, the plane re-
flection R of (4.18) maps P1(a, b) to P1(b, a), and vice versa. When b = −a, these
polyhedra are regular and congruent, but they do not coincide (so R is not a symmetry);
in fact, every symmetry of {∞, 3}(a) is a direct isometry. On the other hand, if b = a,
then R is indeed a symmetry.

We conclude this section with a discussion of the translation classes of faces of
P1(a, b), by which we mean the transitivity classes of faces under the translation subgroup
c�(1,1,1) of G = G1(a, b), where again c := b − a. When P1(a, b) is regular, no
translational symmetries in addition to those in G1(a, b) occur, so the translation classes
with respect to the full symmetry group of P1(a, b) are the same.
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Lemma 4.8. P1(a, b) has precisely four translation classes of faces. They are repre-
sented by the four faces F2, F2S2, F2S2

2 and F2S2
2 T , where F2 is the base face given by

(4.4).

Proof. By Lemma 4.3 each vertex of P1(a, b) is equivalent to o, v, vS2 or vS2
2 modulo

c�(1,1,1). Hence, modulo c�(1,1,1), every face of P1(a, b) is equivalent to a face containing
one of these vertices. There are six such faces, including the three which contain o, namely
F2, F2S2 (= F ′2) and F2S2

2 . The other three faces, F2S2
2 T , F2S2

2 T S2 and F2S2
2 T S2

2 ,
contain the vertices v, vS2 and vS2

2 , respectively. The combinatorial picture is illustrated
in Fig. 4.3. In the first set of three, the helical faces have an axis with direction vector
(1,−1,−1), (−1,−1, 1) or (−1, 1,−1), respectively. However, in the second set, the
faces are all equivalent modulo c�(1,1,1) and have an axis with direction vector (1, 1, 1).
In particular,

F2S2
2 T S2 = F2S2

2 T + (c, c,−c), F2S2
2 T S2

2 = F2S2
2 T + (2c, 0, 0).

This concludes the proof.

5. Type {∞, 3}, with Helical Faces over Squares

In this section we describe another family of chiral apeirohedra of type {∞, 3}, now
with helical faces over squares. They occur when G0 = [3, 4]+ in Lemma 3.6. As in the
previous section, each polyhedron is obtained from an irreducible group G by Wythoff’s
construction with initial vertex F0 := o.

For a polyhedron P of type {∞, 3} with helical faces over squares, we must begin
with a group G = 〈S1, S2〉 with special group G0 = [3, 4]+, where S′1, S2 are standard
generators of G0 considered as the group of the cube {4, 3}, so that S′1 and S2 have
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periods 4 and 3, respectively, and their product has period 2. (Recall that R′ denotes the
image in G0 of an element R of G.) As already mentioned in the proof of Lemma 3.3,
once S2 has been selected, there are three equivalent choices for S′1 such that S′1S2 has
period 2; if S′1 is one of them, then the other two are S−1

2 S′1S2 and S−2
2 S′1S2

2 . Moreover,
substituting S2 by its inverse would lead to (the enantiomorphic image of) the same
underlying polyhedron, so we need not discuss this case separately.

As in the previous section, we may confine ourselves to some very specific choices
for the generators. Thus, with

S′1: x �→ (−ξ3, ξ2, ξ1),

S2: x �→ (ξ2, ξ3, ξ1),
(5.1)

we observe that T ′ = S′1S2 is the half-turn about the line ξ2 = ξ1 in the ξ1ξ2-plane. Then
T = S1S2 is a half-turn about a (parallel) line perpendicular to the plane ξ2 = −ξ1, and
since T must interchange the two vertices in the base edge F1, this base edge must lie
in this plane and the rotation axis of T must pass through its midpoint. In particular,
v := oT = (c,−c, d) for some real parameters c and d, not both zero. The resulting
group G = G2(c, d) is generated by

S2: x �→ (ξ2, ξ3, ξ1),

T : x �→ (ξ2, ξ1,−ξ3)+ (c,−c, d).
(5.2)

For S1 = T S−1
2 we have

S1: x �→ (−ξ3, ξ2, ξ1)+ (d, c,−c),
S4

1 : x �→ (ξ1, ξ2, ξ3)+ 4c(0, 1, 0).
(5.3)

The latter is the translation by 4c(0, 1, 0), and is trivial if c = 0. The special case c = 0
yields the finite group

G2(0, d) ∼= [3, 4]+

(with fixed point 1
2 (d, d, d)); the corresponding polyhedron is a cube.

The polyhedron P = P2(c, d) is obtained from G = G2(c, d) by Wythoff’s con-
struction with base vertex F0 = o. Its base edge F1 has vertices o and v = (c,−c, d);
its base face is given by

F2 = o〈S1〉 = {(c,−c, d), (0, 0, 0), (d, c,−c), (c + d, 2c,−c + d)} + Z·4c(0, 1, 0)
(5.4)

and consists of a helix over a square. (The notation for helical faces is as before, but now
there are four consecutive vertices that are translated.) As usual, the remaining vertices,
edges and faces of P are the images of F0, F1 and F2 under G. The vertices adjacent to
o are

v = (c,−c, d), vS2 = (−c, d, c), vS2
2 = (d, c,−c).

When the polyhedra are only considered up to similarity, the two parameters c, d reduce
to a single parameter. In fact, (4.5) carries over and shows that P2(c, d) is similar to
P2(1, d/c) or P2(0, 1) according as c 	= 0 or c = 0.
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As in the previous section, the facetting operation ϕ2 establishes a link to polyhedra
with finite faces (equivalently, we can employ the operation κ discussed in Section 8).
Now the polyhedra P2(c, d) are related to the chiral (or regular) polyhedra Q(c, d) of
type {4, 6} described in Section 6 of [24]; the latter generally have skew square faces and
skew hexagonal vertex-figures. Recall that the generators Ŝ1, Ŝ2 (say) and corresponding
element T̂ := Ŝ1 Ŝ2 of the symmetry group H(c, d) of Q(c, d) are given by

Ŝ1: x �→ (−ξ1, ξ3,−ξ2)+ (c,−d,−c),
Ŝ2: x �→ −(ξ3, ξ1, ξ2),

T̂ : x �→ (ξ2, ξ1,−ξ3)+ (c,−c, d).
(5.5)

Now we have

Lemma 5.1. P2(c, d) = Q(c, d)ϕ2 , for all real parameters c and d .

Proof. In terms of the generators Ŝ2, T̂ of H(c, d), the operation ϕ2 takes the same
form as in (4.8). Now P2(c, d) = Q(c, d)ϕ2 and G2(c, d) is a subgroup of H(c, d).

This relationship holds again without any restriction on the parameters, so in particular
we may (and often do) have the situation that P2(c, d) is discrete but Q(c, d) is not.
Moreover, the lemma implies that the faces of P2(c, d) are among the holes of Q(c, d),
which now are helices over squares, except when c = 0 (then they are squares).

The facetting operation ϕ2 preserves regularity, so again there are two special cases.
From Q(1, 0) = {4, 6}6 we obtain the regular polyhedron

P2(1, 0) = {∞, 3}(b) (5.6)

(notation as on p. 224 of [20]); all other polyhedra P2(c, 0) are similar to P2(1, 0).
Similarly, the case c = 0 reduces to (c, d) = (0, 1) and again yields regular polyhedra.
Now Q(0, 1) = {4, 6 |4} and {4, 6 |4}ϕ2 = {4, 3} (see Theorem 6.12 of [24] and p. 224
of [20]), so in particular

P2(0, 1) = {4, 3}. (5.7)

Next we determine the translation subgroup T (G) of G = G2(c, d). Since S4
1 is the

translation by 4c(0, 1, 0), and its conjugates under the special group G0 (∼= [3, 4]+)
consist of the vectors ±4c(1, 0, 0), ±4c(0, 1, 0) and ±4c(0, 0, 1), we immediately see
that

4cZ3 = 4c�(1,0,0) � T (G).

In fact, we have

Lemma 5.2. The translation subgroup of G2(c, d) is given by T (G2(c, d)) = 4cZ3.

Proof. The proof is more involved than the proof of Lemma 4.2 and is interesting in
its own right. As before, since G = 〈S2, T 〉, we have G = N · 〈S2〉 (as a product of
subgroups), where N := 〈T1, T2, T3〉 with T2 := T , T1 := S−1

2 T S2 and T3 := S−2
2 T S2

2 .
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Now S2 is the square of the generator Ŝ2 for the group H(c, d) of Q(c, d) (see (4.8) and
(5.5)), so T1, T2, T3 are just the half-turns occurring in Section 6 of [24] with the same
notation, namely

T1: x �→ (ξ3,−ξ2, ξ1)+ (−c, d, c),
T2: x �→ (ξ2, ξ1,−ξ3)+ (c,−c, d),
T3: x �→ (−ξ1, ξ3, ξ2)+ (d, c,−c).

(5.8)

It is straightforward to check that (Ti Tj )
3 and (Ti Tj Tk)

4, but not Ti Tj or (Ti Tj Tk)
2, are

translations in 4cZ3, for all mutually distinct i, j, k.
We now consider the six elements Ti Tj Tk Tj of N with i, j, k distinct. They are

U1 := T1T2T3T2, U2 := T2T1T3T1, U3 := T3T1T2T1,

Û1 := T1T3T2T3, Û2 := T2T3T1T3, Û3 := T3T2T1T2.
(5.9)

In particular, we have

U1: x �→ (−ξ1, ξ2,−ξ3)+ (c + d,−2c, 3c + d),
U2: x �→ (−ξ1,−ξ2, ξ3)+ (−c + d,−3c + d, 2c),
U3: x �→ (ξ1,−ξ2,−ξ3)+ (−2c, 3c + d, c + d).

(5.10)

Then U 2
i , Û 2

i and UiÛi are translations in 4cZ3, for each i . Now define the subgroups

K := 〈U1,U2,U3〉, K 2 := 〈U 2
1 ,U

2
2 ,U

2
3 〉 (5.11)

of N . Then it is easy to see that 4cZ3 = K 2 � K , and hence also Û1, Û2, Û3 ∈ K . In
particular, modulo K 2, each element Ui has period 2 and coincides with Ûi . Moreover,
each product UiUjUk , with i, j, k distinct, is a translation in K 2.

Next observe that S2 ∈ N , so in particular N = G. In fact, S1T1U3 is a translation in
K 2, so

S1 ∈ K 2U3T1 ⊆ K T1 ⊆ N .

Hence also S2 = S−1
1 T2 ∈ N .

Now, modulo K , each element of G can be represented by an element (a right
coset representative) which is a product of at most three generators Ti . In fact, if
ϕ = Ti1 Ti2 · · · Tin ∈ G, then we can split off elements of the form Ti Tj Tk Tj and proceed
inductively; for example, if i1, i2, i3 are distinct, then insert the trivial product Ti2 Ti2 be-
tween the third and fourth term of ϕ, split off Ti1 Ti2 Ti3 Ti2 , and proceed with Ti2 Ti4 · · · Tin .

Moreover, modulo K 2, each element of K can be represented by I , U1, U2 or U3 (as
right coset representatives), so in particular the subgroup K 2 has index 4 in K . In fact,
suppose ψ = Ui1Ui2 · · ·Uim ∈ K ; modulo K 2, each generator has period 2, so we need
not consider any product involving their inverses. In this case we can split off elements
of the form UiUjUk and again proceed inductively; for example, if i1, i2 are distinct and
j 	= i1, i2, then insert the (trivial, modulo K 2) product UjUj between the second and
third term of ψ , split off Ui1Ui2Uj , and proceed with UjUi3 · · ·Uim . This, then, reduces
ψ modulo K 2 to an element which is a product of at most two generators Ui . If in fact
this product involves two generators and is given by Ui1Ui2 (say), then we can further
reduce it to Uj with j 	= i1, i2, by multiplying by UjUj on the right and again splitting
off Ui1Ui2Uj .
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Now it follows that each translation in K already lies in K 2; that is, T (G)∩ K = K 2.
In fact, none of the elements U1, U2, U3 is a translation, so any translation in K must
be equivalent to I modulo K 2. Note that this also shows that K 2 is normal in K . In
particular, K/K 2 ∼= C2 × C2, with C2 × C2 generated by any two of the generators Ui .

We now complete the proof by considering images of elements in the special group
G0. First observe that, since this is true for the generators, each element of K , considered
in the special group, takes the form x �→ (±ξ1,±ξ2,±ξ3), with exactly two minus signs
or no minus sign (for the trivial element); in particular, no permutation of coordinates
occurs. On the other hand, modulo K , each element of G can be represented by an
element which is a product of at most three generators Ti , and it is not hard to see that
in fact the six elements

I, T1, T2, T3, T1T2, T2T1

suffice and give a complete system of right coset representatives of G modulo K . How-
ever, the elements in each coset of K distinct from K all involve a (in fact, the same)
non-trivial permutation of the coordinates, because this is true for the corresponding
representatives. Hence no such coset can contain a translation, because any translation
is trivial in the special group. Now it follows that T (G) = 4cZ3.

An alternative system of representatives of G modulo K consists of the six elements

I, T1, S2, T1S2, S2
2 , T1S2

2 , (5.12)

which turns out to be more useful for the vertex-set computation. From this we also
obtain a system of right coset representatives for G modulo 4cZ3, by multiplying each
of these elements on the left by I , U1, U2 or U3.

The translation subgroup depends only on a single parameter, c. Now Lemma 4.2 can
be rephrased as

G2(c, d)/4cZ3 ∼= [3, 4]+ ∼= S4, (5.13)

with each term representing the special group.
We now compute the vertex-set of P2(c, d). Again the vertex-set is discrete, irrespec-

tive of the values of the parameters c and d.

Lemma 5.3. The vertex-set of P2(c, d) is given by V (P2(c, d)) = Z + 4cZ3, where Z
consists of the points


(0, 0, 0);
(c + d, 2c,−c + d), and its cyclic shifts;
(2c + d, 2c + d, 2c + d);
(c,−c, d), and its cyclic shifts.

Proof. Let U1,U2,U3 and K be as in the proof of the previous lemma (see (5.10) and
(5.11)). First observe that oK , the orbit of the base vertex o under K , is the union of the
translation classes of the four vertices o, oU1, oU2, oU3 modulo 4cZ3, or, equivalently,
of the four vertices

(0, 0, 0), (c+ d, 2c,−c+ d), (−c+ d, c+ d, 2c), (2c,−c+ d, c+ d), (5.14)
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respectively. Then oK T1, the image of oK under T1, is the union of the translation
classes of the four vertices

(−c, d, c), (2c + d, 2c + d, 2c + d), (c,−c, d), (d, c,−c). (5.15)

These two sets of four vertices are invariant under S2, so their union is also invariant
under S2. It follows that no additional vertices arise from the images of oK under the
elements S2, T1S2, S2

2 or T1S2
2 , that is, from the remaining cosets K S2, K T1S2, K S2

2 and
K T1S2

2 of K (see (5.12)). This proves the lemma.

Observe that, when c = 0, the polyhedron is the cube P2(0, d) with vertex-set Z .
For certain parameter values the eight translation classes of vertices may not all be

distinct. However, bearing in mind that the set of eight translation classes is invariant
under S2, inspection shows that two classes can only coincide if d = kc with k ∈ Z
and k ≡ 2 (mod 4). This occurs precisely when (2c + d, 2c + d, 2c + d) is equivalent
to (0, 0, 0) modulo 4cZ3, and then (c,−c, d) and (−c + d, c + d, 2c), as well as their
cyclic shifts, are also equivalent modulo 4cZ3. However, no further collapses occur,
because (c,−c, d) and its cyclic shifts are not equivalent to (0, 0, 0) modulo 4cZ3 for
any parameter values. This proves

Lemma 5.4. P2(c, d) has eight translation classes of vertices modulo 4cZ3, except
when d = kc and k is an integer with k ≡ 2 (mod 4); they are represented by the
vertices listed in Lemma 5.3. If d = kc and k is an integer with k ≡ 2 (mod 4), then
P2(c, d) has four translation classes of vertices, represented by{

(0, 0, 0);
(c,−c, d), and its cyclic shifts.

Recall from Section 6 of [24] that the polyhedron Q(c, d), from which P2(c, d) is
obtained by the facetting operation, has vertices of multiplicity 2 (every point inE3 taken
by a vertex is occupied by exactly two vertices), and thus is not a faithful realization of the
underlying abstract polyhedron, if c and d are integers with c odd and d ≡ 2 (mod 4);
for other integral parameters it has single vertices. This explains why the number of
translation classes of vertices of P2(c, d) collapses to four in certain cases. In fact, up to
similarity, the polyhedra with four translation classes are all of the form P2(1, k) with
k ∈ Z and k ≡ 2 (mod 4), so the corresponding polyhedron Q(1, k) does have vertices
of multiplicity 2. However, there are also cases with c odd and d ≡ 2 (mod 4) where
P2(c, d) still has eight translation classes of vertices. This happens because P2(c, d) has
fewer translational symmetries than Q(c, d); in fact, the translation group of Q(c, d) is
2�(1,1,0).

We now determine the vertex-stars of P2(c, d). First observe that, since G = G2(c, d)
acts transitively on the vertices of P2(c, d), the vertex-stars of P2(c, d) are images of the
vertex-star W0 at o under the special group G0 (∼= S4), so G0 certainly acts transitively
on them. The stabilizer of W0 contains 〈S2〉, and hence the number of vertex-stars cannot
exceed eight. This is consistent with the numbers eight or four of transitivity classes of
vertices; clearly, vertices in the same translation class must have the same vertex-star.
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The vertex-stars at the eight vertices occurring in Lemma 5.3 are given by

W0 := {(c,−c, d), (−c, d, c), (d, c,−c)},
W1 := W0U ′1 = {(−c,−c,−d), (c, d,−c), (−d, c, c)},
W2 := W0U ′2 = {(−c, c, d), (c,−d, c), (−d,−c,−c)},
W3 := W0U ′3 = {(c, c,−d), (−c,−d,−c), (d,−c, c)},
W4 := W0T ′1 = {(−c,−c, d), (c,−d,−c), (d, c, c)},
W5 := W0U ′1T ′1 = {(c,−c,−d), (−c,−d, c), (−d, c,−c)},
W6 := W0U ′2T ′1 = {(−c, c,−d), (c, d, c), (d,−c,−c)},
W7 := W0U ′3T ′1 = {(c, c, d), (−c, d,−c), (−d,−c, c)},

(5.16)

where the labelling accords with the order in which the vertices are listed in (5.14) and
(5.15); that is, W0, . . . ,W3 for the vertices in (5.14), and W4, . . . ,W7 for the vertices in
(5.15), in each case with the orders matching.

Each vertex-star consists of three of six vectors in a vertex-star of the corresponding
polyhedron Q(c, d). (In the notation of Section 6 of [24], these vertex-stars are W0, W7,
W6, W5, W1, W4, W2 and W3, respectively, so in particular the present labelling does
not accord with the old one. The reflection R in (6.8) of [24] is not an element of G,
so it cannot be employed here.) The vertex-stars at the vertices (c,−c, d), (−c, d, c),
(d, c,−c) adjacent to o are W6, W4, W7, respectively.

Just as in similar situations before, the union of all vertex-stars of P2(c, d) comprises
the set of (generally 24) vectors

W :=
7⋃

i=0

Wi = {(±c,±c,±d), (±c,±d,±c), (±d,±c,±c)}, (5.17)

which is the same as the corresponding set for Q(c, d) (see (6.13) of [24]). This is also
the orbit of v under G0. Note that W is the vertex-set of one of the following convex
polyhedra: a suitably truncated octahedron or cube, with 24 vertices, if 0 < |c| < |d| or
0 < |d| < |c|, respectively; a cube if c = ±d; an octahedron if c = 0; or a cuboctahedron
if d = 0. Figure 5.1 shows the vertex-set of the truncated octahedron obtained for c = 1
and d = 4; the fat lines indicate the square faces.

The edge-module of P2(c, d) is given by � := Z[W ], the Z-module spanned by the
vectors in W . As before, V (P2(c, d)) ⊂ �. Recall from Lemma 6.2 of [24] that � is
a lattice if and only if c, d can be scaled to a pair of relatively prime integers. Hence
we observe that, while the vertex-set of P2(c, d) is always discrete, its edge-module is
generally not discrete. On the other hand, the vertex-set of Q(c, d) is discrete if and only
if its edge-module is discrete; in fact, in this case, 2� is a subset of the vertex-set.

The eight vertex-stars in (5.16) are mutually disjoint (and hence distinct), unless
c = ±d or c = 0 or d = 0; the circled points in Fig. 5.1 indicate the vertex-star W0 for
c = 1 and d = 4. The vertex-stars are still mutually distinct (but not disjoint) if c = ±d
or c = 0; in these cases they correspond to the triangular faces of a stella octangula (a
pair of regular tetrahedra inscribed in a cube as in Fig. 3.1) or an octahedron, respectively.
Finally, if d = 0, the vertex-stars coincide in pairs, namely we have

W0 = W5, W1 = W4, W2 = W6, W3 = W7; (5.18)

now the vertex-stars consist of alternating vertices of the four equatorial hexagons in the
cuboctahedron.



Chiral Polyhedra in Ordinary Space, II 211

p p p

p p p

p p p

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

p p p

p p p

p p p

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

p p p

p p p

p p p

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

u ui

u u

u

u

u

u

u u
u u

uu

uu

u

u

i
u

u

uu
uui

��

��

�� ��

��

��

����

- �2

6

�3

�
�

�
�

�
�+�1

q

Fig. 5.1. The set W for c = 1 and d = 4. The points in the vertex-star W0 for P2(c, d) are circled. The cubes
are drawn in for reference.

We now have

Lemma 5.5. P2(c, d) is a geometric polyhedron, except when d = kc and k is an
integer with k ≡ 2 (mod 4).

Proof. The case c = 0 is obvious. Suppose c 	= 0. We have altogether eight translation
classes of vertices and eight vertex-stars, unless d = 0 or d = kc with k ∈ Z and k ≡
2 (mod 4). Moreover, the vertex-stars at vertices of distinct translation classes are also
distinct, so each translation class of vertices is characterized by its unique vertex-star.
Hence P2(c, d) cannot have multiple vertices. To see this more explicitly, let x be a
vertex of P2(c, d) with vertex-star Wj (say), and let y be a vertex adjacent to x such that
y − x ∈ Wj . We must prove that x − y belongs to the vertex-star Wk (say) at y, that
is, x ∈ y + Wk . Reducing x modulo 4cZ3 (if need be), we may further assume that x
is among the eight vertices listed in Lemma 5.3. Now inspection of the corresponding
adjacent vertices and their vertex-stars shows that the required property holds in each
case.

If d = kc with k ∈ Z and k ≡ 2 (mod 4), then we have four translation classes of
vertices but still eight vertex-stars. Hence each point occupied by a vertex is occupied
by two vertices, so we have a double vertex associated with two (disjoint) vertex-stars;
then this point has “valency” 6. Finally, when d = 0, there are eight translation classes
of vertices and four vertex-stars, so each vertex-star is associated with two translation
classes. Now we have a regular geometric polyhedron (see (5.6)).

The vertex-stars of P2(c, d) are generally not planar, although the vertex-figures are
triangles. In fact, we have

Lemma 5.6. The vertex-stars of P2(c, d) are planar if and only if d = 0.
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Proof. The three vectors in W0 have determinant ±d(3c2 + d2), so they lie in a plane
if and only if d = 0.

Next we determine the regular polyhedra.

Lemma 5.7. The polyhedron P2(c, d) is geometrically chiral if c, d 	= 0, or geometri-
cally regular if c = 0 or d = 0. In particular, P2(c, 0) is similar to P2(1, 0) = {∞, 3}(b),
and P2(0, d) is similar to P2(0, 1) = {4, 3}.

Proof. The second claim was already settled (see (5.6) and (5.7)). Now suppose c, d 	=
0. As in the proof of Lemma 4.6 we must refute the assumption that there exists an
involutory symmetry R which fixes o and v and interchanges the neighbors (−c, d, c)
and (d, c,−c) of o. Since W0 is not planar when d 	= 0, this symmetry R must necessarily
be the reflection in the plane through o, v with normal vector

n := (−c, d, c)− (d, c,−c) = (−c − d,−c + d, 2c).

Moreover, since R−1T R = T , the rotation axis of T , with direction vector e1 + e2,
must necessarily be invariant under R. However, e1 + e2 is not a scalar multiple of n,
so e1 + e2 must lie in the mirror of R. Hence −2c = n · (e1 + e2) = 0, which is a
contradiction.

The discussion of enantiomorphism is similar to that in the previous section. Now we
have

P2(−c, d) = P2(c, d)R, (5.19)

where R is the reflection (in the plane ξ1 = ξ2) given by

R: (ξ1, ξ2, ξ3) �→ (ξ2, ξ1, ξ3). (5.20)

In this case conjugation by R transforms the pair of generators T (c, d), S2 for G2(c, d) to
the pair of generators T (−c, d), S−1

2 for G2(−c, d), so in particular we have G2(−c, d) =
R−1G2(c, d)R. However, R 	∈ G2(c, d), because G2(c, d) consists only of direct isome-
tries. As before, if�(c, d) := {F0(c, d), F1(c, d), F2(c, d)} is the base flag of P2(c, d),
and if�2(c, d) := {F0(c, d), F1(c, d), F ′2(c, d)} denotes the adjacent flag differing from
�(c, d) in its 2-face, then we can use arguments for G2(c, d) similar to those in (4.19),
(4.20) and (4.21) for G1(a, b) to establish (5.19) as well as

�(−c, d)R = �2(c, d), �2(−c, d)R = �(c, d).

Here the equations take the form

V (P2(−c, d))=oG2(−c, d)=oR−1G2(c, d)R=oG2(c, d)R=V (P2(c, d))R,
F1(−c, d)G2(−c, d) = F1(−c, d)R−1G2(c, d)R = (F1(c, d)G2(c, d))R,
F2(−c, d)G2(−c, d) = F2(−c, d)R−1G2(c, d)R = (F2(c, d)′G2(c, d))R.

(5.21)

One implication is again that Wythoff’s construction applied to G2(c, d) with the al-
ternative pair of generators T (c, d), S−1

2 and the same initial vertex, yields the same
polyhedron P2(c, d) as before, but now with a different base flag, namely �2(c, d).
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Alternatively we could have appealed to analogous results for the polyhedra Q(c, d),
again observing that conjugation by R commutes with the facetting operation ϕ2 (see
Section 6 of [24]); in particular,

(Q(c, d)R)ϕ2 = (Q(c, d)ϕ2)R.

We can also tell when two polyhedra are affinely equivalent. The result is consistent
with Lemma 6.10 of [24] for the polyhedra Q(c, d).

Lemma 5.8. Let c, d, e, f be real numbers, and let (c, d) 	= (0, 0) 	= (e, f ). Then the
polyhedra P2(c, d) and P2(e, f ) are affinely equivalent if and only if (e, f ) = s(±c, d)
for some non-zero scalar s. Moreover, P2(c, d) and P2(e, f ) are congruent if and only
if (e, f ) = (±c,±d).

Proof. Suppose we have an affine transformation S with P2(e, f ) = P2(c, d)S. As
in the proof of Lemma 4.7 we can assume that oS = o and (c,−c, d)S = (e,−e, f ).
First note that, since S and S−1 preserve planarity of vertex-stars, we certainly have
d = 0 if and only if f = 0, so in this case we are done. Now let d 	= 0, so that
the vertex-stars are not planar. Then we can argue as in Lemma 4.7 and conclude that
S−1T (c, d)S = T (e, f ) and S−1S2S = S2 or S−1

2 . In particular, we must have S = s I
or S = s R, with R as in (5.20), for some scalar s. It follows that (e, f ) = s(±c, d).
Moreover, if S is an isometry, then s = ±1. The converse is obvious (by (5.19)).

The affine equivalence classes of polyhedra P2(c, d) are illustrated in Fig. 5.2. At the
corners of the square we find the regular polyhedra P2(1, 0) = {∞, 3}(b) and P2(0, 1) =
{4, 3}. Each class is represented by one polyhedron whose parameter point (c, d) is
located on the upper right side of the square; the other three sides of the square give
alternative representations, as indicated by the four symmetrically related nodes.
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Fig. 5.2. The affine classes of polyhedra P2(c, d).
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As G2(c, d) contains only direct isometries, the faces of P2(c, d) consist of either all
right-hand helices or all left-hand helices. Each face has its axis parallel to a coordinate
axis. The reflection R of (5.20) changes orientation, so the faces of P2(c, d) are right-
hand helices if and only if the faces of P2(−c, d) are left-hand helices. This is similar to
what we observed in the previous section. The following lemma describes the translation
classes of faces modulo 4cZ3; in the regular case they coincide with the translation classes
relative to the full symmetry group. There are six classes, even when there are only four
translation classes of vertices.

Lemma 5.9. P2(c, d) has precisely six translation classes of faces, namely, those rep-
resented by the faces F2, F2T1, F2S2, F2T1S2, F2S2

2 and F2T1S2
2 , where F2 is the base

face given by (5.4).

Proof. The details are tedious, so we just outline the argument. Suppose c 	= 0. Each
vertex of P2(c, d) is equivalent modulo 4cZ3 to one of the eight vertices o, oU1, oU2,
oU3, oT1, oU1T1, oU2T1 or oU3T1 (see the proof of Lemma 5.3), so each face is equivalent
to a face containing one of these vertices. This latter set of faces consists of the three
faces F2, F2S2, F2S2

2 containing o, as well as their images under U1, U2, U3, T1, U1T1,
U2T1 and U3T1. Inspection of these faces then reduces the number of classes to six, with
two classes for each possible direction of axes. The representative faces include F2 and
F2T1, which are parallel to the y-axis, as well as their images under S2 and S2

2 (see also
(5.12)). The six faces are those depicted in Fig. 4.3, with F2T1 = F2S2

2 T S2.

6. Type {∞, 4}, with Helical Faces over Triangles

In this section we describe the third family of chiral apeirohedra with helical faces. In this
case the polyhedra are of type {∞, 4} and have faces consisting of helices over triangles.
Again we employ Wythoff’s construction.

Now we must begin with an irreducible group G = 〈S1, S2〉 with special group
G0 = [3, 4]+, where S′1, S2 are standard generators of G0 considered as the group of the
octahedron {3, 4}, so that S′1 and S2 have periods 3 and 4, respectively, and their product
has period 2. As in similar situations discussed before, once S2 has been selected, there
are four equivalent choices for S′1 such that T ′ = S′1S2 has period 2; if S′1 is one of them,
then the other three are S−1

2 S′1S2, S−2
2 S′1S2

2 and S−3
2 S′1S3

2 . Moreover, as before, replacing
S2 by its inverse would give the same polyhedron.

Again we consider specific representations for the generators. Now we take

S′1: x �→ (ξ3, ξ1, ξ2),

S2: x �→ (ξ3, ξ2,−ξ1)
(6.1)

as generators of G0; these are the inverses of the elements S2 and S′1 of (5.1). Then T ′

and T are the same transformations as in the previous section. However, the resulting
group G = G3(c, d) is not the same as G2(c, d); in fact, the two groups have different
translation subgroups. In particular, G3(c, d) is generated by

S2: x �→ (ξ3, ξ2,−ξ1),

T : x �→ (ξ2, ξ1,−ξ3)+ (c,−c, d),
(6.2)
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with real parameters c and d , not both zero. Then

S1: x �→ (ξ3, ξ1, ξ2)+ (−d,−c, c),
S3

1 : x �→ (ξ1, ξ2, ξ3)+ d(−1,−1,−1).
(6.3)

Then S3
1 is the translation by d(−1,−1,−1), and is trivial if d = 0. The special case

d = 0 gives the finite group

G3(c, 0) ∼= [3, 4]+

(with fixed point (0,−c, 0)); the polyhedron is an octahedron.
The polyhedron P = P3(c, d) is obtained from G = G3(c, d) by Wythoff’s construc-

tion with base vertex F0 = o. Its base edge F1 has vertices o and v := oT = (c,−c, d),
and hence is the same as for P2(c, d). The base face F2 is given by

F2 = o〈S1〉 = {(−d,−c, c), (0, 0, 0), (c,−c, d)} + Z·d(1, 1, 1) (6.4)

and consists of a helix over a triangle. All other vertices, edges and faces of P are the
images of F0, F1 and F2 under G. The vertices adjacent to o are

v=(c,−c, d), vS2=(d,−c,−c), vS2
2=(−c,−c,−d), vS3

2=(−d,−c, c).

The polyhedron P3(c, d) is similar to P3(1, d/c) or P3(0, 1) according as c 	= 0 or c = 0,
so again there is only a single parameter for the similarity classes.

In Section 8 (and Section 7) we establish a link between P3(c, d) and the finite-faced
polyhedron Q(−d, 2c) (note the change of parameters). However, the facetting operation
ϕ2 does not apply in this context.

Next we find the translation subgroup T (G) of G = G3(c, d). Since S3
1 is the trans-

lation by d(−1,−1,−1), and its conjugates under the special group G0 (∼= [3, 4]+)
consists of the vectors d(±1,±1,±1), we see that

d�(1,1,1) � T (G).

In fact, we have

Lemma 6.1. The translation subgroup of G3(c, d) is given by T (G3(c, d)) = d�(1,1,1).

Proof. Now G = N · 〈S2〉, where N := 〈T0, T1, T2, T3〉 with Tj := S− j
2 T S j

2 for
j = 0, 1, 2, 3. (The labelling of the half-turns Tj differs from that in previous sections.)
In particular,

T0 = T : x �→ (ξ2, ξ1,−ξ3)+ (c,−c, d),
T1: x �→ (−ξ1,−ξ3,−ξ2)+ (d,−c,−c),
T2: x �→ (−ξ2,−ξ1,−ξ3)+ (−c,−c,−d),
T3: x �→ (−ξ1, ξ3, ξ2)+ (−d,−c, c).

(6.5)

Note that N is normal in G.
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The element T0T1T2T3T2T1 of N is the translation by (0, 0,−2d). Its conjugates by S1

and S2
1 are also in N and are the translations by (−2d, 0, 0) and (0,−2d, 0), respectively.

Hence 2dZ3 � N ; in fact, 2dZ3 is normal in N . Moreover, S2
2 T0T2T1T3 is the translation

by (−2d, 0,−2d) contained in N , so S2
2 ∈ N and N has index at most 2 in G.

Now consider the quotient M := N/2dZ3. The elements (Tj Tj+1)
3 with j = 0, 1, 2, 3

(considered modulo 4), as well as (T0T2)
2, are translations in 2dZ3, hence each is trivial

when considered in M . Moreover, since T0T1T2T3T2T1 is also in 2dZ3, we have T3 =
T2T1T0T1T2 in M , so M is generated by (the images of) T0, T1, T2. These generators
satisfy the standard Coxeter-type relations for [3, 3] (∼= S4), and since T0T1, T1T2 and
T0T2 themselves are not translations, these relations give a presentation for M , so in
particular M ∼= S4. On the other hand, the normal subgroup d�(1,1,1) of G (contained in
T (G)) is not a (normal) subgroup of N ; otherwise, since 2dZ3 has index 2 in d�(1,1,1),
the group N/d�(1,1,1) would be a quotient of N/2dZ3 of order 12 (however, S4 does not
have such a quotient). Hence N must be a proper subgroup of G (that is, S2 	∈ N ), and
G = N · T (G). Now it follows that

N/2dZ3 = M ∼= S4
∼= [3, 4]+ ∼= G0

∼= G/T (G) ∼= N/(T (G) ∩ N ),

so in particular T (G) ∩ N = 2dZ3 and 2dZ3 has index 2 in T (G). Hence T (G) =
d�(1,1,1), as claimed.

Again we observe that the translation group depends only on a single parameter, d in
this case. Now Lemma 6.1 can be rephrased as

G3(c, d)/d�(1,1,1)
∼= [3, 4]+ ∼= S4, (6.6)

where each term represents the special group.
The next lemma describes the vertex-set of P3(c, d), which again is discrete for all

parameter values.

Lemma 6.2. The vertex-set of P3(c, d) is given by

V (P3(c, d))= {(0, 0, 0), (c,−c, d), (−c,−c, d), (0,−2c, 0), (d,−c, c), (d,−c,−c)}
+ d�(1,1,1).

The six cosets of d�(1,1,1) occurring are distinct, except when c/d is an integer. If c/d is
an odd integer, then V (P3(c, d)) = d�(1,1,1) (and the cosets all coincide). If c/d is an
even integer, then

V (P3(c, d)) = {(0, 0, 0), (c,−c, d), (d,−c, c)} + d�(1,1,1)

(and the cosets coincide in pairs).

Proof. We appeal to the proof of Lemma 6.1. First observe that, modulo d�(1,1,1), each
element of G can be written as

Si
2(T0T1T2)

j (T0T1)
k T m

0 (6.7)
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with i = 0, 1, j = 0, 1, 2, 3, k = 0, 1, 2 and m = 0, 1. In fact, the two elements I, S2

give a system of left coset representatives of G modulo its subgroup N , and the four
elements (T0T1T2)

j with j = 0, 1, 2, 3 give a system of left coset representatives of

N/2dZ3 = M = 〈T0, T1, T2〉 ∼= [3, 3]

modulo its subgroup 〈T0, T1〉 (∼= S3); moreover, since 2dZ3 � d�(1,1,1), representations
of elements modulo 2dZ3 also yield representations modulo d�(1,1,1).

The vertex-set of P3(c, d) is the orbit of o under G and consists of cosets of d�(1,1,1),
namely those of the images of o under the elements in (6.7). The first term in (6.7) fixes
o, because S2 fixes o. Next, it is easily verified that T0T1T2 = S−1

2 in G/d�(1,1,1), so the
second term of (6.7) also does not contribute a non-trivial coset. Thus contributions can
only arise from the images of o under the six elements

(T0T1)
k T m

0 , (6.8)

with k = 0, 1, 2 and m = 0, 1. Modulo d�(1,1,1), these images are (0, 0, 0), (−c,−c, d),
(d,−c, c) if k = 0, 1, 2 and m = 0, and (c,−c, d), (0,−2c, 0), (d,−c,−c) if k =
0, 1, 2 and m = 1. They give a set of six vertices modulo d�(1,1,1).

The corresponding six cosets are distinct, unless two representing vertices become
equivalent modulo d�(1,1,1). Inspection shows that such equivalencies occur precisely
when c/d ∈ Z. If c/d is an odd integer, then the cosets all coincide and hence V (P3(c, d))
= d�(1,1,1). However, if c/d is an even integer, then there are three distinct cosets
represented by (0, 0, 0), (c,−c, d) or (d,−c, c). This completes the proof.

In the exceptional cases of Lemma 6.2, with c 	= 0, the polyhedra are not faithful
realizations of the underlying abstract polyhedra. In fact, we prove in Lemma 6.3 that
P3(c, d) is a geometric polyhedron, except when c/d is a non-zero integer. When c = 0,
we obtain a (faithful) regular polyhedron (see Lemma 6.5). Moreover, note that, when
d = 0, the polyhedron is the (finite) octahedron P3(c, 0)whose vertices are the six points
listed in Lemma 6.2.

Next we determine the vertex-stars of P3(c, d). They are the images of the vertex-star
W0 at o under the special group G0 (∼= S4), so the latter certainly acts transitively on
them. On the other hand, since W0 is stabilized by 〈S2〉, the number of vertex-stars cannot
exceed six. This bound is consistent with the numbers six, three or one of transitivity
classes of vertices.

The vertex-stars at the six representing vertices of Lemma 6.2 are given by

W0 := {(c,−c, d), (d,−c,−c), (−c,−c,−d), (−d,−c, c)},
W1 := W0T ′0 = {(−c, c,−d), (−c, d, c), (−c,−c, d), (−c,−d,−c)},
W2 := W0T ′0T ′1 = {(c, c, d), (c, d,−c), (c,−c,−d), (c,−d, c)},
W3 := W0T ′0T ′1T ′0 = {(d, c, c), (−c, c, d), (−d, c,−c), (c, c,−d)},
W4 := W0T ′1T ′0 = {(d, c,−c), (−c, d,−c), (−d,−c,−c), (c,−d,−c)},
W5 := W0T ′1 = {(−d, c, c), (c, d, c), (d,−c, c), (−c,−d, c)}

(6.9)

(see (6.8)), where the labelling matches the order in which the vertices are listed in
the lemma. Note here that (T ′0T ′1)

3 = I . The vertex-stars at the vertices (c,−c, d),
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Fig. 6.1. The set W for c = 1 and d = 4. Now the points in the vertex-star W0 for P3(c, d) are circled.

(d,−c,−c), (−c,−c,−d) and (−d,−c, c) adjacent to o are W1, W5, W2 and W4,
respectively. The vertex-star at an arbitrary vertex x is found by first reducing x modulo
d�(1,1,1) to a representing vertex and then taking the vertex-star at that vertex.

The union W of the vertex-stars of P3(c, d) is the same set as in the previous section,
that is,

W :=
5⋃

i=0

Wi = {(±c,±c,±d), (±c,±d,±c), (±d,±c,±c)}. (6.10)

Hence the edge-module � := Z[W ] of P3(c, d) is also the same as before.
The six vertex-stars in (6.9) are mutually disjoint (and hence distinct), unless c = ±d

or c = 0 or d = 0; Fig. 6.1 illustrates the vertex-star W0. The vertex-stars are still
mutually distinct (but not disjoint) if c = ±d or d = 0; in these cases they correspond
to the square faces of a cube or cuboctahedron, respectively. Finally, if c = 0, the
vertex-stars coincide in pairs and consist of the equatorial squares of an octahedron; in
particular,

W0 = W3, W1 = W2, W4 = W5. (6.11)

Next we prove

Lemma 6.3. P3(c, d) is a geometric polyhedron, except when c/d is a non-zero integer.

Proof. The case d = 0 is trivial, so let d 	= 0. Then we have six translation classes of
vertices and six vertex-stars, except when c/d is an integer (possibly zero). Moreover, the
vertex-stars at vertices of distinct translation classes are distinct, so again each translation
class of vertices is characterized by its unique vertex-star. Hence P3(c, d) cannot have
multiple vertices. Again we can see this more explicitly. Let x be a vertex of P3(c, d)
with vertex-star Wj , and let y be a vertex adjacent to x such that y − x ∈ Wj . We must
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verify that x − y belongs to the vertex-star Wk at y, that is, x ∈ y + Wk . Reducing x
modulo d�(1,1,1) we can achieve that x is among the six vertices listed in Lemma 6.2.
Inspection of the corresponding adjacent vertices and their vertex-stars now establishes
the required property in each case.

If c/d is a non-zero even integer, then we have three translation classes of vertices
and six vertex-stars, so again each vertex has multiplicity 2 and is associated with two
disjoint vertex-stars.

If c/d is an odd integer, then there is just one translation class of vertices but still six
vertex-stars. Now each point x taken by a vertex is in fact occupied by six vertices, so
each vertex has multiplicity 6 and all six vertex-stars occur at it. Hence the set of points
connected to x by an edge of P3(c, d) is given by x +W . This case is highly degenerate.

Finally, when c = 0, there are three translation classes of vertices and three vertex-
stars, so we have a geometric polyhedron. As we shall see, the polyhedron is
regular.

Since S2 is a rotation about the ξ2-axis, it is clear that the four vertices of P3(c, d)
adjacent to o all lie in a plane perpendicular to the ξ2-axis, so the vertex-figures certainly
are planar. Moreover, we have

Lemma 6.4. The vertex-stars of P3(c, d) are planar if and only if c = 0.

Proof. The vertex-stars are planar if and only if the affine hull of the vertex-figure at o
contains o itself. This occurs if and only if v = (c,−c, d) lies in the ξ1ξ3-plane. Hence
the condition is c = 0.

Next we determine the regular polyhedra. Recall from pp. 224 and 230 of [20] that
{∞, 4}·,∗3 denotes the (self-Petrie) regular polyhedron of type {∞, 4}, whose full sym-
metry group is specified by the single extra relation

(R2(R1 R0)
2)3 = I.

(The “·” in the suffix means that the length of the Petrie polygons is unspecified, and the
3 with ∗ prefix indicates the length of the 2-zigzags of the combinatorial dual.)

Lemma 6.5. The polyhedron P3(c, d) is geometrically chiral if c, d 	= 0, or geometri-
cally regular if c = 0 or d = 0. In particular, P3(0, d) is similar to P3(0, 1) = {∞, 4}·,∗3,
and P3(c, 0) is similar to P3(1, 0) = {3, 4}.

Proof. Clearly, by construction, P3(c, d) is at least chiral. Now suppose P3(c, d) is
regular. Then there exists an involutory symmetry R which fixes o and v (and vS2

2 ) and
interchanges the vertices vS2 and vS−1

2 in the vertex-figure at o; moreover, RS2 R = S−1
2

and RT R = T . If c 	= 0, the vectors v = (c,−c, d) and vS2
2 = (−c,−c,−d) span an

R-invariant plane with normal vector

n := vS2 − vS−1
2 = (2d, 0,−2c),

so R must be the reflection in this plane. The rotation axis of T is the line through 1
2v

with direction vector e1 + e2. (As before, e1, e2, e3 denotes the standard basis of E3.)
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Since R must also leave this line invariant, it must lie in the mirror of R; in fact, it cannot
be perpendicular to the mirror because e1 + e2 and n are not collinear. However, then
d = n · (e1 + e2) = 0. Hence, if P3(c, d) is regular, then either c = 0 or d = 0. The
latter case yields the regular octahedron P3(c, 0).

Now let c = 0. Suppose R is an involutory symmetry of P3(0, d) with the properties
mentioned. Then v = de3 = −vS2

2 and vS2 = de1 = −vS−1
2 , so necessarily e3 R = e3

and e1 R = −e1. Moreover, since RS2 R = S−1
2 , the symmetry R must leave the rotation

axis of S2 (the y-axis) invariant, so we also have e2 R = ±e2. We can further eliminate
the possibility that R is a plane reflection; in fact, then necessarily e2 R = e2, so R
would not leave the rotation axis of the half-turn T invariant. This, then, leaves only the
possibility that R is the half-turn about the z-axis (spanned by v). On the other hand, it
is straightforward to check that this half-turn, denoted again by R, indeed is a symmetry
of P3(0, d) with the required properties. In particular, it fixes o and v and maps the base
face F2 of (6.4) to the face

F2 R = {(d, 0, 0), (0, 0, 0), (0, 0, d)} + Z·d(−1,−1, 1)
= {(0,−d, d), (0, 0, d), (0, 0, 0)} + Z·d(1, 1,−1) = F2T

adjacent to F2 along the base edge. It follows that P3(0, d) is regular (see Lemma 2.1).
Moreover, since R2 := R and S2 are rotations and S1 is a twist, the symmetries
R1 := S2 R−1

2 and R0 := S1 R−1
1 must also be half-turns. Hence P3(0, d) has dimension

vector

(dim R0, dim R1, dim R2) = (1, 1, 1).

Comparison with the regular polyhedra in E3 now establishes that P3(0, d) is similar to
{∞, 4}·,∗3 (see p. 225 of [20]).

The discussion of enantiomorphism follows the same pattern as in previous sections.
Now

P3(c,−d) = P3(c, d)R, (6.12)

where R is the reflection (in the plane ξ3 = 0) given by

R: (ξ1, ξ2, ξ3) �→ (ξ1, ξ2,−ξ3). (6.13)

In this case conjugation by R transforms the generators T (c, d), S2 for G3(c, d) to the
generators T (c,−d), S−1

2 for G3(c,−d), so in particular G3(c,−d) = R−1G3(c, d)R.
However, R 	∈ G3(c, d), again because G3(c, d) only contains direct isometries. If
�(c, d) := {F0(c, d), F1(c, d), F2(c, d)} is the base flag of P3(c, d), and if

�2(c, d) := {F0(c, d), F1(c, d), F ′2(c, d)}
is the adjacent flag differing from �(c, d) in its 2-face, then equations for G3(c, d)
similar to those in (5.21) for G2(c, d) establish (6.12) and

�(c,−d)R = �2(c, d), �2(c,−d)R = �(c, d).

In particular, this implies that Wythoff’s construction applied to G3(c, d) with the al-
ternative pair of generators T (c, d), S−1

2 and the same initial vertex, yields the same
polyhedron P3(c, d) as before, but now with �2(c, d) as the base flag.
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Next we investigate affine equivalence. Here we have

Lemma 6.6. Let c, d, e, f be real numbers, and let (c, d) 	= (0, 0) 	= (e, f ). Then the
polyhedra P3(c, d) and P3(e, f ) are affinely equivalent if and only if (e, f ) = t (c,±d)
for some non-zero scalar t . Moreover, P3(c, d) and P3(e, f ) are congruent if and only
if (e, f ) = (±c,±d).

Proof. The proof is very similar to that of Lemma 5.8. Suppose S is an affine transfor-
mation with P3(e, f ) = P3(c, d)S, oS = o and (c,−c, d)S = (e,−e, f ). Since S and
S−1 preserve planarity of vertex-stars, we certainly have c = 0 if and only if e = 0. If
c 	= 0, we have non-planar vertex-stars and hence can conclude as in Lemma 4.7 that
S−1T (c, d)S = T (e, f ) and S−1S2S = S2 or S−1

2 . Then either S = t I or S = t R, with
R as in (6.13), for some scalar t . Hence (e, f ) = t (c,±d). Moreover, if S is an isometry,
then t = ±1. The converse is clear (by (6.12)).

Notice that the conditions of Lemmas 5.8 and 6.6 are the same, that is, P3(c, d)
and P3(e, f ) are affinely equivalent if and only if P2(c, d) and P2(e, f ) are affinely
equivalent. Thus the affine equivalence classes of polyhedra P3(c, d) can be illustrated
in a similar fashion as those of P2(c, d) (see Fig. 6.2). At the corners of the square we
now find the regular polyhedra P3(0, 1) = {∞, 4}·,∗3 and P3(1, 0) = {3, 4}. As before,
each equivalence class is represented by a polyhedron with its parameter point (c, d)
located on the upper right side of the square; the other three sides of the square give
alternative representations.

The faces of P3(c, d) consist of either all right-hand helices or all left-hand helices, and
the helices for P3(c, d) are right-hand if and only if those for P3(c,−d) (= P3(c, d)R)
are left-hand. Each face has its axis parallel to a body diagonal of Z3. The next lemma
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Fig. 6.2. The affine classes of polyhedra P3(c, d).
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describes the translation classes of faces modulo d�(1,1,1); in the regular case they are
also the translation classes relative to the full symmetry group.

Lemma 6.7. P3(c, d) has eight translation classes of faces, except when c = 0 or
c = ±d; they are represented by the faces F2T i

1 S j
2 with i = 0, 1 and j = 0, 1, 2, 3,

where F2 is the base face given by (6.4). If c = 0 or c = ±d, then P3(c, d) has four
translation classes of faces, represented by F2S j

2 with j = 0, 1, 2, 3.

Proof. We only outline the argument. Suppose d 	= 0. Each vertex of P3(c, d) is
equivalent modulo d�(1,1,1) to one of the (generally six) vertices o(T0T1)

k T m
0 with k =

0, 1, 2 and m = 0, 1 (see the proof of Lemma 6.2, particularly (6.8)), so each face must
be equivalent to a face containing one of these vertices. This latter set of faces consists
of the four faces F2S j

2 with j = 0, 1, 2, 3, each of which contains o and is parallel to
one of the four body diagonals of Z3, as well as their images under the six elements
U := (T0T1)

k T m
0 with k,m as above. The face F̂2 := F2S3

2 has its axis parallel to the
diagonal with direction vector (−1, 1, 1), and since T ′0 and T ′1 (the images of T0 and T1

in the special group) reverse this direction, this also remains true for each face F̂2U with
U as above. Inspection shows that, for all parameter values of c and d, these six faces
fall into two sets of three, where each set consists of mutually equivalent faces modulo
d�(1,1,1) (all U with m = 0, or all U with m = 1). Moreover, faces from different sets can
only be equivalent if c = 0 or c = ±d; in fact, in these cases any two faces of the six are
equivalent modulo d�(1,1,1). Hence, the faces parallel to the direction vector (−1, 1, 1)
fall into two classes or one class, respectively, and are represented by either F̂2, F̂2T0

or F̂2. This takes care of one diagonal direction. However, since the special group G0

(in fact, already its subgroup 〈S2〉) acts transitively on the four body diagonals, this
also holds for other body diagonals, so we must have a total of eight or four translation
classes, respectively. Finally, since

F̂2T0S j+1
2 = F2(S

−1
2 T0S2)S

j
2 = F2T1S j

2

(see (6.5)), the images of F̂2T0 under 〈S2〉 are just those of F2T1 under 〈S2〉, so the eight
or four classes, respectively, are represented by the images under 〈S2〉 of either F2, F2T1

or F2. This completes the proof.

7. Coverings and Relationships

In this and the next section we investigate coverings and relationships for the families
of chiral (or regular) polyhedra described in the previous sections and [24]. Recall that
we have three large families of chiral (or regular) polyhedra with finite faces, consisting
of the polyhedra P(a, b) of type {6, 6}, Q(c, d) of type {4, 6} or Q(c, d)∗ (the dual of
Q(c, d)) of type {6, 4}, respectively. In addition we have the three large families of chiral
(or regular) helix-faced polyhedra P1(a, b), P2(c, d) or P3(c, d) discussed in this paper.

We begin with the observation that the helix-faced polyhedra P1(a, b), P2(c, d) and
P3(c, d) can be thought of as figures “unraveling” a tetrahedron {3, 3}, a cube {4, 3} or
an octahedron {3, 4}, respectively; that is, in a way, the helical faces can be pushed down
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to their bases, like springs, to become faces of {3, 3}, {4, 3} or {3, 4}. The underlying
covering relationship of polyhedra is induced by the canonical homomorphism

G → G0 (∼= G/T (G)),
S �→ S′,

which maps the distinguished generators S1, S2 of G to those of G0. For example, for
P1(a, b) with group G = G1(a, b) = 〈S1, S2〉, the images S′1, S′2 (= S2) are distin-
guished generators of G0 = [3, 3]+. Thus we have a covering P1(a, b) ↘ {3, 3} (see
Section 2D of [20]).

Theorem 7.1. There are the following coverings of polyhedra:

P1(a, b)↘ {3, 3}, P2(c, d)↘ {4, 3}, P3(c, d)↘ {3, 4}.

In each case the polyhedron on the right is the only finite polyhedron in its family and is
obtained for b = a, c = 0 or d = 0, respectively.

In a similar fashion we can also derive the coverings

Q(c, d)↘ {4, 6 | ·, 2}, Q(c, d)∗ ↘ {4, 6 | ·, 2}∗, (7.1)

where {4, 6 | ·, 2} denotes the regular map of type {4, 6} determined by the length, 2, of
its 3-holes (the 2-holes are not needed for the specification). Recall that a 3-hole is an
edge-path which leaves a vertex by the third edge from which it entered, always keeping
to the right or always to the left (see p. 196 of [20]). In fact, for Q(c, d) and its dual, the
special group G0 (= [3, 4]) admits an involutory group automorphism with S′1 �→ S′1S′2

2

and S′2 �→ S′2
−1, so the abstract polyhedron Q0 associated with G0 and its generators

S′1, S′2 must actually be directly regular, with full automorphism group G0 � C2 (see
Theorem 1(c) of [25]). (Recall that an abstract polyhedron is directly regular if it is
regular and its combinatorial rotation subgroup has index 2 in the full automorphism
group. The corresponding surface is necessarily orientable.) For Q(c, d), this group
automorphism can be realized by (inner) conjugation in G0 with the reflection in the
plane ξ1 = ξ2 (see (6.17) of [24]). In particular, since Q0 is orientable and of genus 3,
we must have Q0 = {4, 6 | ·, 2} (see p. 470 of [28]).

Note, however, that there is no such covering associated with the polyhedra P(a, b).
The generators S′1, S′2 of G0 (= [3, 3]∗) do not determine a (directly) regular or chiral
map in this case; in fact, −I ∈ 〈S′1〉 ∩ 〈S′2〉, so the intersection property fails.

Next we study operations between polyhedra or their groups. Recall that a mixing
operation derives a new group H from a given group G = 〈S1, S2〉by taking as generators
Ŝ1, Ŝ2 (say) certain suitably chosen products of S1, S2, so that H is a subgroup of G (see
p. 183 of [20]). Mixing operations do not always produce groups of chiral or regular
polyhedra, but in certain special cases they do. Besides the duality operation δ and the
facetting operation ϕ2 described in (2.2), we also employ the halving operation

η : (S1, S2) �→ (S2
1 S2, S−1

2 ) =: (Ŝ1, Ŝ2) (7.2)
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(see Section 7 of [24]), which is an analog of the halving operation for regular polyhedra
(see p. 197 of [20]). Recall from Section 7 of [24] that η links the two families of
finite-faced polyhedra Q(c, d) and P(a, b) through

Q(c, d)η ∼= P(c − d, c + d),

where Q(c, d)η denotes the image of Q(c, d) under η (and ∼= means congruence). We
also observed in Lemmas 4.1 and 5.1 that

P1(a, b) = P(a, b)ϕ2 , P2(c, d) = Q(c, d)ϕ2 .

Generally it is difficult to decide whether or not two classes of polyhedra are related
by a mixing operation. In some cases obstructions already arise from the structure of the
special groups. In fact, we have the following lemma.

Lemma 7.2. Let G and H be crystallographic groups with special groups G0 and H0,
respectively. If H is a subgroup of G, then H0 is isomorphic to a subgroup of G0.

Proof. If H � G, then the mapping H → G/T (G) defined by S �→ T (G)S has kernel
H ∩ T (G) = T (H), so H/T (H) is isomorphic to a subgroup of G/T (G). Now the
lemma follows.

For example, the special groups tell us immediately that P3(c, d) cannot be derived
from a mixing operation applied to a polyhedron P(a, b) (see Section 5 of [24]). In
fact, by the previous lemma, G3(c, d) cannot be a subgroup of G(a, b) (the group for
P(a, b)), because clearly (G3(c, d))0 (= [3, 4]+ ∼= S4) is not isomorphic to a subgroup
of (G(a, b))0 (= [3, 3]∗ ∼= A4 × C2). Similarly we can eliminate the possibility that
P3(c, d) is obtained from a mixing operation applied to a helix-faced polyhedron P1(a, b)
(with special group [3.3]+ ∼= A4).

On the other hand, we cannot, a priori, rule out a mixing operation between P3(c, d)
and a polyhedron Q(c′, d ′) or its dual; in fact, Q(c′, d ′) and its dual have special group
[3, 4] (∼= S4×C2). The same remark also applies to P3(c, d) and a polyhedron P2(c′, d ′)
(with special group [3, 4]+). In these cases it is open whether or not mixing operations
exist. On the other hand, we do know that the regular polyhedron P3(0, 1) = {∞, 4}·,∗3
is obtained from the Petrie–Coxeter polyhedron Q(0, 1)∗ = {6, 4 |4} by the skewing
(mixing) operation σ defined on pp. 199 and 224 of [20]; that is, P3(0, 1) = (Q(0, 1)∗)σ .
However, σ is only defined for regular polyhedra, and it is not clear how to generalize it
to chiral polyhedra.

In the next section we describe the missing link between P3(c, d) and a finite-
faced polyhedron, namely Q(−d, 2c)∗, employing an involutory operation κ which
is not a mixing operation on its group (see Lemma 8.1). When applied to P(a, b)
and Q(c, d), this operation κ coincides, up to the enantiomorphism, with the facetting
operation ϕ2.

We now list the families of polyhedra, with various known relationships between them
(but see also (8.3)). Our first diagram emphasizes operations between families rather than
between individual polyhedra. In particular, we drop the parameters from the notation;
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for example, P1 denotes the family of polyhedra P1(a, b). Observe that P3 is connected
to Q∗ via κ . The circular arrow indicates the self-duality of the family (or polyhedron).

Q∗ ✛δ✲ Q
ϕ2✲ P2

P3

❄

✻
κ

P

❄
η

ϕ2✲ P1

✫✪
✬✲

δ

(7.3)

The corresponding parameters can be read off the next diagram for (congruence
classes of) individual polyhedra; here, Q(c, d) is the reference point.

Q∗(c, d) ✛δ✲ Q(c, d)
ϕ2✲ P2(c, d)

P3(
1
2 d,−c)

❄

✻
κ

P(c − d, c + d)

❄
η

ϕ2✲ P1(c − d, c + d)

✪
✬
✫
✲

δ

(7.4)

It is instructive to list the families of polyhedra by the structure of their special group,
along with the two regular polyhedra occurring in each family.

[3, 3]∗ [4, 3] [3, 4] [3, 3]+ [4, 3]+ [3, 4]+

P(a, b) Q(c, d) Q(c, d)∗ P1(a, b) P2(c, d) P3(c, d)
{6, 6}4 {4, 6}6 {6, 4}6 {∞, 3}(a) {∞, 3}(b) {∞, 4}·,∗3
{6, 6 |3} {4, 6 |4} {6, 4 |4} {3, 3} {4, 3} {3, 4}

In this table the columns are indexed by the special groups to which the respective
polyhedra correspond. The second row contains the families. The last two rows comprise
nine of the twelve discrete pure regular polyhedra in E3, namely those listed in the table
on p. 225 of [20] with dimension vectors

(dim R0, dim R1, dim R2) = (1, 2, 1), (1, 1, 1), (2, 1, 2),

as well as the three (finite) “crystallographic” Platonic polyhedra. The three remaining
pure regular polyhedra {∞, 6}4,4, {∞, 4}6,4 and {∞, 6}6,3 have dimension vector (1, 1, 2)
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and do not occur in families alongside chiral polyhedra (see Lemma 3.3). Note that ϕ2,
when applicable, and κ map a polyhedron to one in the same row.

A final comment about the regular polyhedra P = {∞, 3}(a), {∞, 3}(b) or {∞, 4}·,∗3
is appropriate. In each case the full symmetry group G(P) is generated by half-turns
R0, R1, R2, so the special group G(P)0 consists only of rotations and hence coin-
cides with G0. The generators R′0, R′1, R′2 of G(P)0 are also half-turns. For example, if
P = {∞, 4}·,∗3, then G(P)0 = G0 = [3, 4]+ (viewed as the rotation group of an oc-
tahedron) and the rotation axes of R′0, R′1 or R′2 are the lines through o and (−1, 1, 0),
(−1, 0, 1) or (0, 0, 1), respectively. It is not difficult to see that, in each case, G(P)0
is a C-group with respect to these generators (see Section 2E of [20]), so there exists
a finite abstract regular polyhedron P0 with automorphism group G(P)0 and distin-
guished generators R′0, R′1, R′2. (The abstract polyhedronQ0 mentioned earlier arises in
a similar way from {4, 6 |4} = Q(0, 1).) Inspection shows that P0 = {3, 3}, {4, 3}3 or
{3, 4}3, respectively. However, except in the first case, P0 does not coincide with the
regular polyhedron determined by G0 and its generators S′1, S′2; we know the latter to
be {3, 3}, {4, 3} and {3, 4}, respectively. In fact, only when P0 is directly regular should
we expect isomorphism for these polyhedra (see p. 510 of [25]). On the other hand, the
very fact that conjugation by R′2 yields an involutory group automorphism of G0 with
S′1 �→ S′1S′2

2 and S′2 �→ S′2
−1, correctly predicts that the polyhedron associated with G0

and S′1, S′2 is directly regular and has group G0 � C2. (Since {∞, 3}(a) and {∞, 3}(b)
are Petrie-duals, the same is true for their respective polyhedra P0, namely {3, 3} and
{4, 3}3. Moreover, since {6, 4 |4}σ = {∞, 4}·,∗3, we also have ({4, 6 | ·, 2}∗)σ = {3, 4}3,
which is self-Petrie.)

Notice, however, thatP0 does not correspond to a geometrically regular polyhedron; in
fact, no point (distinct from o) is admissible as the initial vertex for Wythoff’s construction
applied to G(P)0 and R′0, R′1, R′2.

These considerations also shed some light on why there are exactly two regular
polyhedra in each of the six families. In fact, given a family with special group G0,
there are precisely two involutory isometries R such that conjugation by R determines
a group automorphism of G0 with S′1 �→ S′1S′2

2 and S′2 �→ S′2
−1 (and hence T ′ �→ T ′).

Each R is the image R′2, in G0, of the generator R2 for a regular polyhedron in the
same family. For example, if P = {∞, 4}·,∗3, then S′1, S′2 (= S2) are as in (6.1) and
R is either the half-turn about the ξ3-axis or the reflection in the ξ1ξ2-plane (the two
isometries R have perpendicular mirrors). The first choice of R leads to P3(0, 1) =
{∞, 4}·,∗3 (with R′0, R′1, R′2 as above), and the second to P3(1, 0) = {3, 4}. For the
three families P1(a, b), P2(c, d) and P3(c, d) of helix-faced polyhedra, R is either the
reflection in the plane spanned by the rotation axes of T ′ and S′2, or the half-turn about
the line perpendicular to this plane at o. The same remains true for the three families
P(a, b), Q(c, d) and Q(c, d)∗ of finite-faced polyhedra, except that here S′2 is replaced
by S′22 .

8. Connecting P3(c, d)

In this final section we briefly discuss an operation that establishes the missing link
between P3(c, d) and the polyhedra with finite faces. This observation is due to Peter
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McMullen and is reproduced here with his permission. Similar operations were employed
in [17] for the classification of regular polytopes of full rank.

Let P be any chiral (or regular) polyhedron with corresponding group G = 〈S1, S2〉.
Assume, as usual, that the initial vertex (fixed by S2) is o. Define K := −I to be the
reflection in o. Now consider the operation

κ: (S1, S2) �→ (S1 K , K S2) =: (S̃1, S̃2). (8.1)

We show that this involutory operation interchanges the class of finite-faced polyhedra
with the class of helix-faced polyhedra. Observe that κ preserves T := S1S2; that is, if
T̃ := S̃1 S̃2, then T̃ = T . (Note also that, since K commutes with S2, we could have
replaced S1 K by K S1 to obtain a conjugate group.)

Lemma 8.1. The involutory operation κ pairs up polyhedra as follows:

(a) P1(a, b) = P(a, b)κ , for all real parameters a and b.
(b) P2(c, d) = Q(c, d)κ , for all real parameters c and d.
(c) P3(c, d) ∼= (Q(−d, 2c)∗)κ , for all real parameters c and d.

Proof. When P is of type {6, 6} or {4, 6} (that is, when S2 has period 6), if we follow
κ by the enantiomorphism operation µ of (2.3), and recall from [24] that K = S3

2 , we
obtain

(S1, S2) �→ (S̃1 S̃2
2 , S̃−1

2 ) = (S1S3
2 · S8

2 , S−4
2 ) = (S1S−1

2 , S2
2),

which is just the facetting operation ϕ2; that is, κµ = ϕ2. In other words, Pκ = Pϕ2 ; in
particular, Pκ and Pϕ2 represent the two enantiomorphic forms of the same underlying
polyhedron. Now Lemmas 4.1 and 5.1 prove parts (a) and (b).

For part (c) the analysis is more elaborate. Now let P := P3(c, d) and follow κ by
the duality operation δ (employing δ allows a direct comparison with generators used
in [24]). Then the generators S1 and S2 of (6.2) and (6.3) for P yield those for (Pκ)∗,
namely

Ŝ1 := S̃−1
2 : x �→ (ξ3,−ξ2,−ξ1),

Ŝ2 := S̃−1
1 : x �→ −(ξ2, ξ3, ξ1)+ (c,−c, d).

(8.2)

The fixed point of Ŝ2 is

z := (c + 1
2 d,− 1

2 d,−c + 1
2 d)

(not o). The direction vector of the base edge of (Pκ)∗ is given by

zT̂ − z = (−d, d, 2c),

where T̂ := Ŝ1 Ŝ2, so we should expect the parameters to be −d, 2c, not c, d. We now
establish congruence of (Pκ)∗ with the polyhedron Q(−d, 2c) as follows. Begin with
the distinguished generators of the group for Q(−d, 2c) described in (6.1) and (6.2) of
[24] (denoted by S1, S2), and replace them by the alternative pair U1,U2 of generators
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under enantiomorphism. It is straightforward to check that if R denotes the translation
by z, then

R−1U1 R = Ŝ1, R−1U2 R = Ŝ2.

It follows that (Pκ)∗ = Q(−d, 2c)R and hence Pκ = Q(−d, 2c)∗R. In particular,
Pκ = Q(−d, 2c)∗, up to translation, and therefore also P = (Q(−d, 2c)∗)κ , up to
translation.

We summarize the relationships in the following diagram; the corresponding param-
eters can be read off diagram (7.4) (with ϕ2 replaced by κ):

Q∗ ✛δ✲ Q ✛κ✲ P2

P3

❄

✻
κ

P

❄
η

✛κ✲ P1

✫✪
✬✲

δ

(8.3)

The two arrows for κ on the right in (8.3) are double arrows, although those for ϕ2 in
diagram (7.3) are not. None of the helix-faced polyhedra is centrally symmetric with
respect to a vertex, so in particular K is not contained in its group. It follows that κ
(applied to one of them) is generally not a mixing operation. However, for P(a, b) and
Q(c, d) we do obtain a mixing operation κ (namely ϕ2µ). Notice, however, that the
groups of P(a, b)κ and Q(c, d)κ are proper subgroups of those of P(a, b) and Q(c, d),
respectively, even though κ is involutory.

One last comment is appropriate. The special group of a finite-faced polyhedron is
generated by rotatory reflections, while the special group of a helix-faced polyhedron is
generated by rotations. When applied to the special groups, κ turns generating rotatory
reflections into generating rotations, and vice versa.
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