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Abstract. Given a convex body C ⊂ Rn (i.e., a compact convex set with nonempty
interior), for x ∈ int(C), the interior, and a hyperplane H with x ∈ H , let H1, H2 be the two
support hyperplanes of C parallel to H . Let r(H, x) be the ratio, not less than 1, in which
H divides the distance between H1, H2. Then the quantity

As(C) := inf
x∈int(C)

sup
H�x

r(H, x)

is called the Minkowski measure of asymmetry of C .
As(·) can be viewed as a real-valued function defined on the family of all convex bodies

in Rn . It has been known for a long time that As(·) attains its minimum value 1 at all centrally
symmetric convex bodies and maximum value n at all simplexes.

In this paper we discuss the stability of the Minkowski measure of asymmetry for
convex bodies. We give an estimate for the deviation of a convex body from a simplex if
the corresponding Minkowski measure of asymmetry is close to its maximum value. More
precisely, the following result is obtained:

Let C ⊂ Rn be a convex body. If As(C) ≥ n − ε for some 0 ≤ ε < 1/8(n + 1), then
there exists a simplex S0 formed by n + 1 support hyperplanes of C , such that

(1+ 8(n + 1)ε)−1 S0 ⊂ C ⊂ S0,

where the homethety center is the (unique) Minkowski critical point of C . So

dBM(C, S) ≤ 1+ 8(n + 1)ε

holds for all simplexes S, where dBM(·, ·) denotes the Banach–Mazur distance.

1. Introduction

A measure of asymmetry (or symmetry) for convex bodies, according to Grünbaum’s
definition in his well-known paper [1], is a nonnegative real-valued function defined on
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the family of all convex bodies of a finite-dimensional (affine) space, which satisfies
some additional conditions and therefore can be used to describe how close (or far) a
convex body is to (or from) a centrally symmetric one. In [1] some known measures of
symmetry were summarized and discussed, among which the Minkowski measure of
asymmetry (see Section 2 in this paper or [5] for the definition) is probably the simplest
and best known one. After [1] some new ones have also been studied.

Many important properties of such measures (especially the Minkowski measure) have
been studied by different authors from different points of view (see [2]–[11]). Among
these studies, Groemer [3] focuses on the stabilities of two measures of asymmetry that
characterize cones as the most asymmetric convex bodies. More precisely, he established
stability estimates for these (two) measures that provide information on the deviation
of a convex body from a cone if the corresponding measure of symmetry is close to its
maximum value. Naturally the same stability problems for other measures of asymmetry
(or symmetry) should be studied too.

In this paper we study the stability of the Minkowski measure of asymmetry. We
give an estimate for the deviation of a convex body from a simplex if the corresponding
Minkowski measure of asymmetry is close to its maximum value.

The main result in this paper is the following stability theorem (the proof will be
found in Section 4):

Theorem A. Let C ⊂ Rn be a convex body. If its Minkowski measure of asymmetry
As(C) ≥ n − ε for some 0 ≤ ε ≤ 1/8(n + 1), then

dBM(C, S) ≤ 1+ 8(n + 1)ε

holds for all simplexes S, where dBM(·, ·) denotes the Banach–Mazur distance.

(See Section 2 for the definition of the Banach–Mazur distance). More precisely,

Theorem A∗. Let C ⊂ Rn be a convex body. If its Minkowski measure of asymmetry
As(C) ≥ n − ε for some 0 ≤ ε ≤ 1/8(n + 1), then there exists a simplex S0 formed by
n + 1 support hyperplanes of C , such that

(1+ 8(n + 1)ε)−1S0 ⊂ C ⊂ S0,

where the homothety center is the (unique) Minkowski critical point of C .

Remark. The constant 8(n + 1) here may not be the best, but there are examples
showing that in general the term ε cannot be replaced by εk for any k > 1.

2. Preliminaries

In this paper we work mainly on the n-dimensional Euclidean spaces (n ≥ 1) and work
with affine maps (functions) instead of linear ones since it turns out that the affine setting
works more suitably than the linear one.
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Denote by Rn the standard Euclidean space, by C, D, etc., the convex sets in Rn

and by Kn the family of all convex bodies (i.e., the compact convex sets with nonempty
interiors) in Rn . The convex body of the form conv(x1, . . . , xn+1) is called a simplex (in
this case, x1, . . . , xn+1 must be affinely independent), where conv denotes the convex
hull. Notice that a simplex can be expressed as an intersection of suitable n + 1 closed
half-spaces. Denote by T, S, etc., the maps from Rn to Rm .

Given C ⊂ Rn and T : Rn → Rm, denote by T∗(C) the image set

{T x ∈ Rm | x ∈ C}.
A map T : Rn → Rm is called affine if T (

∑k
i=1 λi xi ) =

∑m
i=1 λi T xi for any xi ∈ Rn

and λi ∈ R (1 ≤ i ≤ k) with
∑m

i=1 λi = 1. Especially, if m = 1, T is called an affine
function. We usually denote functions by f, g, etc.

We denote

Aff (Rn, Rm) := {T : Rn → Rm | T is affine},
aff (Rn) := { f | f is an affine function on Rn}.

aff (Rn) is called the affine dual space of Rn , which is a linear space under the ordinary
addition and scalar multiplication of functions and can be identified with Rn+1 in a
natural way. We write Aff (Rn) in brief for Aff (Rn, Rn).

If we denote the linear dual space of aff (Rn) by
(

aff (Rn)
)′

, then Rn can be embedded

as an affine subspace into
(

aff (Rn)
)′

. More precisely, under the correspondence Rn �
x ↔ x ′′ ∈ (

aff (Rn)
)′

defined by x ′′( f ) = f (x) for f ∈ aff (Rn), we have

Rn = {z′′ ∈ (
aff (Rn)

)′ | z′′(1) = 1}, (2.1)

where 1 denotes the constant affine function 1 on Rn.

For any λ ∈ R, x ∈ Rn, and C ⊂ Rn, we denote

λx C := {x + λ(y − x) | y ∈ C}.
We recall the well-known Banach–Mazur distance defined on Kn .

Definition 1. Given C, D ∈ Kn, the Banach–Mazur distance dBM(C, D) between C, D
is defined as

dBM(C, D) := inf
{
λ > 0 | T∗(C) ⊂ D ⊂ λx

(
T∗(C)

)}
,

where the infimum is taken over all x ∈ Rn and all nonsingular T ∈ Aff (Rn).

Remark 1. It is easy to see that dBM(C, D) = 1 iff C and D are affinely equivalent,
i.e., there exists a nonsingular T ∈ Aff (Rn) such that D = T∗(C). Thus dBM (or
more precisely log dBM) is actually a metric on Kn/ ∼, where “∼” denotes the affine
equivalence relation.

In this paper the main objects we study are the so-called (affinely invariant) measures
of asymmetry for convex bodies. So we recall here some measures of asymmetry (for a
general definition of measures of asymmetry, see [1] or [5]).



354 Q. Guo

Definition 2 (see [1]). Given C ∈ Kn , for x ∈ int(C), the interior, and a hyperplane H
with x ∈ H , let H1, H2 be the two support hyperplanes of C parallel to H . Let r(H, x)
be the ratio, not less than 1, in which H divides the distance between H1, H2. Now if we
denote

r(x) = r(C, x) := sup
H�x

r(H, x),

then the Minkowski measure of asymmetry of C is defined as

As(C) := inf
x∈int(C)

r(x).

Any point c ∈ int(C) satisfying r(c) =As(C) is called a (Minkowski) critical point of C .

Remark 2. (1) It is easy to see that As(·) is affinely invariant, i.e., As(T∗(C)) = As(C)
for any C ∈ Kn and any nonsingular T ∈ Aff (Rn).

(2) It is easy to check that the function r(x) defined on int(C) is convex (see Remark
4) and limx→∂C r(x) = ∞, where ∂C denotes the boundary of C , so infx∈int(C) r(x) is
attained, i.e., for each C there exists at least one critical point.

(3) There are several other equivalent definitions. For instance, for any x ∈ int(C)
and chord l of C passing through x , let r ′(l, x) be the ratio, not less than 1, in which x
divides the length of l. Then it is known that r(x) = supl�x r ′(l, x), and so

As(C) = inf
x∈int(C)

sup
l�x

r ′(l, x).

For other equivalent definitions see [6] or [9].
(4) It has been known for a long time that 1 ≤ As(C) ≤ n (∀C ∈ Kn) and As(C) = 1

iff C is centrally symmetric; As(C) = n iff C is a simplex (see [1] or [2]).

The following measure of symmetry, introduced for the first time in [9], is equivalent
in some sense to the Minkowski one and is more practical and useful. To introduce this
measure of symmetry, we first give the concept of an affine dual set of a given C ∈ Kn

(see [9]).

Definition 3 (see [9]). Given C ∈ Kn, we define the affine dual set C A
[0,1] of C by

C A
[0,1] := { f ∈ aff (Rn) | f∗(C) ⊂ [0, 1]}.

We also denote

Ca
[0,1] := { f ∈ aff (Rn) | f∗(C) = [0, 1]},

which is a subset of ∂C A
[0,1].

Remark 3. Ca
[0,1] consists of the main part of ∂

(
C A

[0,1]

)
in the sense that C A

[0,1] =
conv

(
0, 1,Ca

[0,1]

)
, where 0, 1 denote the constant affine functions 0, 1 on Rn,

respectively.
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Now we have the following

Definition 4 (see [9] or [10]). Given C ∈ Kn. For each x ∈ int(C), denote

ν(x) = ν(C, x) = inf
f ∈Ca

[0,1]

f (x),

and we define the measure as(C) of symmetry of C by

as(C) := sup
x∈int(C)

ν(C, x).

Any point x satisfying ν(C, x) = as(C) is called an as-critical point of C .

Remark 4. (1) For each C ∈ Kn, the function ν(C, x) defined on C is concave since it
is the infimum of a family of affine functions, and ν(C, x)|∂C = 0. So as(C) is attained,
i.e., there exists at least one as-critical point for each C .

(2) It is not hard to see that for any C ∈ Kn and x ∈ int(C), we have

r(x) = 1

ν(x)
− 1 or ν(x) = 1

r(x)+ 1
,

and consequently

As(C) = 1

as(C)
− 1 or as(C) = 1

As(C)+ 1

from which and (4) in Remark 2 it follows that C is symmetric iff as(C) = 1
2 , C is a

simplex iff as(C) = 1/(n + 1), and c ∈ int(C) is a Minkowski critical point iff c is an
as-critical point.

We also point out that, with the help of the relation between r(x) and ν(x) above, the
convexity of the function r(x) in Definition 2 can be easily derived from the concavity
of the function ν(x).

We use CC to denote the set of all as critical (or Minkowski) points of C . By the
above, CC is a nonempty convex set.

3. Some Properties of the Critical Affine Functionals

Given a convex body C ∈ Kn and c ∈ CC , an affine function f ∈ Ca
[0,1] is called a critical

function (with respect to c) of C if f (c) = as(C).
We point out that if f is a critical function, then the ratio, not less than 1, in which

H := { f =as(C)} divides the distance between H0 := { f = 0} and H1 := { f = 1},
is exactly the Minkowski measure As(C). Therefore the hyperplane { f = 0} is called
a critical support hyperplane (with respect to c) of C if f is a critical function (with
respect to c) of C .

Denote, for a fixed c ∈ CC , by EC(c) the family of all critical functions with respect
to c, i.e.,

EC(c) = { f ∈ Ca
[0,1] | f (c) = as(C)}.
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In this section we mainly discuss the properties ofEC(c). We show thatEC(c) contains
“enough” elements to represent some constant functions, which in turn implies that, under
some conditions, there exist “enough” critical support hyperplanes to form a simplex
which is “close to” C .

Lemma 1. Ca
[0,1] is bounded and closed, and so is its convex hull conv(Ca

[0,1]).

Proof. The boundedness is obvious. So we need only show the closedness.
Suppose f0 ∈ aff (Rn), fk ∈ Ca

[0,1] (k = 1, 2, . . .) satisfy

lim
k→∞

fk(x) = f0(x) for all x ∈ Rn.

First, it is clear that f0∗(C) ⊂ [0, 1]. To show the converse inclusion, we choose, for
each k, xk, yk ∈ C such that fk(xk) = 0, fk(yk) = 1. Then by the compactness of C , we
may find x0, y0 ∈ C such that (by passing to subsequences)

xk → x0, yk → y0, k →∞.
Then by the equicontinuity of fk on C , it follows that we must have f0(x0) = limk→∞
fk(x0) = limk→∞ fk(xk) = 0 and similarly f0(y0) = 1. Therefore f0∗(C) ⊃ [0, 1].
Thus f0∗(C) = [0, 1], i.e., f0 ∈ Ca

[0,1].

If we regard each number in R as a constant affine function on Rn , then we have the
following:

Lemma 2. For any C ∈ Kn , we have

conv(Ca
[0,1]) ∩ R = [as(C), 1− as(C)].

Proof. We first observe that µ ∈ conv (Ca
[0,1]) iff 1 − µ ∈conv (Ca

[0,1]). In fact, if µ ∈
conv (Ca

[0,1]), i.e., µ = ∑N
i=1 αi fi for some fi ∈ Ca

[0,1] and αi > 0 with
∑N

i=1 αi = 1,

then 1 − µ = ∑N
i=1 αi (1 − fi ) ∈ conv (Ca

[0,1]) since if f ∈ Ca
[0,1], then 1 − f ∈ Ca

[0,1].
Then we just need to change the roles of µ and 1− µ.

Now suppose µ ∈ conv (Ca
[0,1]), i.e., µ = ∑N

i=1 αi fi for some fi ∈ Ca
[0,1] and αi >

0 with
∑N

i=1 αi = 1, then by choosing c ∈ CC , we get that µ = ∑N
i=1 αi fi (c) ≥∑N

i=1 αi as(C) = as(C). Thus by the above observation, we proved in fact that

conv (Ca
[0,1]) ∩ R ⊂ [as(C), 1− as(C)].

To prove the converse inclusion, by the same observation above, we now need only
show that as(C) ∈conv(Ca

[0,1]). To see this, we first make another observation that the
constant function 1

2 ∈conv(Ca
[0,1]) since 1

2 = 1
2 f + 1

2 (1− f ) for any f ∈ Ca
[0,1].

Now suppose as(C) /∈conv(Ca
[0,1]), then by the Hahn–Banach theorem, there is x ′′ ∈(

aff (Rn)
)′

such that

x ′′(as(C)) < inf
f ∈conv(Ca

[0,1])
x ′′( f ). (3.1)
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Notice that x ′′(1) �= 0, otherwise we will have x ′′(λ) = λx ′′(1) = 0 for all λ ∈ R and
especially x ′′(as(C)) = x ′′( 1

2 ) = 0 which contradicts (3.1) since 1
2 ∈conv(Ca

[0,1]).

We denote x∗ = x ′′/x ′′(1). Thus we have that x∗(1) = 1, which ensures by (2.1) that
x∗ ∈ Rn , and that either

as(C) = x∗(as(C)) < inf
f ∈Ca

[0,1]

x∗( f ) = inf
f ∈Ca

[0,1]

f (x∗) (3.2)

or

as(C) = x∗(as(C)) > sup
f ∈Ca

[0,1]

x∗( f ) = sup
f ∈Ca

[0,1]

f (x∗). (3.3)

Since x∗ ∈ Rn , then either x∗ ∈ C or x∗ /∈ C. If x∗ /∈ C , then by the Hahn–Banach
theorem, in case (3.2), we may choose f0 ∈ Ca

[0,1] such that f0(x∗) < 0 which leads
to the contradiction that as(C) < 0, and, in case (3.3), we may choose f1 ∈ Ca

[0,1]
such that f1(x∗) > 1 which leads to the contradiction that as(C) > 1. So we must
have x∗ ∈ C .

However, if x∗ ∈ C , then (3.2) implies that

as(C) < ν(C, x∗),

which is a contradiction to the definition of as(C). Equation (3.3) implies the contra-
diction that as(C) > 1

2 since we can always choose f2 ∈ Ca
[0,1] such that f2(x∗) ≥ 1

2 .

Therefore we must have that as(C) ∈conv(Ca
[0,1]). This completes the proof.

Remark 5. Since 1/(n + 1) ≤ as(C) ≤ 1
2 for C ∈ Kn, by Lemma 2, we get that

{ 12 } ⊂ conv(Ca
[0,1]) ∩ R ⊂

∣∣∣∣ 1

n + 1
,

n

n + 1

∣∣∣∣ .
Lemma 3. If as(C) = ∑N

i=1 αi fi for fi ∈ Ca
[0,1] and αi > 0 with

∑N
i=1 αi = 1, then

for any c ∈ CC , fi ∈ EC(c) for all i .

Proof. For each c ∈ CC , we have

as(C) =
N∑

i=1

αi fi (c) ≥
N∑

i=1

αi as(C) = as(C)

since fi (c) ≥ as(C) for all i , which in turn implies that fi (c) = as(C) for all i .

By Lemmas 2 and 3, we immediately get

Corollary 1. For any C ∈ Kn and c ∈ CC , we have

as(C) ∈ conv(EC(c)).
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Furthermore, we have the following:

Lemma 4. For any c ∈ CC , there exist { fi }n+1
i=1 ⊂ EC(c) and α1 ≥ 0, . . . , αn+1 ≥ 0

with
∑n+1

i=1 αi = 1 such that

as(C) =
n+1∑
i=1

αi fi .

Proof. By Corollary 1, as(C) ∈conv(EC(c)). However, EC(c) is a subset of the n-
dimensional affine space { f ∈ aff (Rn) | f (c) = as(C)}, thus by the Carathéodory
theorem there exist { fi }n+1

i=1 ⊂ EC(c) and αi ≥ 0 with
∑n+1

i=1 αi = 1 such that

as(C) =
n+1∑
i=1

αi fi .

Lemma 5. If as(C) = ∑N
i=1 αi fi for fi ∈ Ca

[0,1] and αi > 0 with
∑N

i=1 αi = 1, then
αi ≤ as(C) for all i . Therefore αi ≥ 1− (N − 1) as(C) for all i .

Proof. For each i (1 ≤ i ≤ N ), choose xi ∈ ∂C such that fi (xi ) = 1, then (notice that
f j (xi ) ≥ 0 for all i, j) we have for each i ,

as(C) =
N∑

j=1

αj f j (xi ) = αi +
∑
j �=i

αj f j (xi ) ≥ αi ,

and for each i ,

αi = 1−
N∑

j �=i

αj ≥ 1− (N − 1) as(C).

Lemma 6. If as(C) < 1/n and if as(C) = ∑n+1
i=1 αi fi for some fi ∈ EC(c) (where

c is the unique critical point of C) and αi ≥ 0 with
∑n+1

i=1 αi = 1, then the set � :=⋂n+1
i=1 { fi ≥ 0} is bounded, i.e., � is a simplex.

Proof. Before we prove the lemma, we point out that, under the assumption that
as(C) < 1/n, the uniqueness of the critical point is ensured by a theorem in [2] which
states that dim CC + as(C)−1 ≤ n + 1, where dim denotes the dimension.

To complete the proof, we first notice that, by Lemma 5, αi ≥ 1 − n as(C) >
1− n(1/n) = 0 for all i .

Thus, suppose � is not bounded, then there exists a ray l ⊂ �. Now if there exists
some 1 ≤ i0 ≤ n + 1, say i0 = 1, such that f1 is not a constant on l, then we will
have supx∈l f1(x) = +∞ since f1 is an affine function and f1(x) ≥ 0 on l ⊂ �,
which, together with the fact that for any x ∈ l, as(C) = α1 f1(x) +

∑n+1
i=2 αi fi (x) ≥

α1 f1(x) since fi (x) ≥ 0 for all i and x ∈ l, leads to the contradiction that as(C) ≥
supx∈l α1 f1(x) = +∞. So all fi are constants on l.

Now we consider the (n−1)-dimensional space Rn/[l] ∼= Rn−1 where [l] denotes the
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one-dimensional affine space containing l. Let P : Rn → Rn−1 be the corresponding

projection, and denote C̃ = P(C) = {x̃ | x̃ = P(x), x ∈ C}. It is clear that C̃
is a convex body in Rn−1. Now if we define f̃i ∈ aff (Rn−1) (1 ≤ i ≤ n + 1) by
f̃i (x̃) := fi (x) for x̃ ∈ Rn−1, then it is easy to see that f̃i ∈ C̃a

[0,1] (1 ≤ i ≤ n + 1)

and that as(C) = ∑n+1
i=1 αi f̃i , i.e., as(C) ∈ conv(C̃a

[0,1]), which, together with the fact
that as(C) < 1/n ≤ 1/2, implies that 1

n ∈ conv(C̃a
[0,1]), a contradiction to Lemma 2 (see

Remark 5). This finishes the proof.

Now, by Lemmas 4 and 6, we have the following:

Corollary 2. Let C ∈ Kn. If as(C) < 1/n, then there exist fi ∈ EC(c) (1 ≤ i ≤ n+1),
where (the unique) c ∈ CC , such that

⋂n+1
i=1 { fi ≥ 0} is bounded, i.e.,

⋂n+1
i=1 { fi ≥ 0} is a

simplex.

4. Proofs of the Main Theorems

We first show a simple property of the critical functions of a simplex.
Let S be a simplex with facets Fi (1 ≤ i ≤ n + 1). We denote by fFi ∈ Sa

(0,1] the
affine function vanishing on Fi . Then we have

Lemma 7. If S is a simplex with facets Fi (1 ≤ i ≤ n + 1), then

n+1∑
i=1

fFi = 1.

Proof. If we denote by xi the unique point in { fFi = 1} ∩ S (1 ≤ i ≤ n + 1), i.e., xi

(1 ≤ i ≤ n+1) are all the vertices of S, then we have that fFi (xi ) = 1 and fFi (xj ) = 0 for
j �= i . Furthermore, it is known that for each x ∈ Rn, there exist βi ∈ R (1 ≤ i ≤ n+1)
such that

∑n+1
i=1 βi = 1 and x =∑n+1

i=1 βi xi . Therefore

n+1∑
i=1

fFi (x) =
n+1∑
j=1

fFj

(
n+1∑
i=1

βi xi

)
=

n+1∑
i, j=1

βi fFj (xi )

=
n+1∑
i=1

βi fFi (xi ) =
n+1∑
i=1

βi = 1.

Notice that the functions fFi in Lemma 7 are actually critical functions of the simplex.
So we give the following stability version of Lemma 7 for general convex bodies.

Lemma 8. Let C ∈ Kn , c ∈ CC , if as(C) ≤ (1/(n + 1))(1 + ε) for some 0 ≤ ε <
1/2(n + 1), then for any n + 1 affine functions f1, . . . , fn+1 ∈ EC(c) satisfying that⋂n+1

i=1 { fi ≥ 0} is bounded (i.e., a simplex), we have

1 ≤
n+1∑
i=1

fi (x) ≤ 1+ 2(n + 1)ε for all x ∈
n+1⋂
i=1

{ fi ≥ 0}.
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Proof. Denote by S the simplex
⋂n+1

i=1 { fi ≥ 0} (⊃ C), and denote by gi (1 ≤ i ≤ n+1),
where gi satisfies {gi = 0} = { fi = 0}, the critical functional of S. Then by Lemma 7
and the fact that gi (x) ≤ fi (x) for all x ∈ S, it follows that

1 =
n+1∑
i=1

gi (c) ≤
n+1∑
i=1

fi (c) = (n + 1) as(C) ≤ 1+ ε.

So

0 ≤
n+1∑
i=1

( fi (c)− gi (c)) ≤ ε.

Thus, for any 1 ≤ i ≤ n + 1,

gi (c) ≥ fi (c)− ε.
Therefore, for all x ∈ S (notice that {gi = 0} = { fi = 0}), we have

gi (x) = gi (c)

fi (c)
fi (x) ≥ fi (c)− ε

fi (c)
fi (x)

=
(

1− 1

fi (c)
ε

)
fi (x) ≥ (1− (n + 1)ε) fi (x)

(here we use the fact that fi (c) = as(C) ≥ 1/(n + 1)) followed by

fi (x) ≤
(
1− (n + 1)ε

)−1
gi (x) ≤

(
1+ 2(n + 1)ε

)
gi (x),

where we use the fact that (1− t)−1 ≤ 1+ 2t for 0 ≤ t ≤ 1
2 . Now it follows that, for all

x ∈ S,

1 =
n+1∑
i=1

gi (x) ≤
n+1∑
i=1

fi (x)

≤ (
1+ 2(n + 1)ε

) n+1∑
i=1

gi (x) = 1+ 2(n + 1)ε.

The next theorem, stated as a stability theorem for the as-measure of asymmetry, is
equivalent to Theorem A∗.

Theorem 1. Given C ∈ Kn. If as(C) ≤ (1/(n + 1))(1 + ε) for some 0 ≤ ε <

1/4(n + 1)2, then there exists a simplex S0 formed by the critical support hyperplanes
such that (

1+ 4(n + 1)2
ε

n

)−1

c
S0 ⊂ C ⊂ S0.

Proof. We will show actually that for all simplexes S of the form
⋂n+1

i=1 { fi ≥ 0}, where
fi ∈ EC(c) (1 ≤ i ≤ n + 1), we have(

1+ 4(n + 1)2
ε

n

)−1

c
S ⊂ C ⊂ S,
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which together with Corollary 2 (notice that the assumption on ε ensures that (1/(n +
1))(1+ ε) < 1/n) will finish the proof.

Suppose a simplex S0 =
⋂n+1

i=1 { fi ≥ 0} for some fi ∈ EC(c) (1 ≤ i ≤ n + 1), then
by Lemma 8, for all x ∈ C,

1 ≤
n+1∑
i=1

fi (x) ≤ 1+ 2(n + 1)ε.

Therefore, for any fixed 1 ≤ j ≤ n + 1, if we choose yj ∈ C ∩ { f j = 1}, then we have∑
i �= j

fi (yj )+ 1 ≤ 1+ 2(n + 1)ε or
∑
i �= j

fi (yj ) ≤ 2(n + 1)ε

followed by

fi (yj ) ≤ 2(n + 1)ε, i �= j.

Now set S1 =
⋂n+1

i=1 { fi ≥ 2(n+ 1)ε}. Then clearly S1 is bounded since S1 ⊂ S0, and
int(S1)/ϕ since c ∈ int(S1) derived from the fact that fi (c) ≥ 1/(n + 1) > 2(n + 1)ε
for all i . So S1 is a simplex. It is also clear that the facets { fi = 2(n + 1)ε} of S1 are
parallel to the facets { fi = 0} of S0.

Furthermore, since for any 1 ≤ i ≤ n + 1,

fi (c)

fi (c)− 2(n + 1)ε
= 1+ 2(n + 1)

fi (c)− 2(n + 1)ε
ε < 1+ 4(n + 1)2ε

(where we used the fact that fi (c) − 2(n + 1)ε > 1/(n + 1) − 2(n + 1)/4(n + 1)2 =
1/2(n + 1)), we have

λ−1
c S0 ⊂ S1,

where λ = 1+ 4(n + 1)2ε.
Notice further that (since fi (yj ) ≤ 2(n + 1)ε for all 1 ≤ j ≤ n + 1, i �= j)

S1 ⊂ conv{yj | 1 ≤ j ≤ n + 1} ⊂ C,

we finally get

λ−1
c S0 ⊂ S1 ⊂ C ⊂ S0.

This completes the proof.

Now we can finish the proof for Theorem A∗:

Proof of Theorem A∗. By Remark 4, it is easy to see that if As(C) ≥ n − ε, then
as(C) ≤ (1/(n + 1))(1 + ε/n), and ε/n < 1/4(n + 1)2 when ε < 1/8(n + 1). So by
Theorem 1 and the fact that 1+ 4(n+ 1)2(ε/n) ≤ 1+ 8(1+ n)ε when ε < 1/8(n+ 1),
there is a simplex S0 formed by the critical support hyperplanes of C such that(

1+ 8(1+ n)ε
)−1

c S0 ⊂
(

1+ 4(n + 1)2
ε

n

)−1

c
S0 ⊂ C ⊂ S0.
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The following estimate immediately comes from Theorem A.

Corollary 3. Let C, D ∈ Kn. If As(C) ≥ n − 1/8(n + 1), As(D) ≥ n − 1/8(n + 1),
then

dM(C, D) ≤ 1+ cn max{n − As(C), n − As(D)},
where cn = 24(n + 1).
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