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Abstract. Suppose a finite configuration of labeled points p = (p1, . . . , pn) inEd is given
along with certain pairs of those points determined by a graph G such that the coordinates
of the points of p are generic, i.e., algebraically independent over the integers. If another
corresponding configuration q = (q1, . . . , qn) in Ed is given such that the corresponding
edges of G for p and q have the same length, we provide a sufficient condition to ensure
that p and q are congruent in Ed . This condition, together with recent results of Jackson and
Jordán [JJ], give necessary and sufficient conditions for a graph being generically globally
rigid in the plane.

1. Introduction

A fundamental problem in distance geometry is to determine when the distances between
certain pairs of vertices of a finite configuration in Euclidean space Ed determine it up
to congruence. To put this more precisely, we use the language from the rigidity of bar
frameworks.

1.1. Global rigidity

A configuration is a finite collection of n labeled points, p = (p1, . . . , pn), where each
pi ∈ Ed , for 1 ≤ i ≤ n. We say the configuration p is in Ed . A graph G will always
be finite, undirected, and without loops or multiple edges. A bar framework in Ed is a
graph G with n vertices together with a corresponding configuration p = (p1, . . . , pn)

in Ed , and is denoted by G(p). We represent a framework graphically as in Fig. 1, where
in this case G is K4, the complete graph on four vertices. See [AR1] and [Ar2] for these
basic definitions and background.
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Fig. 1. The complete graph K4.

Here the vertices are represented as small circular points, and line segments, which
represent bars, may cross without a vertex at the intersection.

We say that two frameworks G(p) and G(q) are equivalent, and we write G(p) ≡
G(q) if when {i, j} forms an edge of G, then |pi − pj | = |qi − qj |. We say that a
configuration p = (p1, . . . , pn) is congruent to q = (q1, . . . , qn), and we write p ≡ q if
for all {i, j} in {1, . . . , n}, |pi − pj | = |qi − qj |. A framework G(p) is called globally
rigid in Ed if G(p) ≡ G(q) implies p ≡ q. In the past we have used the term “uniquely
realized” for globally rigid, and this is the term that is used in [JJ], where the term globally
rigid is reserved for generic global rigidity for a graph G. (A definition of generic global
rigidity will be given shortly.) We stay with the definitions here.

Figure 2 shows some examples of frameworks that are globally rigid in the plane.
For the example on the left, if the vertices are perturbed a sufficiently small amount, it
will remain globally rigid in the plane, whereas that is not the case for the other two
frameworks. The middle vertex in the middle figure must lie along the straight line
determined by the other two adjacent vertices. The six vertices on the figure on the right
must lie on a conic (in the order shown) to ensure global rigidity.

Figure 3 shows some examples that are not globally rigid in the plane. The example
on the left is not rigid in the plane, whereas the other three are rigid in the plane. The
middle two examples have non-equivalent realizations obtained by reflecting one of the
vertices about a line. (The third configuration is chosen such that the appropriate three
vertices are collinear, making it non-generic.) The example on the right is not globally
rigid, even though its configuration is generic, by a theorem from [H3].

A framework G(p) in Ed is said to be rigid if there is an ε > 0 such that for any other
configuration q inEd , where |p−q| < ε and G(p) ≡ G(q), then p ≡ q. All frameworks
in Figs. 1 and 2 and all but the left framework in Fig. 3 are rigid in the plane.

Fig. 2. Globally rigid frameworks in the plane.
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Fig. 3. Frameworks not globally rigid in the plane.

In [C1] and [C3] there are techniques for showing that some frameworks are globally
rigid, essentially using tensegrity frameworks. (Tensegrity frameworks are similar to
the bar frameworks which we have defined here, but they involve inequalities replacing
equality distance constraints in the definition.)

One can ask, for a given bar framework G(p), whether it is globally rigid. However,
in [Sa] it is shown that this problem is strongly NP hard even for bar frameworks in
E

1. We will show that there is an algebraic set of configurations, defined by polynomial
equations in the coordinates of the configuration, such that when the configuration p
is outside that set, G(p) is globally rigid in E2. However, the complexity of that set of
configurations appears to be exponential in n, the number of points of the configuration.

1.2. Generic Global Rigidity

So, we are led to consider the question of whether “most” configurations p for a given
graph G are globally rigid. A set A = (α1, . . . , αm) of distinct real numbers is said to
be algebraically dependent if there is a non-zero polynomial h(x1, . . . , xm) with integer
coefficients such that h(α1, . . . , αm) = 0. If A is not algebraically dependent, it is called
generic. If a configuration p = (p1, . . . , pn) in Ed is such that its dn coordinates are
generic, we say p is generic.

We raise a possibly more tractable problem. For a given graph G, when G(p) is
globally rigid for all generic configurations p in Ed we say that G itself is generically
globally rigid in Ed . So for a fixed dimension d we ask whether a given graph G is
generically globally rigid. For d = 1, it is easy to see that G is generically globally
rigid if and only if G is vertex 2-connected, which means that it takes the removal of at
least two vertices of G to disconnect the rest of the vertices. In general a graph is vertex
m-connected if it takes the removal of at least m vertices of G to disconnect the rest of
the vertices.

For d = 2, by combining the results of [H3], [JJ], and here we now have complete
information about generic global rigidity for any graph. We first describe the result in
[H3]. A framework G(p) in Ed is said to be redundantly rigid if G(p) is rigid in Ed even
after the removal of any edge of G. The following is a main result in [H3].

Theorem 1.1 [H3]. Let G(p) be a framework in Ed such that the configuration p is
generic, and G(p) is globally rigid with at least d + 1 vertices. Then the following
conditions must hold:

(i) The graph G is vertex (d + 1)-connected.
(ii) The framework G(p) is redundantly rigid in Ed .
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Condition (i) is clear. One just reflects the vertices on one side of a hyperplane
through any separating set of d vertices as in the leftmost two frameworks of Fig. 3.
Condition (ii) is more subtle. Roughly the idea is to remove an edge from G, let the
resulting framework flex, and replace the edge in a different configuration. It is natural
to conjecture that conditions (i) and (ii) are sufficient for generic global rigidity as well
as necessary. Unfortunately, for d ≥ 3, in [C2], that conjecture is shown to be false. For
d = 3, the complete bipartite graph K (5, 5) is redundantly rigid, vertex 4-connected,
but there are generic configurations, where the corresponding framework is not globally
rigid, and it is the only known example.

For d = 2, thanks to a recent result of Jackson and Jordán [JJ, Theorem 1.1], combined
with the result here, Theorem 1.3, conditions (i) and (ii) give a complete description of
when a graph G is generically globally rigid. See also [BJ] for the result when case G
has 2n − 2 edges, the minimum possible for generic global rigidity in the plane when
G has n vertices. (See page 99 of [GSS] for a statment of my conjecture when G has
2n − 2 edges, as well as [H2] )

For d ≥ 3 it is somewhat embarrassing to admit that it is not known whether global
rigidity is a generic property. This means that if G(p) is a generically rigid framework
in Ed , and q is another generic configuration in Ed , it is not known, except for d = 1
or d = 2, whether G(q) is globally rigid. This question was first pointed out by Maria
Terrell.

On the other hand, it is known that rigidity is a generic property. In other words, if p
is a generic configuration in Ed , and q is another generic configuration in Ed , it is known
that G(q) is rigid if and only if G(p) is rigid. This is discussed in [G] and [AR1], for
example. Thus rigidity inEd is entirely a combinatorial property of the graph G, although
a purely combinatorial polynomial time algorithm to determine generic rigidity is known
only for d = 1 and d = 2. The result here and in [JJ] verifies the correctness of the
polynomial time algorithm in [H3]. This algorithm determines generic redundant rigidity
in E2 and vertex 3-connectivity of a graph G in deterministic polynomial time, and thus
generic global rigidity in E2.

1.3. Stresses and Stress Matrices

In order to state the main result here, we need to define the notion of an equilibrium
stress. Suppose that G is a graph with n vertices. Any set of scalars ωi j = ωj i defined
for all pairs of vertices for all {i, j} in {1, . . . , n}, such that ωi j = 0 when {i, j} is not
an edge of G, is called a stress for G. We combine these scalars into one row vector
ω = (. . . , ωi j , . . .), where there is one and only one coordinate in ω for each edge {i, j}
of G, where i �= j . We regard ω = (. . . , ωi j , . . .) as a stress for G.

If ω = (. . . , ωi j , . . .) is a stress for a graph G, we say that it is an equilibrium stress
for the framework G(p) if, for each vertex i of G, the following equilibrium vector
equation holds:

∑
j

ωi j (pj − pi ) = 0. (1)

When ω is an equilibrium stress for the framework G(p), the graph G does not
appear explicitly in (1) since the non-edges of G have zero stress. So we can test ω for
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equilibrium for any other configuration q suppressing the reference to the graph G.
To each stress for a graph G on n vertices, there is an n-by-n symmetric matrix �,

the associated stress matrix, such that for i �= j , {i, j} in {1, . . . , n}, the i j entry of � is
−ωi j , and the diagonal entries are such that the row and column sums of the entries of
� are zero. Recall that the affine span of a configuration of points in Ed is the smallest
affine subspace of Ed that contains the points, and that an affine image of a configuration
p = (p1, . . . , pn) is (α(p1), . . . , α(pn)), where α is an affine linear map α:Ed → E

d .
The following are some of the basic properties of stress matrices and can be found in
[C1].

Proposition 1.2. Ifω = (. . . , ωi j , . . .) is an equilibrium stress for the framework G(p)
in Ed , and the affine span of p is all of Ed , then the following hold:

(i) The rank of the associated stress matrix � is at most n − d − 1.
(ii) If the rank of� is n−d−1 andω is an equilibrium stress for any other framework

G(q), then the configuration q is an affine image of the configuration p.

If an equilibrium stress ω for the configuration p satisfies condition (ii) above, such that
its stress matrix � has rank n − d − 1, we say that the configuration p is universal with
respect to ω.

1.4. The Main Result

We are now in a position to state our main result.

Theorem 1.3. Suppose that p = (p1, . . . , pn) is a generic configuration inEd such that
there is an equilibrium stress ω for a framework G(p), where the rank of the associated
stress matrix � is n − d − 1. Then G(p) is globally rigid in Ed .

The proof of this result occupies most of the later sections of this paper. Note that if
we have a generic configuration p, it is possible to solve the equilibrium equation (1)
for an appropriate equilibrium stress ω, and then calculate the rank of �. If the rank
is maximal as in Theorem 1.3, we can be assured that G(p) is globally rigid in Ed .
By choosing a random configuration, solving the equilibrium equations numerically
with appropriate estimates for the accuracy, and calculating the rank of � using those
estimates, we get an algorithm that detects global rigidity with high probablity, assuming
that the hypothesis of Theorem 1.3 holds for the graph G in question. (Here random can
mean choosing a configuration with a uniform distribution in a bounded neighborhood
of any given configuration. The set of non-generic configurations in the space of all
configurations is of measure 0, as pointed out in [G].) This leads us to the following
conjecture, essentially a converse to the result above. A simplex is a framework G(p) in
E

d , where G is the complete graph (i.e., all pairs of vertices form an edge of G), and the
vertices of p = (p1, . . . , pn) are affine independent. (So in particular n ≤ d + 1.)

Conjecture 1.4. Suppose that p = (p1, . . . , pn) is a generic configuration in Ed such
that G(p) is globally rigid in Ed . Then either G(p) is a simplex or there is a non-
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zero equilibrium stress ω for G(p), where the rank of the associated stress matrix � is
n − d − 1.

It is easy to verify this conjecture for d = 1, and in light of [JJ] the conjecture is now
known for d = 2.

It should also be pointed out that the rank of � alone is not enough to ensure global
rigidity. For example, the framework of Fig. 3 which has five vertices has a stress
matrix of maximal rank, even though its central vertex is on the diagonal of the square.
Nevertheless, it is not globally rigid in the plane. As mentioned earlier, the equations
that describe global rigidity might be quite complicated.

1.5. Consequences

Theorem 1.3 can be used to provide purely combinatorial conditions for generic global
rigidity, and give a complete description for generic global rigidity in the plane. First we
describe a geometric construction for frameworks.

Suppose that G(p) is a framework in Ed , and {i, j} is an edge of G such that pi �= pj .
Remove the edge {i, j} from G and replace it with d + 1 others, all connected to a new
vertex pk , which lies on the line through pi and pj (but it is not equal to pi and pj ),
and which in turn is connected to pi , pj , and some other set of d − 1 distinct vertices
besides pi and pj . Call the new framework σG(σp), and this operation a Hennenberg
operation on G(p). Denote the new graph by σG, and the new configuration by σp. We
also say that σG is obtained from G by a Hennenberg operation. (Note that there are
other Hennenberg operations on a graph, but this is the only one that we consider in this
paper. For example, see page 134 of [GSS] for a discussion of this, as well as [TW].)
See Fig. 4 for an example.

Theorem 1.5. Suppose that p = (p1, . . . , pn) is a generic configuration in Ed , and
σG is obtained from a graph G by a Hennenberg operation such that the following hold:

(i) There is a non-zero equilibrium stress ω for the framework G(p), where the rank
of the associated stress matrix � is n − d − 1.

(ii) G(p) is rigid in Ed .

If q is another generic configuration of n + 1 vertices in Ed , then (i) and (ii) hold for
(σG)(q) as well, with n replaced by n + 1.

This theorem can now be applied to the following theorem by Jackson and Jordán [JJ].

Fig. 4. The Hennenberg operation.
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Theorem 1.6 [JJ]. If G is generically redundantly rigid in E2, and vertex 3-connected,
then G can be obtained from K4 by a sequence of Hennenberg operations and edge
insertions.

Hence we get the following result, which was a conjecture of Hendrickson:

Corollary 1.7. A graph G is generically globally rigid in E2 if and only if G is generi-
cally redundantly rigid inE2, and vertex 3-connected, or G is a complete graph on fewer
than four vertices.

Proof. The “only if” part of Corollary 1.7 is Theorem 1.1 of [H3]. The “if” part
was the conjecture, and it follows inductively, starting with K4, by applying Theo-
rem 1.6 obtaining G after a sequence of Hennenberg operations. Theorem 1.5 assures
that the rank of a stress matrix is maximal at each stage for a generic configuration.
Then finally apply Theorem 1.3 to conclude that G(p) is globally rigid for a generic
configuration p.

Both redundant rigidity in E2 and 3-connectivity can be checked deterministically in
polynomial time in n, the number of vertices of G.

In the following we present the proof of the main result, Theorem 1.3, as well as
Theorem 1.5.

2. The Rigidity Map and the Rigidity Matrix

We review some rigidity theory that we need. Suppose that G(p) is a framework with n
vertices and e edges in Ed . Let

f :End → E
e (2)

be the rigidity map defined by f (p) = (. . . , |pi− pj |2, . . .). This is the map that takes the
space of configurations to the space of metrics, or more accurately the space of squared
edge lengths. Note that f is an integral polynomial function, and that the differential of
f is given by

d fp(p′) = 2(. . . , (pi − pj ) · (p′i − p′j ), . . .). (3)

It is helpful to consider the matrix of d f with respect to the standard basis. With this
in mind, we define the rigidity matrix as

R(p) =



· · ·
0 · · · (pi − pj ) · · · 0 · · · (pj − pi ) · · · 0

· · ·


 . (4)

The columns of R(p) are regarded as n sets of d columns, where each set of d columns
corresponds to the vertices of G. The rows of R(p) correspond to the edges of G, and the
entries of each row are all zero, except for the two groups of d coordinates corresponding
to the vertices adjacent to the given edge. It is easy to check that d fp(p′) = 2R(p)p′,
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where we regard p′ = (p′1, . . . , p′n) as an nd column vector. In fact, we can also regard
p′ as a configuration of n vectors in Ed . We say that p′ is an infinitesimal flex of the
framework G(p) in Ed if R(p)p′ = 0, and that p′ is a trivial infinitesimal flex if there
is a differentiable family of congruences of Ed starting at the identity, such that each
p′i is the derivative restricted to pi at time 0. See [CW], for example, for more details.
With this in mind, we say that a framework G(p) in Ed is infinitesimally rigid if the only
infinitesimal flexes of G(p) are trivial. A basic result is the following.

Theorem 2.1. If G(p) is infinitesimally rigid in Ed , then it is rigid in Ed .

A proof can be found in [G], [AR1], or [CW], for example. When the affine span of
the configuration p = (p1, . . . , pn) is all of Ed , the trivial infinitesimal flexes of p form
a linear subspace of dimension d(d + 1)/2. This leads to the following, which can also
be found in the references above.

Proposition 2.2. A framework G(p) is infinitesimally rigid in Ed if and only if either
the rank of R(p) is nd − d(d + 1)/2 or G(p) is a simplex.

Proposition 2.3. Suppose that G(p) is a framework in Ed , and σG is obtained from
a graph G by a Hennenberg operation, where the d − 1 additional edges and the
subdivided edge of G do not lie in a (d − 1)-dimensional affine plane. Then (σG)(σp)
is infinitesimally rigid.

A proof of this can be found in [TW].
For a generic configuration p inEd , the rank of R(p) is constant in a sufficiently small

neighborhood of p, since it is determined by the determinant of appropriately choosen
minors.

Corollary 2.4. A framework G(p) is rigid for p, a generic configuration in Ed , if and
only if either the rank of R(p) is nd − d(d + 1)/2 or G(p) is a simplex.

A good source for the proof of this, which uses the inverse function theorem, is again
[AR1] as well as [G].

Equilibrium stresses can also be described in terms of the rigidity matrix. We regard a
stress ω = (. . . , ωi j , . . .) as a row vector. The following is a straightforward calculation:

Lemma 2.5. A stressω = (. . . , ωi j , . . .) for a framework G(p) is an equilibrium stress
if and only if ωR(p) = 0.

In other words, ω is an element of the cokernel of the rigidity matrix R(p).

3. Generic Facts

Here we record some properties that we will need for generic configurations with regard
to rigidity properties.
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Proposition 3.1. Suppose that f :Ea → E
b is a function, where each coordinate is a

polynomial with integer coefficients, and p ∈ Ea is generic. Then the differential at p,
d fp, has maximum rank.

Proof. The rank of d fp is the largest m such that the rank of a square m-by-m minor
is m. So those configurations q, where the determinant of all the m-by-m minors of
d fq are zero are not generic configurations, since their coordinates satisfy a non-trivial
polynomial equation with integer entries.

When it comes to the rigidity of a framework G(p), Proposition 3.1 essentially says
that generic points are all the same as far as rigidity goes.

Suppose that X ⊂ Ea . We say X is an integral semi-algebraic set or just a semi-
algebraic set if it is given by a system of polynomial equations and inequalities over
the integers. The following is useful. The proof can be found in [Ma], for example. The
general theory works in case the coefficients of the polynomials are more general than
the case when they are the real integers, as the case here, but this is enough for our needs.

Lemma 3.2. Finite intersections, finite unions, images, and inverse images under in-
tegral polynomial functions of semi-algebraic sets are semi-algebraic sets. In particular,
any point in a semi-algebraic set of dimension less than a in Ea is not a generic point.

We come to one of the crucial observations of this paper.

Proposition 3.3. Suppose that f :Ea → E
b is a function, where each coordinate is a

polynomial with integer coefficients, p ∈ Ea is generic, and f (p) = f (q), for some q ∈
E

a . Then there are (open) neighborhoods Np of p and Nq of q inEa and a diffeomorphism
g: Nq → Np such that for all x ∈ Nq, f (g(x)) = f (x), and g(q) = p.

Proof. We assume, without loss of generality, that p �= q. Suppose the maximum rank
of the differential of f is m. By Proposition 3.1 we know that the rank of the differential
of f at p, d fp, is m, and there must be a neighborhood of p, Up, where dim d fx = m
for all x ∈ Up. By the inverse function theorem we can restrict Up such that f (Up) is
diffeomorphic to Em .

Consider the set

T = {x ∈ Ea | ∃y ∈ Ea, f (x) = f (y) ∧ rank[d fy] < m}. (5)

By Sard’s theorem (see [Mi] for a good presentation), we know that Ea − T is dense in
E

a . Since T contains no open set, it must be of dimension strictly less than m. Since the
point p is generic, by Lemma 3.2, p /∈ T .

Thus f (p) = f (q) is a regular value, i.e., the image only of points whose differential
has maximal rank, since T is another semi-algebraic set of dimension less than a. So f
is a submersion at the points p into f (Up) and q into f (Up).

Next we wish to be assured that a neighborhood of q can be chosen so that its image
is also f (Up). To this end we consider those points S of Ea which have neighborhoods
that map diffeomorphically onto an open subset of f (Ea). For any ε > 0 and x ∈ Ea
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let Ux (ε) = {y ∈ Ea | |y − x |2 < ε} and the usual set notation, f (Ux (ε)) = {z ∈ Eb |
∃y ∈ Ux (ε)∧ f (y) = z}. By Lemma 3.2, Ux (ε), f (Ux (ε)), etc., are semi-algebraic sets.
With this is mind, define the following:

S = {x ∈ Ea | ∀y ∈ Ea ( f (x) = f (y)) ∧ ∀ε1 > 0, ∃ε2 > 0 ∧ δ1 > 0 ∧ δ2 > 0,

f (Uy(δ1)) ⊆ f (Ux (ε2)) ⊆ f (Uy(δ2)) ⊆ f (Ux (ε1))}.
By the basic results of elimination theory, especially Theorem 3.3.15 and Corollary

3.319 of [Ma] (see [Se, Theorem 3] and [BR, Theorem 2.3.4] for some historical prece-
dents of this Tarski–Seidenberg theory, also) we know that S is an integral semi-algebraic
set. Since p is a generic point in Ea and it is not in the set T , we know that it must be
in the topological interior of S, since if one of the set inclusions in the definition of
S does not hold for p, then f (p) will lie in the integral algebraic set defined by the
intersection of those images f (Up) ∩ f (Uq) and be of dimension less than m. Then
f −1( f (Up ∩ f (Uq))) will be an integral algebraic set of dimension less than a. This
contradicts p being generic.

So there is a neighborhood of f (p) = f (q) in f (Ea) diffeomorphic to Em . However,
there is more information. Let ĥ:Em → f (Ea) ⊂ Eb be such a diffeomorphism, and let
h:Em × Ea−m → f (Ea) ⊂ Eb be ĥ preceeded by projection onto the first factor. The
local submersion theorem (see page 20 of [GP]) implies that there are diffeomorphisms
hp: Np → E

m × Ea−m and hq : Nq → E
m × Ea−m such that hhp = f and hhq = f ,

where Np is a neighborhood of p in Ea and Nq is a neighborhood of q in Ea . Then we
define g = h−1

p hq. The following commutative diagram sums up the above argument:

Nq

hq−−−−→ E
m × Ea−m

hp←−−−− Np� f

�
� f

f (Nq)
ĥ←−−−− E

m
ĥ−−−−→ f (Nq)

4. The Stress Matrix and Affine Maps

We are now ready to apply Proposition 3.3 to stresses. The following is a weak version
of Theorem 1.3.

Theorem 4.1. Suppose that p = (p1, . . . , pn) is a generic configuration in Ed such
that there is a non-zero equilibrium stress ω for a framework G(p), where the rank of
the associated stress matrix� is n−d−1, and G(p) ≡ G(q). Then q is an affine image
of p.

Proof. Apply Proposition 3.3 to the rigidity map f :End → E
e to get a diffeomorphism

g: Nq → Np from a neighborhood of q to a neighborhood of p such that f g = f
and g(q) = p. Taking differentials we get d fq = d fpdgq, where dgq is non-singular.
Rewriting this in terms of rigidity matrices, we get R(q) = R(p)dgq. Thus ωR(q) =
ωR(p)dgq = 0. In other words, G(p) and G(q) have the same space of equilibrium
stresses. By Proposition 1.2(ii) q is an affine image of p.
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Next we have to deal with the possibility that there may be non-congruent affine
images q of p such that G(p) ≡ G(q). We recall some basic properties of affine maps
and quadratic forms.

Let Q be a symmetric d-by-d matrix. It defines a conic at infinity by C(Q) =
{p ∈ Ed | pT Qp = 0}. (This is a cone and can be thought of as a “pre-homogeneous”
description of a conic in projective (d − 1)-dimensional space RPd−1.) If a framework
G(p) is in Ed , we say its edge directions are on a conic at infinity if there is a non-zero
symmetric d-by-d matrix Q such that for all {i, j} edges of G, pi − pj ∈ C(Q). The
following can be found in [C3, Theorem 5.5], but we provide a quick proof here.

Proposition 4.2. Suppose that ω is an equilibrium stress for a framework G(p) in Ed

such that ωi j �= 0 for all {i, j} edges of G. Every affine map of p preserving edge lengths
of G(p) is a congruence if and only if the edge directions of G(p) do not lie on a conic
at infinity.

Proof. An affine map defined on Ed is given by p → Ap + r , where A is a d-by-d
matrix and r ∈ Ed is constant. Such a map preserves the edge lengths of G(p) if and
only if for all {i, j} edges of G,

|pi − pj |2 = (pi − pj )
T(pi − pj ) = (Api − Apj )

T(Api − Apj )

= (pi − pj )
T AT A(pi − pj ), (6)

where we regard vectors as column matices and ()T is the transpose operation. Define
Q = I − AT A. Then the edge length corresponding to {i, j} is preserved if and only
if (pi − pj )

T Q(pi − pj ) = 0. On the other hand, the affine map defined by A is a
congruence if and only if Q = I − AT A = 0. In other words, A is othogonal. Thus if
the edge directions do not lie on a conic at infinity, then there cannot be any affine map
that preserves the edge lengths of G(p), other than a congruence.

Conversely, suppose that the edge directions do lie on a conic at infinity C(Q), defined
by the symmetric matrix Q. Then there is an ε �= 0 such that I − εQ is positive definite,
and we can find a matrix A such that AT A = I − εQ. By (6), A provides the required
affine map.

Generally, it is a nuisance to determine that there are no affine maps that are not
congruences. In the plane the conic at infinity consists of at most two directions, i.e., at
most two points onRP1, the real projective line. InE3 a conic at infinity is determined by
five distinct points, no three collinear. In dimension d a conic is determined by d(d+1)/2
points. In the generic case we have the following:

Proposition 4.3. Suppose that G(p) is a framework inEd such that G is a finite graph,
each vertex of G has degreee at least d, and p = (p1, . . . , pn) is a generic configuration.
Then the edge directions of G(p) do not lie on a conic at infinity.

Proof. It is enough to find one configuation p in Ed , not necessarily generic, such that
the edge directions of G(p) do not lie on a conic at infinity, because the linear equations
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(pi − pj )
T Q(pi − pj ) = 0 that determine a matrix Q depend continuously on the

configuration p. When these linear equations are inconsistent there is an arbitrarily small
perturbation of a non-generic configuration to a generic one so the equations remain
inconsistent.

We proceed by induction on the dimension d of the ambient space, starting at d = 2.
Each vertex of G has degree at least 2, and so n ≥ 3, and the conic in this dimension
consists of two directions, which are taken up by the edges directions at any vertex. Then
at least one of the other edge directions at any other vertex will be a third direction. For
the general inductive step, remove a vertex, say the nth vertex of G, to get a new graph
which has n − 1 vertices, each of which has degree at least d − 1. Place these n − 1
vertices in a (d − 1)-dimensional plane parallel to the first d − 1 coordinate vectors,
say Ed−1 + k, where k �= 0 is a constant vector and e1, e2, . . . , ed−1 span Ed−1. Then in
E

d−1 + k, make sure the points of the configuration (p1, . . . , pn−1) are such that they
do not lie on any conic at infinity, by induction. (For example, a configuration in Ed−1,
generic with respect to the first d−1 coordinates, translated by k, will have this property,
if any configuration does.)

Suppose Q is an n-by-n matrix defining a conic at infinity C(Q). Regarding Q as
a quadratic form, it is zero when restricted to Ed−1, by the induction hypothesis. In
other words, xT Qx = 0 for all x ∈ Ed−1. Let (p1, . . . , pd) be d points of p that are
adjacent to pn = 0 in G, and we may assume that these vectors are a basis for Ed . So
for 1 ≤ i ≤ d , we have (pi − pn)

T Q(pi − pn) = pT
i Qpi = 0. For 1 ≤ i < j ≤ d, we

get (pi − pj )
T Q(pi − pj ) = pT

i Qpi + pT
j Qpj − 2pT

i Qpj = −2pT
i Qpj = 0, because

pi − pj ∈ Ed−1. With respect to the basis (p1, . . . , pd), the matrix Q is zero. Thus, for
this configuration, the edges of G(p) do not lie on a conic at infinity, and the same must
hold for a generic configuration in Ed .

5. Proof of the Main Results

We put the results together that we have at this point to prove the main theorem.

Proof of Theorem 1.3. Suppose that p = (p1, . . . , pn) is a generic configuration in Ed

and that G(p) is a framework with a non-zero equilibrium stress ω whose stress matrix
� has rank n − d − 1. We can assume, without loss of generality, by restricting to a
subgraph if necessary, that all of the edges {i, j} of G have ωi j �= 0. (If there is more
than one component of stressed edges of G, then the rank of � will be strictly less than
n − d − 1.) Let q be another configuration in Ed such that G(p) ≡ G(q). By Theorem
4.1, the configuration q is an affine image of p. Since the configuration p is generic,
no d + 1 of the vertices lie in a (d − 1)-dimensional affine subspace, and the affine
span of the vertices of p is all of Ed . Since each of the edges of G(p) has a non-zero
equilibrium stress, for any fixed vertex i , the vectors pj − pi , for {i, j} an edge of G,
must be dependent by the equilibrium equation (1). Thus the degree of any vertex of G is
at least d + 1 > d . So we can apply Proposition 4.3 to conclude that the edge directions
of G(p) do not lie on a conic at infinity in Ed . Then Proposition 4.2 implies that p ≡ q,
as desired.
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Next we wish to apply the above results to prove Theorem 1.5, which is the one of the
main ingredients for characterizing generic global rigidity in the plane. We say that the
distance between linear subspaces L1 and L2 of En is the Hausdorf distance between
L1 ∩ Sn−1 and L2 ∩ Sn−1, where Sn−1 is the unit sphere in En . First a lemma.

Lemma 5.1. Suppose that A(x1, . . . , xn) is a matrix whose entries are integral poly-
nomial functions of the real variables x = (x1, . . . , xn). Let m be the maximum rank of
A(x), and for x = x̄ suppose that the rank of A(x̄) = m. Then for any ε > 0 there is
a δ > 0 such that for |x − x̄ | < δ, the distance between ker A(x) and ker A(x̄) is less
than ε.

Proof. The equations that define the kernel of A(x) are rational functions that are
defined as long as the determinants of some m-by-m minor is non-zero. Thus ker A(x)∩
S

n−1 varies continuously and the conclusion follows.

We consider the Hennenberg operation on a framework in Ed . Recall that this sub-
divides an edge of G at a point and adds d − 1 edges from that vertex to d − 1 other
vertices, not the endpoints of the original edge, to obtain a new framework σG(σp). We
now show how to prove the main result:

Proof of Theorem 1.5. Suppose that {i, j} is the edge of G to be subdivided, and let
pn+1 = (pi + pj )/2 be the new vertex on the line through pi and pj . Let ωi j be
the stress corresponding to the edge {i, j} of G, coming from the equilibrium stress
ω = (. . . , ωi j , . . .) for G(p). Remove {i, j} and replaceωi j with the two stressesωi,n+1 =
ωj,n+1 = 2ωi, j . Call this new stress σω, the new configuration σp = (p1, . . . , pn, pn+1),
and the new graph σG, where in addition to the edges {i, n+ 1} and { j, n+ 1}, there are
d − 1 edges from n + 1 to d − 1 distinct vertices other than i and j , where these d − 1
edges have zero stress.

By checking the equilibrium condition at i, j , we see that σω is an equilibrium stress
for σG(σp). Note that the rank condition (i) is equivalent to the configuration p being
universal with respect to ω. In other words, the dimension of the affine span of p is
maximum given that ω is an equilibrium stress by condition (ii).

We claim that the configuration σp is universal for σω as well. If not, there is another
configuraton p̃, which is universal for σω in dimension d̃ > d. However, we can reverse
the subdivision process and eliminate the vertex p̃n+1 as well as the additional edges from
n+ 1, which have zero stress anyway. Nonetheless, then the affine span of ( p̃1, . . . , p̃n)

is still d̃ > d , since p̃n+1 lies on the line segment between p̃i and p̃j . This contradicts
the assumption that G(p) was universal. So the rank of the associated stress matrix �
for σG(σp) is n + 1− d − 1 = n − d. However, σp is not generic in Ed .

Since G(p) is infinitesimally rigid, then Proposition 2.3 implies that σG(σp) is also
infinitesimally rigid. By Lemma 5.1 the coordinates of the stress and therefore the entries
in the stress matrix itself are only perturbed by a small amount when σG(σp) is perturbed
to σG(q), where q is generic. Thus q is still is universal with respect a stress on G(q).
This shows condition (i).
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The set of infinitesimally rigid configurations is open in the space of all configurations,
so condition (ii) holds as well for σG(q).

6. History

One of the motivations for this work was the “Molecule Problem.” Suppose that a frame-
work G(p) in Ed exists, but we are given only the edge lengths. Find a corresponding
configuration q in Ed such that G(q) has the same edge lengths as G(p). In [H1] there is
an algorithm proposed to solve this problem, particularly in E2. Roughly, the idea is to
use a divide-and-conquer algorithm, and it depends on breaking up G into globally rigid
pieces and fitting them together. (The terminology there was “uniquely rigid” instead of
global rigidity.) This led to Theorem 1.1 of Hendrickson, which in the plane did not lead
to any known examples of graphs that were not globally rigid. This, in turn, led to the
combinatorial conjecture for graphs in the plane with 2n − 2 edges that was solved in
[BJ]. Flushed with that success, the main result of [JJ] went on to solve the more general
case with any number of edges, Theorem 1.6 here.

Theorem 1.3 was cited in Chapter 7 of [H1] without proof, as a sufficient condition
for generic global rigidity in any dimension. The example of K (5, 5) in E3 was also
mentioned in [H1] and appeared in [C2].
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