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Abstract. We introduce the adaptive neighborhood graph as a data structure for modeling
a smooth manifold M embedded in some Euclidean space Rd . We assume that M is known
to us only through a finite sample P ⊂ M , as is often the case in applications. The adaptive
neighborhood graph is a geometric graph on P . Its complexity is at most min{2O(k)n, n2},
where n = |P| and k = dim M , as opposed to the n�d/2� complexity of the Delaunay
triangulation, which is often used to model manifolds. We prove that we can correctly
infer the connected components and the dimension of M from the adaptive neighborhood
graph provided a certain standard sampling condition is fulfilled. The running time of
the dimension detection algorithm is d2O(k7 log k) for each connected component of M . If
the dimension is considered constant, this is a constant-time operation, and the adaptive
neighborhood graph is of linear size. Moreover, the exponential dependence of the constants
is only on the intrinsic dimension k, not on the ambient dimension d. This is of particular
interest if the co-dimension is high, i.e., if k is much smaller than d, as is the case in many
applications. The adaptive neighborhood graph also allows us to approximate the geodesic
distances between the points in P .

1. Introduction

Manifold learning is the problem of computing a model of a k-dimensional manifold
M embedded in d-dimensional Euclidean space Rd only from a finite set P of sample
points. Often k is very small compared with d.

The manifold learning problem was identified as one of the most important and
challenging problems in computational topology during an NSF founded workshop on
computational topology [7]. The importance of the problem can be stressed by its many
applications, e.g., in speech recognition, weather forecasting, and economic prediction.

∗ The first author was partially supported by the Swiss National Science Foundation under the project
“Non-linear manifold learning”.
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The term manifold learning was introduced in 1995 in the context of speech un-
derstanding [9], [10]. However, the problem also appeared in research on neural net-
works [17] and in mathematical psychology [19]. In all these areas heuristics were
developed to address the problem, but so far no theoretical correctness guarantees could
be proven.

Special cases of the manifold learning problem in low dimensions received a lot of
attention in recent years. Most prominent is the surface reconstruction problem where
P is sampled from a two-dimensional manifold embedded in three-dimensional space.
The surface reconstruction problem as described here is also special in the sense that the
co-dimension of the problem, i.e., d − k, is one. Some of the proposed algorithms for
curve and surface reconstruction [2]–[4], [11] come with the guarantee that the computed
model is a manifold homeomorphic and geometrically close to the unknown manifold
M provided some sampling condition is fulfilled. These algorithms are called provably
correct. Almost all known provably correct algorithms for surface reconstruction use the
three-dimensional Delaunay triangulation or the Voronoi diagram of the sample points
as a basic data structure. Unfortunately the time to compute the Delaunay triangulation
or the Voronoi diagram in dimension d is of the order n�d/2� in the worst case, where
n = |P| is the number of sample points.

Point sets that occur “in practice” do not seem to exhibit this worst-case behavior,
and recently it was shown [6], [13] that for points that are “nicely distributed” on a
smooth surface in R3, the Delaunay triangulation has complexity much lower than n2

(see [13] for an excellent survey of the different ways to specify “nice” and of related
work). Observe, however, that exponential growth in the co-dimension is inevitable: As
the simplest example, consider k mutually orthogonal unit circles centered at the origin
in R2k . Even if we take n/k evenly spaced points on each of the circles, the complexity
of the Delaunay triangulation will be �(nk). Because of this exponential growth of the
running time, the use of the Delaunay triangulation is prohibitive for high co-dimensions.

Even though the provably correct algorithms for curve and surface reconstruction
cannot be adapted directly for use in higher dimensions, many of the ideas developed
for their correctness proofs can. Especially interesting are the sampling conditions used
in the proofs. Amenta and Bern [2] introduced the notion of an ε-sample, which can
be defined in arbitrary dimensions and allows for non-uniform sampling. Later, the
ε-sampling condition was specialized in [12] and [14] to the so-called (ε,δ)-sampling
condition. We review these sampling conditions in Section 2, and then work with the
(ε, δ)-sampling condition.

In this paper we introduce the adaptive neighborhood graph. The adaptive neighbor-
hood graph is a geometric graph on the sample P and can be computed in time O(n2),
without exponential dependence on d. We show that it is a provably good model for the
manifold M in the following sense:

(1) If the sample P satisfies an (ε, δ)-sampling condition, then the adaptive neigh-
borhood graph has the same connectivity as the manifold M , i.e., the points in P
that are connected by a path in M are also connected by a path in the adaptive
neighborhood graph and vice versa.

(2) Under the same sampling condition we can correctly infer the dimension k of M
in time d2O(k7 log k) for each connected component. If the dimension is considered
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a constant, then this is a constant-time operation, and, moreover, the exponential
dependence of the constants is only on k and not on d. This improves a result
of Dey et al. [12] who gave a dimension detection algorithm which is provably
correct under the same sampling condition and is based on the d-dimensional
Delaunay triangulation, i.e., requires time �(n�d/2�) in the worst case. Dey et
al. also provide an example that the sampling condition cannot be weakened
essentially.

(3) The geodesic distance between two sample points on M can be approximated by
the length of the shortest path that connects them in the adaptive neighborhood
graph. That is, one can use Dijkstra’s all pairs shortest path algorithm to approxi-
mate geodesic distances. This also improves an early result: Tenenbaum et al. [19]
suggest two different graphs models: either they connect two points if they are at
a distance of no more than some global threshold, or they use a fixed number of
nearest neighbors around each point. The disadvantage of the first method is that
it requires a much stricter sampling condition (globally uniform samples). The
second graph, on the other hand, does not automatically adapt to the dimension
of M . While for various input models (such as (ε, δ)-samples reviewed below,
or uniform random sample points), one can show that there is a number m, de-
pending on the model and the intrinsic dimension k, such that considering the m
nearest neighbors works well for that model and that k, this number would have
to be a parameter of the algorithm, to be interactively adjusted by the user for
each particular input.

2. Sampling and the Adaptive Neighborhood Graph

LetM = {M1, . . . ,Mm} be a collection of disjoint, smooth (C2 would be enough), com-
pact, and connected manifolds embedded inRd and let M =⋃m

i=1 Mi be the underlying
topological space of M. We do not assume that all the manifolds Mi ∈ M have the
same dimension, but we assume that all the manifolds Mi have dimension larger than
zero. Note that we assume our manifolds to have no boundary.

For p ∈ M , we denote by Tp M the tangent space of M at p, and by Np M the space of
normals. The tangent space Tp M is the set of tangent vectors at p of all smooth curves in
M passing through p. If the dimension of M is k, then Tp M is a k-flat containing p. The
space of normals Np M is the orthogonal complement of Tp M . (We picture both spaces
to be anchored at p.)

If we are to infer any useful information about M from a finite sample P ⊂ M ,
the sample has to fulfill some sampling condition. Following [2] we base the sampling
condition on the medial axis of M .

Medial Axis and Local Feature Size. A d-dimensional ball B is called a medial ball
of M if int(B) ∩ M = ∅ and |bd(B) ∩ M | ≥ 2, i.e., B does not contain any point of M
in its interior but at least two points of M in its boundary. The medial axis of M is the
closure of the set of all medial ball centers.

The local feature size is the function f : M → R that assigns to x ∈ M its distance
to the medial axis. The following observation was made in [2].
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Lemma 1. The feature size f : M → R satisfies:

(i) f (x) ≤ f (y)+ ‖x − y‖.
(ii) If ‖x − y‖ ≤ ε f (x) with ε < 1, then

‖x − y‖ ≤ ε

1− ε f (y).

In what follows, we assume that f (x) < ∞ for all x ∈ M . Observe that it follows
from smoothness that f (x) > 0.

Most algorithms learning properties of M from a sampling P are based on the as-
sumption that P is a uniform sample. This assumption is quite strict. It means that the
sampling density is globally determined by the smallest feature exhibited by M . We use
the feature size to define less restrictive sampling conditions.

Sampling Conditions. Let ε > 0. A finite sample P ⊂ M is called an ε-sample if

∀x ∈ M, ∃p ∈ P, ‖x − p‖ ≤ ε f (x).

An ε-sample P is called an (ε, δ)-sample or tight ε-sample if it satisfies the additional
condition

∀p, q ∈ P, ‖p − q‖ ≥ δ f (p)

for some δ, 0 < δ < ε.

The ε-sampling condition was introduced by Amenta et al. in the context of curve
and surface reconstruction [2]. The tight ε-sampling condition was introduced by Dey et
al. for dimension detection from samples [12] and by Funke and Ramos for fast surface
reconstruction [14].

The fundamental data structure that we use later is the adaptive neighborhood graph.

Adaptive Neighborhood Graph. For a constant c > 1 we define the c-neighborhood
Nc(p) of a sample point p ∈ P as follows:

Nc(p) =
{

q ∈ P − {p} : ‖p − q‖ ≤ c min
q ′∈P−{p}

‖p − q ′‖
}
.

The adaptive neighborhood graph Gc(P) is the geometric graph with vertex set P where
two vertices p, q ∈ P are connected by a straight edge if either q ∈ Nc(P) or p ∈ Nc(q).

3. Connectivity

In this section we show that for a suitable choice of c and all sufficiently small ε, δ > 0
such that the ratio δ/ε is at least some suitable constant, the adaptive neighborhood graph
Gc(P) of any (ε, δ)-sample P of M has essentially the same connectivity as M . That is,
two points in P are connected by a path in M if and only if they lie in the same connected
component of Gc(P).
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We start by proving an upper bound on the distance of a sample point from its nearest
neighbor in the set of sample points. Moreover, we establish an upper bound on the length
of restricted Delaunay edges. The Delaunay triangulation of P restricted to M is the
dual complex of the restricted Voronoi diagram of P . That is, the convex hull of sample
points p1, . . . , pk ∈ P belongs to the restricted Delaunay triangulation iff the intersection
M ∩ ⋂k

i=1 Vpi is non-empty, where Vp := {x ∈ Rd : ‖x − p‖ = minq∈P ‖x − q‖} is
the Voronoi cell of a sample point p.

Lemma 2. Let P be an ε-sample of M with ε < 1
2 . Then the following hold:

(i) The distance between p ∈ P and its nearest neighbor in P\{p} is at most
(2ε/(1− ε)) f (p).

(ii) If p, q ∈ P and if pq is an edge of the restricted Delaunay triangulation, then
‖p − q‖ ≤ (2ε/(1− ε))min{ f (p), f (q)}.

Proof. Let Vp be the Voronoi cell of p. We first show that the boundary of Vp must
have a non-empty intersection with the component Mi of M containing p.

Otherwise, Mi has to be completely contained in the interior of Vp and p is the only
sample point on Mi . By compactness, there exists a point x ∈ Mi whose distance to
p is maximal. Observe that the tangent space Tx M must be orthogonal to the segment
xp, else a suitable small perturbation would produce a point even farther away from p.
Thus, there exists a ball B of radius f (x) that is tangent to x and whose center lies on
the ray from x through p. The interior of B contains no point from M , in particular, the
distance from p to x is at least the diameter of B, i.e., ‖x − p‖ ≥ 2 f (x). Thus, if p is
the only sample point on Mi , then S is not an ε-sample.

Thus, we can assume that Vp contains a point y ∈ Mi in its boundary. From ‖y− p‖ ≤
ε f (y) and the property of the local feature size stated in Lemma 1(ii) we conclude that

‖y − p‖ ≤ ε

1− ε f (p).

Since y is contained in the boundary of Vp there must exist another point q ∈ P\{p}
such that y is also contained in the boundary of the Voronoi cell Vq . We have

‖p − y‖ = ‖q − y‖ ≥ ‖p − q‖
2

and thus

‖p − q‖ ≤ 2‖p − y‖ ≤ 2ε

1− ε f (p).

Hence p has a neighbor in P\{p}within distance at most (2ε/(1− ε)) f (p). This proves
the first claim. Note that the edge pq is a restricted Delaunay edge. In general we have
for any restricted Delaunay edge pq that the common intersection of M with the Voronoi
regions Vp and Vq is not empty. Thus we can use the same calculations as above to prove
also the second claim.
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Corollary 1. Let P be an (ε, δ)-sample of M . If pq with p, q ∈ P is an edge in the
Delaunay triangulation of P restricted to M , then

p ∈ Nc(q) and q ∈ Nc(p), provided c ≥ 2ε

(1− ε)δ .

Proof. Lemma 2(ii) together with the δ-condition satisfied by P gives

‖p − q‖ ≤ 2ε

1− ε f (p)

≤ 2ε

(1− ε) δ min
p′∈P−{p}

‖p − p′‖
≤ c · min

p′∈P−{p}
‖p − p′‖.

That shows q ∈ Nc(p). Analogously it follows that p ∈ Nc(q).

Now we will show that the adaptive neighborhood graph cannot connect sample points
from different connected components of M .

Lemma 3. Let P be an ε-sample of M . The adaptive neighborhood graph Gc(P)
contains no edge that connects different connected components of M provided ε < 1
and c < (1− ε)/2ε.

Proof. Let p, q ∈ P be two sample points that are sampled from two different con-
nected components of M . That is, the line segment pq connects two disjoint connected
components of M . Assume p ∈ Mi ∈M and consider the following continuous function
on the pq:

g: pq → R, x �→ dist(x,Mi )− dist(x,M\Mi ).

By construction we have g(p) < 0 and g(q) > 0. The continuity of g implies that there
exists at least one point x ′ ∈ pq with g(x ′) = 0. The point x ′ has to be a point of the
medial axis of M . Hence we have

f (p), f (q) ≤ ‖p − q‖.
Let p′ be the nearest neighbor of p in P\{p}. From our assumption on c and Lemma 2(i)
we get

c‖p − p′‖ ≤ 2cε

1− ε f (p) < f (p) ≤ ‖p − q‖.

By an analogous reasoning we also have, for the nearest neighbor q ′ of q in P\{q},

c‖q − q ′‖ ≤ 2cε

1− ε f (q) < f (q) ≤ ‖p − q‖.

That is, the line segment pq cannot be an edge of any adaptive neighborhood graph
Gc(P) for ε < 1 and c < (1− ε)/2ε.



Shape Dimension and Intrinsic Metric from Samples of Manifolds 251

Now we are ready to prove that the adaptive neighborhood graph has to be connected
for each subset of sample points that belong to one connected component of M .

Lemma 4. Let P be an (ε, δ)-sample of M and let Gc[P ∩ Mi ] be the subgraph of
the adaptive neighborhood graph Gc(P) induced by P ∩ Mi . The graph Gc[P ∩ Mi ] is
connected for every connected component Mi ∈M of M provided ε < 1 and

2ε

(1− ε)δ ≤ c ≤ 1− ε
2ε

.

Proof. The restricted Delaunay graph on P is the intersection graph of the restricted
Voronoi cells of the points in P . Let G be the induced subgraph on P∩Mi of the restricted
Delaunay graph. It suffices to show that G is connected. The proof then follows from
Corollary 1.

Let G ′ be a connected component of G and assume that G ′ �= G. Let P ′ ⊂ P be
the vertex set of G ′ and let F be the set of all Voronoi facets shared by Voronoi cells of
points from P ′ and P\P ′. By construction the set F is not empty and the intersection⋃

f ∈F
f ∩ Mi

cannot be empty either since the collection of all Voronoi cells of points in P ′ do not
cover the whole of Mi . That is, there exists a point x ∈ Mi that is contained in the
intersection Vp∩Vq where Vp is the Voronoi cell of a point p ∈ P ′ and Vq is the Voronoi
cell of a point q ∈ P\P ′. We know from Lemma 3 that q has to be a sample point of
Mi , i.e., a vertex in the complement of G ′ in G. Hence the straight edge pq has to be a
restricted Delaunay edge connecting a vertex p in G ′ with a vertex q in the complement
of G ′ in G. That is a contradiction.

We summarize our findings in the following theorem.

Theorem 1. Let P be an (ε, δ)-sample of M . The adaptive neighborhood graph Gc(P)
has the same connectivity as M , provided ε < 1 and

2ε

(1− ε)δ ≤ c ≤ 1− ε
2ε

.

That is, two points p, q ∈ P are connected by a path in M if and only if they are
connected by a path in Gc(P).

Note that the assumptions stated in the theorem are fulfilled if δ/ε is bounded from
below by a suitable constant ρ0 > 0 and ε is sufficiently small. For example ε ≤
1
10 , δ/ε ≥ ρ0 = 1

2 , and c = 9
2 will do.

4. Dimension Detection

In this section we present an algorithm which detects the local dimension of M at a
sample point p, i.e., the dimension of the component of M that contains p. In contrast
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to reconstruction of the connectivity, dimension detection is a local task. We exploit
this fact by considering only the set Nc(p) instead of all neighbors of p in the adaptive
neighborhood graph.

Here is a rough outline of our strategy: First we show that for a suitable choice of c
and all sufficiently small ε, δ > 0 such that δ/ε is bounded from below by a suitable
constant, the following holds:

If P is an (ε, δ)-sample from M and if p ∈ P , then, on the one hand, all points
q ∈ Nc(P) lie very close to the tangent space Tp M of M at p, while, on the other hand,
for any affine subspace L through p with dim L < dimp M , there is some q ∈ Nc(P)
that is quite far away from L .

These findings give rise to an algorithm to determine the dimension of the manifold
Mi ∈ M that contains p: Starting with l = 1, we apply an algorithm by Har-Peled
and Varadarajan [15] to compute a 1.99-approximation L of the best-fit l-dimensional
affine subspace through p for the set Nc(P). We will see that for all suitable samples,
the distance

max
q∈Nc(P)

inf
x∈L
‖x − q‖

is larger than some threshold if l < k and it is at most 1.99/2 times this threshold if
l ≥ k. Hence, the smallest l for which the maximum of the distances from L is smaller
than the threshold gives us the dimension of the manifold Mi ∈M that contains p.

We now make our strategy precise through a series of lemmas.

Lemma 5. Let p ∈ M and u ∈ Np M , ‖u‖ = 1. Then the ball B of radius f (p)
centered at p + f (p)u does not contain any points from M in its interior.

Proof. Forρ > 0, consider the ball Bρ of radiusρ centered at p+ρu. We have Bρ ⊆ Bρ ′
whenever ρ ≤ ρ ′, and since the balls Bρ are tangent to M at p they do not contain points
from M in their interior if ρ is sufficiently small. Let r := sup{ρ > 0 : intBρ ∩ M = ∅}.
Then intBr ∩ M = ∅, and there is a point q ∈ M such that q ∈ bdBr and q ∈ intBρ for
every ρ > r . In particular, q �= p, so the center m of Br belongs to the medial axis, and
hence r = ‖m − p‖ ≥ f (p).

Lemma 6 (Small Angle Lemma). Let p ∈ M and consider q ∈ M with ‖p − q‖ =
t f (p), 0 < t < 1. Then for every non-zero normal vector u ∈ Np M , the distance from
q to the hyperplane p + u⊥ satisfies

dist(q, p + u⊥) ≤ t2

2
f (p). (1)

In other words, the angle α between the segment pq and the tangent space Tp M satisfies

sinα ≤ t

2
.

Proof. If q ∈ p+ u⊥, we are done. Otherwise, there is a unique d-dimensional ball B
which is tangent to p+u⊥ at p and contains q on its boundary. Let m and r be the center
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m
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q

u⊥

b

B

Fig. 1. The component of q − p in any normal direction is small.

and the radius of B, respectively (if ‖u‖ = 1 and 〈q − p, u〉 > 0, then m = p + ru).
We have r ≥ f (p) (else q would be contained in the interior of the ball B ′ of radius
f (p) centered at p + f (p)(u/‖u‖), contradicting Lemma 5). Let a be the orthogonal
projection of q onto p+ u⊥, and let b := 1

2 (p+ q). Observe that the triangles pqa and
mpb are similar (see Fig. 1), whence

‖q − a‖
‖p − q‖ =

‖p − q‖/2
r

.

Therefore, ‖q − a‖ = t2 f (p)2/2r ≤ (t2/2) f (p), as desired. Finally, for the last part of
the assertion, either q ∈ Tp M , in which case α = 0, or we can let a be the orthogonal
projection of q onto Tp M and apply (1) with u = q − a.

The previous lemma states that if we start from p ∈ M and move by at most t f (p)
on the manifold, then there is a point on the tangent space that is very close, namely,
at distance at most t2 f (p). We now consider the reverse of this statement: If we start
from a point p ∈ M and move by a sufficiently small amount t in direction of a unit
tangent vector v ∈ Tp M , then there exists a point q ∈ M very close to p + tv, namely,
‖p + tv − q‖ = O(t2). The following lemma specifies “sufficiently close” and the
implicit constant in terms of the local feature size.

Lemma 7 (Close Point Lemma). Let p ∈ M and v ∈ Tp M , ‖v‖ = 1. For 0 < t < 1,
let a(t) := p+ t f (p) · v, and let q(t) be the point on M closest to a(t) (which is unique
since ‖p − a(t)‖ < f (p)). If t ≤ t0 for some absolute constant t0 (t0 = 1

4 works, for
instance), then

‖a(t)− q(t)‖ < 2t2 f (p). (2)

We note that the constant factor of 2 for t2 in (2) is somewhat arbitrary, any other
constant strictly greater than 1

2 will do if we adjust t0 accordingly.

Proof. We proceed in two steps. We first prove that by general principles, (2) holds if
t is sufficiently small, without being able to specify what exactly “sufficiently small”
means. In the second step we show that if t ≤ t0 violates (2), then so does t ′ := t/(1+ t).
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Therefore, if there existed some violator t ≤ t0, there would in fact be a whole sequence
t, t ′, t ′′, t ′′′, . . . of violators. Moreover, this sequence would converge to 0 (if t ≤ 1/n,
then t ′ ≤ 1/(n+ 1)), eventually leading to a contradiction to what we proved in the first
step.

1. Consider the geodesic γ through p on M in direction v. We assume that γ is
parametrized by arc length and such that γ (0) = p. It follows that γ̇ (0) = v

and that γ̈ (0) ⊥ v. Moreover, since γ is a geodesic, γ̈ (0) ⊥ w for all tangent
vectors w ∈ Tp M which are themselves orthogonal to v, see [16]. Therefore,
γ̈ (0) ∈ Np M .

By Taylor’s formula, we have

γ (s) = γ (0)︸︷︷︸
p

+s γ̇ (0)︸︷︷︸
v

+ s2

2
γ̈ (0)+ r(s), (3)

where ‖r(s)‖/s2 → 0 (but we do not know how fast) as s → 0. It follows that
‖γ̈ (0)‖ ≤ 1/ f (p), otherwise for sufficiently small s, γ (s) ∈ M would contradict
Lemma 6 (applied with u = γ̈ (0) and t = s/ f (p)). Hence, if we choose t so small
that ‖r(t f (p))‖ < 3

2 t2 f (p), say, then

‖a(t)− q(t)‖ ≤ ‖p + t f (p) · v − γ (t f (p))‖ < 2t2 f (p),

which completes the first step.
2. Assume then that t ≤ t0 violates (2). We want to show that t ′ := t/(1 + t) is a

violator as well. Without loss of generality, we may assume that f (p) = 1. For
simplicity, we write a := a(t), q := q(t), and a′ := a(t ′). Observe that since q
is the point on M closest to a, the (non-zero) vector a − q is orthogonal to Tq M ,
and so is the unit vector u := (a − q)/‖a − q‖. Therefore, for any r ≤ f (q), the
ball B of radius r centered at m := q + ru does not contain any point from M in
its interior. Thus, in order to prove that t ′ is again a violator, it is enough to show
that for a suitable r to be specified below, the distance from a′ to the boundary of
B is at least 2(t ′)2, i.e.,

‖a′ − m‖2 ≤ (r − 2(t ′)2)2. (4)

Let x := 〈p − q, u〉 and y := 〈a − q, u〉, see Fig. 2. We have y = ‖a − q‖ ≤
‖p − a‖ = t (and also y ≥ 2t2, since t is a violator). Thus, as a first estimate, we
get ‖p − q‖ ≤ ‖p − a‖ + ‖a − q‖ ≤ 2t , and so f (q) ≥ 1− 2t .

Since u is orthogonal to Tq M and ‖p − q‖ ≤ 2t ≤ 1 − 2t ≤ f (q), we can
apply Lemma 6 and conclude

|x | ≤ ‖p − q‖2

2 f (q)
. (5)

Observe that the projection of q − p onto u⊥, which is the same as the projection
of a − p, has length

√
t2 − (y − x)2. Therefore,

‖p − q‖2 = x2 + t2 − (y − x)2, (6)
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a′

p
qx

y

√
t2 − (y − x)2

r

B

Fig. 2. t ′ is again a violator.

hence x ≤ (t2 − y2 + 2xy)/2 f (q), i.e., x(1−y/ f (q)) ≤ (t2 − y2)/2 f (q). Since
y ≤ t < f (q), it follows that

x ≤ t2 − y2

2 f (q)− 2y
.

This is at most y/2 because y f (q) ≥ 2t2(1 − 2t) ≥ t2 for t ≤ 1
4 . Together with

(6), x ≤ y/2 implies ‖p− q‖ ≤ t , so in fact f (q) ≥ 1− t . Therefore, we can set

r := 1− t.

It remains to verify (4). By definition of t ′, we have t − t ′ = t t ′, so we can write
a′ −m = a −m − t t ′v = a −m − t ′(a − p). Therefore, by decomposing a′ −m
into its components in direction u and in u⊥, respectively, we obtain

‖a′ − m‖2 = (r − y + t ′(y − x))2 + (t ′)2(t2 − (y − x)2)

= r2 − 2r y + y2 + 2t ′(r − y)(y − x)+ t2(t ′)2.

Thus, in order to show (4), we have to prove

F(x, y, t, r) := 2r y − 4r(t ′)2 − y2 − 2t ′(r − y)(y − x)

≥ t2(t ′)2 − 4(t ′)4.

Observe that (d/dx)F(x, y, t, r) = 2t ′(r− y) ≥ 0, so we can substitute any lower
bound for x without increasing F . By (5), we have

x ≥ − t2 − y2

2 f (q)+ 2y
≥ − t2 − y2

2(1− t)+ 2y
≥ − y

3
,

since t ≤ 1
4 and y ≥ 2t2, by assumption. Therefore, F(x, y, t, r) ≥ F(−y/3, y,

t, r) = 2r y−4r(t ′)2− y2−2t ′(r− y)( 4
3 y). Moreover, (d/dy)F(−y/3, y, t, r) =
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2r −2y− 8
3 t ′(r −2y) > 2(r − y)(1− 8

3 t ′) ≥ 0 since y ≤ r and t ≤ 3
5 . Therefore,

we can also replace y by the lower bound 2t2 and obtain

F(x, y, t, r) ≥ F(− 2
3 t2, 2t2, t, r)

= 4r t2 − 4r(t ′)2 − 4t4 − 16
3 t ′(r − 2t2)t2

= 4

3

t3(2− 6t − t2 + t3)

(1+ t)2

≥ t4

(1+ t)2
− 4

t4

(1+ t)4
,

as desired, provided that

1
3 (8+ t − 50t2 − 31t3 + 4t4 + 4t5) ≥ 0,

which is the case for 0 ≤ t ≤ 0.3712.

Note that we can apply the Small Angle Lemma to all q ∈ Nc(p) if we choose
t = 2c · ε/(1− ε). That is, the lemma essentially states that the tangent space Tp M is a
k = dim(Tp M)-flat that approximates Nc(p) very well. We will now show there are no
lower-dimensional flats that well approximate Nc(p).

Lemma 8 (Large Angle Lemma). Let p be a sample point in Mi ∈ M and assume
dim(Mi ) = k. There are absolute constants ε0 > 0, ρ0 < 1, and c > 1 satisfying

arcsin

((
cρ0(ρ0 − 2cε0)

(ρ2
0 + 2c2ε0)(ρ0 − cε0)

− 1

)−1
)
<
π

4

such that the following holds for every l-dimensional flat L through p with l < k:
Let P be an (ε, δ)-sample of M with ε0 ≥ ε > δ ≥ ρ0ε > 0. Then the largest angle

between L and any edge pq, q ∈ Nc(p), is bounded from below by

β0 := π

4
− arcsin

((
cρ0(ρ0 − 2cε0)

(ρ2
0 + 2c2ε0)(ρ0 − cε0)

− 1

)−1
)
.

Proof. We start the proof with a general construction. Let v be a unit vector in Tp M
and let x be the following point in Tp M :

x := p +
(

cε

ρ0
− ρ0 − cε

ρ0 − 2cε
ε − 2c2ε2

ρ2
0

)
f (p) · v.

From Lemma 7 we know that there exists a point q ∈ M such that

‖x − q‖ ≤ 2

(
cε

ρ0
− ρ0 − cε

ρ0 − 2cε
ε − 2c2ε2

ρ2
0

)2

f (p) ≤ 2c2ε2

ρ2
0

f (p).

This implies

‖p − q‖ ≤ ‖p − x‖ + ‖x − q‖ ≤ cε

ρ0
f (p).
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From the sampling condition we get that there exists a point p′ ∈ P such that

‖q − p′‖ ≤ ε f (q) ≤ ε

1− (cε/ρ0)/(1− cε/ρ0)
f (p) = ρ0 − cε

ρ0 − 2cε
ε f (p).

Therefore,

‖x − p′‖ ≤
(
ρ0 − cε

ρ0 − 2cε
ε + 2c2ε2

ρ2
0

)
f (p),

which in turn provides us with

‖p − p′‖ ≤ ‖p − x‖ + ‖x − p′‖ ≤ cε

ρ0
f (p) ≤ cδ f (p).

That is, p′ ∈ Nc(p). We get for the inner angle α of the triangle xpp′ at p that

sinα ≤ ‖x − p′‖
‖x − p‖ ≤

((ρ0 − cε)/(ρ0 − 2cε))ε + 2c2ε2/ρ2
0

cε/ρ0 − ((ρ0 − cε)/(ρ0 − 2cε))ε − 2c2ε2/ρ2
0

=
(

cρ0(ρ0 − 2cε)

ρ2
0(ρ0 − cε)+ 2c2ε(ρ0 − 2cε)

− 1

)−1

≤
(

cρ0(ρ0 − 2cε)

(ρ2
0 + 2c2ε)(ρ0 − cε)

− 1

)−1

≤
(

cρ0(ρ0 − 2cε0)

(ρ2
0 + 2c2ε0)(ρ0 − cε0)

− 1

)−1

.

Note that this bound on sinα goes to ρ0/(c − ρ0) as ε0 goes to 0.
Now we are prepared to prove the lemma. We distinguish two cases. Either there

exists a point y ∈ L such that the vector w := y − p makes an angle β larger than π/4
with its projection on Tp M or all such vectors make an angle less than or equal to π/4
with their projection on Tp M .

In the first case let π(w) be the unit vector in the direction of the projection of w
on Tp M . If we set v in the above calculations to be π(w), then the inner angle ϕ of the
triangle ypp′ at p can be bounded from below by using the triangle inequality for angles
as follows:

ϕ ≥ β − α > π

4
− α.

In the second case let L ′ be the projection of L onto Tp M . Since l < k we find a unit
vector v in Tp M that is orthogonal to L ′. With this vector v we find as above p′ ∈ P . Let
y �= p be some point in L and let y′ be its projection on Tp M . Let β be the smaller of
the two angles made by y − p and y′ − p. From our assumption we have β ≤ π/4. We
can bound the inner angle ϕ of the triangle ypp′ at p from below by using the triangle
inequality for angles twice:

ϕ ≥ π

2
− β − α ≥ π

4
− α.

This proves our claim.
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We summarize:

Theorem 2. There are absolute constants ε0 > 0, ρ0 > 1, and c ≥ 1 such that for all
ε0 > ε > δ ≥ ρ0ε > 0, the following holds:

Suppose P is an (ε, δ)-sample from M and p ∈ P with dimp M = k (i.e., p ∈ Mi

with dim Mi = k). Then

1. the maximal angleα between the tangent space Tp M and any edge pq, q ∈ Nc(p),
satisfies sinα ≤ cε/(1− ε), but

2. for any affine subspace L through p of dimension dim L < k, there is a point
q ∈ Nc(p) such that the angle β between pq and L is at least β0, as defined in
Lemma 8.

That is, α << β if ε0 is sufficiently small.

We use Theorem 2 to devise an algorithm for dimension detection. The running time
of the algorithm will depend on the size of Nc(p), so we make a brief detour to bound
the latter.

Lemma 9. Suppose that ε, δ, and P are as in Theorem 2. Assume that

2c2ε0

(1− ε0)(1− (2c + 1)ε0)
< ρ0.

Then, for p ∈ P ,

|Nc(p)| = 2O(k),

where k = dimp M , with the constant of proportionality depending on ε0, ρ0, and c.

Proof. From Lemma 2 we know that any point q ∈ Nc(p) has distance at most
(2cε/(1− ε)) f (p) from p. We set

η := 2cε

1− ε and η0 := 2cε0

1− ε0
.

Observe that η ≤ η0. Our assumption guarantees that we have that δ f (q) ≥
δ(1− η) f (p) > (η/2) f (p) ≥ dist(q, Tp M), so the d-dimensional ball of radius δ f (q)
centered at q ∈ Nc(p) intersects Tp M in a k-dimensional ball centered at the projection
of q onto Tp M . By Pythagoras’ Theorem, the squared radius of that k-dimensional ball
is

δ2 f (q)2 − d(q, Tp M)2 ≥ δ2(1− η)2 f (p)2 − η4 f (p)/4

= (δ2(1− η)2 − η4/4) f (p)2 =: r2.

Therefore, by our sampling condition, the k-dimensional balls of radius r centered at the
projections of the points from Nc(p) onto Tp M are disjoint, and they are all contained
in the k-dimensional ball of radius η f (p) + r centered at p. Since r < δ f (p) ≤
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(2ε/(1− ε)) f (p), we have η f (p) + r ≤ (2(c + 1)ε/(1− ε)) f (p), and so |Nc(p)| is
at most

(η f (p)+ r)k

r k
≤
(

16(c + 1)2ε2/(1− ε)2
4δ2(1− η)2 − η4

)k/2

≤
(

16(c + 1)2ε2/(1− ε)2
4ε2(1− η)2ρ2

0 − η4

)k/2

=
(

4(c + 1)2/(1− ε)2
(1− η)2ρ2

0 − 4c4ε2/(1− ε)4
)k/2

≤
(

4(c + 1)2/(1− ε0)
2

(1− η0)2ρ
2
0 − 4c4ε2

0/(1− ε0)4

)k/2

= 2O(k).

For dimension detection we use, with ξ = 0.99 say, the following result of Har-Peled
and Varadarajan [15]: Let U ⊂ Rd be a finite set of points. Then, for 0 < ξ < 1 and
any integer 0 ≤ l ≤ d − 1, one can compute a (1+ ξ)-approximation L for the best-fit
l-dimensional linear subspace for U in time

d|U |O(l6/ξ 5 log(l/ξ)). (7)

That is, one can compute an l-dimensional linear subspace L such that

max
u∈U

dist(u, L) ≤ (1+ ξ)min
L ′

max
u∈U

dist(u, L ′),

where dist denotes the orthogonal distance and the minimum is taken over all l-dimen-
sional linear subspaces L ′ (i.e., l-flats which contain the origin).

Theorem 3. There are constants ε0, ρ0, and c such that, for ε0 > ε > δ ≥ ρ0ε > 0,
the following holds:

Suppose we are given a finite set P of n points in Rd and we are guaranteed that it is
an (ε, δ)-sample for M . Then, for each p ∈ P , if we have precomputed Nc(p), the local
dimension k = dimp M at p can be computed in time

d2O(k7 log k).

The actual computation of the neighborhoods Nc(p) can be trivially done in linear
time for a single point, and hence in time O(n2) for the entire point set (for high co-
dimensions, this will still be much faster than computing the Delaunay triangulation). It
seems natural, at least if the ambient dimension d is considered fixed, to try to speed up
this computation by using approximate proximity data structures as in, for instance, [5],
but we do not pursue this issue further in this paper.

Proof. Choose ε0, ρ0, and c according to Theorem 2 such that

cε0

1− ε0
≤ sinβ0

2
.
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To compute the local dimension at p ∈ P , we proceed as follows:

1. Compute Nc(p) and re-normalize its elements to obtain a set of unit vectors

U = Uc(p) =
{

q − p

‖q − p‖ : q ∈ Nc(p)

}
⊂ Rd .

2. Starting with l = 1, compute a 1.99-approximation L for the best-fit l-dimensional
linear subspace for U . Stop and output dimp M = l as soon as

max
u∈U

dist(u, L) ≤ 1.99

2
sin(β0).

The correctness of this algorithm is immediate from Theorem 2, and the running time
follows from (7) and the fact that |Nc(p)| ≤ 2O(k), as proved in Lemma 9.

5. Approximation of Geodesic Distances

For x, y ∈ M , we denote by distM(x, y) the geodesic distance between x and y in M . If
p and q lie in different connected components of M , then this distance is set to be ∞;
otherwise it is defined as the infimum of the lengths L(γ ) over all rectifiable continuous
curves γ : [0, 1] → M connecting p and q, i.e., γ (0) = p and γ (1) = q. Recall that
the length L(γ ) is defined as the supremum of

∑N
i=1 ‖γ (ti ) − γ (ti−1)‖ over all finite

subdivisions 0 = t0 < t1 < · · · < tN = 1 of the parameter interval, and that γ is called
rectifiable if L(γ ) <∞.

Since each connected component Mi of M is a smooth compact manifold, for any
two points p, q ∈ Mi there exists a shortest geodesic γ connecting p and q such that
L(γ ) = distM(p, q).

Further, if G is the adaptive neighborhood graph for P and p, q ∈ P , let distG(p, q)
be shortest-path distance between p and q in the geometric graph G, i.e., the minimum
of
∑m

i=1 ‖pi − pi−1‖ over all paths p = p0, p1, . . . , pm = q between p and q in G.
For suitable values of the constants c, ρ0, and ε0, the distances in the adaptive neigh-

borhood graph are good approximations for the geodesic distances. This is made precise
in Theorems 4 and 5 following. It follows that by applying Dijkstra’s algorithm to the
adaptive neighborhood graph Gc(P), we can very efficiently approximate geodesic dis-
tances in M .

Since we know from Theorem 1 that G and M have the same connected components,
it suffices to consider the case that M is connected, and we assume so throughout this
section.

Theorem 4. There are constants c, ρ, and ε0 such that, for ε0 ≥ ε > δ ≥ ρ0ε > 0,
the following holds:

If G is the c-adaptive neighborhood graph for an (ε, δ)-sample P from M , then for
all p, q ∈ P ,

distM(p, q) ≤ (1+ O(ε2))distG(p, q)

as ε→ 0.
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Fig. 3. Estimating the diameter of B ′\intB.

The proof of the theorem proceeds in a somewhat roundabout way. We first establish
the following technical lemma:

Lemma 10. Let a, a′ ∈ Rd , and let p and p′ be the points of M closest to a and a′,
respectively. Assume that ‖a − a′‖ ≤ ‖p − a‖ ≤ f (p)/2. Then

‖p − p′‖ ≤ 2 f (p)

f (p)− ‖p − a‖‖a − a′‖ ≤ 4‖a − a′‖.

Proof. Since p is the point in M closest to a, we have a− p ∈ Np M . We may assume
that p �= a, otherwise the assertion of the lemma is trivial.

Consider then the ball B of radius f (p) centered at m := p+ f (p) ·(p−a)/‖p−a‖.
This ball is tangent to M at p, and M does not intersect the interior intB.

Moreover, let B ′ be the ball of radius ‖a′ − p‖ centered at a′, see Fig. 3. Since p′ is
the point of M that is closest to a′, we have p′ ∈ B ′\intB.

Now we estimate the diameter of B ′\intB. Let b := 2a′ − p be the point antipodal
to p in B ′. We claim that b ∈ B.

Suppose we had already shown this. The boundaries of B and B ′ intersect in a
(d − 2)-dimensional sphere S. Let x be the center of that sphere. Since b ∈ B, the point
in B ′\intB that is farthest from p is the point y := 2x − p that is antipodal to p in S.
Hence, ‖p− p′‖ ≤ ‖p− y‖ = 2‖p− x‖, and ‖p− x‖/‖p−m‖ = ‖z− a‖/‖a−m‖,
where z is the orthogonal projection of a onto the line through m and a′. This establishes
the lemma because ‖p−m‖ = f (p) and ‖z− a‖ ≤ ‖a− a′‖, so it suffices to prove the
claim.

In order to see that b ∈ B, first observe that our assumption ‖a − a′‖ ≤ ‖p − a‖ ≤
f (p)/2 implies that a′ is contained in the ball B ′′ with diameter ‖m − p‖ through m
and p, see Fig. 4. Therefore, by Thales’ theorem, the angle α = ∠pa′m is at least π/2.
It follows that the angle β = ∠ma′b = π − α satisfies β ≤ α.

Finally, by the Cosine Theorem, we have

‖b − m‖2 = ‖b − a′‖2 + ‖m − a′‖2 − 2‖b − a′‖ · ‖m − a′‖ cosβ
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Fig. 4. Proving that b ∈ B.

and

‖p − m‖2 = ‖m − a′‖2 + ‖p − a′‖2 − 2‖m − a′‖ · ‖p − a′‖ cosα.

Since ‖b− a′‖ = ‖p− a′‖ and α ≥ β, we conclude ‖b−m‖ ≤ ‖p−m‖ = f (p), i.e.,
b ∈ B.

We also need the following result due to Schmidt [18] (see also [1] for a more general
version).

Theorem (Schmidt). Let γ : [0, L] → R
d be a C2 curve without self-intersections.

We assume that γ is parametrized by arclength, i.e., that ‖γ̇ (t)‖ = 1 for all t . In
particular, L is the length of γ , and L = L(γ ) = ∫ L

0 ‖γ̇ (t)‖ dt . If the total curvature

C(γ ) = ∫ L
0 ‖γ̈ (t)‖ dt is less than π , then the distance ‖γ (0)− γ (L)‖ between the two

endpoints of γ is at least L(γ ) · cos(C(γ )/2).

Proof of Theorem 4. We assume that ε, δ, and c satisfy the assumptions of Theorem 1.
If p = p0, p1, . . . , pN = q form a shortest path in G = Gc(P) connecting p and q,
i.e., distG(p, q) = ∑N

i=1 ‖pi − pi−1‖, then distM(p, q) ≤ ∑N
i=1 distM(pi , pi−1), so it

suffices to prove the theorem for the case that p and q are adjacent in G.
By Lemma 2, we can write ‖p − q‖ = η f (p), with η ≤ 2cε/(1− ε). We assume

that ε and c are chosen so that η < 1
4 and 4η/(1− 4η) < π .

As a first step, we show that there exists a curve β in M connecting p and q such that
L(β) ≤ 4‖p − q‖.

We define β: [0, 1] → M as follows: For t ∈ [0, 1], let a(t) := p+ t (q− p), and let
β(t) be the point in M closest to a(t) (which is unique since ‖a(t)− p‖ < f (p)). It is not
hard to verify that this defines indeed a continuous curve (we will not need any stronger
smoothness properties of β). Further, we have ‖β(t)− p‖ ≤ 2η f (p), hence f (β(t)) ≥
(1 − 2η) f (p) for all t . Now, consider a subdivision 0 = t0 < t1 < · · · < tN = 1 of
the interval [0, 1]. If the subdivision is sufficiently fine, then any two consecutive points
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a(ti ), a(ti−1) satisfy the assumptions of Lemma 10. Therefore,

N∑
i=1

‖β(ti )− β(ti−1)‖ ≤ 4
N∑

i=1

‖a(ti )− a(ti−1)‖ = 4‖p − q‖,

and since this holds for all subdivisions, we conclude that L(β) ≤ 4‖p − q‖.
Now, let γ be a shortest geodesic connecting p and q in M . We assume that γ is

parametrized by arc length. We write L(γ ) = xη f (p), and our aim is to show that
x = 1+ O(ε2). As a first estimate, we have L(γ ) ≤ L(β) ≤ 4‖p − q‖, i.e., x ≤ 4. In
particular, ‖γ (t)− p‖ ≤ 4‖p − q‖ = 4η f (p) for all t ∈ [0, L(γ )].

It follows that f (γ (t)) ≥ (1− 4η) f (p) for all t . Hence, ‖γ̈ (t)‖ ≤ 1/(1− 4η) f (p),
as we saw in the proof of the Close Point Lemma (Lemma 7), and therefore

C(γ ) =
∫ L(γ )

0
‖γ̈ (t)‖ dt ≤ L(γ )

(1− 4η) f (p)
= xη

1− 4η
< π.

We can now apply Schmidt’s theorem, which yields

η f (p) = ‖p − q‖ ≥ L(γ ) cos

(
C(γ )

2

)
≥ xη f (p)

(
1− O

((
xη

2(1− 4η)

)2
))

,

since cos(t) = 1 − O(t2) for small t . We also know that x ≤ 4, so it follows that
1 ≥ x(1− O(η2)), hence x = 1+ O(η2) = 1+ O(ε2), as desired.

Thus, we obtain better and better upper estimates for the geodesic distances as the
sample becomes denser. On the other hand, for a lower bound, we can only guarantee a
constant depending on c:

Theorem 5. Fix ρ0. For all c ≥ 1, there exists ε0 such that for all ε0 ≥ ε > δ ≥ ρ0ε >

0, we have

distG(p, q) ≤
(

1+ O

(
1

c

))
distM(p, q)

for all p, q ∈ P .

Proof. Let γ be a geodesic of length distM(p, q) connecting p and q. For every point
x ∈ γ let q(x) be the point in P closest to x . We set

η := 1

ρ0(1− ε) .

We construct a finite sequence of points p = x1, x2, . . . on γ . We set mi := max
{ f (q(xi−1)), f (q(xxi ))} for i > 1. Let x2 be the point on γ farthest from x1 = p = q(x1)

in the order along γ such that

distM(x1, x2) = (c − η)ρ0εm2.
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If such a point x2 does not exist, then

‖p − q‖ ≤ (c − η)ρ0εmax{ f (p), f (q)}
≤ cρ0εmax{ f (p), f (q)}
≤ cδmax{ f (p), f (q)}.

Thus pq is an edge of Gc(P) and the claim follows immediately. Otherwise we have
from the sampling condition

‖x2 − q(x2)‖ ≤ ε f (x2) thus ‖x2 − q(x2)‖ ≤ ε

1− ε f (q(x2)).

We derive

‖x1 − q(x2)‖ ≤ ‖x1 − x2‖ + ‖x2 − q(x2)‖
≤ distM(x1, x2)+ ε

1− ε f (q(x2))

= (c − η)ρ0εm2 + ε

1− ε f (q(x2))

≤ (c − η)ρ0εm2 + ε

1− εm2

≤
(

c − η + 1

ρ0(1− ε)
)
ρ0εm2

= cρ0εm2 ≤ cδm2.

Hence x1q(x2) is an edge of Gc(P). That is we can approximate distM(x1, x2) by
‖x1 − q(x2)‖ in Gc(P). We get for the approximation quality

‖x1 − q(x2)‖
distM(x1, x2)

≤ cρ0εm2

(c − η)ρ0εm2
= c

c − η
= 1+ η

c − η = 1+ O

(
1

c

)
.

We proceed on γ by choosing x3 to be the point on γ farthest from x2 such that

distM(x2, x3) = (c − 2η)ρ0εmax{ f (q(x2)), f (q(x3))}.

If such a point does not exist, then we stop with x2. Otherwise we get from a calculation
similar to the one above that q(x2)q(x3) is an edge in Gc(P). That is, we can approximate
distM(x2, x3) by ‖q(x2)− q(x3)‖ in Gc(P). We get for the approximation quality

‖q(x2)− q(x3)‖
distM(x2, x3)

≤ 1+ 2η

c − 2η
= 1+ O

(
1

c

)
.

We continue this construction with x4, x5, . . . . Since γ has finite length this sequence
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has to be finite. Let xn be the last point of the sequence. We have

distM(xn, q) < (c − 2η)ρ0εmax{ f (q(xn)), f (q)}.

By continuity we can find c/2 < c′ ≤ c and a sequence p = y1, . . . , yn, yn+1 = q
constructed the same way as the sequence p = x1, . . . , xn only replacing c by c′ such
that for all i = 1, . . . , n it holds that

distM(yi , yi+1) < (c′ − 2η)ρ0εmax{ f (q(yi )), f (q(yi+1))}.

The length of the path q(y1)q(y2) · · · q(yn+1) in Gc(P) approximates the length of γ up
to a factor of 1+ O(1/c′) = 1+ O(1/c).

Here is an example that shows that the dependence on c of the previous estimate is
unavoidable, i.e., that the lower estimate of the geodesic distance in terms of the graph
distance need not become better as the density of the sample increases.

For the sake of concreteness, let c = 4 and ρ0 = 1
2 . Let M consist of two large parallel

squares at distance 2 in 3-space; to compactify the example, we join the boundaries of
the squares by four half-cylinders of radius 1 (for the sides) and four quarter-spheres for
radius 1 (for the corners). Thus, f (x) = 1 for all x ∈ M .

For ε > 0, consider a regular hexagonal grid of edge length δ = ε/2 embedded on
the flat portion of M (one grid on each of the squares, but we only work with one copy),
and let the sample P consist of the subset of the vertices of the grid as shown in Fig. 5,
extended to a uniform sample on the non-flat parts of M in your favorite fashion.

For the points p and q indicated, we have distM(p, q) = 6δ and distG(p, q) = 2
√

13δ
for all δ = ε/2 > 0.

p q

Fig. 5. A hexagonal grid with the neighborhood of p and the shortest path from p to q.
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6. Conclusion

We have shown that the adaptive neighborhood graph can replace the Delaunay triangu-
lation for some tasks in sample-based modeling. That is important since the Delaunay
triangulation is prohibitive to compute in high dimensions. With the adaptive neighbor-
hood graph it becomes feasible to provably correctly solve problems as inferring the
dimension and connectivity of a manifold from a sample even if the ambient dimension
is very high.

The (ε, δ)-sampling condition is quite strict and it is reasonable to assume that it is
hardly ever met in practice. Nevertheless, a combination of the adaptive neighborhood
graph with the k nearest neighbor approach, i.e., building the neighborhood graph on
k nearest neighbors instead of just the nearest neighbor, should remove on practical
data sets, e.g., locally uniform random samples, the disadvantages of both approaches
when applied alone (too strict sampling condition for the neighborhood graph and non-
adaptivity to the dimension of the k nearest neighbors).

We are quite confident that the adaptive neighborhood graph will be useful even for
the more general problem of manifold reconstruction.
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17. T. Martinetz and K. Schulten. Topology representing networks. Neural Networks, 7 (1994), 507–522.
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