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Abstract. The motion of a biomolecule greatly depends on the engulfing solution, which
is mostly water. Instead of representing individual water molecules, it is desirable to develop
implicit solvent models that nevertheless accurately represent the contribution of the solvent
interaction to the motion. In such models, hydrophobicity is expressed as a weighted sum
of atomic surface areas. The derivatives of these weighted areas contribute to the force that
drives the motion.

In this paper we give formulas for the weighted and unweighted area derivatives of a
molecule modeled as a space-filling diagram made up of balls in motion. Other than the
radii and the centers of the balls, the formulas are given in terms of the sizes of circular
arcs of the boundary and edges of the power diagram. We also give inclusion–exclusion
formulas for these sizes.

∗ The research of the second, third, and fourth authors was partially supported by the NSF under Grant
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1. Introduction

In this paper we study questions about three-dimensional conformations of molecules.
As common in biology, we model an atom as a ball bounded by a sphere and a molecule
as the union of a finite collection of such balls. This union is referred to as the space-
filling diagram of the molecule. Specifically, we study the derivatives of the weighted
and unweighted surface area when the atoms are in motion.

Motivation. Bio-molecular simulations provide a platform where theory and experi-
ment can be combined to improve our chance to unravel the complexity of cell functions.
While much effort is presently invested in identifying the actors that play a role, there is
a growing need to understand the kinetics of their interactions. The sequence or rate of
events that occur as molecules transform between their various possible conformations
and interact with each other is described by kinetics. Understanding these conformational
transitions as well as the role of motions in molecular interactions are the subjects of
molecular dynamics studies. Accurate molecular dynamics simulations remain a major
challenge, since they involve thousands of degrees of freedom in the molecule of interest,
in addition to the need to account for its water environment. Computer simulations that
include a large number of water molecules remain the state of the art in this field, but
they are inefficient. It is desirable to develop different approaches, in which the effect
of the solvent is taken into account implicitly. Such treatment would make it possible
to perform simulations covering much longer time intervals, and including much larger
molecular systems.

All solvent effects on a molecule can be included in an effective potential, W =
Welec + Wnp, in which the first term accounts for electrostatic and the second for non-
polar contributions. Welec is usually represented by continuum electrostatics, for which
several semi-analytical approximate treatments have been proposed by Still et al. (1990),
Davis (1994), and Schaefer and Karplus (1996). Many solvation models describe Wnp as a
weighted sum of the solvent exposed or accessible surface area of each atom of the solute;
see Eisenberg and McLachlan (1986), Wesson and Eisenberg (1992), and Fraternali and
Van Gunsteren (1996). Inclusion of Wnp in a molecular dynamics simulation requires
the calculation of accurate molecular surface areas, as well as their analytical derivatives
with respect to atomic position.

Previous Work. Lee and Richards (1971) define the accessible surface of a protein as
the van der Waals envelope of the molecule expanded by the radius of the solvent sphere
about each atom center. Computational methods that evaluate the area of this surface can
be divided into approximate and exact methods. Most of the approximate methods rely
on numerical integration, by representing the surface with a large number of dots; see
Shrake and Rupley (1973) and Legrand and Merz (1993). Some of the approximations
are analytical but treat multiple overlapping balls probabilistically or ignore them; see
Wodak and Janin (1979), Hasel et al. (1988), and Street and Mayo (1998). The first
exact analytical methods for computing the accessible surface area were introduced by
Connolly (1983) and Richmond (1984). They have been improved in recent years, the
focus by von Freyberg et al. (1993) and Fraczkiewicz and Braun (1998) being on com-
putational efficiency and that of Eisenhaber and Argos (1993) and Gogonea and Osawa
(1995) being on stability. The idea of using inclusion-exclusion to reduce intersections
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of five or more balls to linear combinations of at most four balls was introduced by
Kratky (1978) and by Gibson and Scheraga (1987). Doing the reduction correctly re-
mains however computationally expensive. The Alpha Shape theory solves this problem
using Delaunay triangulations and their filtrations, as described by Edelsbrunner (1995).
Alpha shapes have been used to compute the surface area and volume of proteins as well
as for detecting and measuring cavities in proteins; see Liang et al. (1998).

The distinction between approximate and exact computation also applies to existing
methods for computing the derivatives of the surface area with respect to atomic coor-
dinates. Computationally more efficient are the approximate methods implemented in
the MSEED software by Perrot et al. (1992) and the SASAD software by Sridharan et al.
(1994). The computational efficiency of MSEED is a consequence of ignoring the contri-
bution of internal atoms, at the cost of missing buried cavities. A numerical procedure
for computing the accessible fraction of the circle of intersection between two surface
spheres is implemented in SASAD. The analytical method for surface area calculation
proposed by Richmond (1984) also provides analytical gradients, and revised versions
of this approach were implemented in molecular dynamics programs by Wesson and
Eisenberg (1992) and Fraczkiewicz and Braun (1998). All existing methods for com-
puting the derivatives are extensions of strategies used for computing the surface area,
and therefore suffer the same stability problems. The Alpha Shapes software proposes
a robust solution to the latter problem, by implementing arbitrary precision arithmetic
to avoid numerical problems and systematically resolving all singularities without ex-
plicitly perturbing the positions of the sphere centers. The latter method is referred to as
Simulation of Simplicity, as described by Edelsbrunner and Mücke (1990). In this paper
we describe an extension of the Alpha Shapes method that includes the efficient, robust,
exact, and analytical computation of the derivatives of surface area terms. There is an
inherent difficulty in using a potential based on surface area for energy minimization or
molecular dynamics. Although the accessible surface area is continuous in the position of
the atoms, its derivatives are not. Wawak et al. (1994) have published a list of situations
in which discontinuity in the derivative is observed. We re-examine this issue within
the framework of the Alpha Shape method and relate discontinuities with combinatorial
changes in the subcomplex of the Delaunay triangulation that is dual to the space-filling
diagram.

Outline. Section 2 explains our approach to computing derivatives and states the results.
Section 3 proves the formulas for the unweighted and the weighted area derivatives.
Sections 4 and 5 discuss the continuity of the derivatives and the implementation of the
algorithm. Section 6 concludes this paper.

2. Approach and Results

In this section we explain how we approach the problem of computing the derivatives of
the surface area of a three-dimensional space-filling diagram.

Derivatives. We need some notation from vector calculus to talk about derivatives.
We refer to Spivak (1965) for an introduction to that topic. For a differentiable map
f : Rm → R, the derivative at a point z ∈ Rm is a linear map D fz : Rm → R. The



296 R. Bryant, H. Edelsbrunner, P. Koehl, and M. Levitt

geometric interpretation is as follows. The graph of D fz is the tangent space of f at z,
which is a hyperplane passing through the origin inRm+1. The translation that moves the
origin to the point (z, f (z)) on the graph of f moves the tangent space to the supporting
hyperplane at that point. Being linear, D fz can be written as the scalar product of the
variable vector t ∈ Rm with a fixed vector u ∈ Rm known as the gradient of f at z:
D fz(t) = 〈u, t〉. The derivative D f maps each z ∈ Rm to D fz or, equivalently, to its
gradient u.

In this paper we call points in Rm states and use them to represent sets of balls in
R

3. For m = 3n, the state z represents the set of balls Bi = (zi , �i ), for 0 ≤ i ≤ n − 1,
where [z3i+1, z3i+2, z3i+3]T = zi is the center of Bi . The radius �i is assumed to be
fixed and is not encoded in the state. The weighted and unweighted areas of the union
of the Bi are maps E, A : R3n → R. Their derivatives at a state z ∈ R3n are linear maps
DEz,DAz : R3n → R, and the goal of this paper is to give a complete description of
these derivatives.

Power Diagram. Let Si be the sphere bounding Bi . A useful concept is the power
distance of a point x from Si , which is defined as πi (x) = ‖x − zi‖2 − �2

i . Note that Si

consists of all points x with zero and Bi of all points with non-positive power distance.
The set of points with equal power distance from two spheres is their radical plane. It
contains the circle common to both spheres, if it exists. The radical plane bounds the
half-space of points whose power distance from one sphere is less than or equal to that
from the other. Consider the collection of spheres Si , for 0 ≤ i ≤ n − 1. The power cell
of Si is the set of points x for which Si minimizes the power distance,

Pi = {x ∈ R3 | πi (x) ≤ πj (x), ∀ j}.
Each power cell is a convex polyhedron with at most n−1 polygonal faces. The polyhedra
cover the entire R3 and have pairwise disjoint interiors. The power diagram consists of
the power cells together with their polygonal faces, edges, and vertices. Let F =⋃i Bi

be the space-filling diagram. If we restrict the power diagram to within F , we get a
decomposition of F into the convex cells Pi ∩ F = Pi ∩ Bi . Figure 1 illustrates this
decomposition for the two-dimensional case.

Dual Complex. The (weighted) Delaunay triangulation is the dual of the power dia-
gram. It is obtained by taking the sphere centers as vertices and drawing an edge between

Fig. 1. The edges of the power diagram are solid inside and dotted outside the union of disks.
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Fig. 2. The Delaunay triangulation and dual complex of the disks in Fig. 1. The dotted edges and unshaded
triangles belong to the Delaunay triangulation, and the remaining simplices belong to both.

any two vertices whose corresponding power cells share a common polygonal face. We
also draw a triangle for every three power cells that share an edge and a tetrahedron for
every four power cells that share a vertex. It is convenient to assume or simulate general
position, so that no other types of common intersections among power cells occur. In
this case, all dual elements are simplices and the Delaunay triangulation is a simplicial
complex. We write τ ≤ υ if the simplex τ is a face of the simplex υ.

The dual complex K is the dual of the decomposition of F . Its vertices are again
the sphere centers, but it contains only those simplices that correspond to collections
of clipped cells with non-empty common intersection. Since Pi ∩ Bi ⊆ Pi , for every i ,
the dual complex is a subcomplex of the Delaunay triangulation. Figure 2 illustrates the
definition by showing the Delaunay triangulation and the dual complex of the nine disks
in Fig. 1.

We formalize the notion of neighborhood within K by defining the star of a simplex
τ ∈ K as the set of simplices that contain τ . The link of τ is the collection of faces of
simplices in the star that are disjoint from τ . More formally,

St τ = {υ ∈ K | τ ≤ υ},
Lk τ = {ω ∈ K | ω ≤ υ ∈ St τ and ω ∩ τ = ∅}.

For example, the star of an interior edge contains the edge together with a ring of
triangles and tetrahedra around the edge. The link is a cycle that consists of a vertex for
each triangle and an edge for each tetrahedron in the star.

Measuring. We use fractions to express the size of geometric entities in the decom-
position of the space-filling diagram. For example, σi = area(Pi ∩ bd F)/area(Si ) is
the fraction of the i th sphere on the boundary of the space-filling diagram. The area of
F = ⋃

i Bi is therefore A = 4π
∑
�2

i σi . Given real weights αi , the weighted area is
E = 4π

∑
αi�

2
i σi . If the αi are the atomic solvation parameters, E is also known as the

solvation energy. The formulas for the derivatives require fractions of circles and line
segments. Two spheres intersect in a possibly empty circle Si j = Si ∩ Sj . The fraction
that belongs to the boundary of the space-filling diagram is

σi j = length(Pi ∩ Pj ∩ bd F)

length(Si j )
.

Three spheres Si , Sj , and Sk intersect in a pair of points, and these points span a line
segment Bi jk , if they exist. The fraction that belongs to the corresponding edge of the
power diagram is

βi jk = length(Pi ∩ Pj ∩ Pk ∩ F)

length(Bi jk)
.
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Given the dual complex K , it is fairly straightforward to compute the σi , σi j , and βi jk . We
explain this for the fractions needed to express the derivatives. Let Sk

i j be the portion of the
circle Si j on Sk’s side of the bisectors, Sk

i j = {x ∈ R3 | πk(x) ≤ πj (x) = πi (x) = 0}. The
general results in Edelsbrunner (1995) imply the following inclusion-exclusion formula
for this fraction:

σi j = 1−
∑

k length(Sk
i j )−

∑
k,� length(Sk

i j ∩ S�i j )

2π�i j
,

where �i j is the radius of Si j . The first sum ranges over all vertices zk and the second
over all edges zk z� in the link of zi zj in K . We note that σi j �= 0 iff zi zj is a boundary
edge of the dual complex. Let B�i jk be the portion of Bi jk on S�’s side of the bisectors.
Then

βi jk = 1−
∑

� length(B�i jk)

2�i jk
,

where 2�i jk = length(Bi jk). Here the sum ranges over all vertices in the link of the
triangle zi zj zk in K . There are at most two such vertices, each clipping one side of the
line segment to get the corresponding edge in the power diagram.

Results. The first result of this paper is a complete description of the area derivative.
Let ζi j = ‖zi − zj‖ be the distance between two centers. We write ui j = (zi − zj )/ζi j

for the unit vector in the direction of the connecting line. For each k �= i, j , let vi jk =
uik − 〈uik, ui j 〉 · ui j be the component of uik normal to ui j , and let ui jk = vi jk/‖vi jk‖ be
the unit vector in that normal direction.

Area Derivative Theorem. The derivative of the area of the space-filling diagram
with state z ∈ R3n is DAz(t) = 〈a, t〉, where


a3i+1

a3i+2

a3i+3


 = ∑

j

(
σi j · ai j +

∑
k

βi jk · ai jk

)
,

ai j = π(�i + �j )

[
1− (�i − �j )

2

ζ 2
i j

]
· ui j ,

ai jk = 2�i jk
�i − �j

ζi j
· ui jk,

for 0 ≤ i < n. The summation is over all boundary edges zi zj and their triangles zi zj zk

in K .

The second result is a complete description of the weighted area derivative. Letαi ∈ R
be the weight of the i th sphere.
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Weighted Area Derivative Theorem. The derivative of the weighted area of the
space-filling diagram with state z ∈ R3n is DEz(t) = 〈e, t〉, where

e3i+1

e3i+2

e3i+3


 = ∑

j

(
σi j · ei j +

∑
k

βi jk · ei jk

)
,

ei j = π

[
(αi�i + αj�j )− (αi�i − αj�j )

�2
i − �2

j

ζ 2
i j

]
· ui j ,

ei jk = 2�i jk
αi�i − αj�j

ζi j
· ui jk,

for 0 ≤ i < n. The summation is over all boundary edges zi zj and their triangles zi zj zk

in K .

We note that DA and DE are not everywhere continuous. Specifically, they may be
discontinuous when two spheres touch, three spheres intersect in a common circle, or
four spheres intersect in the same two points.

3. Derivation

This section derives the formulas claimed in the two theorems. They are the sums of
contributions from locally direction preserving and distance preserving components of
the motion. A direction is determined by two spheres and preserved if they move on the
straight line that passes through their centers. A distance preserving motion is a rotation
of one sphere about another.

Direction Preserving Motion. To study the derivative for a direction preserving motion,
we define F = Bi ∪ Bj and assume the two bounding spheres, Si and Sj , have a non-
empty intersection. Let ζi and ζj be the signed distances of zi and zj from the radical
plane, as illustrated in Fig. 3. The sum of the two distances is ζi j = ζi + ζj = ‖zi − zj‖.
We have �2

i − �2
j = ζ 2

i − ζ 2
j = ζi j (ζi − ζj ) and therefore

ζi = 1
2

(
ζi j +

�2
i − �2

j

ζi j

)
, (1)

j
ρ

zz jjii

i

ζ

ρ

ζ
ji

ρ

Fig. 3. The two spheres intersect in a circle with radius �i j .
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ζj = 1
2

(
ζi j +

�2
j − �2

i

ζi j

)
. (2)

Using Archimedes’ area formula for spheres, we get

A = 4π�2
i

�i + ζi

2�i
+ 4π�2

j

�j + ζj

2�j

= 2π(�2
i + �2

j )+ π(�i + �j )

[
ζi j + (�i − �j )

2

ζi j

]
,

for the area of the boundary of F , where the second line is derived from the first by
a few simple algebraic manipulations using (1) and (2). The equation for A is valid
as long as the two spheres have a non-empty intersection, or equivalently as long as
|�i − �j | ≤ ζi j ≤ �i + �j . The derivative with respect to the distance between the two
centers is therefore

dA

dζi j
= π(�i + �j )

[
1− (�i − �j )

2

ζ 2
i j

]
. (3)

Figure 4 sketches the function within the interval of permitted distances.

Distance Preserving Motion. To study the area derivative for a distance preserving
motion, we define F = Bi ∪ Bj ∪ Bk and assume the three bounding spheres intersect
in two points, {p, q} = Si ∩ Sj ∩ Sk . Recall that Bi jk is the line segment with endpoints
p and q . In the assumed case, the two caps Ci j = Bi ∩ Sj and Ckj = Bk ∩ Sj have a
non-empty common intersection, and their bounding circles intersect in the same two
points, {p, q} = Si j ∩ Skj , as shown in Fig. 5. The spherical distance between the
centers yi and yk of the two caps is ηj = �j · ∠yi zj yk . Consider the area of the union,
Aj = area(Ci j ∪ Ckj ). We use geometric reasoning to compute the derivative with
respect to the spherical distance. To the first order, the area gained by moving the two
caps apart, while keeping their centers on the same great-circle, is equal to the area of
a spherical rectangle. Its height is the spherical distance between p and q and its width
is dηj . Using Archimedes’ formula, the area of the slice of Sj between the two planes

ρji| |i j- ρ

dA d/

ρ +

ζij

ζi

jdA d/ ζi

ji + ijρ ζjρ ρ 0

(a) (b)

Fig. 4. (a) The graph for �i �= �j , in which case the area derivative is positive at ζi j = �i + �j and zero at
ζi j = |�i − �j |. (b) The graph for �i = �j , in which case the area derivative is a positive constant over the
entire interval, except for ζi j = 0, where it is undefined.
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k

j

yi

S

C jkCji

y

q

p

η j

Fig. 5. Two spherical caps whose bounding circles intersect in two points.

passing through p and q normal to pq is the area of Sj times the Euclidean distance
between p and q divided by the diameter, which is 4π�2

j ‖p − q‖/2�j = 4π�j�i jk . The
area of the rectangle is the area of the slice times dηj divided by 2π�j . The derivative of
the area covered by the two caps is therefore

dAj

dηj
= 2�i jk . (4)

Figure 6 sketches the function within the interval of permitted spherical distances.

Assembling the Relations. Let t be the velocity vector of the motion at state z. Then
ti = [t3i+1, t3i+2, t3i+3]T is the velocity vector of zi . Because the derivative is linear, we
can decompose the motion into components and add the contributions. For every ordered
pair i, j , we consider the direction preserving component 〈ui j , ti 〉 · ui j , and for every
ordered triplet i, j, k, we consider the distance preserving component 〈ui jk, ti 〉 · ui jk

of ti .
The contribution of the ordered pair i, j is the fraction of the circle Si j that belongs to

the boundary of F =⋃i Bi times what is given in (3). This is σi j 〈ai j , ti 〉, where ai j is as

j

ij kj ρ +

j η/Aj j

ρ ρ ηij kj j+ij kj ηj ρ

d

- ρρ

/ ηA d

| |

dd

0

(a) (b)

Fig. 6. (a) The graph for �i j �= �k j , in which case the area derivative at both extremes is zero with infinite
slope. (b) The graph for �i j = �k j , in which case the derivative approaches twice the common radius as the
distance between the two centers goes to zero.
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given in the Area Derivative Theorem. One part of the contribution of the ordered triplet
i, j, k is the fraction of the line segment Bi jk , that belongs to the corresponding edge of the
power diagram, times the negative of what is given in (4). We take the negative because
the two measured caps subtract from the area of F . The other part of the contribution
of i, j, k is the same fraction of Bi jk times what is given in (4) after switching i and j
(which does not change the right side of the equation). This part accounts for the two
caps Cji and Cki on Si and is taken positive because the motion of Si along ti with fixed
Sj is relatively the same as the motion of Sj along−ti with fixed Si . The velocity vector
of the center of the cap Ci j is �j/ζi j times the component of ti along ui jk , and that of
the center of the cap Cji in the relative motion is −�i/ζi j times the same vector. The
contribution of i, j, k to the area derivative is therefore βi jk〈ai jk, ti 〉, where ai jk is as
given in the Area Derivative Theorem. Adding the terms for all ordered pairs and triplets
gives

DAz(t) =
n−1∑
i=0

∑
j �=i

(
σi j 〈ai j , ti 〉 +

∑
k �=i, j

βi jk〈ai jk, ti 〉
)

for the area derivative. We can write this more succinctly as DAz(t) = 〈a, t〉, where a is
as defined in the Area Derivative Theorem. We have σi j = 0 unless zi zj is a boundary
edge and βi jk = 0 unless zi zj zk is a triangle of K . Furthermore, the sum over indices k
vanishes unless zi zj is a boundary edge. This implies that the summation can be limited
to all boundary edges zi zj and their triangles zi zj zk in K , as stated in the Area Derivative
Theorem.

The Weighted Case. Let αi be a real number for 0 ≤ i < n, and define the weighted
area of the space-filling diagram F equal to

E = 4π
n−1∑
i=0

αi�
2
i σi ,

where σi is the fraction of the i th sphere that belongs to the boundary of F . Similar to the
unweighted case, we distinguish between direction and distance preserving components
of the motion. We get the derivatives by straightforward modifications of the unweighted
formulas. For the direction preserving motion, we consider again the union of two balls
whose bounding spheres intersect in a common circle, F = Bi ∪ Bj . Using Archimedes’
area formula for spheres, we get

E = 4παi�
2
i

�i + ζi

2�i
+ 4παj�

2
j

�j + ζj

2�j

= 2π(αi�
2
i + αj�

2
j )+ π(αi�i + αj�j )ζi j + π(αi�i − αj�j )

�2
i − �2

j

ζi j
.

The derivative with respect to the distance between the centers is

dE

dζi j
= π(αi�i + αj�j )− π(αi�i − αj�j )

�2
i − �2

j

ζ 2
i j

, (5)
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which for αi = αj = 1 agrees with (3). For a distance preserving motion, we generalize
(4) to

dEj

dηj
= 2αj�i jk . (6)

Assembling these relations as in the unweighted case, we get

DEz(t) =
n−1∑
i=0

∑
j �=i

(
σi j 〈ei j , ti 〉 +

∑
k �=i, j

βi jk〈ei jk, ti 〉
)

for the weighted area derivative. We can write this more succinctly as DEz(t) = 〈e, t〉,
where ei j , ei jk , and e is as defined in the Weighted Area Derivative Theorem. Similar to
the unweighted case, the summation can be limited to all boundary edges zi zj and their
triangles zi zj zk in K .

4. Discontinuity

In this section we enumerate the cases in which the area derivative can be discontinuous
and relate them to singularities in the definition of the dual complex. Since the weighted
area contains the unweighted area as a special case, we may restrict the discussion to the
former.

Combination of Maps. Recall that the derivative of the weighted area function is the
map DE : R3n → R

3n defined by DE(z) = e. It has discontinuities along a measure
zero subset of R3n , where E is not differentiable. This subset has been studied before
in the context of molecular dynamics by Wawak et al. (1994) and can be understood
by examining the formula in the Weighted Area Derivative Theorem. That formula is
composed of the fraction maps σi j and βi jk , the coefficient maps ‖ei j‖ and ‖ei jk‖, and the
direction maps ui j and ui jk . All six are almost everywhere but not everywhere continuous.
We have a discontinuity of DE only if at least one of the maps is discontinuous and the
multiplying other maps are non-zero. Note, however, that having one discontinuous map
with a non-zero multiplying factor does not necessarily imply a discontinuity since there
may be relations that cause non-trivial cancellations.

We will see shortly that every state z at which DE is discontinuous also has the
property that every open neighborhood contains states with combinatorially different
dual complexes. In other words, when z passes through a discontinuity of DE then the
dual complex passes a moment at which it may undergo a combinatorial change. All
these changes happen at the boundary of the dual complex, but not every change on the
boundary corresponds to a discontinuity.

Pair Maps. We first consider the maps that depend on two spheres, σi j , ‖ei j‖, and ui j .
The three cases in which σi j may be discontinuous are illustrated in Fig. 7. Case (b) is
further split into Case (b.1), when �i �= �j , and Case (b.2), when �i = �j .

Case (a). Spheres Si and Sj touch in a point x and lie on opposite sides of the common
tangent plane. The states that satisfy this description form a (3n−1)-dimensional cylinder
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(b)(a) (c)

Fig. 7. (a) Two non-nested touching spheres. (b) Two nested touching spheres. (c) Three spheres meeting in
a common circle.

in R3n . If x lies outside all other spheres, then σi j jumps from 0 to 1 or from 1 to 0. The
maps ‖ei j‖ and ui j may both be non-zero, which implies that DE can be discontinuous.

Case (b.1). Spheres Si and Sj touch in a point x , they lie on the same side of the
common tangent plane, and �i �= �j . As in Case (a), the states that satisfy this condition
form a (3n−1)-dimensional cylinder inR3n , and if x lies outside all other balls, then σi j

jumps from 0 to 1 or from 1 to 0. In the unweighted case we have ‖ai j‖ = 0, as shown in
Fig. 4(a), and therefore no discontinuity of the derivative. In the weighted case we may
have ‖ei j‖ �= 0, and since ui j is non-zero by construction, DE can be discontinuous.

Case (b.2): Si = Sj . The states that satisfy this description form a (3n−3)-dimensional
linear subspace ofR3n . Using limit considerations, we get a possibly non-zero continuous
extension for the pairwise coefficient map, namely ‖ei j‖ = π(αi�i + αj�j ). If a non-
zero fraction of the common sphere surface lies on the boundary of F , then we also get
non-zero limits for σi j . Since there is no continuous extension of the direction map, DE
can be discontinuous.

Case (c). Spheres Si , Sj , and Sk intersect in a common circle. The states that satisfy
this description form a (3n − 3)-dimensional subset of R3n . If a positive fraction of the
common circle belongs to the boundary of F , we get positive limits for σi j , σik , and
σjk , which are different for different approaching directions. The coefficient maps and
direction maps can all be non-zero, which implies that DE can be discontinuous.

The state can pass through a singularity in various ways. The generic way of passing
through Cases (a) and (b.1) corresponds to adding an edge to the dual complex or
removing it from the same. The generic way of passing through Case (b.2) corresponds
to contracting an edge followed by un-contracting the same. There is more than one
way to generically pass through Case (c), and in each way we witness the removal of
a degree-2 vertex and the replacement of its two edges by a new edge connecting their
two other endpoints, or the inverse of that operation.

Triple Maps. The maps βi jk , ‖ei jk‖, and ui jk have discontinuities where the circles
bounding caps on Sj form configurations as in Fig. 7.

Case (d). The spheres Si , Sj , and Sk intersect in a common point, as in Fig. 7(a),(b). In
this case we have �i jk = 0. The discontinuity of βi jk is thus wiped out by the vanishing
of ‖ei jk‖, which implies that DE is continuous.
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Case (e). The spheres Si , Sj , Sk , and S� intersect in a common point pair, as in Fig. 7(c).
The states that satisfy this description form a (3n − 2)-dimensional cylinder in R3n . We
can arrange the other spheres so we get positive limits for βi jk , βi j�, βik�, and βjk� that
are different for different approaching directions. We can choose the centers and radii
such that the coefficient maps and direction maps are all non-zero. It thus seems possible
that DE is discontinuous.

The generic way of passing through Case (d) corresponds to adding a triangle to the
dual complex or removing it from the same. This triangle may fill or open a tunnel, or
it may be added or removed together with one of its edges. Similarly, the generic way
of passing through Case (e) corresponds to adding a tetrahedron to the dual complex or
removing it from the same. The tetrahedron may fill or open a void, or it may be added
or removed together with one of its triangles.

If no Cases (a)–(e) occur in the collection of spheres defining the space-filling dia-
gram, then we have continuous fraction maps, continuous coefficient maps, continuous
direction maps, and therefore a state where the weighted area derivative is continuous.

5. Implementation

We implemented the Weighted Area Derivative Theorem by re-implementing the Alpha
Shapes software to compute the dual complex of the space-filling diagram. As described
below, we have validated the resulting software as correct and sufficiently fast for appli-
cations in molecular dynamics.

Molecular Simulation Application. Implicit solvent models usually compute the inter-
action of water with non-polar atoms of a molecule as a weighted sum of the accessible
surface area of each atom. The weights are the atomic solvation parameters introduced
by Eisenberg and McLachlan (1986). These terms, and their derivatives with respect
to the position of the atoms, can be computed using the Alpha Shape software and
the Weighted Area Derivative Theorem with the coefficient αi set to the values of the
atomic solvation parameters. Applications of this method to molecular simulations such
as molecular energy minimization or molecular dynamics require that special care be
taken to minimize the computational cost. One step of a molecular dynamics simulation
in vacuo of a 90-residue protein requires approximately 40 milliseconds (ms) on a 1000
MHz Pentium III computer; the same simulation performed with explicit water requires
240 ms. An implicit solvent simulation should therefore position itself between these
two figures. We have written a new version of the Alpha Shape software, ALPHAMOL,
specific to molecular simulation applications that includes implementations of the area
and weighted area derivative formulas. Computation of the surface area and its deriva-
tives of a 90-residue protein using ALPHAMOL require 60 ms on a 1000 MHz Pentium
III computer, which is well within the specifications required for molecular dynamics.
The 60 ms roughly break down to 20 ms for computing the Delaunay triangulation, 20
ms for generating the alpha complex, 10 ms for computing the weighted surface area,
and 10 ms to compute the weighted surface area derivatives.

The surface area is involved in the non-polar part, Wnp, of the effective solvation
potential W . The contribution of solvent to the electrostatic of the protein, Welec, is usually
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computed based on a generalized born model (Still et al., 1990). Fast implementation of
the electrostatics under this model are currently four times slower than the corresponding
in vacuo calculations (Im et al., 2003). One step of an implicit solvent molecular dynamics
simulation of a 90-residue protein would therefore require approximately 220 ms, which
is similar to the time required for an explicit solvent simulation. Note that most of this
computing time is now spent in evaluating the electrostatics contribution to the energy,
where significant speed-up is expected in the near future (Im et al., 2003).

Validation. The area derivative formula was tested for 7PCY (99-residue protein, 871
atoms) and 1TIM (247-residue protein, 1870 atoms) against the numerically estimated
first derivatives of surface area:

�A3i+ j = A(z3i+ j + δ)− A(z3i+ j − δ)
2δ

, (7)

where z3i+ j is the j th coordinate of the i th atom center. A similar expression holds for
the weighted area by replacing A with E in (7). The average relative differences between
analytical and numerical derivatives were computed as a relative RMS error:

µ(A) =
√∑n−1

i=0

∑3
j=1(a3i+ j −�A3i+ j )2√∑n−1

i=0

∑3
j=1(�A3i+ j )2

, (8)

where n is the number of atoms, as before. The average relative differences µ(E) for
the weighted areas are computed in a similar way. For the weighted areas, the tests were
performed using the atomic solvation parameters from Table 3 of Wesson and Eisenberg
(1992). Using δ = 0.0001, we find µ(A) equal to 5.3 ·10−8 and 5.4 ·10−8 for 7PCY and
1TIM, respectively, and µ(E) equal to 5.6 · 10−8 and 5.7 · 10−8 for the same proteins.
The good agreements between the analytical and numerical derivatives of the surface
area and weighted surface areas show that our approach and implementation are correct.

Performance. We compared the performance of ALPHAMOL with that of one other
analytical program for computing molecular surface area and its gradients, GETAREA by
Fraczkiewicz and Braun (1998), and of one fast approximate program, PROSURF. The
latter software is our own implementation of the fast numerical procedure proposed by
LeGrand and Merz (1993). Accessible surface areas and their derivatives were calculated
for a set of four proteins, 6PTI, 7PCY, 1TIM, and 1MCP. Atomic radii and solvation

Table 1. Comparison between ALPHAMOL, GETAREA and
PROSURF. The running time is given in seconds.

Protein

6PTI 7PCY 1TIM 1MCP

Number of atoms 444 871 1870 3401

ALPHAMOL 0.04 0.06 0.24 0.47
GETAREA 0.05 0.11 0.26 0.48
PROSURF 0.03 0.06 0.17 0.32
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parameters were the same for every input protein. ALPHAMOL and GETAREA agree
within numerical precision for both the surface area and derivatives, while the value of
the surface area computed with PROSURF is found to be on average 3% larger than the
analytical values. Computing times on an Intel 1000 MHz Pentium III computer for the
three pieces of software are given in Table 5. ALPHAMOL is found to be slightly faster
than GETAREA, and slightly slower than the numerical method. It should be mentioned
however that the latter does not include the computation of the derivatives.

6. Discussion

The Alpha Shape software with the Weighted Area Derivative Theorem provides a fast,
accurate, and robust method for computing the interaction of water with non-polar atoms
of a molecule in an implicit solvent model. The corresponding software, ALPHAMOL,
has similar CPU time requirements as other analytical or fast approximate programs.
It surpasses numerical programs, however, in that it is accurate. To our knowledge,
ALPHAMOL is also the only analytical program that explicitly deals with the problem
of discontinuities of the weighted area derivatives. We have made preliminary steps
towards inserting ALPHAMOL into the molecular dynamics program ENCAD by Levitt et
al. (1995), but it is too early to say anything about the corresponding results.

When we evaluate the derivative formulas, we assume the availability of the dual
complex of the space-filling diagram. At this time, we re-compute the entire Delaunay
triangulation and obtain the dual complex by selecting its simplices from that triangula-
tion. It would be worthwhile to develop a fast algorithm that maintains the dual complex
during a continuous motion without repeatedly rebuilding the Delaunay triangulation.

The mathematical tools used in this paper to express the area derivative of a space-
filling diagram should prove useful to extend the results to the weighted volume deriva-
tives and to the second derivatives of the weighted area and volume. It might also be
interesting to compute derivatives for other molecular models. For example, the area
derivative of the molecular skin surface defined by Edelsbrunner (1999) may turn out to
be continuous and thus lead to more robust simulations than the partially discontinuous
area derivative of the space-filling diagram.
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