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Abstract. There are many scientific and engineering applications where an automatic
detection of shape dimension from sample data is necessary. Topological dimensions of
shapes constitute an important global feature of them. We present a Voronoi-based dimen-
sion detection algorithm that assigns a dimension to a sample point which is the topological
dimension of the manifold it belongs to. Based on this dimension detection, we also present
an algorithm to approximate shapes of arbitrary dimension from their samples. Our empir-
ical results with data sets in three dimensions support our theory.

1. Introduction

Interpretation of shapes from its samples is needed in many scientific and engineering
applications. As a result, defining and detecting features that contain useful information
about the shape are subjects of active research in shape modeling [4], [14], [22], [23].
A global feature of a shape is its dimension which has been defined in various ways to
accommodate intricacies and varieties in shapes. Topological and Hausdorff dimensions
are two such definitions that capture the global feature, the first one stresses on the space
connectivity and the second one on the space filling property [15], [17], [20]. In this
work we focus on the topological dimension of the shapes that are smooth manifolds
embedded in a Euclidean space. Data collected for scientific analysis through natural
phenomena or simulations lie on such manifolds and can reveal important information
if the underlying dimension is detected automatically.

Automatic dimension detection is a major challenge in the fields of learning the-
ory, pattern recognition [5] and artificial intelligence in general [21], [25]. In these
applications point samples can be generated from an otherwise unknown manifold. The
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dimension of the manifold when detected from the samples, provides useful feedback
to the learning process and sometimes can be used for various matching purposes in
pattern recognition. A related problem studied in the literature is dimensionality reduc-
tion, where a low-dimensional representation of a point set is sought possibly with some
small distortions to the input [19], [24]. Principal component analysis (PCA) and the
multidimensional scaling (MDS) are two prevalent methods used for this problem [8].
These methods approximate the dimension after allowing small distortions to the input.
We stress that this paper studies the problem of exact dimension detection rather than
approximating it.

In two and three dimensions, the topological dimension of a shape becomes obvious
with a visual inspection of the data points. However, often a shape needs to be computed
from the samples for further processing. For example, in the study of dynamical systems,
the quasiperiodic and chaotic orbits can be automatically recognized from sample points
in the phase portraits if automatic shape recognition can be performed [25]. To this
end one may try reconstruction algorithms for curves [2], [11], [18] and for surfaces
[1], [3], [6], [13]. Unfortunately, these reconstruction algorithms are of no use if the
dimension of the shape is not determined a priori. For example, a surface reconstruction
algorithm cannot produce a curve out of a sample that has been derived from a curve. The
situation becomes worse when data have samples from shapes of various dimensions
such as the data from a phase portrait of a sampled dynamical system. In this case,
one first needs to separate the samples according to their dimensions and then apply
respective reconstruction steps. The α-shapes pioneered by Edelsbrunner et al. [12],
[13] can reconstruct shapes of arbitrary dimension from their point samples. However,
this algorithm requires that the input sample density be globally uniform whereas our
method requires only locally uniform density. Also, the theoretical guarantees of α-
shapes in detecting dimensions have not been studied.

In this paper we present an algorithm that determines the dimension of the shape from
which samples are derived. Specifically, it assigns a dimension k to a sample point if it
belongs to a manifold of dimension k. We also present a shape approximation algorithm
which filters simplices from a Delaunay complex approximating the sampled shape
subsequent to the dimension detection step. The assumption we make on the sampling is
that it is feature dependent, i.e., it is dense wherever small features exist and is relatively
sparse wherever intricate features are absent. This is similar to the ε-sampling condition
introduced in [1] and [2]. However, as argued later, we need a stronger assumption on
sampling for automatic dimension detection and this assumption cannot be avoided if
one wants to guarantee correctness.

Our approach is based on the Voronoi diagrams of the samples. The dimension of a
small neighborhood of a point in a manifold depends on the dimension of the manifold
itself. For example, a point on a curve has a neighborhood homeomorphic to a 1-disk
and a point on a surface has a neighborhood homeomorphic to a 2-disk. Under an
appropriate sampling condition, the structure of the Voronoi cells of the sample points
contain information about the dimension and the shape of these neighborhoods. We
analyze these structures carefully and extract this information. We test our algorithms
on a number of data sets in three dimensions. Empirical results support the theory
based on which we design the dimension detection algorithm DIMENSION and the shape
approximation algorithm COCONESHAPE.
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2. Sampling and Voronoi Geometry

Let M = {M1, M2, . . . , M�} be a collection of smooth compact manifolds embedded
in R

d and let M = |M| be its underlying space. In general, M can have manifolds
of different dimensions, i.e., Mi , i ∈ {1, 2, . . . , �}, may be a k-manifold for any k,
1 ≤ k ≤ d . In order to determine the dimensions of the manifolds from their samples,
we must assume some density condition on the samples, otherwise they may be too
sparse to provide any meaningful information about M .

2.1. Sample Density

We adapt the density assumption of Amenta et al. [2]. It is based on the local feature
size of a shape which measures the distance to the medial axis. The medial axis of M
is the closure of the set of points in R

d that have two or more closest points on M . The
local feature size is a function f : M → R where f (x) is the Euclidean distance to
the medial axis of a point x ∈ M . Intuitively, f (x) is a measure of how complicated
M is in the neighborhood of x . A nice property of f (·) is that it is 1-Lipschitz, i.e.,
f (x) ≤ f (y) + ‖x − y‖ for any two points x and y in M .

A sample P ⊂ M is called an ε-sample of M if each point x ∈ M has a sample
point p ∈ P within an ε f (x) distance. This means that each point in M has a sample
within an ε factor of its local feature size. We argue that this ε-sampling assumption is
not suitable for dimension detection even for small values of ε since it cannot prevent
ambiguity.

Consider the sample shown in Fig. 1. The sample is taken from the surface of a pear
and satisfies the ε-sampling condition for ε < 0.4. However, if it is not known that the
sample is from a surface, the points in circular arrangements near the top may as well
be taken as a sample of the respective circles. Any dimension detection algorithm would
be confused in this case as to concluding if the samples are generated from a surface
or a set of curves. In general, an ε-sample of a manifold M can be arranged so that a
subset of the points samples a lower-dimensional manifold M ′ ⊂ M . This prompts us
to adopt a stricter sampling condition to disambiguate the dimension of the underlying
shapes.

Fig. 1. An ambiguous sample.
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Definition 2.1. A sample P of a collection of smooth manifolds M is called an (ε, δ)-
sample of M for ε/2 ≤ δ < ε < 1 if each point x ∈ M has a sample point within an ε f (x)

distance and each sample point p has all other sample points at least δ f (p) away from it.

Remark. The above definition requires that the sample be dense with respect to the
local feature size, but at the same time sample points cannot be arbitrarily close to form
an arbitrary pattern such as curves on surfaces. Notice that this requirement is much less
strict than the condition where the sampling has to be uniform everywhere. We chose the
lower bound on δ as ε/2 for making further calculations precise though any other constant
greater than 1 will be equally valid for our theoretical analysis. Similar sampling condi-
tions have been studied before in the context of surface reconstruction in [9] and [16].

2.2. Tangent and Normal Spaces

Since we are dealing with a collection M of smooth manifolds in R
d , results from

differential geometry ensure that a tangent space at each point p ∈ M is well defined
[7]. The dimension of the tangent space at p coincides with the topological dimension
of the manifold containing p. We also refer to this dimension as the dimension of p. Our
goal is to determine the dimension of the sample points from their Voronoi cells.

Let Tp denote the tangent space at p, i.e., the affine subspace of R
d spanned by tangent

vectors at p. The affine subspace spanned by normals to Tp constitute the normal space
Np at p. The dimensions of Np and Tp add to d.

The main tool we use for detecting dimension is the geometric structure of the Voronoi
cells. Let VP and DP denote the Voronoi diagram and its dual, the Delaunay triangulation,
for a sample P . A Voronoi cell Vp for a sample point p is the set of all points that are no
farther away from p than any other sample point in P . Let T̃p denote the set of all points
in Tp that are no farther away from p than from any other sample point, i.e., T̃p = Tp ∩Vp.
Similarly, let Ñp = Np ∩Vp denote the set of points in Np that are no farther away from p
than from any other sample point. We call T̃p and Ñp the tangent and normal polytopes of
p, respectively. The main observation, based on which the dimension detection proceeds,
is that the Voronoi cell Vp of p ∈ P approximates the Minkowski sum of T̃p and Ñp.
Figure 2 illustrates the above fact. This figure shows the Voronoi cells of points of various
dimensions in an (ε, δ)-sample of M in three dimensions. In the left picture the tangent
polytope is the segment going through p and the normal polytope is shaded. This is the
case for a sample point on a curve. In the middle picture the tangent polytope is shaded
and the normal polytope is the line segment going through p. This is the case for a sample
point on a surface. In the right picture the tangent polytope is the entire Voronoi cell and
the normal polytope is the single point p. This is the case for an interior point in a solid.

2.3. Voronoi Subpolytopes

The Voronoi cell Vp contains information about the dimension of T̃p and hence Tp. Our
task is to separate T̃p from Ñp from the Voronoi cell Vp. We achieve this by examin-
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Fig. 2. Tangent and normal polytopes of a sample on a curve (left), surface (middle) and solid (right).

ing the structure of a sequence of Voronoi subpolytopes as defined recursively below.
The definition of Voronoi subpolytopes is based on the concept of poles for Voronoi
cells which was introduced by Amenta and Bern [1]. We generalize it here for Voronoi
subpolytopes. For convenience we use the notation ∠(v, w) to denote the acute angle
between the lines supporting two vectors v and w.

Definition 2.2. The Voronoi subpolytopes for a sample point p ∈ M are special subsets
V i

p ⊆ Vp, i = 1, . . . , d, of the Voronoi cell Vp. Let V d
p = Vp. Assume that V i

p is already
defined. Let vi

p be the farthest point in V i
p from p. We call vi

p the pole of V i
p and

the vector vi
p = vi

p − p its pole vector. If V i
p is unbounded, vi

p is taken at infinity,
and the direction of vi

p is taken as the average of all directions given by unbounded
edges. The Voronoi subpolytope V i−1

p is the minimal polytope containing all points
{x : ∠((x − p), vi

p) = π/2}.

Clearly, V i−1
p ⊂ V i

p is a polytope orthogonal to the pole vector of V i
p . In Fig. 3 we show

the Voronoi subpolytopes for a sample point on a curve and on a surface, respectively in
three dimensions.

We introduce the definition of height to measure the structure of Voronoi sub-
polytopes.

Definition 2.3. The height Hi
p of a Voronoi subpolytope V i

p is the length ‖vi
p‖ =

‖vi
p − p‖.

The height of V i
p measures its elongation, but we also need a measure for the “fatness”

of V i
p which is measured by the height of V i−1

p .
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Fig. 3. Voronoi subpolytopes for a point on a curve (left) and a surface (right). V 3
p are the entire Voronoi

cells, V 2
p are the shaded polygons and V 1

p are the line segments going through p.

3. Geometric Guarantees

Let p ∈ P be an interior point in a manifold of dimension k, 1 ≤ k ≤ d, where P is
an (ε, δ)-sample of M , the underlying space of a collection of manifolds M in R

d . We
assume that p satisfies the following condition.

Assumption 3.1. Vp does not contain any boundary point of M .

One way to satisfy the above assumption for all sample points is to consider only
manifolds without boundary. Of course, this excludes d-manifolds since they necessarily
have boundaries in R

d .
We claim that V k

p approximates the tangent polytope T̃p and thus cannot have large
height. All other higher-dimensional Voronoi subpolytopes are long and thin along some
normal direction and they have large heights. The claims are based on the following two
observations:

(i) All Voronoi subpolytopes V i
p , k < i ≤ d, contain a boundary point of Ñp.

(ii) The pole vectors of Voronoi subpolytopes V i
p , k < i ≤ d, approximate some

vector in the normal space Np.

Fact (i) implies that the height Hi
p is at least as large as f (p), the local feature size at

p, for k < i ≤ d . Fact (ii) implies that the affine space of V k
p is normal to k orthogonal

vectors each of which approximates a vector in the normal space Np. This in turn means
that the affine space of V k

p lies close to Tp and V k
p approximates the tangent polytope

T̃p. We extend a result of [3] to show that the diameter of the tangent polytope is small,
specifically O(ε) f (p). It follows that the height Hi

p is O(ε) f (p) for 1 ≤ i ≤ k.
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Facts (i) and (ii) hold vacuously for k = d since k < d is not satisfied. In this case
V k

p = Vp is the tangent polytope and its height is small due to the ε-sampling condition.

Lemma 3.1. Let v ∈ V i
p be any point in the Voronoi subpolytope V i

p where k < i ≤ d
and ‖v − p‖ > µ f (p). Then there is a normal vector np ∈ Np so that

∠((v − p), np) ≤ arcsin
ε

µ(1 − ε)
+ arcsin

ε

1 − ε
.

Proof. If v ∈ Ñp, then the condition is trivially satisfied. So, assume v �∈ Ñp. First we
establish that there is a point z ∈ M so that the line going through v and z intersects
Ñp ∩ Vp, the boundary of the normal polytope Ñp. Consider the cone Xv = {x : x =
tv+(1− t)y} for all t ∈ [0, 1] and y ∈ Ñp. Since Ñp has dimension d −k, the dimension
of Xv is d − k + 1. The manifold M intersects Xv at p transversally and L = M ∩ Xv

must be a manifold of dimension (d − k + 1) + k − d = 1. We argue that L must
intersect the boundary of Xv at a point z �∈ Ñp. If z ∈ Ñp, then there is a medial axis
point violating the sampling condition. To see this consider a ball tangential to M at p
growing towards z, i.e., its center moving along pz from p towards z. It must touch M
at another point before or when it reaches z implying that there is a medial axis point
within the segment connecting z and p. This means z has the nearest sample point p at a
distance more than f (z), a contradiction to our sampling condition. Thus, z can lie only
on bd(Xv)\Ñp establishing our claim. See Fig. 4 for an illustration.

Let the line going through v and z meet the boundary of Ñp at m. Clearly, m ∈ bd(Vp).
Consider the triangle pvm. Take np as the vector r − p where r is the other endpoint of the
line segment in Ñp going through p and m. We are interested in the angle ∠rpv. We have

∠rpv = ∠pmv + ∠pvm.

Since z ∈ M has p as the nearest sample point we have ‖z− p‖ ≤ ε f (z). Applying the
Lipschitz condition between f (z) and f (p) we get f (z) ≤ (ε/(1− ε)) f (p). Therefore,

‖z − p‖ ≤ ε

1 − ε
f (p).

m

p

r

v

z
z p

m

r

v

Fig. 4. The polytope Xv in Lemma 3.1 is three-dimensional for a curve point (left) and is two-dimensional
for a surface point p (right) in three dimensions. The edges of this polytope are dashed. Ñp is the lightly shaded
polygon for the curve point, and it is the segment between m and r for the surface point.
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Also, ‖m − p‖ ≥ f (p) since there is an empty ball touching M at p with its center
on the medial axis and on the segment pm. To see this, again consider growing a ball
touching M at p and moving its center from p towards m until it touches another
point on M . The center of such a ball must be in Vp since the ball is empty. It follows
that

∠pmv ≤ arcsin
‖z − p‖
‖m − p‖

≤ arcsin
ε

1 − ε
.

Considering the triangle pvm we have

∠pvm ≤ arcsin
‖z − p‖
‖v − p‖

≤ arcsin
ε

µ(1 − ε)
.

This establishes the claim of the lemma.

Lemma 3.2. Hi
p ≥ f (p) for k < i ≤ d.

Proof. The Voronoi subpolytope V i
p intersects the normal polytope Ñp in a polytope

of dimension i + (d − k) − d = i − k which is greater than 0 since i > k. It means that
V i

p has a point, say x , where x ∈ bd(V i
p) ∩ Ñp ⊂ bd(Vp) ∩ Ñp. Consider growing a ball

touching M at p always keeping the center on px until it touches M at another point. The
center of this grown ball is a medial axis point that must lie in Vp since the ball is empty.
Thus, ‖x − p‖ ≥ f (p). In particular, the length of the pole vector Hi

p = ‖vi
p − p‖ must

be at least f (p).

In what follows we use α = 2 arcsin ε/(1 − ε).

Corollary 3.1. There exists a normal vector np ∈ Np for each pole vector vi
p, k < i ≤

d, so that ∠(vi
p, np) ≤ α.

Proof. From Lemma 3.2 we get ‖vi
p‖ ≥ f (p) for k < i ≤ d. So, plugging µ = 1

into Lemma 3.1 we obtain that ∠(vi
p, np) ≤ 2 arcsin ε/(1 − ε) = α for some vector

np ∈ Np.

Lemma 3.3. Let x ∈ V i
p be any point on the boundary of the Voronoi subpolytope V i

p ,
where i ≤ k.

δ

2
f (p) ≤ ‖x − p‖ ≤ ε

1 − ε
sec

(α

2
(1 + 4

√
d − k)

)
f (p).
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Proof. The lower bound on ‖x − p‖ follows from the δ-condition in the sampling
density. Since any sample point must be at least δ f (p) away from p, any point on the
boundary of Vp is at least (δ/2) f (p) distance away from p. The point x lies on the
boundary of V i

p and hence on the boundary of Vp.
For the upper bound we first exclude the case k = d. In this case V k

p = Vp is the
tangent polytope with height H d

p ≤ ε f (p) due to the sampling condition. Thus, the
upper bound holds trivially in this case. For the other cases when k < d we first show
that the vector xp = x − p makes a large angle with any vector in the normal space Np.
Let np ∈ Np be a vector so that ∠(xp, np) is the smallest.

From Lemma 3.1 it follows that for each pole vector vi
p, k < i ≤ d, there exists a

vector ni
p in the normal space so that ∠(vi

p, ni
p) ≤ α, where α = 2 arcsin ε (1 − ε) is

small. This result and the fact that the vectors vi
p are orthogonal to each other imply

that the vectors ni
p are linearly independent and thus span Np. Consider the vector

vp = �d
i=k+1ai vi

p if np = �d
i=k+1ai ni

p. Without loss of generality assume that the
vectors vi

p, ni
p for i = k + 1, . . . , d are unit. We can also choose �d

i=k+1a2
i = 1 which

only scales np. With these choices vp becomes a unit vector. Let ∠(vp, np) = β. We
show that β is small.

We can write ni
p = vi

p + wi where wi is a small vector with ‖wi‖ ≤ α since vi
p is a

unit vector and ∠(vi
p, ni

p) ≤ α. Therefore,

np =
d∑

i=k+1

ai ni
p

=
d∑

i=k+1

ai vi
p +

d∑
i=k+1

ai wi

= vp +
d∑

i=k+1

ai wi .

It follows that

sin β ≤ ‖
d∑

i=k+1

ai wi‖

≤
d∑

i=k+1

|ai | · ‖wi‖

≤ α

d∑
i=k+1

|ai |.

The term �d
i=k+1|ai | is at most

√
d − k by Cauchy–Schwartz’s inequality with the con-

dition �d
i=k+1a2

i = 1. Therefore, for small β,

β

2
≤ sin β ≤ α

√
d − k.
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Now consider the angle between xp and np. By the triangular inequality

∠(xp, np) ≥ ∠(xp, vp) − ∠(vp, np)

= π

2
− β.

Using the contrapositive of Lemma 3.1 we obtain that ‖x − p‖ = µ f (p) where

µ ≤
(

ε

1 − ε

)
1

sin(π/2 − β − arcsin ε/(1 − ε))

≤
(

ε

1 − ε

)
1

cos(β + α/2)

≤
(

ε

1 − ε

)
sec

(
α

2
(1 + 4

√
d − k)

)
,

completing the proof.

Combining Lemmas 3.2 and 3.3 we obtain the following theorem.

Theorem 3.1. Let p ∈ P be any point derived from a manifold of dimension k em-
bedded in R

d where P is an (ε, δ)-sample and Vp does not contain any boundary point.
Then the following conditions hold:

1. Hi
p ≥ f (p) for k < i ≤ d.

2. (δ/2) f (p) ≤ Hi
p ≤ ε/(1 − ε) sec((α/2)(1 + 4

√
d − k)) f (p) for 1 ≤ i ≤ k.

4. Dimension Detection

Theorem 3.1 is the basis of our algorithm for dimension detection. From Theorem 3.1
we have H 1

p = O(ε) f (p) if we assume that the dimension of p is at least one. Certainly,
H 1

p is small if ε is sufficiently small. On the other hand, Hi
p ≥ f (p) are large for

k < i ≤ d . Then one possible algorithm to determine k may proceed as follows.
Compare the heights Hi

p with H 1
p in decreasing sequence of i starting with i = d.

Continue the sequence of comparisons as long as the ratio H 1
p /Hi

p is less than a user
chosen parameter ρ. The comparison stops when the ratio goes above ρ and we note the
value of the corresponding i . This strategy has the potential problem that the heights Hi

p
for 1 ≤ i ≤ k are small compared with f (p), but they may not be small with respect to
H 1

p . The remedy is obtained by the δ-condition on the (ε, δ)-sampling. We note that,

H 1
p

Hi
p

≥ δ(1 − ε)

2ε sec ((α/2)(1 + 4
√

d − k))

>
(1 − ε)

4 sec ((α/2)(1 + 4
√

d − k))

= �(1) for 1 ≤ i ≤ k,
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and for k < i ≤ d ,

H 1
p

Hi
p

≤
(

ε

1 − ε

)
sec

(
α

2
(1 + 4

√
d − k)

)

= O(ε).

Thus, a choice of ρ in the range

[(
ε

1 − ε

)
sec

(
α

2
(1 + 4

√
d − k)

)
,

(1 − ε)

4 sec ((α/2)(1 + 4
√

d − k))

]

suffices for our algorithm DIMENSION. So, for example, in dimension five, with ε less
than 0.03, ρ ∈ [0.04, 0.2] will suffice.

DIMENSION (P , ρ, d)

1 Compute VP

2 for all p ∈ P
3 compute H 1

p , . . . , H d
p

4 i := d
5 while H 1

p /Hi
p < ρ

6 i := i − 1
7 endwhile
8 dim(p) := i
9 endfor

5. Shape Approximation

We use DIMENSION to design a shape approximation algorithm that can approximate M
with a piecewise linear complex interpolating the sample P . This algorithm is dimension
independent in that it does not need to know a priori the dimension of the shape from
which the sample is derived. The algorithm can be seen as a generalization of our COCONE

algorithm that reconstructs surfaces in three dimensions [3], [10]. We need the following
definition of cocone for a sample point p.

Definition 5.1. Let p ∈ P be a sample point from a manifold of dimension k. The
cocone for p, Cp, is defined as the set of all points x ∈ Vp so that the segment connecting
x and p makes an acute angle less than π/8 with V k

p . See Fig. 5 for examples in two and
three dimensions.

The approximation algorithm COCONESHAPE filters a subset of k simplices incident
to p from the Delaunay triangulation of P . In the COCONE algorithm for surface recon-
struction we selected a set of Delaunay triangles incident to p that are dual to the Voronoi
edges intersected by Cp. Generalizing this idea, we compute the set of k-simplices in-
cident to p that are dual to the (d − k)-dimensional Voronoi faces intersected by Cp.
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2 v3

pv p

p
p

Fig. 5. Cocone for a curve point in two dimensions (left) and a surface point in three dimensions (right).

All such simplices computed over all sample points constitute what we call the set
of candidate simplices. We claim that all candidate simplices lie close to the sampled
manifold M .

COCONESHAPE (P , ρ)

1 Compute VP

2 DIMENSION(P , ρ, d)
3 T := ∅
4 for all p ∈ P
5 Let k := dim(p)

6 Compute V k
p and Cp

7 Compute F , the (d − k)-dimensional Voronoi faces intersected by Cp

8 T := T ∪ dual(F)

9 endfor
10 Output T

Lemma 5.1. Let t be a candidate simplex computed by COCONESHAPE. There is a ball
circumscribing t with radius O(ε) f (p) where p is any vertex of t .

Proof. It follows from the definition of cocone Cp and the proof of Lemma 3.3 that
any point x ∈ Cp satisfies the condition ∠((x − p), np) ≥ 3π/8 − O(ε) where np is
an anglewise closest vector to x − p in Np. Using the contrapositive of Lemma 3.1, this
implies that ‖x − p‖ = O(ε) f (p). Since t is dual to a Voronoi face F that intersects
Cp, there exists a ball centered at a point c = Cp ∩ F with radius O(ε) f (p) which
circumscribes t .

The above lemma implies that each point on an output simplex has a point p on the
manifold M within a small distance of O(ε) f (p). Also, each point in M has a vertex p on
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the output complex within an ε f (p) distance. These two facts imply that the Hausdorff
distance between M and T is small relative to the feature size.

6. Experimental Results

We experimented with DIMENSION on three-dimensional data sets. DIMENSION is imple-
mented in C++ using the computational geometry algorithms library CGAL [27]. We
found that robust Delaunay triangulation/Voronoi diagram computations in the presence
of degeneracies and finite precision arithmetic are absolutely necessary for valid output.
To this end we used the filtered floating point arithmetic of CGAL. This simulates exact
arithmetic only on a demand basis. Thus, it provides the advantage of exact arithmetic
with a nominal increase in running time which is observed to be a factor of two in our
case. The reported running times are due to experiments performed on a PC with a
933 MHz Pentium III processor and 512 MB main memory. We tested our implemen-
tation of DIMENSION on various datasets. See Figs. 6 and 7 and Table 1. It turned out
that a value of ρ = 0.3 gives good results in practice. The results we report here are all
obtained using this value.

We developed the algorithm DIMENSION for manifolds without boundaries, but tested
it also on manifolds with boundaries. In three dimensions we can have one and two
manifolds without boundaries. However, 3-manifolds embedded in three dimensions
necessarily have boundaries. The boundary of a k-manifold is a (k − 1)-manifold, i.e.,
the boundary of a volume is a surface. The samples on this surface have Voronoi cells
elongated along the normal to the surface. Thus, DIMENSION detects these points as
lying on a 2-manifold. Similarly, we observe that points on the boundary of a surface
are detected as lying on a 1-manifold. See the datasets FOOT, ENGINE and BALL in
Fig. 6.

The shapes are approximated with our COCONESHAPE algorithm once the dimensions
are detected by DIMENSION. In three dimensions we can extract a manifold out of the
candidate simplices which can be proved to be homeomorphic to the original curve
or surface. Our COCONE software works on this principle to reconstruct surfaces in
three dimensions [26]. With the manifold extraction step COCONESHAPE is exactly what
COCONE does for surface reconstruction. Thus, COCONESHAPE acts like COCONE for
samples that are assigned dimension two. It includes samples from the surfaces of the
three manifolds. In Fig. 6 BALL is an example of a sample from a three manifold in

Fig. 6. Output of the algorithm DIMENSION on the datasets CURVES, FOOT, ENGINE and BALL. Points classified
one-dimensional by the algorithm are colored red (leftmost), points classified two-dimensional are colored
green (middle two) and points classified three-dimensional are colored blue (rightmost), respectively.
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Fig. 7. Output of the algorithm COCONESHAPE on the dataset SCENE (top) which has objects of different
dimensions and the reconstruction of the same dataset (bottom). This picture needs to be seen in color.
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Table 1. Experimental data.

Number of DIMENSION COCONESHAPE

Object points time (sec.) time (sec.)

CURVES 259 2 2
BALL 805 4 1
CACTUS 3,280 46 47
ENGINE 11,360 237 138
FOOT 20,021 110 106
SCENE 29,285 227 189

three dimensions and the reconstruction of its boundary with COCONESHAPE after the
manifold extraction step.

The sample points on the boundaries of the surfaces have dimension one. While com-
puting candidate triangles COCONESHAPE chooses triangles incident to these boundary
samples. They are selected by their neighbors whose dimension is correctly assigned as
two. Figure 6 shows that the boundary samples above the ankle of the foot have been
connected to the rest of the foot correctly. We conclude our experiments with a data
extracted from manifolds of different dimensions. The result is shown in Fig. 7.

We summarize our experimental data on dimension detection and reconstruction in
Table 1.

7. Future Research

We need to test the algorithm DIMENSION with data sets in higher dimensions. Un-
fortunately, real data in higher dimensions are not as easily available as in the three
dimensions. Also, we need to compute Voronoi diagrams in higher dimensions that
are robust against numerical errors. Currently we are in the process of these develop-
ments.

The theory developed in this paper applies to manifolds without boundaries. Although
in our experiments in three dimensions we used heuristics to detect the boundaries, an
algorithm based on sound theory needs to be developed. Feature recognitions, particularly
in higher dimensions, can benefit from such complete information. We believe that the
structure of the Voronoi cells can again guide us to decipher this information. Currently
research is in progress along this direction.
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