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Abstract. We show that in contrast to the classical infinite packing problem, even in the
Euclidian plane, the solutions to several finite packing problems are non-lattice packings
if the number of translates is large enough. This answers, in particular, a question by Paul
Erdös [E].

1. Introduction

Let E
d denote the Euclidian d-space equipped with the norm ‖ · ‖, and let Kd be the

family of strictly convex, compact convex bodies with non-empty interior in E
d . We say a

discrete set X ⊂ E
d defines a packing or K -packing X + K if and only if the translates of

K have mutually disjoint interiors. We speak of a finite packing if X = Xn = {x1, . . . , xn}
is finite, and of a lattice packing if X is subset of a packing lattice � that is a discrete
subgroup of E

d with � + K being a packing. There are many well-studied problems
concerning infinite as well as finite packings, in particular, if K is a sphere (see [CS]
and [Z]).

The classical task in the Geometry of Numbers is to find (infinite) packings with
maximum density where the density is, loosely spoken, given by the proportion of space
covered by the packing (see [GL] for an exact definition). In E

3 the Kepler problem and
its solution by Hales (see [H] and [L]) show the difficulty of the problem. Here, as in E

2

for general K ∈ K2 (see [F]), maximum density is attained by a lattice packing X + K .
It is an open problem if there exists a K ∈ Kd for d ≥ 3, for which the maximum density
is not attained by a lattice packing.

In this paper we show that solutions Xn +K to several finite packing problems, already
in E

2, are always non-lattice packings if n is large enough. For this we consider a class of
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packing problems for a given K ∈ K2, where the quality of a packing is determined by
a “packing function” (see Definition 2). This includes in particular (see [BF], [BHW],
[CFG], [GW], and [F]) the following well-known problems:

Problem 1 (Maximum Parametric Density Problem). Determine packings Xn+K with
minimum area A(conv(Xn + K )) of their convex hull or, more general, with minimum
area A(conv(Xn + ρK )) and maximum parametric density, respectively.

Problem 2 (Minimum Perimeter Problem). Determine packings Xn + K with mini-
mum perimeter of their convex hull and of the polygon conv(Xn), respectively.

Problem 3 (Minimum Container Problem). Determine packings Xn + K with a min-
imum circumscribed circle or minimum dilatate of another container K ′ ∈ K2.

Problem 4 (Minimum Diameter Problem). Determine packings Xn + K with mini-
mum diameter

max{‖x − x ′‖ | x, x ′ ∈ Xn}.

Besides these problems there are many others fitting in our scheme. For example,
Problems 1 and 2 are special cases of the minimization of arbitrary monotone valuations
on the family

PK (n) = {conv(Xn) | Xn + K is a K -packing}
of packing polygons. This generalization of known packing problems is studied by
the author in [S1] and includes the minimization of certain “invariant measures” as
considered by Graham et al. [GWZ]. Of course, we are not able to deal with all finite
packing problems, as the minimization of the “second moment” (see [GS]).

In many cases one might conjecture that solutions to the problems are lattice packings,
supported by the fact that the solutions converge to lattice packings, if n becomes large
(see [BE], [F], and [S1]). A result by Graham et al. [GLNÖ] indicates that in many cases
solutions to the minimum container problem with unit disks in a circle are non-lattice
packings. For the minimum diameter problem Erdös [E] conjectured that the minimum
is not attained by a (hexagonal) lattice packing for all sufficiently large n.1

In this paper we prove Erdös’ conjecture. Moreover, we show that lattice packings
Xn + K , where the polygon conv(Xn) has certain properties (see Lemma 8), are not
solutions to any of the considered problems. As a consequence we find (see Theorem 9):

Extremal (best) packings Xn + K are non-lattice packings for all sufficiently large
n, in Problem 1 with a sufficiently large parameter ρ, and in Problem 2–4 in general.

The next section gives a detailed description of the attained results. The proofs are
in Section 4. In Section 3 we provide some additional information about packings with
unit disks.

1 From Erdös’ letter: “Vielleicht kann man zeigen, daß für n > n0 x1, . . . , xn nie im Dreiecksgitter
einbettbar ist (aber soweit ich weiß wurde dies niemals gezeigt) . . . ”
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2. Results

We consider some common features of the problems listed in the Introduction: First,
we may restrict ourselves to packings X + K with K ∈ K2

o, where K2
o is the family of

centrally symmetric sets in K2 with the origin o as center. This is due to the fact that
X + K is a packing if and only if X + 1

2 (K + (−K )) is one (see [M]), and the difference
body 1

2 (K + (−K )) of K is centrally symmetric and strictly convex.
With every finite packing Xn + K we associate the convex center-polygon conv(Xn).

Let P denote the set of all convex polygons and convex hulls of finite point sets, respec-
tively. Then, given n ∈ N and K ∈ K2

o, in each of the problems listed in the Introduction
one has to minimize a real-valued function f : P 
→ R on a subset PK (n) of P .

Example 1. Because

conv(Xn) + ρK = conv(Xn + ρK ),

the function

f (P) = A(P + ρK ) (1)

with P = conv(Xn) is such a function for the maximum parametric density problem.
The area of conv(Xn + ρK ), and hence f (P), evaluates by Steiner’s formula to

f (P) = A(P) + ρ · 2A(P, K ) + ρ2 · A(K ), (2)

where A(·, ·) denotes the mixed area of two convex disks (see [Sch]). Note that

f (P) = 2A(P, D) = A(P, 2D), (3)

with the unit disk D, is the perimeter function used for the minimum perimeter problem.
For the minimum container problem we consider

f (P) = min{λ | P + K ⊂ t + λK ′ for a t ∈ E
2} (4)

for a given container K ′ ∈ K2. The natural choice for the minimum diameter problem
is, of course, the diameter function itself.

All functions f in the example are independent of the position of the packing. More-
over, if one packing polygon P1 is contained in the relative interior relint(P2) of another
packing polygon P2, the value of f is smaller and the packing is “better” with respect
to the given problem. Thus we are led to

Definition 2. A function f : P 
→ R is a packing function if it is

1. invariant with respect to translations, that is,

f (P) = f (P + t) for all P ∈ P and t ∈ E
2,
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2. monotonically increasing with respect to inclusion, that is,

f (P1) ≤ f (P2) for P1, P2 ∈ P with P1 ⊂ P2,

moreover,

f (P1) < f (P2), if P1 ⊂ relint(P2).

Given K ∈ K2
o and n ∈ N, Xn + K is an extremal packing with respect to f if conv(Xn)

minimizes f within PK (n).

Note that for some packing functions f , there are no extremal packings, since the
minimum may not exist. It is attained, though, if f is continuous on P , which is turned
into a metric space with the Hausdorff-metric (see [Sch]). There are, of course, many
more packing functions than the ones considered in Example 1. We may in particular
generalize the problems listed in the Introduction as follows.

Example 3. In (1), hence for the maximum parametric density problem, the packing
function depends on the disk K of the packing. More generally, we may consider a
packing function f with

f (P) = A(P + ρK ′), (5)

where still P = conv(Xn) and Xn + K is a finite packing of K , and K ′ ∈ K2 is
another disk, independent of K . Similarly, (3) for the minimum perimeter problem may
be replaced by the more general

f (P) = A(P, K ′). (6)

The minimum diameter problem may be generalized by replacing the Euclidian norm
distance by the K ′-distance, for some K ′ ∈ K2

o. For two arbitrary sets X, X ′ ⊂ E
2 the

K ′-distance is given by

inf{λ ≥ 0 | x − x ′ ∈ λK ′, x ∈ X, x ′ ∈ X ′}, (7)

and therefore we may replace the diameter function by the more general packing function

f (P) = max{λ | x − x ′ ∈ λK ′, x, x ′ ∈ Xn}. (8)

It is easily checked that the packing functions in the example are continuous. Hence,
we are led to the following:

Remark. Let K ∈ K2 and f : P 
→ R be one of the packing functions in (4), (6), (8)
or (5). Then for every n ∈ N there exists an extremal packing Xn + K .

Given a disk K ∈ K2
o and a packing function f , we want to know if there exist

extremal lattice packings Xn + K . Because of the monotonicity of f we may assume
that an extremal lattice packing Xn + K is saturated, that is, conv(Xn) ∩ � = Xn for
a packing lattice � of K . Thus it suffices to consider the set of lattice- or �-polygons
conv(Xn) ∈ PK (n).
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By the definition, a finite lattice packing Xn + K is not extremal with respect to any
packing function if there exists a packing X ′

n + K with

conv(X ′
n) ⊂ relint(conv(Xn)).

With this argument many lattice packings can be excluded. Let

λi (�, K ) = min{λ | dim(λK ∩ �) ≥ i}
denote the i th successive minimum of a lattice � and K ∈ K2

o. Here, dim(·) denotes the
dimension (of the affine hull) of a set in E

2. The definition implies λ2(�, K ) ≥ λ1(�, K )

and � + K is a packing if and only if λ1(�, K ) ≥ 2. If � is a packing lattice with
λ2(�, K ) = 2, then � is characterized by the fact that every translate of K in � + K
meets at least four others. We show

Lemma 4. Let K ∈ K2
o and Xn + K be a lattice packing that is extremal with respect

to a packing function. Then there exists a packing lattice � with Xn ⊂ � and either

1. λ2(�, K ) = 2

or

2. λ2(�, K ) > λ1(�, K ) = 2 and Xn is in between two parallel lines of K -distance
2 (see (7)) which both intersect Xn in exactly one point.

Case 2 is superfluous if f is a packing function as in (5) or (6).

In the second case the packing and the packing polygon respectively is two-dimensional,
but “flat”. This case occurs in the minimum container problem, with a suitable con-
tainer K ′.

Example 5. We consider a packing with three copies of the unit disk D, where the
centers form an isosceles triangle T with base length 2 and height h, with

√
3 < h <√

5 + 2
√

5 (see Fig. 1).
If we consider f as in (4), where the container K ′ is the convex hull of the packing,

then f (T ) = 1 is the minimum of f for all “packing triangles”, and it is attained only
by triangles with the same base as T and height between

√
3 and h. Thus the minimum

is attained by lattice packings with respect to lattices � with λ2(�, D) > 2 as well as
such with λ2(�, D) = 2.

Fig. 1. Example for the necessity of case 2 in Lemma 4.
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Next, we take a closer look at possible lattice polygons P with respect to a fixed
lattice �. Here, because of Lemma 4, in particular the case λ2(�, K ) = 2 is of interest.
We show that certain polygons and packings respectively are locally and even globally
“unstable” (improvable) with respect to any packing function. To characterize these,
we consider the (primitive) edges of P , which are segments [xy] ⊂ bd(P) satisfying
[xy] ∩ � = {x, y}.

Definition 6. An edge [xy] of a �-polygon P is called loose with respect to K ∈ K2
o,

if all z ∈ � satisfy

(z + K ) ∩ (x + K ) = ∅ or (z + K ) ∩ (y + K ) = ∅.

Thus edges exceeding a certain length are loose, whereas edges [xy] with (x + K ) ∩
(y + K ) �= ∅ are not.

To state a sufficient condition for the global instability of a lattice packing, we define
the neighbors of a lattice point with respect to a K ∈ K2

o as the set of all lattice points
with K -distance 2. It was already noticed by Minkowski [M] that points of a packing
lattice have at most six neighbors. Moreover, the number of neighbors is divisible by 2
because of K ’s symmetry. Thus in a packing lattice with λ2(�, K ) = 2 the lattice points
have four or six neighbors.

Definition 7. We say that the vertex x of a lattice polygon P is obtuse if there is a
neighbor y of x , such that the neighbors of y are all in P .

We show

Lemma 8. Let K ∈ K2
o and Xn + K be a lattice packing such that conv(Xn) has at

least one loose edge and only obtuse vertices. Then Xn + K is not extremal with respect
to any packing function.

Thus Lemma 8 gives us a geometrical criterion to recognize non-extremal lattice
packings. For the problems listed in the Introduction and their generalizations described
in Example 3 we derive

Theorem 9. Let K ∈ K2 and f : P 
→ R be one of the packing functions in (4), (6), (8)
or (5) with sufficiently large parameter ρ. Then extremal packings Xn + K with respect
to f are non-lattice packings for all sufficiently large n.

Note that the packing functions in Theorem 9 all depend on a K ′ ∈ K2. For f with
f (P) = A(P + ρK ′) as in (5), we are able to give a bound ρ(K , K ′) such that all
parameters ρ with ρ > ρ(K , K ′) are “sufficiently large”. The parameter ρ(K , K ′) and
ways to determine it are studied by the author in [S1]. For the unit disk D we obtain

ρ(D, D) =
√

3

2(1 + √
3 − √

7)
= 10.035 . . . . (9)
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Fig. 2. Hexagonal packings in a multicore cable and a pipe bundle.

3. Packings with Unit Disks

In this section we discuss some details of packings with unit disks, and hereby give some
illustrations of results and proofs. We consider, in particular, the minimum perimeter
problem for which, besides an asymptotic result (see [Z]), surprisingly little is known in
comparison with other packing problems, although there are obvious practical problems,
such as the minimization of material needed to insulate a multicore cable or to tie up
a collection of pipes (see Fig. 2). Besides, the question occurs in other mathematical
contexts, such as in the determination of a minimum rope length of knots and links (see
[CKS]).

Nevertheless, there are a few interesting phenomena which are worth mentioning in
our view. For a fixed n, solutions to the perimeter problem are attained by minimizing
A(P + ρD) for a sufficiently large parameter ρ (see [S1]). The close relation of the two
problems becomes clear by Steiner’s formula (2).

By Theorem 9 and (9) there exists n0 ∈ N, depending on ρ > 10.035 . . . , such that
extremal packings Xn + D with respect to f (P) = A(P +ρD) are non-lattice packings
for all n ≥ n0. On the other hand, for smaller n and smaller ρ, lattice packings are
extremal.

We first look at smaller parameters: It follows from results of Wegner [W] and Groemer
[G] that, despite some exceptions,

f (P) = A(P + ρD) with ρ ≤ 1

is minimized by Groemerpackings (see [S2]). These are lattice packings with respect to
a hexagonal lattice �, which is characterized by the fact that every disk in the packing
�+ D touches six others (see, e.g. Fig. 2). The center-polygon of a Groemerpacking has
only edges of length 2 and therefore only non-loose edges. In the still open exceptional
cases, extremal packings are conjectured to be hexagonal lattice packings with their
center polygons having non-loose edges only as well (see [S2]).

These results incite us to investigate the gap of parameters between 1 and 10.035 . . . .

A result in this direction is a refinement of Lemma 4 for the parametric density problem
with unit disks. We show in [S2] that only hexagonal lattice packings minimize f within
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Fig. 3. Lattice packing with minimum perimeter, which is improvable by moving three disks successively.

the set of lattice packings Xn + D, hence

extremal lattice packings are necessarily hexagonal.

This is especially interesting, since a corresponding result for general K ∈ K2 is not
possible (see [S1]). For the perimeter problem it implies that within the set of lattice
solutions there is a hexagonal packing. In contrast to the parametric density problem
these are not necessarily the only solutions. For example, the minimum perimeter of a
packing with four unit disks is attained in all lattices � with �2(�, D) = 2.

Thus for both problems the determination of a best lattice packing is reduced to
the comparison of finitely many hexagonal packings. For an efficient search, a unique
description of lattice polygons with respect to a fixed lattice is developed by the au-
thor in [S1]. Calculations based on this method yield that the packing shown in Fig. 3
attains the minimum perimeter and the maximum parametric density for parameters
ρ > 21.911 . . . , within the family of lattice packings with 54 unit disks.

As indicated in Fig. 3, it is possible to move three translates successively to attain a
non-lattice packing with smaller perimeter. Moreover, as in the proof of Lemma 8, we
are able to move all translates of the packing and find a packing with smaller diameter
and smaller circumscribed circle as well.

Moreover, our calculations show that 54 is the smallest n for which the center-polygon
of a best lattice packing has a loose edge. So we are led to

Conjecture 10. The minimum perimeter of a packing with n unit disks is attained by
(hexagonal) lattice packings for all n ≤ 53.

Note that there may also be extremal non-lattice packings such as extremal packings
with five and six translates. For sufficiently many translates, lattice packings are not
extremal by Theorem 9. With the techniques developed in [S1] we are in particular able
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to show:

For n ≥ 371 only non-lattice packings Xn + D are extremal with respect to the
perimeter function.

In the light of this result, it is even more remarkable that extremal packings converge
to hexagonal packings, if n becomes large (see [Z]).

4. Proofs

Proof of Lemma 4. Let Xn + K be an extremal packing with respect to f and let � be
a lattice with Xn ⊂ �. If λ1(�, K ) > 2, then Xn + λK with 1 < λ ≤ λ1(�, K )/2 is
a packing, as well as (1/λ)Xn + K , and we find a suitable t ∈ E

2 with t + (1/λ)Xn ∈
relint(conv(Xn)). Thus we may assume λ1(�, K ) = 2.

If λ2(�, K ) = 2, then condition 1 is valid. So we assume there is no lattice � with
Xn ⊂ � and λ2(�, K ) = 2. Then conv(Xn) is not a segment. Because λ1(�, K ) = 2,
the translates of Xn + K can all be moved in between parallel tangents of K . This can
be done without overlappings, and such that no translate touches any other afterwards.
Thus in a second step the translates can be moved in any direction to form a new packing
X ′

n + K .
In this process every x ∈ Xn can be moved to an x ′ ∈ int(conv(Xn)), except if the

parallel of the tangents through x meets conv(Xn) only in x . Thus there are at most two
of these points, say x1, x2, and Xn lies between the corresponding tangents through x1

and x2. If x1 + K and x2 + K do not touch each other, then they can be moved without
overlapping to points x ′

1, x ′
2 ∈ int(conv(Xn)), after the other translates have been moved.

If, on the other hand, x1 + K and x2 + K do touch each other, then we have found a
packing satisfying condition 2 of the lemma.

For a packing function as in (5) or (6), condition 2 in Definition 2 may be extended by

f (P1) < f (P2), if P1 ⊂ P2 and P1 �= P2.

Thus in case 2 we may move the vertices of conv(Xn) not lying on the described parallels
into the interior of conv(Xn) and obtain a better packing, which is not possible if it is
extremal.

Proof of Lemma 8. Let � ⊂ E
2 be a packing lattice of a K ∈ K2

o. Further, we choose
Xn ⊂ � such that P = conv(Xn) has at least one loose edge and only obtuse vertices
with respect to K .

First we assume λ2(�, K ) > 2. Then by Lemma 4 we know Xn + K is not extremal
with respect to any packing function or λ1(�, K ) = 2 and Xn is in between two parallel
lines of K -distance 2 which both intersect Xn in exactly one point. Then P has a non-
obtuse vertex, which contradicts the assumptions on P . So we may assume λ2(�, K ) = 2
and int(P) �= ∅ because a segment P has two non-obtuse vertices, if λ2(�, K ) = 2.
Besides, by our looseness assumption we would find a better packing segment (sausage)
contained in relint(P).
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Because λ2(�, K ) = 2 there exists a base a1, a2 ∈ � ∩ 2K of � (see [GL]), that is,

� = {u1a1 + u2a2 | u1, u2 ∈ Z}.
Moreover, if a lattice point x ∈ � has six neighbors with respect to K , we may assume
that the neighbors are

{x + y | y ∈ {±a1, ±a2, ±(a2 − a1)}}.
Since a linear transformation keeps information on neighborhood, obtuseness and loose-
ness, we may think of � as

I. the integral lattice Z
2, or

II. a hexagonal lattice, e.g. with base a1 = (1, 0), a2 = ( 1
2 ,

√
3/2).

Note that in case I, loose edges are those of length ≥ √
5, and in case II, edges of length

≥ √
7. Moreover, non-loose edges are of length 1 or

√
2 in case I and of length 1 or

√
3

in case II.
Given a lattice packing of type I or II, we want to describe a way of sequentially

moving translates to obtain a better non-lattice packing. In this process we only allow
movements of translates x + K , x ∈ Xn , to translates x ′ + K , x ′ /∈ �, such that x ′ + K
does not touch any other translate. Under this essential precondition we use the following
terminology:

A lattice point x ∈ � is called free if there is no translate x + K . Thus starting with a
lattice packing Xn + K , the corresponding set of free lattice points is �\Xn . Moreover,
if we move a translate x + K as described above, then x ∈ Xn is free afterwards.

We call a lattice point movable, if it has one free neighbor in case I and two free
adjacent neighbors in case II. Hence, if x ∈ Xn is movable, then it is possible to move
x + K in the required way in between two parallel tangents of x + K . Hence x is free
afterwards. Moreover, if we sequentially free movable lattice points of Xn in this way,
then after every step there are possible new movable lattice points, because the number
of disk contacts decreases. The assertion follows, if we show:

(a) There is either a movable lattice point in int(P), or all interior lattice points of P
are free.

(b) If all interior lattice points of P are free, then the lattice points in bd(P) are
sequentially movable into int(P).

In order to see how movable lattice points are moved into or within the interior, it
is important to know in which direction a translate x + K is moved in between the
parallel tangents. Without loss of generality the tangents run through x ± 1

2 a1. Because
of λ2(�, K ) = 2 we know that x + K contains the quadrilateral

x + 1
2 · conv{±a1, ±a2}

in case I, and the hexagon

x + 1
2 · conv{±a1, ±a2, ±(a2 − a1)}

in case II (see Fig. 4).
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a1

a2a2

a1
o o

Fig. 4. In both cases K can be moved without overlappings and with its center remaining in the dashed
region.

Since K is strictly convex the tangents of K through x ± 1
2 a1 meet the quadrilateral

and hexagon respectively only in x ± 1
2 a1. We may further assume that x + a2 is free in

case I, and that x + (a2 − a1) is additionally free in case II. Then there exists a point x ′

in the interior of

x + conv{o, (a2 + a1), (a2 − a1)}
in case I, and in the interior of

x + conv{o, a2, (a2 − a1)}

in case II, such that x + K can be moved to x ′ + K without overlapping.
This already allows us to verify (b): We assume that the lattice points in int(P) are

all free and let x be a lattice point in bd(P). Then, by the assumptions of the lemma that
all vertices are obtuse, we find a neighbor y ∈ int(P) with all neighbors of y being in P .
This is clear by Definition 7 if x is a vertex of P . If x is not a vertex of P , there are two
vertices x1 and x2 of P with x ∈ [x1x2]. By our assumption, x1 and x2 have neighbors
y1 and y2 with their neighbors being in P . Thus the convex hull of these neighbors are
also in P and we find y as asserted.

Therefore x can be moved into int(P) in case I, and in case II, if one of the two
neighbors common to x and y is free. If both neighbors are not, then both are necessarily
in bd(P) and one of them can be freed before x . Since otherwise bd(P) would be a
hexagon without any loose edge, which contradicts the assumption on P . Hence, this
proves (b) and it remains to verify (a).

For this, let [yz] be a loose edge of P . Since P is no segment, there is a lattice point
x ∈ P ∩ � such that the triangle [xyz] is in P and the projection of x onto the line
through y and z lies in [yz]. We may further assume that x is in the interior of P , because
otherwise P has a non-obtuse vertex, against our assumption on P .

Since [yz] is loose, we find that x has a free neighbor in case I and two free adjacent
neighbors in case II, which are, in each case, on the opposite side of the line through y
and z. This is clear, if neither y nor z are neighbors of x . If y and z are both neighbors of
x , then x + K touches both y + K and z + K , in contradiction to the definition of a loose
edge. If one of them is a neighbor, say y, then z lies on the parallel of the line through
y and x , which runs through one other neighbor of x in case I, and two other neighbors
of x in case II. Thus in each case these neighbors are not in P and therefore they are
free. As a consequence, x is movable within the interior of P . Moreover, in case II we
find at least one neighbor of x in P , which shares one of the two free neighbors with x .
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x

x

Fig. 5

Otherwise we could find a non-obtuse vertex of P . Thus (a), and therefore the lemma,
follows if we show that every lattice point in int(P) has one interior or free neighbor in
case I, and two interior or free neighbors in case II.

So we assume in case I there is no interior or free neighbor of x ∈ int(P). Then all four
neighbors of x lie in bd(P). The four lines through adjacent neighbors of x all separate
x from a possibly empty part of P . These four parts each lie between two parallels of the
four lines (see Fig. 5). Therefore we find a non-obtuse vertex or no loose edge in each
of these parts, which is not possible by our assumption on P .

In case II the situation is a bit different: if we assume that there are no two, interior or
free adjacent neighbors of x ∈ int(P), then at least every second neighbor is in bd(P).
We distinguish two cases:

If all other neighbors of x are in P too, then we consider the six lines through
adjacent neighbors of x . Two parallels of these lines run through four neighbors, and
the two parallel, orthogonal lines through these four neighbors separate x and two parts
of P , which lie between the other parallels (see Fig. 5). Here, as in case I, we find a
non-obtuse vertex or no loose edge in each part, which is not possible.

It remains to look at the case when at least one neighbor y of x does not belong
to P . Then the segment between the two neighbors common to x and y are in bd(P).
Moreover, 2x − y ∈ bd(P) and the parallel lines containing the segment and 2x − y
enclose a stripe with every lattice point in it having a neighbor outside. The line through
x and y cuts P into two pieces, one of them contained in the described stripe (see Fig. 6).
Thus in this part of P we find a non-obtuse vertex, in contradiction to our assumptions
on P .

x y2x-y

Fig. 6
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Proof of Theorem 9. By Lemma 8, the theorem is true, if we show that in all cases
best lattice packings have center-polygons with at least one loose edge and only obtuse
vertices for all sufficiently large n. We show this by looking at the asymptotic shape of
best lattice packings. To put this in concrete terms, let

R(M) = min{R > 0 | M ⊂ t + R · D, t ∈ E
2}

denote the circumradius of a compact set M ⊂ E
2 with int(M) �= ∅ and c(M) the center

of its circum circle. Hence M ⊂ c(M) + R(M) · D. The shape of M is defined by

S(M) = (conv(M) − c(M))/R(M).

The shapes of best or extremal (lattice) packings {Xn + K }n∈N (and their center-
polygons conv(Xn), respectively) with respect to one of the packing functions in (4), (6)
or (8) converge to the shape of K ′. That is,

lim
n→∞S(conv(Xn)) = S(K ′), (10)

where the family of compact subsets in E
d is made into a metric space with the Hausdorff-

metric (see [Sch]). This is easily seen for the packing functions in (4) and (8) by rearrang-
ing translates in a hypothetical subsequence not satisfying (10). For packing functions
as in (6), equation (10) is the two-dimensional case of the result in [S3].

For a packing function as in (5), the situation is a bit more complicated: By applying a
theorem of Wulff, we show in [S1] for a given lattice � that the shapes of best �-packings
{Xn + K }n∈N converge to the shape of a �-polygon Pρ , provided that the parameter ρ

in (5) is sufficiently large. Hence

lim
n→∞S(conv(Xn)) = S(Pρ).

Moreover, the shapes of these polygons converge to K ′ for growing parameters, hence

lim
ρ→∞S(Pρ) = S(K ′).

Thus there exists a parameter ρ0(�) such that Pρ with ρ ≥ ρ0(�) has at least one loose
edge and only obtuse vertices with respect to �.

Now, the space of lattices can be made into a topological space (see [GL]) and we
find that ρ0 is a continuous function of lattices (see [S1]). By Lemma 4 it suffices to
consider packings with respect to lattices in the compact family

{� | λ1(�, K ) = λ2(�, K ) = 2},
which implies that ρ0 attains its maximum. Thus for all larger parameters the center-
polygons conv(Xn) of best or extremal lattice packings Xn + K have loose edges and
only non-obtuse vertices for all sufficiently large n.

5. Final Remarks

Throughout the whole paper we consider only strictly convex K and K ′, respectively.
From case to case, but not generally, analogical results hold for a wider class of compact
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convex disks. For example, solutions to the container problem with a non-strictly convex
container may as well be non-lattice packings for all sufficiently large n, as packings of
unit disks into a regular k-gon with k > 12, since there are at most 12 different types of
non-loose edges with respect to a lattice �. This follows from the proof of Lemma 8.

In the mentioned proof we distinguish two types of lattice packings of a given
K ∈ K2

o—one with four, the other with six neighbors of each translate. The latter one, say
the “hexagonal type”, is of particular importance for the maximum parametric density
problem and its generalizations in (5). In [S1] we show that for sufficiently large n, best or
extremal lattice packings are always of this hexagonal type. This is in a way a finite ana-
logue of a well-known result of Swinnerton–Dyer on densest packing lattices (see [GL]).
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of Congruent Circles in a Circle, Discrete Math., 181 (1998), 139–154.
[GS] Ronald L. Graham and Neil J. A. Sloane, Penny-Packings and Two-Dimensional codes, Discrete

Comput. Geom., 5 (1990), 1–11.
[GWZ] Ronald L. Graham, Hans S. Witsenhausen and Hans J. Zassenhaus, On Tightest Packings in the

Minkowski Plane, Pacific J. Math., 41 (1972), 699–715.
[GW] Peter Gritzmann and Jörg M. Wills, Finite Packing and Covering, in Handbook of Convex Geometry

(Peter M. Gruber and Jörg M. Wills, eds.), North-Holland, Amsterdam, 1993, pp. 861–897.
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