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Abstract. The anchored hyperplane location problem is to locate a hyperplane passing
through some given points P ⊆ R

n and minimizing either the sum of weighted distances
(median problem), or the maximum weighted distance (center problem) to some other points
Q ⊆ R

n .
This problem of computational geometry is analyzed by using nonlinear programming

techniques. If the distances are measured by a norm, it will be shown that in the median case
there exists an optimal hyperplane that passes through at least n − k affinely independent
points of Q, if k is the maximum number of affinely independent points of P . In the center
case, there exists an optimal hyperplane which is at maximum distance to at least n − k + 1
affinely independent points of Q. Furthermore, if the norm is a smooth norm, all optimal
hyperplanes satisfy these criteria. These results generalize known results about unrestricted
hyperplane location problems.

1. Introduction

Approximating a set of given pointsQ in R
n by a linear function is known as the linear fit

problem or the hyperplane location problem. The goal is to find a hyperplane (represented
by a linear function) minimizing the sum of weighted distances to the points in Q, or
minimizing the maximum weighted distance to the points in Q, respectively. As distance
measure any norm is possible, but also gauges and metrics have recently been discussed
[S3], [PC]. In this paper a restricted version of the hyperplane location problem—the
so-called anchored hyperplane location problem—is analyzed, namely, the hyperplane
is additionally forced to pass through some given points p ∈ P .

Hyperplane location problems appear in several mathematical disciplines, where they
have mainly been studied with the Euclidean and the rectangular distance. In robust
statistics variants of the hyperplane location problem are known as absolute errors
regression, median problems, L1 regression, L∞ regression, and orthogonal/vertical
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L1-fit or L∞-fit problems, respectively, depending on the type of distance measure and
on the objective function used. Related investigations go back to the 18th century (see,
e.g., [B]). A motivation of these problems is given in [RL]. In numerical mathemat-
ics, certain approximation problems, for example the approximation of a given function
by a linear function, lead in a natural way to the same type of problems, see, e.g.,
[R]. In computational geometry, hyperplane location problems are known as linear L1

or L∞ approximation problems. Here, in particular, the time complexity of the Eu-
clidean variant of the problem was investigated by several authors, see e.g., [KM] and
[HII+]. The two-dimensional version of the problem has also been studied in opera-
tions research, known as the line facility location problem which is a special case of
location problems. Line location problems in the plane were first discussed in [W],
and later by many other authors, e.g., [MN1], [MT], and [LW]. Recently, line and
hyperplane location problems have also been discussed for distance measures apart
from the Euclidean and the rectangular distance, namely, for block norms in [S1],
arbitrary norms in [S2] and [MS1], smooth norms (see [MS2]), and also for gauges
(see [PC]).

If distances are measured by a norm, the main results for unrestricted hyperplane
location problems are the following incidence criteria. There always exists an optimal
hyperplane for the median problem that passes through n affinely independent points
of Q, and, in the center case, there always exists an optimal hyperplane which is at
maximum distance from n + 1 affinely independent points of Q. This has first been
noted for the Euclidean distance, independently by many authors (see, for example, [W],
[MN1], [LW], [MN2], [KM], and [HII+]) and has later been generalized to block norms
and even to distances derived from arbitrary norms [S2], [MS1], [S3]. A slightly weaker
condition for gauges in the case of the median objective function has recently been
developed in [PC]. Furthermore, if and only if the norm is a smooth norm, all optimal
hyperplanes in the median problem pass through n affinely independent points of Q,
and in the center problem all optimal hyperplanes are at maximum distance from n + 1
affinely independent points of Q [MS2].

In this paper a nonlinear programming technique is developed to transfer both inci-
dence properties to restricted hyperplane location problems in the following sense. If
the hyperplane approximating Q is forced to contain k affinely independent points of
a set P , then there exists a median hyperplane passing through at least n − k affinely
independent points of Q, and a center hyperplane which is at maximum distance from
n −k +1 affinely independent points of Q. Sharper results for smooth norms will also be
developed. For k = 0 this directly yields analytical proofs for the incidence properties
of unrestricted hyperplane location problems.

2. The Anchored Hyperplane Location Problems

Let d be a distance derived from a norm, i.e.,

d(x, y) = γ (y − x) for all x, y ∈ R
n

for some norm γ . We consider the following problems (AMH) and (ACH):
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Given two finite sets P and Q of points in R
n , find a hyperplane H passing through

all points in P and minimizing

(AMH) f (H) =
∑
q∈Q

wq d(H, q), or

(ACH) g(H) = max
q∈Q

wq d(H, q), respectively,

where wq ≥ 0 for all q ∈ Q are nonnegative weights, d is a distance measure derived
from a norm, and

d(H, q) = min
x∈H

d(q, x).

Note that, although the results of this paper remain true for zero weights, points q with
weight wq = 0 can simply be deleted from Q.

An optimal hyperplane H for problem (AMH) is called an anchored median hyper-
plane, and an anchored center hyperplane is an optimal solution of problem (ACH).

First, note that the anchored hyperplane location problem is only feasible if there exists
a hyperplane containing the whole set P . In particular, (AMH) and (ACH) are feasible
if and only if the maximum number of affinely independent points in P is smaller than
or equal to n. Let k = dimaff(P) denote the maximum number of affinely independent
points in P . Without loss of generality, we therefore assume in the following that

k ≤ n.

Furthermore, note that if k + dimaff(Q) ≤ n, then there exists a (clearly optimal)
hyperplane containing all points in P and in Q. To avoid this trivial case, we also
assume that

dimaff(Q) > n − k.

As mentioned before, both problems (AMH) and (ACH) have been studied extensively
in their unrestricted versions, i.e., with P = ∅ (see, e.g., [MS1], [S3], and the references
therein). The restricted version of (AMH) has been discussed in [MN2] in a planar
setting, i.e., n = 2 and P consisting of one single point. For the Euclidean distance it
has been shown that all optimal lines for problem (AMH) contain at least one point from
the set Q. The same has been noted in [KM].

In the following we generalize the incidence properties of unrestricted hyperplane lo-
cation problems to the restricted versions of (AMH) and (ACH). The proofs we present
combine the techniques developed in [S3] and in [PC]. They are based on the minimiza-
tion of quasiconcave functions, which contain the sum, or the maximum of piecewise
affine linear functions. Note that an affine linear function f : R

n → R is given by some
vector a ∈ R

n and a real number b such that f (x) = 〈a, x〉 + b. If b = 0 the function f
is linear. We first turn to the case of median hyperplanes.

3. Anchored Median Hyperplanes

Lemma 1. LetM = {1, 2, . . . , M}, M ≥ n, and let h: R
n → R

+ be a strictly positive
and convex function, and fm : R

n → R, m ∈ M, be affine linear and nonconstant
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functions. Consider the problem to minimize

f (x) = 1

h(x)

∑
m∈M

| fm(x)|.

Furthermore, suppose that a minimum of f exists. Then there exists an optimal solution
x∗ and a subset M∗ ⊆ M with |M∗| ≥ n such that

fm(x∗) = 0 for all m ∈ M∗.

Moreover, if h is strictly convex, all optimal solutions x∗ satisfy fm(x∗) = 0 for at least
n of the functions fm .

Proof. The following set of hyperplanes

Hm := {x ∈ R
n: fm(x) = 0}, m ∈ M,

partitions R
n into polyhedral (full-dimensional) cells. On each cell C all the functions

| fm |, m ∈ M, are affine linear, and therefore
∑

m∈M | fm(x)| is also an affine linear
function. Since h is convex, f is a quasiconcave function on each cell. Minimizing
over each of the cells separately yields a minimum at a cell vertex (see, e.g., page 109,
Theorem 3.5.3, of [BSS]) whenever it exists. Using that a finite optimal solution exists,
a global optimum x∗ is then obtained as the best of all these minima. Hence, x∗ is also a
cell vertex, yielding that it lies on the intersection of at least n hyperplanes Hm . Defining

M∗ := {m ∈ M: x∗ ∈ Hm}

shows the first result.
For the second part of the lemma, note that an affine linear function divided by a

strictly convex function is a strictly quasiconcave function, meaning that on each cell
C the objective f is strictly quasiconcave and therefore attains its minima only at cell
vertices.

In the following we describe a hyperplane by its normal vector s ∈ R
n\{0} and its

intercept b ∈ R, i.e.,

Hs,b = {x ∈ R
n: 〈s, x〉 + b = 0}.

We can now state the main result for anchored median hyperplanes.

Theorem 1. Let d be a distance derived from a norm γ , and let k ≤ n be the number
of affinely independent points in P . Then there exists an anchored median hyperplane
passing through at least n − k affinely independent points of Q.

Proof. First note that hyperplanes lying too far away from Q need not be considered,
and since the length of the normal vector s can be assumed to be bounded, we can
restrict the problem to a compact feasible set yielding the existence of a minimum
s∗, b∗. Furthermore, since s �= 0 is required for a hyperplane, we conclude that the
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normal vector s∗ of an optimal solution to problem (AMH) has at least one nonzero
component. Without loss of generality assume that this is the first one, i.e., s∗

1 �= 0.
Dividing all coefficients by s∗

1 yields an optimal solution with the first component of the
normal vector equal to 1. Restricting the optimization problem (AMH) to hyperplanes
with normal vectors s satisfying s1 = 1 hence yields the same optimal solution s∗, b∗.
We will therefore additionally require s1 = 1.

According to Mangasarian [M] or, independently, Plastria and Carrizosa [PC] the
distance between a point q ∈ R

n and a hyperplane Hs,b can be calculated by

d(q, Hs,b) = |〈s, q〉 + b|
γ 0(s)

,

where γ 0 denotes the dual (or polar) norm of γ , defined by

γ 0(x) = max{〈x, y〉: γ (y) ≤ 1}.
For P = {p1, p2, . . . , pl} problem (AMH) can now be reformulated as the following
nonlinear programming problem in n + 1 variables:

min
s,b

1

γ 0(s)

∑
q∈Q

wq |〈s, q〉 + b|

such that 〈s, pi 〉 + b = 0 for i = 1, 2, . . . , l,

s1 = 1.

Since k is the maximum number of affinely independent points of P we conclude that
the linear dimension

dim

{(
p1

1

)
,

(
p2

1

)
, . . . ,

(
pl

1

)}
= k,

where
(p1

1

) ∈ R
n+1, i = 1, 2, . . . , l = |P|. Consequently, the coefficient matrix of

〈s, pi 〉 + b = 0 for i = 1, 2, . . . , l

has rank k, meaning that there exist k variables which can be substituted and eliminated
in the objective function. Together with s1 = 1 (which is linearly independent of the
equations 〈s, pi 〉 + b = 0) there remain (n + 1) − k − 1 = n − k variables, denoted by
t ∈ R

n−k . This leads to the following equivalent problem in R
n−k :

min f (t) = 1

γ 0(s(t))

∑
q∈Q

wq |〈s(t), q〉 + b(t)|

with s and b affine linear functions,

s: R
n−k → R

n and

b: R
n−k → R.
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Note that the n-vector s(t) contains all components of the smaller vector t ; hence the
mapping s is injective. Since the composition of a convex and an affine linear function
still remains convex, and the functions fq(t) = wq(〈s(t), q〉 + b(t)) are affine linear
we can apply Lemma 1 in dimension n − k and conclude that there exists an optimal
solution t∗ and a set Q∗ ⊆ Q with |Q∗| ≥ n − k such that

〈s(t∗), q〉 + b(t∗) = 0

for all q ∈ Q∗. Defining s∗ = s(t∗) and b∗ = b(t∗) it follows that for all q ∈ Q∗,

q ∈ Hs∗,b∗ ,

meaning that the optimal hyperplane H∗ := Hs∗,b∗ passes through at least n − k points
in Q.

It remains to show that Q∗ can be chosen in such a way that k = dimaff(Q∗) = n − k.
To this end, let Q∗ be the set of at least n − k points of Q contained in an optimal
hyperplane H∗. Define

P̄ := P ∪ Q∗,

Q̄ := Q\Q∗,

and note that each optimal solution (AMH) with P̄ and Q̄ is not worse than H∗ and
hence also solves the original problem (AMH). If k̄ = dimaff(Q∗) < n − k we get that
dimaff(P̄) < n and, due to the above result, an optimal solution H ′ exists passing through
at least one more point of Q than H∗. This procedure can be continued until the optimal
hyperplane contains n − k affinely independent points of Q.

Two remarks should be added:

• Note that the optimal hyperplane may pass through more than n − k affinely inde-
pendent points since points in Q that lie within the affine hull ofP will automatically
be covered.

• For P = ∅ a halving property has been shown for locating a median hyperplane in
normed spaces (see [S3]), i.e., if Q+(H), Q−(H), and Q0(H) are the points of Q
lying below, underneath, and on the hyperplane H , respectively, then all median
hyperplanes satisfy ∣∣∣∣∣

∑
q∈Q+

wq −
∑

q∈Q−
wq

∣∣∣∣∣ ≤
∑
q∈Q0

wq .

In general, this property does not hold if |P| ≥ 1, not even for n = 2 and the
Euclidean distance, as the following example demonstrates:

Let P = {0}, Q = {(10, 1), (11, 0), (−10, 1)}, and assume equal weights for
the points in Q. Then the optimal anchored line l∗ passes through 0 and (10, 1),
with the two remaining points of Q lying on the same side of l∗.
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4. Anchored Center Hyperplanes

In this section, too, we first derive a result for minimizing a quasiconcave function. This
time, we deal with a function g, which is given as the maximum of piecewise affine
linear functions, all divided by the same convex denominator.

Lemma 2. LetM = {1, 2, . . . , M}, M > n, and let h: R
n → R

+ be a strictly positive
and convex function, and fm : R

n → R, m ∈ M, be affine linear functions. Consider
the problem to minimize

g(x) = 1

h(x)
max
m∈M

| fm(x)|.
Furthermore, suppose that a minimum of g exists. Then there exists an optimal solution
x∗ and a subset M∗ ⊆ M with |M∗| ≥ n + 1 such that

g(x∗) = | fm(x∗)|
h(x∗)

for all m ∈ M∗.

Moreover, if h is strictly convex, all optimal solutions x∗ satisfy g(x∗) = | fm(x∗)|/h(x∗)
for at least n + 1 of the indices m ∈ M.

Proof. First suppose that there exists some x ∈ R
n such that fm(x) = 0 for all m ∈ M.

Then x is the optimal solution and the lemma is trivially true.
Otherwise, we can assume that maxm∈M| fm(x)| > 0 for all x ∈ R

n . Define for all
m ∈ M two cells given by

C+
m =

{
x ∈ R

n: fm(x) = max
k∈M

| fk(x)|
}

, and

C−
m =

{
x ∈ R

n: − fm(x) = max
k∈M

| fk(x)|
}

.

Then each of the C+
m , C−

m is either empty or a polyhedral set given by linear inequalities
of type fm(x) ≥ fk(x) or fm(x) ≤ − fk(x) for all k ∈ M, k �= m. That is, the boundaries
of the cells are given by the hyperplanes

H+
km = {x ∈ R

n: fm(x) = fk(x)} and

H−
km = {x ∈ R

n: fm(x) = − fk(x)}
for k �= m. On each cell, maxk∈M| fk(x)| is affine linear and, hence, g is quasiconcave on
each cell. Since a minimum exists, we conclude that there exists an optimal cell vertex x∗,
e.g., of the cell C+

m̄ (again, see [BSS]). Due to the assumption that maxm∈M| fm(x)| > 0
for all x ∈ R

n , we know that H+
km̄ ∩ H−

km̄ ∩ C+
m̄ = ∅ for all k ∈ M and hence each cell

vertex of Cm̄ is the intersection of n of the hyperplanes H+
km̄ ,H−

km̄ , k �= m̄, with pairwise
different indices k. Consequently, the cardinality of

M∗ = {k ∈ M: x∗ ∈ H+
km̄ or x∗ ∈ H−

km̄} ∪ {m̄}
is greater than or equal to n + 1, proving the first part of the lemma.

In case of a strictly convex function h, we get that g is strictly quasiconcave on each
cell Cm , and hence all optimal solutions are attained at cell vertices.
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Note that in [D] the following reduction result for minimizing convex functions fm ,
m ∈ M, has been provided: there exists an optimal solution x∗ and a subset M∗ ⊆ M
with |M∗| ≤ n + 1 such that x∗ is the optimal solution for the reduced problem

min max
m∈M∗

fm(x),

i.e., also in this (opposite) case, an optimal solution can be found by looking only at
subsets with cardinality of at most n + 1.

Now the main result for finding anchored center hyperplanes can be shown.

Theorem 2. Let d be a distance derived from a norm γ , and let k ≤ n be the number
of affinely independent points in P . Then there exists an anchored center hyperplane
which is at maximum distance from at least n − k + 1 affinely independent points of Q.

Proof. The proof works along the lines of the proof to Theorem 1. Assuming s∗
1 = 1

and using

d(q, Hs,b) = |〈s, q〉 + b|
γ 0(s)

,

for the distance between a point q and a hyperplane Hs,b, (ACP) can be rewritten as

min g(t) = 1

γ 0(s(t))
max
q∈Q

wq |〈s(t), q〉 + b(t)|

with s and b affine linear functions, γ 0(s(t)) convex, and t ∈ R
n−k .

Applying Lemma 2 in dimension n − k yields the existence of an optimal solution t∗

and a set Q∗ ⊆ Q with |Q∗| ≥ n − k + 1 such that for s∗ := s(t∗) and b∗ := b(t∗) we
get that

g(Hs∗,b∗) = 1

γ 0(s∗)
max
q ′∈Q

wq ′ |〈s∗, q ′〉 + b∗| = wq

γ 0(s∗)
|〈s∗, q〉 + b∗|

for all q ∈ Q∗. Hence, the optimal hyperplane H∗ := Hs∗,b∗ is at maximum distance
from at least n − k + 1 points in Q, and using the same iterative argument as in the proof
of Theorem 1 shows that these points can assumed to be affinely independent.

5. Anchored Hyperplanes and Smooth Norms

A smooth norm γ is defined as follows. Consider the unit ball of γ , given by

Bγ = {x ∈ R
n: γ (x) ≤ 1}.

The norm γ is called a smooth norm if Bγ is supported by exactly one hyperplane for
any point x ∈ ∂ Bγ on its boundary. In this case we get the following stronger result.

Theorem 3. Let d be a distance derived from a smooth norm γ , and let k be the number
of affinely independent points in P . Then all anchored median hyperplanes pass through
at least n − k affinely independent points of Q, and all anchored center hyperplanes are
at maximum distance from at least n − k + 1 affinely independent points of Q.
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Proof. Since γ is a smooth norm, the dual norm γ 0 is strictly convex, see, for example,
[K]. Consequently, we derive the following objective functions (analogously to the proof
of Theorem 1), but with a strictly convex denominator γ 0(s(t)):

min f (t) = 1

γ 0(s(t))

∑
q∈Q

wq |〈s(t), q〉 + b(t)|

for the median problem, and

min g(t) = 1

γ 0(s(t))
max
q∈Q

wq |〈s(t), q〉 + b(t)|

for the center problem, respectively. As in the proofs of Theorems 1 and 2, s and b are
affine linear functions and t ∈ R

n−k . Since the composition of a strictly convex function
and an affine linear injective function still remains strictly convex we can apply the
second parts of Lemmas 1 and 2, respectively, and conclude the result.

6. Conclusion

Theorems 1 and 2 provide the basics for polynomial-time algorithms to solve anchored
hyperplane location problems in fixed dimensions with median or center objective func-
tion, since an enumeration approach is possible in both cases. If k is the number of
affinely independent points in P we have to check

• all
(n−k

|Q|
)

hyperplanes passing through all points in P and through any (affinely
independent) subset of n − k points of Q in the median case, and

• all
(n−k+1

|Q|
)

hyperplanes which are at maximum distance from any (affinely inde-
pendent) subset of n − k + 1 points of Q and contain all points of P in the center
case.

Since evaluating a hyperplane can be done in O(|Q|), this yields the following complexity
results.

Corollary 1. If the distance has been derived from a norm, an anchored median hy-
perplane can be found in O(|Q|n−k+1) time, and an anchored center hyperplane can be
found in O(|Q|n−k+2) time, assuming that a norm evaluation can be done in constant
time. In the case that d has been derived from a smooth norm, the same time complexity
is sufficient to determine all optimal anchored hyperplanes.
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