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Abstract. We give simple necessary and sufficient conditions for self-affine tilé&in
to be homeomorphic to a disk.
1. Introduction

Throughout this note we consider integral self-affine tiles with standard digit sets. Such
are tilesT := T (A, D) satisfying

AT)=T+D (1)
or
T=[JANT+d), @)
deD

whereA is an expanding % 2 matrix of integers, an® c Z? with |D| = |detA| is a
complete set of coset representativeszdr AZ?. See [1]-[3], [5]-[8], [10], [13]-[15],
and [19]-[21].

Moreover, we assume th@it(A, D) tiles by the latticeZ?, that is, T + Z? is a tiling
of R?. Such tiles are calleself-affineZ-tiles. There are standard methods for checking
this property [13]-[15], [20]. When the digit s& is primitive, only in special cases
may the corresponding tilé (A, D) not be aZ?-tile, see [14].

* The second author was supported in part by the National Science Foundation, Grant DMS-0070586 and
a grant from the Center for Wavelets, Approximation and Information Processing in the National University
of Singapore.
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Fig. 1. Edge neighbors intersect in a Sierpinski gasket.

The simplest example of a self-affif#-tile is the unit square, divided into x n
small squares:

amn=[3 0] wna o= {[][ii=2n].

Figure 1 was obtained from this example, with= 2, just replacing the residue [1]"

by [-1, —1]". (In order to get the symmetric picture, we have chosen coordinates which
are not rectangular. The origin is in the center of Fig. 1 while the vertices of the triangle
correspond to [10]7, [0, 1] and [-1, —1]".) Figures 2 and 3 were obtained from the

4 x 4 square by replacing two residues in an obvious manner. There are infinitely many
other ways in which residues can be exchanged but nearly all of them lead to tiles with
holes or with disconnected interior.

Question. Given a self-affineZ?-tile T(A, D), under what conditions iF (A, D)
homeomorphic to a disk?

Lattice tilings by topological disks must satisfy certain combinatorial properties. We
state them here, and they are the keys to answering our question. We say that two tiles
T andT” in a tiling areneighborsf T' N T” # #. We call the tilesrertex neighbor
their intersection is a single point. They a@ge neighborg their intersection contains
a point inside in(T’ U T”), and hence uncountably many points (see Section 3). Note
that there might be other types of neighbors.
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Fig. 2. A disconnected tile with six neighbors.

If the tiles are topological disks, an edge will be an arc, as usual. The tile in Fig. 1 will
intersect an edge neighbor in a more complicated set (actually in a Sierpinski gasket).
It should be pointed out that for a given integral self-affiifetile T (A, D) there is
a simple algorithm to determine its neighbors [19].

Proposition 1.1[3, Lemma 5.1]. Let< be a topological disk which tileR? by lattice
translates of the lattic&€. Then in the tiling2 + £ one of the following must be true

(i) € has no vertex neighbors and six edge neighlfots o, @ + 8, Q + (¢ + B)
for somex, B € £, andZa + ZB = L.

(ii) €2 has four edge neighbo® + «, Q2 + 8 and four vertex neighbor@ + o £+ g
for somew, 8 € £, andZa + Z8 = L.

Fig. 3. A tile with eight neighbors which is not a disk.
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Now let F be a finite subset 2. We say a subset C Z? is F-connectedf for any
u,v € £thereexistp =u,Uy,...,Uy=v € EWithUj 1 — U € F.

Proposition 1.2(see [18]). Let the self-affiné&?-tile T = T (A, D) be a topological
disk whose edge neighbors are{T.F, F c Z2. ThenD is F-connected

Proof. Note thatA(T) = T + D is a topological disk. LeDy, ..., Dk be the F-
connected components Bfand assume th&t> 1. Let T, = T + D;. The sefT; N T,
is countable sinc& + d; andT + d, are not edge neighbors fdf € D1, d; € D,. The
same is true foll; N T; with i # j. ThusA(T) becomes disconnected when a countable
set is removed. This is not possible for a disk. O

2. Main Results

The main contribution of this paper is to show that the necessary conditions given in
Propositions 1.1 and 1.2 are also sufficient. These seem to be the first sufficient conditions
for tiles to be disk-like, and they solve a problem in [18]. It turns out that the type of
neighbors is not essential, only their number and relative lattice position.

Theorem 2.1. Let T(A, D) be a self-affinZ?-tile. Suppose that T has not more than
six neighbors T+ F. Then T is a topological disk if and only#f is F-connected

Theorem 2.2. Let T(A, D) be a self-affiné?-tile. Suppose that T has eight neighbors
T + {£a, £8, £(a + B), =(x — B)}. Then T is a topological disk if and only 1 is
{*o, £8}-connected

We give some examples to examine these conditions. The tile in Fig. 1 has six edge
neighbors, an® is F-connected. However, it is not a disk since there are six other vertex
neighbors. Figure 2 shows a tile with six neighbors which is disconnected beRasise
not F-connected. In Fig. 3 we have eight neighbors as assumed in Theorem 2.2, and the
tile is connected. It is not a disk, however, sirieés not connected with respect to the
edge neighbors only.

Figure 4 shows that the mere assumption of eight neighbors in Theorem 2.2 would not
2 3landD = ([0.0]". [1,0]". [~ 1.0]"). The tile in the middle
is T, and the three tiles of the middle row forA(T). It is obvious thafl has six edge
neighborsta = +[1,0]", £8 = £[-2, 1]" and+(« + B). Moreover, the upper left
and lower right neighbors 8 meet with their long narrow peaks in the centeifofl his
is only indicated by the picture, for a proof see 6.1 of [3]. TAHuUs not a topological
disk, andT has two more vertex neighbot28.

For small numbersn = |D| of pieces, all possible disk-lik&?-tiles have been
classified up to affine conjugacy. For = 2 there are three and fon = 3 seven
nonisomorphic cases [3], fon = 4 their number is twenty-nine [7], [18]. The proof

suffice. HereA =
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Fig. 4. Atile with eight neighbors and disconnected interior.

that the tiles are disk-like was given “by inspection.” Even for tiles like the twindragon
which are well known to be topological disks, no proof of this property seems to be
published. Theorems 2.1 and 2.2, together with the algorithm in [19], now provide
rigorous arguments.

1 1
1 -1
D = {[0,0]", [1,0]"}. The neighbors arg = {#[1,0]", +[0, 1]", £[1, —1]"}. Thus

we have the six neighbors case of Theorem 2.1, and itis enough to see the first neighbor in
order to conclude thdP is F-connected. Similarly, all cases for < 4 can be checked.

Example. We just indicate the proof for the twindragon whexe=

Our technique also allows us to characterize the connectedness of a self-affine tile in
n-dimensional space (see [8] and [11]).

Theorem 2.3. Let T(A, D) be a self-affine setiR" for an integer matrix Ac M (Z)
andD cC Z". Let T + F be the neighbors of T whefE c Z". Then T is connected if
and only ifD is F-connected

We note that in Theorem 2.3 we do not requir@A, D) to be a tile. For general data
(A, D) the self-affine seT (A, D) given by (1) may not be a tile. A neighbor &f is
nevertheless well defined for general self-affine sets.
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Theorems 2.1 and 2.3 combine to give

Corollary 2.4. Let T(A, D) be a self-affing?-tile with not more than six neighbars
Then T is a topological disk if and only if T is connected

3. A Topological Result

In this section we prove the key topological lemma for our theorems, as suggested by
the referees. Our result is connected with two fundamental theorems of plane topology
and geometry: the Jordan curve theorem [12], [22] and the Riemann mapping theorem.
A more general statement with a more complicated proof was found recently by Luo
and Tan [16].

Theorem 3.1. Let T(A, D) be a self-affin&?-tile such that the interiomt T is con-
nectedThen T is a topological disk

Proof. We know already that (1} is the closure of its interigrand (2) infT is con-
nected We now observe that (3) is simply connected hat is, each simple closed curve
C C T contracts to a point within the s&t briefly, T contains no holes.

If there are holes, they must contain points of anotherTtile « in the lattice tiling.
Since the interior o 4+ « is connected, it must be completely surrounded byhich
is not possible. Note that ift is also simply connected by (1)—(3) as well as by the
above argument.

Finally, we show that (4) is locally connectedsee [4]. The connectednessDf
implies that each piece in the self-affine hierarchy @ connected. Thus for each point
x € T and each levek, the union of all levek pieces containing forms a connected
neighborhoodly (x) of x. The family of these (closed) neighborhoods is a neighborhood
base ofx.

It follows from classical results in plane topology that a compact seith properties
(1)—(4) must be a topological disk.

One way to deduce this from the literature is as follows. Sinc# iistsimply con-
nected, the Riemann mapping theorem provides a conformal homeomotghifin—
int T from the open unit dislD to int T. Moreover,hg can be extended to a continuous
mappingh: D — T from the closed unit disk t@ if and only if the boundaryT
of T is locally connected [17, Theorem 2.1]. This condition follows from (3) and (4)
by the Torhorst theorem, see p. 124 of [22]. Finally, a theorem of Cewdtry (see
Theorem 2.6 of [17]) says th&tis a homeomorphism 8T has no cutpoints, which
follows from (3). O

4. Proof of the Theorems

Proof of Theoren2.3. It is clear thafl + d andT + d’ are neighbors if and only if

d — d € F. Itis known that the connectedness of a self-affine set can be expressed
as the connectedness of the graph which has the pieces as vertices and edges between
neighbors [4, Proposition 2] (see [11]). FA(T) this means thab is F-connected.
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The following lemma, as well as Theorem 4.2 and Lemma 4.3, does not use any
self-similarity, and the structure of the edges may be as complicated as in our Fig. 3.

Lemma4.1. Let T be aZ?-tile with neighbors T+ F for someF c Z2. Let Z[F]
denote the subgroup @ generated byF. ThenZ[F] = Z2.

Proof. Call a1,y € Z? neighbors ifa; — ay € F. Let Fg = {0} and F,,1 be the
neighbors ofF,, n > 0. Define
g = U ..7:“.

n>0

Clearly,G < Z[F] (in fact they are equal). Assume th@t# Z?. ThenH = Z2\G is
nonempty. Se2 = T + G andQ’ = T + H. It follows that2 N Q" = @. However, both
Q andY’ are closed sets arfd U Q' = R?. This contradicts the connectednessRaf
ThereforeG = Z? and henc&[F] = Z2. O

To prove the sufficiency ofF-connectedness in Theorem 2.1 and of the stronger
{+a, +B}-connectedness in Theorem 2.2, we can now assum@ tisatonnected (and
hence arcwise connected [4]). It remains to show that the interi®rdffl is connected.
First we strengthen our assumptions in the case of not more than six neighbors.

Theorem 4.2. Let T be a connectegi-tile with at most six neighbor3hen there are
a, B in Z? such that the set of neighbors isTF with F = {+a, +8, (a + B)}.

Proof. LetQ :=T 4+ F and{ := R?\(T U ). The Hausdorff distance (see p. 65 of
[6]), d(T, ©2) = & is positive sinceT is separated fror®. Fore > 0 let B,(z) denote
the open disk of radius centered at. The collection of open diskEB.(2): z € T}
coversT. So by compactness we may fied ..., z« € T such thafl, = U;‘zl B.(zj)
coversT. T, is connected becau3eis. Now T, is a finite union of disks, s&T, consists
of a finite number of simple piecewise smooth closed Jordan curves. Assunté that
is the Jordan curve of the outer boundary. For epch Z2\{0} let zy € C such that
(zy,y) = max{(z, y): z € C}. Itis easy to see tha, + y € C + y is outsideC and
d(zy+y,C) > 1. There exists a poirt € T 4+ ywithd(Z, zy +y) < &, and this point
Z must be outsid€ if ¢ < 3.
Chooses < min{§/2, %}. Then for eacly € F thetileT + y has points outsid€. It
also has points insidé becausd + y intersectsT. Furthermored(T,, ) > §/2. So
C c int Q. Because each neighborbhas both points inside and outsideand because
T is connectedC must intersect all neighbors af. ParametrizeC by z(t), t € [0, 1]
with z(0) = z(1). We now partitition [01] by 0=ty < t; <ty < --- < tx = 1 such
that each segmef; = z([t_1, tj]) of the curveC has diam(C;) < §/2. This partitition
yields a sequence

Vit - o5 Yiji> Yo - o5 ¥2jis oo o0 Yits - - o s Yk

in F such that{yij: 1 < j < ji} consists of ally € F such that(T + y) N C; # 4.
Pruning the sequence so that any two adjacent elements in the sequence are distinct we



598 C. Bandt and Y. Wang

obtain a new sequenag, ..., Ym, Ym+1 = Y1. Since eacly € F appears at least once
in (y;j) it must appear also at least once in the new sequ@ncd-urthermore, points in
two adjacenC;’'s are less thad apart sal(T + Vi, T + Vi41) < 8. Hencey, 11—y € F.

Note thatF must be centrally symmetric 6can only have two, four, or six elements.
By Lemma 4.1Z[ F] = Z2. SoF contains at least two linearly independent elements.
This immediately rules out two elements fét. If F has four elements, theA =
{£a, £8} with « and g independent. Thus one dfe must be followed by one of 8
somewhere in the sequence, yielding onetef + g in F, a contradiction. Henc&
must have six elements. Again, in the sequeiypethere must be two adjacent elements
a3 anda; that are independent, yielding — a, € F. Therefore

]: = {:l:alv :IzaZ’ :l:(al - az)}

The theorem is proved by settiag= «; andg = —ay. O

Lemma4.3. Let T be a connected?-tile with neighbors T+ F, F C Z?. If F =
(o, £8, £(a + B), £(a — B)}, then T + {£a, =8} are edge neighbordf F =
{£a, +8, (o + B)}, then T+ F are edge neighbors

Proof. SinceZa + ZB = 7?2 in both cases by Lemma 4.1 we may, without loss of
generality, assume that=[1,0]" andg = [0, 1]".

Lets > 0 denote the minimal distance between two disjoint tiles in the lattice tiling.
DenoteS, = int(T + «Z). This is an open set near tlkg-axis which by the assumption
of our lemma separates the €t consisting of all tilesT + mB + na with positivem
from the seB_ consisting of all tiles with negativ@. The distance betweds, andB_
is > 8. Take an integek with 1/k < §/2. Write x = [x1, X2]T and let

f(x9) = supxz: d(x, B_) < §/2}

for all x; = n/k with n € Z. Thus the pointg = [x3, f (xy)]" fulfill d(z, B_) =§/2 <
d(z, B;). We extendf as a linear function between these points and let

C, = graph off = {z(s) =[s, f(5)]": s € R}.

Sincef(s+ 1) = f(s), the polygonal lineC, is periodic:C; = C; + «. Now we prove
thatC, C S. Takez(s) on a line segment d; and letz(x;) be that vertex of the line
segment for whichf (x;) < f(s). Forx’ =[x, f(s)]T we have

8/2 <d(X', B_) < |x1 —s| +d(z(s), BL) < §/2+d(z(s), BL),

which impliesd(z(s), B_) > 0. Similarly we see thatl(z(s), B,) > 0. The connected-
ness ofT, and hence oB_ andB,, now implies that all points oB_ lie belowC, and
all points of B, above. Henc€; C S,.

Note thatC; must cross from one tile into another, say frdmo T + ma. Clearly,
m = +1, orthe two tiles are disjoint. Say = 1. So parto£; mustlie inin{TU(T +«)).
Taking a point ofC; in T N (T 4+ «) we see thal + « is an edge neighbor 4f.

The proofs for the other cases are identical. |
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LetT = T(A, D) be a self-affine tile satisfying (1). Iterating (1) yields
AXT)=T+Dx, where Dy: =D+ AD+---+ AID, (3)
Note thatDy = Dy_1 + A*D, with Dy := {0}.

Lemma4.4. Let T(A, D) be a self-affineZ?-tile with neighbors T+ F, F c Z2.
If F = {£a, £8, £(¢ + B)} and D is F-connectedthen so isDy for all k > 0. If
F = {%a, £8, £(a + B), £(a — B)} and D is {£«, £B}-connectedthen so isDy for
allk > 0.

Proof. In the six neighbors case note thAlt(T) = T + Dy andT is connected. By
Theorem 2.3, must beF-connected.

In the eight neighbors case [y = {+«, +8}. We proveF,-connectedness @y by
induction onk. Observe thaDy = {0} is clearly Fy-connected, an®y = D + ADg_1.
We assume thdb,_, is F-connected and show tha is F-connected.

Itis sufficient to show that fan, U’ € Dy_1 withu—u’ € F there existl, d’ € D such
that(d+ Au) — (d'+ Au) is also inF. Howeveru—u’ € F means that +uandT +u’
are edge neighbors. Hence the larger t#&¢3 ) + Auand A(T) + AU are also edge
neighbors: they have uncountably many common points. Skt = (Jy.p T +d,
there must exigd, d’ € D such thafl +d + AuandT +d’+ Au also have uncountably
many points. Thus they are edge neighbors and the difference of the vectors syin
our assumptions. Lemma 4.4 is proved. O

Lemma 4.5. Under the assumptions of Theor@n or 2.2, intT is connected

Proof. We prove that inT is connected under the assumptions of Theorem 2.2. The
other case is virtually identical (in fact a little simpler). Denote

F={fo,£8, £(a + B), (e — B)} and Fy= {£a, +B}.

Let z; andz, be two points in infr. We construct an arc from, to z, within int T. Let
Ko € ZsuchthaKy > max{|x|: X € T} andletR > 5Ky. Choose sufficiently large so
thatBr(Az) € AX(int T). It follows from AX(T) = T + Dy and theFo-connectedness
of Dy thatwe may findy, yi, ..., Yn € Dxsuchthay; 1 —y € FoandA*z e T+yo,
Akz; € T 4 yn. Hence A¢zy — yo| < Ko and| Az, — yn| < Ko. We prove there exists
an arc connectind\z, and Az, that lies within in{ A<T).

Lets > 0 be the minimal distance between two disjoint tiles inZetiling and let
T, be as in the proof of Theorem 4.2 with< min(1, §/4). Then the set

2= |J T+y\(BaAz) UBr(A2)
YEZA\{yi}

is an open set whose boundary consists of finitely many circular arcs. Furthermore,
R2\Q C int (AKT). Assume thaBgr(A¥z;) andBr(A*z,) belong to the same connected
component ofR?\Q. Then we can find an arc iR?\Q that connectsA¥z; and A¥z,.

This arc is in in{ AT). So we may connea; andz, by an arc in infT.
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Now assume thaBr(A*z;) andBgr(A*z,) belong to two different connected compo-
nents ofR?\ 2, say$21 andS2,, respectively. We derive a contradiction. Choose a simple
closed curve€ < 99, such thaBg(AXz;) andBr(A*z,) are on separate sides®f and
without loss of generality assume thg(Azy) is on the inside o€. We parametriz€
by x(t) wheret € [0, 1] with x(0) = x(1). Ast varies from 0 to 1 the curve wraps around
Br(AXz;). Take pointsg, = x(tj) for0 <i < mwhere 0=ty <t; < --- <ty =1
such thatxi 1 — Xi| < §/4. Eachx; is in the closure ofl, + w; for somew; ¢ {y;} with
wo = wm. Itis easy to see thak(T + wi;1, T + wj) < § for0 <i < m. By removing
redundant vertices, we may assume without loss of generalityuthat# w; for all
0 <i < m. Itfollows thatwj,; — w;j € F.

LetC; be the closed piecewise linear curve with vertiegsws, . . ., wy. Since each
% — wi| < Ko+ & < 2Kg, we must havew; — Akz;| > 3K and|w; — A¥zy| > 3Ko.
Therefored(A¥z, C;) > 2Ko. It follows thatC; must wrap aroundy,(A*z;) as it
traverseswg throughwp, while leaving BKO(Akzz) outside. Hence any path frogg to
yn must cros<Cs. In particular, the piecewise af2, with verticesyy, v, ..., yn must
intersectC,. This means some line segméntw; 1 must intersect some line segment
Vi Vi+1. Howevery; 11 — y; € Fo andwi;1 — w;i € Fo. Itis easy to check that the only
way the two line segments can intersect is that they share at least one common vertex.
This contradicts the assumption that theand thew; are disjoint.

Therefore infT must be connected, and Theorem 3.1 applies. O

Acknowledgments

Most of this work was done when both authors were visiting the Institute for Mathemat-
ical Sciences and the Department of Mathematics of the Chinese University of Hong
Kong. We would like to express our gratitude to the institute and the department for
their support and hospitality. In particular we would like to thank Ka-Sing Lau for the
invitations to visit, as well as for helpful discussions. We are also very grateful for the
careful work and constructive criticism of both referees.

References

1. C. Bandt, Self-similar sets, 5: integer matrices and tiling®bf Proc. Amer Math. Soc 112 (1991),
549-562.
2. C.Bandt, Self-similar tilings and patterns described by mappindéathematics of Aperiodic Ordé€ed.
R. Moody), Proc. NATO Advanced Study Institute C489, Kluwer, Dordrecht, 1997, pp. 45-83.
3. C. Bandt and G. Gelbrich, Classification of self-affine lattice tilidlgkpndon Math Soc (2) 50 (1994),
581-593.
4. C. Bandt and K. Keller, Self-similar sets, 2. A simple approach to the topological structure of fractals,
Math. Nachr 154(1991), 27-39.
. P. Duvall, J. Keesling and A. Vince, The Hausdorff dimension of the boundary of a self-similar tile,
J. London Math Soc, to appear.
. G. EdgarMeasure Topology and Fractal GeometrySpringer-Verlag, New York, 1990.
. G. Gelbrich, Crystallographic reptileSeom Dedicata51 (1994), 235-256.
. K. Grochenig and A. Haas, Self-similar lattice tilingsFourier Anal Appl. 1 (1994), 131-170.
. W. Hurewicz and H. WallmarDimension TheoryPrinceton University Press, Princeton, NJ, 1948.

(4]

© 00 ~NO



Disk-Like Self-Affine Tiles inR? 601

10

11.
12.
13.
14.

15.

16.
17.
18.

19.
20.
21.
22.

. R.Kenyon, J. Li, R. S. Strichartz and Y. Wang, Geometry of self-affine tildadiana Univ Math. J. 48
(1999), 24-42.

I. Kirat and K.-S. Lau, On the connectedness of self-affine tiles, preprint.

K. Kuratowski,Topology Vol. Il, Academic Press, New York, and PWN, Warszawa, 1968.

J. C. Lagarias and Y. Wang, Self-affine tile®ify, Adv in Math. 121(1996), 21-49.

J. C. Lagarias and Y. Wang, Integral self-affine tilesRih I. Standard and nonstandard digit sets,
J. London Math Soc 54 (1996), 161-179.

J. C. Lagarias and Y. Wang, Integral self-affine tile®fh II. Lattice tilings, J. Fourier Anal Appl. 3
(1997), 83-101.

J. Luo and B. Tan, Topological structure of self-similar tilings, preprint, 2000.

C. Pommerenk&oundary Behaviour of Conformal MapSpringer-Verlag, New York, 1992.

H. J. Song and B. K. Kang, Disc-like lattice reptiles induced by exact polyomiRmetals 7(1) (1999),
9-22.

R. S. Strichartz and Y. Wang, Geometry of self-affine tilesydiana Univ Math. J. 48 (1999), 1-23.
A. Vince, Replicating tesselatior8lAM J Discrete Math 6 (1993), 501-521.

A. Vince, Self-replicating tiles and their boundddyscrete ComputGeom 21 (1999), 463-476.

G. Whyburn and E. Dud&®ynamic TopologySpringer-Verlag, New York, 1979.

Received October0, 2000,and in revised form February6, 2001,and April 25, 2001.
Online publication July25, 2001.



