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Robot Motion Planning: A Game-Theoretic Foundation1

S. M. LaValle2

Abstract. Analysis techniques and algorithms for basic path planning have become quite valuable in a variety
of applications such as robotics, virtual prototyping, computer graphics, and computational biology. Yet, basic
path planning represents a very restricted version of general motion planning problems often encountered in
robotics. Many problems can involve complications such as sensing and model uncertainties, nonholonomy,
dynamics, multiple robots and goals, optimality criteria, unpredictability, and nonstationarity, in addition
to standard geometric workspace constraints. This paper proposes a unified, game-theoretic mathematical
foundation upon which analysis and algorithms can be developed for this broader class of problems, and is
inspired by the similar benefits that were obtained by using unified configuration-space concepts for basic path
planning. By taking this approach, a general algorithm has been obtained for computing approximate optimal
solutions to a broad class of motion planning problems, including those involving uncertainty in sensing and
control, environment uncertainties, and the coordination of multiple robots.

Key Words. Robotics, Motion planning, Path planning, Game theory, Dynamic programming, Geometric
reasoning

1. Introduction. Two decades of development have led to many successful analy-
sis techniques and algorithms for planning collision-free paths of rigid or articulated
robots in a known, cluttered environment. These algorithms have enjoyed great suc-
cess across many different kinds of robotic platforms in both research and industrial
applications, and in applications beyond robotics, such as virtual prototyping, graphical
animation, architecture, and computational biology. While most of us are aware that
basic path planning represents a very restricted version of motion strategy problems
often encountered in robotics, existing algorithms that handle more difficult problems
such as unpredictability, sensing uncertainty, nonholonomy, and dynamics seem to fall
short of the same widespread applicability and use currently enjoyed by some basic
path planning techniques. We propose the development of motion strategy algorithms
that are built on a game-theoretic framework [75], [78], [82], which will hopefully
lead to some of the same benefits enjoyed by current path planning algorithms, but
instead apply to a broader class of problems that are of interest to the robotics commu-
nity.

To achieve success in the development of these algorithms, it is paramount to
follow some of the same principles which led to the success of the path planning
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paradigm:

• A well-formulated problem was isolated and abstracted away from a broad class of
robotics tasks (e.g., the Piano Mover’s problem).
• A powerful mathematical framework was developed that enabled a unified develop-

ment of algorithms (e.g., configuration space).
• Algorithms were introduced that were general and adaptable (e.g., cell decomposition,

randomized path planning).

Once the path planning problem was identified as a fundamental operation that would
need to be solved if robots were expected to achieve many common tasks, it received
considerable research attention from the robotics and algorithms communities. Config-
uration space concepts served as a powerful representational tool for both the develop-
ment and analysis of path planning algorithms [69], [85]. For example, the comparison
of seemingly disparate approaches, such as cell decomposition methods [101], roadmap
methods [1], [56], and artificial potential field methods [9], [63], was greatly facilitated,
which increased our ability to measure progress in this area. Once the configuration
space framework was in place, it became possible to develop algorithms that were gen-
eralizable to adaptable to a wide variety of applications. For example, the randomized
potential field principles have been applied to a wide variety of problems that appear
quite different on the surface, but all reduce to finding a continuous path that traverses
the collision-free portion of the configuration space.

We now make a distinction between the basicpath planning problemand the general
motion strategy problem(see Figure 1). The path planning problem (or Piano Mover’s
problem) involves the following components: (1) a two- or three-dimensional Euclidean
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Fig. 1.The general motion strategy problem encompassed by the game-theoretic framework can be viewed as
a generalization of the basic path planning problem.
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space,W, is defined as the workspace or world in which a robot lives; (2) a rigid or
multibody robot that is completely described using polygonal, polyhedral, or algebraic
models; (3) a configuration space,C, is a manifold in which each element represents
a transformation that completely specifies the position and orientation of all parts of
the robot (for example,C = R2 × S1) represents the set of all ways in which a two-
dimensional robot can be translated or rotated in the plane); (4) static obstacles are
defined as subsets ofW, and are completely completely characterized using polygonal,
polyhedral, or algebraic models; (5) an initial configuration,qinit ∈ C, and goal configu-
ration,qgoal ∈ C, are specified. The task is to compute a continuous, collision-free path
in C that connects the initial and goal configurations.

A motion strategy problem will generally involve more complications and compo-
nents, in addition to those from the path planning problem. The general motion strat-
egy problem refers to the broad class of particular problems that include any or all of
these complications. Some of these additional complications and components are listed
below:

• The set of allowable velocities is locally constrained (nonholonomy). In the basic path
planning problem, the robot is permitted to move locally in any direction. Suppose,
however, that a mobile robot behaves like a car (see Figure 5), which can roll forward
or backwards but not sideways. A wide variety of examples exist that have nonholo-
nomic constraints, and a solution must satisfy these constraints in addition to avoiding
collision [72].
• The dynamics of the robot significantly affect the desired motion strategy. Suppose,

for example, that the car-like robot is unable to turn sharply at higher speeds due to
skidding. One might be interested in driving the car-like robot to a goal region in
minimum time. In general, dynamics can be modeled as nonholonomic constraints on
a higher-dimensional state space.
• The robot is allowed to contact objects or obstacles in the world, and might even be

required to manipulate them into some desired configuration. For example, a manipu-
lator might be used to force parts into the same orientation for an assembly application.
• The world changes over time in a predictable way, as in the case of a moving obstacle

or another robot with a known trajectory.
• The robot is unable to infer its exact configuration at a current time (uncertainty

in configuration sensing). For example, a mobile robot might use dead-reckoning
information and limited sonar data to estimate its location.
• Motion commands are given to the robot, but future configurations are not completely

predictable. For example, an underwater robot might unexpectedly drift due to flow
and turbulence. As another example, the wheels on a mobile robot might slip, making
it difficult to predict future positions.
• A complete model of the world is not given. For example, a robot might use a laser range

sensing device to incrementally build a representation of the world while attempting
to achieve some task.
• The world changes in a way that is not completely predictable. For example, an indoor

mobile robot might base its motion strategy on whether certain doors in the building
are open or closed, even if these doors can change during execution.
• Several robots attempt to achieve tasks in a common environment.
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• One robot has a visual sensor (e.g., a camera) that it must use to keep line-of-sight
visibility with another robot or human.

In spite of the successful path planning model, there has been little attempt to obtain
further benefits by broadening configuration space framework into a common mathemat-
ical structure that encompasses many of these important, well-studied extensions of the
path planning problem. The intent of the current research is not to provide an alternative
formulation of motion planning, but instead to present an expanded foundation that is
built on previous geometric concepts, while characterizing and unifying a broader class
of problems.

In the area of motion planning under uncertainty in sensing and prediction, many
interesting concepts have been developed, such as preimages and forward projections
[42], [70], [86], [89]; however, they are often tied to a particular set of uncertainty
models that are based on crisp, geometric constructions (e.g., uncertainty cones and
disks). In [78] it is shown how these concepts can be generalized to a broad class of
problems that involve a variety of models and assumptions, and in [75] and [82] the
concepts are transported to other types of uncertainty problems. There are generally two
forms of uncertainty that appear in motion planning and are addressed in this paper:
uncertainty in predictability and uncertainty in sensing. With uncertainty in predictabil-
ity, motion commands are issued to the robot(s), but future configurations or the future
environment might be unknown. In this case, path planning is generally insufficient
because a motion strategy must cause the robot(s) to respond appropriately to these
unknown future states. As stated in [98], “. . . it remains a fundamental problem to
develop dynamic movement planning algorithms,” which motivated that research and
lends support to the strategy concepts presented in this paper. State-feedback control
laws are advocated in this work as a representation of a motion strategy, which can
yield a distinct motion command for each possible state (representing the configura-
tion, environment, velocity, time, etc.). The task is to select feedback strategies that take
into account a goal region and some performance concerns, such as the distance trav-
eled. With uncertainty in sensing, current information such as the configuration of the
robot(s) or the environment representation, might not be known. Because the current
state is not available, an information space that is based on sensing and control history
can be defined, and motion strategies are consequently developed that use information
feedback.

Specialized techniques that have been developed for the coordination of multiple
robots that have independent goals can also be unified. Methods often vary signifi-
cantly based on the use of decoupled planning (planning the paths independently and
then coordinating the robot trajectories [15], [19], [40], [84]) or centralized planning
(planning occurs in a composite configuration space [3], [8], [102]). For example, the
decoupled planning representations constructed in [69] and [91] can be generalized
to a broad class of state spaces, including coordination along a configuration-space
roadmap for each robot. Also, by recognizing the fact that the fixed-path coordination
problem is equivalent to a simple form of planar nonholonomic planning, a straight-
forward Dijkstra-like algorithm can be adapted to quickly compute optimal coordi-
nation strategies [77]. In general, feedback motion strategies can be determined that
optimize one or more criteria in an appropriate game-theoretic sense (such as Pareto
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optimality or a Nash equilibrium), applying to a wide variety of multiple-robot
coordination problems.

Since dynamics and control issues are traditionally decoupled from motion planning,
limited solutions are obtained for many problems. Once one is confined to path planning
and trajectory tracking, much of the interesting interaction between the geometric and
dynamics issues is lost (along with optimal solutions to the original problem). This paper
advocates using control-theoretic state space formulations of dynamics, which results
in a nonholonomic planning problem (only first-order derivative constraints result) in
which the configuration space has been replaced by a higher-dimensional state space that
has similar geometric constraints. Using this approach, a method that computes solutions
for a sufficiently broad class of nonholonomic planning problems can be directly applied
to problems involving dynamics (this observation was exploited to immediately obtain
a kinodynamic plan using a nonholonomic planner in [43]). In general, open-loop or
feedback motion strategies can be designed that directly take into account dynamics and
geometric constraints while optimizing some performance criterion.

1.1. Moving Beyond the Path Planning Paradigm. To provide some of the general
motivation for this research, the path planning paradigm will be revisited and partially
criticized (while acknowledging that the paradigm should also be praised in many as-
pects). Suppose that we wish to automate some task, such as placing a part in a particular
orientation, or moving a mobile robot to a particular location. The following diagram
depicts a conceptual relationship between robotic hardware, and software that provides
some kind of “motion strategy” that controls the hardware:

Actuator
Input

Sensory
Output

Robotic
System

Motion Strategy

It is, of course, not always wise to decouple these two components in the development
of a robotic system; however, we can at least conceptually imagine being faced with
two interdependent tasks that involve designing a mechanical system and designing
an algorithm. We know that the design of robotic systems that achieve great levels of
autonomy and robustness is an extremely challenging and interdisciplinary effort, which
places limitations on our abilities to analyze and design such systems.

One of the most common ways to handle difficult engineering problems is to use
modular reasoning. It is always tempting to reduce a larger problem into subproblems,
such that if each subproblem can be solved, a solution to the original problem can be
assembled. For example, in classical computer vision research, the object recognition
problem was modularized into segmentation (or feature extraction) and feature matching.
In robotics, the motion strategy problem has been modularized for roughly two decades
as shown below (although many interesting exceptions exist in the literature):
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The motion strategy problem has been typically divided into three modules: (1) first,
a path is computed; (2) then, a trajectory is determined; (3) finally, a tracking controller
is used to follow the trajectory. Although this approach is useful in many cases, it is
important not to assume that this is theonly way in which the motion strategy problem
can be approached. It is well known that a carefully constructed path might fail in a real
system because it requires motions that do not necessarily satisfy kinematic and dynamic
constraints. An integrated approach might attempt to tweak the path to obtain a viable
solution; however, the overall approach is still limited due to modular reasoning.

Part of the approach taken in this research is to return to the basics, and develop
algorithms that avoid the traditional modularization into path planning, trajectory fol-
lowing, and a “low-level” controller. Instead, amotion strategyis designed that attempts
to achieve the task optimally, under the assumption that the models are valid. There is no
need for the motion strategy to take the form of a path; the traditional need for a solution
path in the configuration space is actually an artifact of modularization. An important
concern should be: How does one generally represent a motion strategy if it is not a path
in the configuration space?

The motion strategy problem can be modeled as a dynamic game that is played with
one or more decision makers, which could correspond to robots. A special decision maker
called “nature” is capable of interfering with the game, ultimately leading to uncertainties
in prediction and sensing. The goal within this framework is to design astrategythat
optimizes the choices of the decision makers under all possible contingencies with which
they could be confronted. If there is uncertainty in prediction, then instead of a path, a
navigation function can be used to represent a motion strategy. For example, with a car-
like robot we might want to specify the best steering angle to choose from any possible
configuration that the robot might be confronted with during execution (this is equivalent
to a feedback control law [18]). A motion strategy for a two-dimensional mobile-robot
navigation problem might take the form of a vector field that indicates the best direction
to travel from any(x, y) position:

GOAL

The configuration space has been a powerful conceptual tool because it seems to
be the natural space where the path planning problem “lives.” This is mainly because
any transformation of a rigid or articulated body becomes a point in the configuration
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space. The configuration space does not sufficiently represent the problem in cases where
additional complications such as dynamics or sensing uncertainty are present. The next
concern should be: What is the natural space where the motion strategy problem “lives”?
The game-theoretic mathematical foundation leads to the following spaces and their
relationships:

W → C → X → I
World or Configuration State Information

workspace space space space

The first step of transforming the world or workspace into the configuration space has al-
ready been achieved by the path planning framework [69], [85], [101]. In many problems,
however, we might want to use astate spacethat encodes additional information. For
example, if we would like to compute a motion strategy for a car-like robot that reaches
a goal region in minimum time, the state space should include both configuration pa-
rameters and velocities. This kind of state space representation is common in modern
control theory [24]. In some applications, the state space might encode information that
represents the status of the environment [82]. In general, if there is sensing uncertainty
(i.e., the current state is unknown during execution), the state space can be replaced by
an information space[5]. This space is generally spanned by the history of previous
sensor data and motion commands during execution, and can usually be transformed
into either a space of probability density functions or subsets of the state space. Even
though the state is not known, the information state (a point in the information space)
is always known. Thus, the information space seems to be a natural place where the
general motion strategy problem “lives.”

If there is perfect prediction (or we design a sensorless system), then a motion strategy
naturally takes the form of a path in eitherC, X , or I. If, however, there is uncertainty
in prediction, then a motion strategy takes the form of a feedback mapping onC, X , or
I, which gives a motion command to the robot from any location in the space. If the
following was available, all of our problems would be solved: A practical algorithm that
computes an optimal feedback motion strategy on any information space. It appears im-
practical to work toward this ideal; even the basic path planning problem is PSPACE-hard
[96] (the information space is generally infinite-dimensional). Nevertheless, we now have
practical algorithms for path planning that have been very successful in practice, even
though they fall short of the ideal of being complete, general algorithms. The intention is
to develop adaptable algorithms that each incorporate some aspects of the general motion
strategy problem. It is hoped that these steps can lead toward a greater understanding
of the motion strategy problem and toward the development of practical algorithms that
have broad applicability both in robotics and beyond. The same philosophy has helped
advance path planning research, and it inspires the current research.

Section 2 presents a general game-theoretic structure that can be specialized to a va-
riety of motion strategy problems. Section 3 shows how the game-theoretic concepts can
be used as a representational tool to obtain new motion strategy concepts and generaliza-
tions of existing concepts. Section 4 presents a general approach for computing feedback
motion strategies that are approximately optimal (at a given resolution), and discusses a
variety of related algorithmic issues. Conclusions are summarized in Section 5.
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2. Formulating the Motion Strategy Problem. Before characterizing the motion
strategy problem, an overview of the “game-theoretic” perspective is given. The subject
of game theory has been pursued for over 60 years, leading to a wide variety of literature
and viewpoints on the subject. In this papergame theoryis used to describe a dynamic
(or sequential) decision-making problem that involves multiple decision makers and one
or more loss functionals (or performance criteria). In this case its use is much more
general than a “game” in the intuitive sense. The formulation presented in this section
shares similarities with concepts from statistical decision theory (e.g., [16], [29], and
[28]), optimal control theory (e.g., [2], [18], and [65]), dynamic noncooperative game
theory (e.g., [5] and [57]).

The amount of cooperation that occurs between decision makers in a game is one of
the key differences between different branches of game theory literature. If the decision
makers act in unison but each has different loss functionals, themultiobjective optimiza-
tion problemis obtained [51], [100], [114]. In a situation in which there is a common loss
functional and all decision makers wish to act cooperatively,team theoryis obtained [25],
[52], [64]. A cooperative gamerefers to the case in which some subsets of the decision
makers can choose their actions in unison, so that a mutually beneficial outcome can be
obtained [14], [93]. Without cooperation the decision makers choose actions that take into
account interests that conflict with the other decision makers. This is referred to as anon-
cooperative game. The most extreme case of conflicting interest is azero-sumgame, in
which two decision makers are diametrically opposed. A “solution” to a game of the non-
cooperative type is referred to as anequilibriumbecause it provides a balance between the
independent interests of the decision makers. One well-studied branch of noncooperative
game theory involves problems of pursuit and evasion [49], [57], [98], [110], [111], [112].

Game theory can also model a situation in which some decision makers represent
disturbances that must be overcome by the other decision makers. As will be discussed
shortly, such problems can be viewed as agame against nature[16], [95]. If this un-
certainty is represented probabilistically, the game against nature becomes a problem of
stochastic optimal control theory[13], [65]. If the uncertainty is represented nondeter-
ministically and worst-case analysis is performed, then the game against nature can be
considered as a form of robust controller design [4].

Before considering a formulation of the general motion strategy problem, first consider
making small extensions to the basic path planning problem. The basic problem is to find
a continuous pathx: [0, t f ] → Cfree such thatx(0) = qinit andx(t f ) = qgoal, in which
qinit andqgoal are specified initial and goal configurations, respectively. Here,Cfree refers
to the set of configurations in which the robot is not in collision with static obstacles in
the world, as defined in [69]. Usually,Cfree implicitly incorporates all of the constraints
due to the robot geometry and static obstacles in the workspace.

Suppose that there are nonholonomic constraints. To facilitate upcoming concepts,
let Cfree be renamed as a generic state space,X = Cfree. It is well known that the
nonholonomic constraints can be expressed asẋ = f (x(t),u(t)), which constrains the
allowable vector fields onX [58]. Instead of directly choosingx(t), one is forced to
interact with the system using the input (or action)u(t). This occurs, for example, when
manipulating an object through pushing [88]. Iff (x(t),u(t)) = u(t) for ‖u(t)‖ ≤ 1, the
basic (holonomic), path planning problem is obtained since any desired, collision-free
path in the state space can be obtained by selecting an appropriate input.
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Suppose that optimality with respect to some criterion, such as path length or execution
time, is important. Aloss functionalcan be defined that evaluates any state trajectory
and input:

L(x(·),u(·)) =
∫ t f

0
l (x(t),u(t))dt + Q(x(t f )).(1)

The integrandl (x(t),u(t)) allows the specification of a cost that will accumulate during
execution and will depend in general on the state trajectory and the input. The final term
Q(x(t f )) can indicate the importance of achieving the goal. The basic problem can be
considered as a special form of optimal control [44]. Supposel (x(t),u(t)) ≡ 0, and
Q(x(t f )) = 0 if x(t f ) = qgoal and Q(x(t f )) = 1 otherwise. This corresponds to the
original case in which optimality is not important. The space of possible inputs to the
system in this case is partitioned into two classes: those that lead to the goal region, and
those that fail.

Next, consider moving to a mathematical structure for the general motion strategy
problem, which is based on concepts from dynamic noncooperative game theory [5] and
stochastic optimal control [65]. This structure will be formulated in discrete time to ease
the specification of uncertainty aspects; however, continuous time can alternatively be
used with some minor modifications and measure-theoretic restrictions. Thirteen compo-
nents are first listed, and a discussion of how each relates to the motion strategy problem
follows. Also, Table 1 indicates both continuous-time and discrete-time specializations
of the framework that can be used to formulate problems that have been considered in
previous motion planning research.

1. An index set,N = {1,2, . . . , N}, of N decision makers.
2. An index set,K = {1,2, . . . , K }, that denotes thestagesof the game.
3. A set,X , called thestate space. The state of the game,xk, at stagek, belongs toX .
4. A set,Ui

k, defined for eachk ∈ K andi ∈ N, which is called theaction spaceof the
i th decision maker at stagek. Theaction, ui

k, at stagek, belongs toUi
k. Generally,

one can allow state-dependent action spaces of the formUi
k(xk).

5. A set,2a
k, defined for eachk ∈ K , which is called thecontrol action space for nature

at stagek. Thecontrol action for nature, θa
k , at stagek, belongs to2a

k.
6. A function, fk: X ×U1

k × · · · ×U N
k ×2a

k → X , defined for eachk ∈ K so that

xk+1 = fk(xk,u
1
k, . . . ,u

N
k , θ

a
k),(2)

is astate transition equation.
7. A set,Y i

k, defined for eachk ∈ K andi ∈ N, and called thesensor spaceof the i th
decision maker at stagek, to which the sensed observationyi

k belongs at stagek.
8. A set,2s,i

k , defined for eachi ∈ N andk ∈ K , which is called thesensing action
space for natureat stagek. Thesensing action for nature, θs,i

k , at stagek, belongs
to2s,i

k .
9. A function,hi

k, defined for eachk ∈ K andi ∈ N, so that

yi
k = hi

k(xk, θ
s,i
k ),(3)

which is theobservation equationof the i th decision maker concerning the value
of xk.
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Table 1. Specific game components are shown for several different kinds of motion strategy problems that
have received previous attention.∗

Problem State space Motion model Sensing model Strategy

Basic Motion Planning C ẋ= u(t) y(t)= x(t) [0,1]→ Cfree

[9], [92], [101] xk+1= xk + uk yk = xk

Nonholonomic C ẋ= f (x(t),u(t)) y(t)= x(t) u(t), 0≤ t ≤ t f

[10], [20], [71], [83] xk+1= f (xk,uk) yk = xk

Dynamics T(C) ẋ= f (x(t),u(t)) y(t)= h(x(t)) u(t), 0≤ t ≤ t f

[21], [34], [35], [79] xk+1= f (xk,uk) yk = h(xk)

Moving obstacles C(t) ẋ= f (x(t),u(t), t) y(t)= x(t) u(t), 0≤ t ≤ t f

[41], [59] xk+1= fk(xk,uk) yk = xk

Pursuit-evasion C1 × C2 ẋ= f (x(t),u1(t),u2(t)) yi (t)= hi (x(t)) γ 1, γ 2: X → U
[98] xk+1= f (xk,u1

k,u
2
k) yi

k = hi (xk)

Multiple robots C1 × · · · × CN ẋi = f i (xi (t),ui (t)) yi (t)= x(t) γ i : X → Ui

[19], [91], [107] xi
k+1= f i (xi

k,u
i
k) yi

k = xk

CP uncertainty C ẋ= f (x(t),u(t), θa(t)) y(t)= x(t) γ : X → U
[17], [31], [42] xk+1= f (xk,uk, θ

a
k ) yk = xk

EP uncertainty C × E ẋ= f (x(t),u(t), θa(t)) y(t)= x(t) γ : X → U
[27], [82], [113] xk+1= f (xk,uk, θ

a
k ) yk = xk

CS and CP uncertainty C ẋ= f (x(t),u(t), θa(t)) y(t)= h(x(t), θs(t)) γ : Ik → U
[42], [70], [86] xk+1= f (xk,uk, θ

a
k ) yk = h(xk, θ

s
k)

ES uncertainty C × E ẋ= u(t) y(t)= h(x(t), θs(t)) γ : Ik → U
[30], [33], [55], [87] xk+1= xk + uk yk = h(xk, θ

s
k)

∗For each case, the state space is identified. Both continuous-time and discrete-time models are given for
motions and for sensing. An appropriate form of the strategy is shown in the final column. CP, EP, CS, and
ES, refer to configuration predictability, environment predictability, configuration sensing, and environment
sensing, respectively. The tangent bundle ofC is denoted byT(C), andE represents a space of environments.

10. A finite set,ηi
k, defined for eachk ∈ K andi ∈ N as a subset of all actions and obser-

vations made by decision makers at any previous stage,{u1
1, . . . ,u

N
k−1, y1

1, . . . , yN
k }.

11. A set of all possible values forηi
k, denoted byI i

k, which is called theinformation
spacefor the i th decision maker at stagek.

12. A set,0i
k, of mappingsγ i

k : I i
k → Ui

k, which are thestrategiesavailable to the
i th decision maker at stagek. The combined mappingγ i = {γ i

1, γ
i
2, . . . , γ

i
K } is a

strategyfor the i th decision maker, and the set0i of all such mappingsγ i is the
strategy spaceof the i th decision maker. Agame strategy, γ , represents a simulta-
neous specification of the strategy for each decision maker, and the space of game
strategies is denoted by0 = 01× · · · × 0N .

13. A scalar-valued functionalLi : (X ×U1
1 × · · · ×U N

1 )× (X ×U1
2 × · · · ×U N

2 )×
· · ·× (X ×U1

K+1×· · ·×U N
K+1)×2→ R+, defined for eachi ∈ N, and called the

loss functionalof the i th decision maker. The Cartesian product of all of nature’s
action spaces is represented here as2.
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State Transitions and Control. Item 1 defines the decision makers, which each typically
refers to an independent, controllable robot, although other types of decision makers are
possible. For example, one decision maker might be an unpredictable target that is at-
tempting to avoid being located by another robot. Item 2 defines stages that correspond
to times at which decisions are made. For standard discrete-time analysis, decisions are
made at each1t time increment. The limiting case ofK = ∞ can be defined. In gen-
eral, decision making at regular intervals is not required. Suppose, for instance, that the
decisions correspond to very high-level operations which may have unpredictable com-
pletion times. This case is discussed in more detail in [103], for modeling the completion
of a fine-motion operation.

The state space is defined in Item 3. At the very least, the state space can be used to
represent the free configuration space,Cfree. In the case of multiple robots, it can represent
the composite configuration space that is formed by taking the Cartesian product of
the configuration spaces of the individual robots. In general, however, the state space
could incorporate additional information. For instance, dynamics can be included by
expanding the state space to include configuration time derivatives. This corresponds to
the standard use of state space representations in optimal control theory. The state space
can also include any parameters that can be completely or partially controlled through
the operation of the robot(s). In [82] the state space includesenvironment modesthat
characterize varying conditions in the environment that potentially affect the robot.

Item 4 defines the set of actions that are available to each decision maker at each
stage.

Item 5 is used to model sources of uncertainty. Two common representations of un-
certainty have been applied to motion strategy problems. With anondeterministic(or
bounded-set) representation parameter uncertainties are restricted to lie within a speci-
fied set. A motion strategy is then generated that is based onworst-caseanalysis (e.g.,
[23], [42], [70], and [86]). With aprobabilisticrepresentation the parameter uncertain-
ties are characterized with a probability density function (pdf). This often leads to the
construction of motion strategies throughaverage-caseor expected-caseanalysis (e.g.,
[17], [47], and [48]).

One key aspect of the proposed mathematical foundation is a general capacity to model
uncertainties by defining a nature player. This view of uncertainty was advocated for
manipulation planning in [108]. It will be assumed that no decision maker has control over
actions that are chosen by nature; however, models can be constructed to partially predict
nature’s actions. Nature can introduce nondeterministic or probabilistic uncertainties into
the game by applying eithercontrol actionsor sensing actions. Item 5 defines the set
of control actions that are available to nature, and Item 8 will define the set of sensing
actions that are available to nature.

Item 6 defines how changes in state are effected. The next statexk+1, at stagek+ 1,
is obtained as a function of the current statexk and the actions chosen by all decision
makers, including nature. If nature is omitted from the state transition equation, then
perfect prediction of future states is possible, given the actions of the decision makers.
Under nondeterministic uncertainty, a set of possible future states can be derived from
the state transition equation as

Fk+1(xk,u
1
k, . . . ,u

N
k ) = { f (xk,u

1
k, . . . ,u

N
k , θ

a
k) ∈ X |θa

k ∈ 2a
k}.(4)
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Under probabilistic uncertainty, it is assumed thatp(θa
k), is known. By using the state

transition equation, the next state is represented by a pdf,p(xk+1|xk,u1
k, . . . ,u

N
k ).

Note that the discrete-time formulation can be considered as an approximation to
a continuous-time system [11], [12]. For example, suppose a system of the formẋ =
f (x(t),u1(t), . . . ,uN(t)) is given. This can be approximated as

x(t +1t)− x(t)

1t
= f (x(t),u1(t), . . . ,uN(t))(5)

or

x(t +1t) = f (x(t),u1(t), . . . ,uN(t))1t + x(t),(6)

which is

xk+1 = xk + f (xk,u
1
k, . . . ,u

N
k )1t,(7)

in which xk ≡ x(t), xk+1 ≡ x(t +1t), andui
k ≡ ui (t). During the interval [t, t +1t),

each controlui (t) remains constant. Many other discrete-time approximations, such as
Runge-Kutta integration, are possible.

Sensing Uncertainty. Items 7–11 characterize the information that can be used for the
basis of decision making when there is not direct access to the state. This can be consid-
ered as a general form of the sensing problem in robotics. Each decision maker at each
stage has asensor space,Y i

k (or observation space), which is the set of possible measure-
ments or observations that can be read at stagek. The functionhi

k relates the current state
to the particular observation that is received at stagek. For example, an outdoor vehicu-
lar robot might receive a position estimate from a global positioning system (GPS). The
functionhi

k relates latitude/longitude numbers from the GPS to the configuration of the
robot. An another example, suppose a sonar sensor measures the distance of the robot to a
wall along a particular direction. This distance depends on the configuration of the robot,
and it provides partial information regarding the robot’s configuration (although the exact
configuration cannot be completely determined in general using this information). The
relationship given byhi

k is used in optimal control theory to define system outputs, and
has also been considered in robot sensing problems (see, for instance, [32] and [33]). In
addition to a projection from the state space to the sensor space, this information is poten-
tially corrupted by a sensing action,θs,i

k , of nature, which is chosen from2s,i
k . This can

be used to account for noise and other unpredictable disturbances in the measurements.
Under nondeterministic uncertainty, the possible current states from a single sensor

observation are

Fi
k(y

i
k) = {xk ∈ X |yi

k = hi
k(xk, θ

s,i
k ), θ

s,i
k ∈ 2s,i }.(8)

Under probabilistic uncertainty the current state, assuming only a single observation, is
represented by a pdf,p(xk|yk).

The sensing model can be generalized to include state history,yi
k = hi

k(x1, . . . , xk,

θ
s,i
k ).

Information Spaces. Items 10 and 11 characterize the history that is available for de-
cision making. The relationship between sensor and action history and decision making
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has long been considered important in planning under uncertainty (e.g., [42] and [86]).
Generally one would like to optimize the performance of a robot, while directly taking
into account the complications due to limited sensing. By using the concept of infor-
mation state, as considered in stochastic control and dynamic game theory, a useful
characterization of this relationship is provided. When there is perfect state information,
decisions can be made on the basis of state. However, with imperfect state information,
the decisions are conditioned on information states. The information state concept is
similar to the definition of knowledge states, considered in [38], and has also recently
been proposed in [7].

The information space can be considered as a replacement for the state space in the case
of imperfect state information (i.e., planning occurs in the information space instead of the
state space). Since the information space is generated by a growing history, its dimension
can increase linearly with the number of stages. This motivates the consideration of
alternative representations when possible. In the case of nondeterministic uncertainty,
the information space can be alternatively represented as an algebra of subsets ofX that
are obtained by performing set intersections that maintain consistency with the history.
Thus for each possible action and sensing history, a set of possible current states can
be identified. For example, in pursuit-evasion problems for which the evader position
is unknown, the information state can represent possible locations of the evader, given
the initial conditions and history of pursuer motions [80]. With probabilistic uncertainty,
the information space can be alternatively represented as a pdf onX that is obtained
through the repeated application of Bayes’ rule. In the case of a linear Gaussian system
with no geometric constraints, all possible pdfs are Gaussian, and the information space
can be spanned by specifying only the mean and covariance. In general, the pdfs do not
admit a low-dimensional parameterization; however, moments of the distributions can
be considered as an approximate representation [75]. For practical purposes, one might
have to consider low-dimensional transformations of the history, such as limiting the
number of stages included in the history, or estimate some portion of the state vector.

The Strategy Concept. Item 12 defines a strategy for each decision maker. The goal is
to compute a strategy that will lead to the accomplishment of some robotic task, such
as moving the robot to some prescribed region. In the most general form, each decision
maker conditions its actions on its information state; however, various specializations of
this are useful in particular contexts. For example, suppose Item 5 is dropped, implying
that there is perfect prediction. In this case, for a givenx1 and sequence of actions,
ui

1, . . . ,u
i
K for eachi ∈ N, the complete trajectoryx2, . . . , xK+1 can be determined

using (2). In this case, feedback is not strictly necessary, and the solution strategy can
be completely characterized by the action sequence. This corresponds to the case of
open-loop control, and is equivalent to the type of motion strategy that is considered
in basic path planning. Although prediction uncertainty is not explicitly modeled with
nature, many applications exist for which the state-feedback solution can greatly improve
performance by responding to on-line execution errors.

If there is perfect sensing information but uncertainty in predictability, then the strat-
egy takes the form of a state-feedback mapping:γ i

k : X → Ui
k. This occurs because the

information space reduces to the state space under the perfect sensing model. Thus, for
ann-dimensional state space, the domain of the strategy isn-dimensional (as opposed to
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a single dimension for a fixed-path strategy). Note that this represents quite a different so-
lution concept that what is path planning. In this case, the robot is capable of responding
to any unpredictable changes in state once a strategy is specified. This offers significant
advantages over a preplanned path or trajectory. Instead of being forced to track a path,
the robot can respond optimally from whichever states it finds itself in during execution.

Item 12 defines a deterministic (or pure) strategy; however, a randomized (or mixed)
strategy can alternatively be defined. In this case a pdf of the formp(ui

k|ηi
k) is specified

as the strategy, and actions are chosen by sampling. Randomized have been particularly
useful for improving robustness in manipulation tasks [37].

Encoding Preferences. Item 13 defines a loss functional, which guides the selection of
strategies, for each of the decision makers. The loss can generally be based on actions
taken by any decision maker at any stage, on the state trajectory, and on nature.

One form that is often used in discrete-time optimal control theory is the stage-additive
loss functional (indicated for the case a single decision maker):

L(x1, . . . , xK+1,u1, . . . ,uK ) =
K∑

k=1

lk(xk,uk)+ l K+1(xK+1),(9)

in which lk(xk,uk) represents a cost that can accumulate (such as time, distance, or
energy). The final cost,l K+1(xK+1), can be used to encode the goal. Desired final states
can yield zero loss, and other final states can yield a large positive or infinite loss.

The general task is to determine strategies that optimize the losses in some appropriate
sense. In the case of a single decision maker without nature, the task is to select a strategy
that minimizesL. In the case of nondeterministic actions from nature, the task is to select a
strategy that minimizes the worst-case loss. In the probabilistic case, one natural choice
is to minimize the expected loss. For cases in which there are multiple, independent
decision makers, a number of different concepts may be appropriate. For instance, in
a cooperative game in which there is a certain amount of trust,Pareto optimalitymay
be appropriate [93]. In a noncooperative setting, a Nash equilibrium condition might
be appropriate [5]. This corresponds to a game strategy that minimizes the loss of each
decision maker, given that the strategies of the other decision makers cannot be changed.

3. Concepts for Analyzing Motion Strategy Problems. This section presents sev-
eral conceptual tools that have been developed using the game-theoretic framework
by building on concepts that have been introduced in previous motion planning con-
texts. The emphasis is placed on general motion strategy aspects; however, by using the
game-theoretic formulation as a representational tool, particular models, analysis, algo-
rithms, and computed solutions have so far been obtained for four particular classes of
problems: (1) motion strategies under uncertainty in sensing and control [78], [76]; (2)
motion strategies under environment uncertainties [75], [82]; (3) multiple-robot motion
strategies [75], [77]; and (4) maintaining visibility of a predictable target in a cluttered
workspace [81]. For the first problem class, a general method for determining feedback
strategies is developed by blending ideas from dynamic game theory with traditional
preimage planning concepts. This generalizes classical preimages toperformance preim-
agesand preimage plans tomotion strategies with information feedback. For the second
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problem class, robot strategies are analyzed and determined for situations in which the
environment is changing and not completely predictable. For the third problem class,
dynamic game-theoretic concepts are applied to computer motion strategies for multi-
ple robots that have independent goals. Several versions of the formulation have been
considered: fixed-path coordination, coordination on independent configuration-space
roadmaps, and centralized planning. For the fourth problem class, motion strategies are
planned for a robot that must avoid obstacles, maintain visibility of second, predictable
robot, and optimizes a loss functional that can take into account the total distance traveled,
the distance between the two robots, and the amount of time that visibility is lost.

Modeling Sources of Uncertainty. Several types of uncertainty will be discussed for
the single-robot case. It is straightforward to extend the discussion to multiple robots.
All types are modeled with nature, which can be assumed to be either nondeterministic
or probabilistic.

Suppose thatX = Cfree, and letqk denote the configuration (or state) at stagek. For
the case of a single decision maker, the decision-maker superscripts will be dropped. The
state transition equation (2) can be specialized toqk+1 = fk(qk,uk, θk). This represents
uncertainty inconfiguration predictability. Suppose further that the observation equation
is of the formyk = hk(qk, θ

s
k). This represents uncertainty inconfiguration sensing.

Other sources of uncertainty can be considered in addition to configuration uncer-
tainties. Suppose, for example, thatCfree is not exactly known, but is instead known to
be one of several possibilities. In this case there is uncertainty in the robot’s environ-
ment. A setE can be used to index the alternatives, and a state space is defined as
some subsetX ⊂ C × E [82]. Thus, for everye ∈ E, a different free configuration
space can be obtained. Let [qk ek] represent the state at stagek. A state transition equa-
tion can be defined in two portions. Suppose that the future configurations are obtained
deterministically fromqk+1 = f ′k(qk,uk), and future environments are obtained from
ek+1 = f ′′k (ek, θ

a
k). In this case nature causes uncertainty inenvironment predictability.

More generally, the future environments can be conditioned on the robot’s configura-
tion (which occurs, for instance in a manipulation problem) and the action, to yield
ek+1 = f ′′k (xk, θ

a
k), in whichxk = [qk ek].

If the current environment is unknown, then there is uncertainty inenvironment sens-
ing, which is a problem that has been considered in robotics from several different
perspectives (e.g., [30], [36], [53], [68], and [105]). This can be modeled by defining
yk = hk(xk, θ

s
k), in whichxk = [qk ek].

In general, sensing and predictability uncertainties can be defined for any state space,
including those that include dynamics. Also, a set of parameters could characterize
variations in the model, and used to form models of uncertainty in predictability and
sensing, in the same way thatE was used.

It has been assumed thus far that each decision maker knows all game components,
including the loss functionals, of other decision makers. Another sensing model could
be introduced that reflects imperfect information that each decision maker has about the
game itself. Problems of this type are quite realistic, yet are very difficult to model [46],
[50]. The information of each decision maker could be represented, for example, as a pdf
over a set of possible games. To make appropriate decisions, each decision maker must
speculate about the knowledge that other decision makers have regarding the game. This
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type of second-guessing can progress for an infinite number of layers, which leads to a
formidable modeling task.

An Example of Uncertainty in Configuration Predictability. A variety of motion models
with uncertainty can be specified. As an example, consider characterizing the uncertainty
model that is used for motion control in preimage planning research (e.g., [42], [70],
and [86]). Suppose there is a single decision maker that is a polygonal robot translating
in the plane amidst polygonal obstacles. The action space defines commanded velocity
directions, which can be specified by an orientation, yieldingU = [0,2π). The robot
will attempt to move a fixed distance‖v‖1t (expressed in terms of a constant velocity
modulus,‖v‖) in the direction specified byuk. The action space of nature is a set of
angular displacementsθa

k , such that−εθ ≤ θa
k ≤ εθ , for some maximum angleεθ . Under

nondeterministic uncertainty, any actionθa
k ∈ [−εθ , εθ ] can be chosen by nature. When

using probabilistic uncertainty,p(θa
k) could be a Gaussian density with zero mean and

standard deviationεθ . If the robot chooses actionuk from statexk, and nature chooses
θa

k , thenxk+1 is given by

f (xk,uk, θ
a
k) = xk + ‖v‖1t

[
cos(uk + θa

k)

sin(uk + θa
k)

]
.(10)

Thus, the game-theoretic interpretation of this model is that a nature player interferes
with the commanded direction, causing the robot’s heading to be unpredictable. A variety
of other models can be easily encoded using this representation.

An Example of Uncertainty in Configuration Sensing. Suppose that a single robot
is equipped with a position sensor. Assume that the sensor is calibrated in a planar
configuration space, yielding values inR2. The observation equation isyk = h(xk, θ

s
k) =

xk+θs
k. Suppose the true configuration is known to lie withinε of the sensed configuration.

In this case the nondeterministic uncertainty model is appropriate, andθs
k is a two-

dimensional vector of magnitudeε. Alternatively, a probabilistic uncertainty model can
be defined using a pdf. For example, a Gaussian model can be defined as

p(θs
k) =

1√
2π |6|e

−(1/2)(θs
k)

T6−1θs
k(11)

in which6 represents the two-dimensional covariance matrix of the error.
Thus, a nature player interferes with the sensor observations that are available to the

robot, making it incapable of determining the true position.

An Example of Uncertainty in Environment Predictability. Figure 6(a) shows a problem
in which a rigid robot is placed in a two-dimensional world that corresponds to an indoor
environment. There are two doors in the environment that might open or close at any
point in time. When a door changes, the topology ofCfree changes, and the robot must
react appropriately. In fact, the robot must make its decisions based on whether certain
doorsmightclose during execution. One can design a motion strategy that minimizes the
expected time that the robot takes to reach the goal if probabilistic models are available
for the doors. For this problem,E = {1,2,3,4}, which corresponds to the four possible
cases in which the doors are open or closed. If the behavior of the doors does not depend
on the configuration of the robot, then the portion of the state transition equation that
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Fig. 2. (a) Typical appearance of data using omnidirectional sensing in an indoor environment. (b) An on-line
interpretation of the data: discontinuities correspond to portions of the environment that are unknown. (c) One
possible environment that is consistent with the data. The information state for this problem represents the set
of environments that are consistent with the observed data.

corresponds to the environment can be defined as a probabilityP(ek+1|ek) (assuming a
Markov model).

An Example of Uncertainty in Environment Sensing. Figure 2 shows an example that
involves uncertainty in environment sensing. Suppose that a mobile robot is placed an
unknown, indoor environment. The robot has an omnidirectional sensor that measures
the distance to the nearest wall along each orientation inS1. The value returned by the
sensor can be considered as a function,yk: S1→ R. The observation space,Y, becomes
a function space. Under nondeterministic uncertainty, the set of all possible environments
that are consistent withyk can be inferred. An information state corresponds to the set
of possible environments after some history of sensor observations and actions.

Forward Projections. In preimage planning research [42], [86], the useful notion of
a forward projection was introduced for characterizing robot execution when there is
uncertainty in configuration predictability and sensing. This concept can be substantially
generalized and applied to other motion strategy problems with similar benefits.

The forward projection characterizes future states under the implementation of a
strategy. For a given strategy, initial state, and with no uncertainties, the state trajectory
that can be inferred from (2). In many cases, one would like to consider the set of
states that are reachable or likely to be reachable, given some set of possible actions
or strategies. For example, in nonholonomic planning feasibility is a primary concern,
which indicates the set of states that can be reached for at least one possible motion
strategy.

When there are uncertainties in the actions taken by a decision maker, a forward
projection can be used by other decision makers to assess future states (in a game of chess
such future states are considered). In a pursuit-evasion problem, the pursuer might want to
consider possible states that the evader could move to. This concept can also be applied
to assess the effects of uncertainty due to nature. Suppose there is nondeterministic
uncertainty, as in the model expressed in (10). Suppose that the strategyγk is fixed for all
k, and that there is no sensing uncertainty. Under nondeterministic uncertainty, a subset
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of X in which the system state will lie can be inferred. Consider the state at stagexk+2,
if xk is known. From (4), it is already known thatxk+1 ∈ Fk+1(xk,u1

k, . . . ,u
N
k ), and

ui
k = γk(xk). The nondeterministic action of nature at stagek + 1 must next be taken

into account to yield

Fk+2(xk, γ
1, . . . , γ N) = { f (xk+1,u

1
k+1, . . . ,u

N
k+1, θ

a
k+1)(12)

∈ X |xk+1 ∈ Fk+1(xk, γ
1, . . . , γ N), θa

k+1 ∈ 2a}.

This defines the forward projection at stagek+2 in terms of the projection at stagek+1.
By induction, forward projections can be constructed to any future stage.

Forward projections can be analogously constructed for probabilistic uncertainty. For
instance, the pdf at stagek+ 2 is

p(xk+2|xk, γ
1, . . . , γ N)=

∫
p(xk+2|xk+1, γ

1
k+1(xk+1), . . . , γ

N
k+1(xk+1))(13)

× p(xk+1|xk, γ
1
k (xk), . . . , γ

N
k (xk))dxk+1.

Termination Conditions. The decision to halt a robot has been given careful attention
in motion planning research that involves configuration-sensing uncertainty. A motion
strategy might bring the robot into a goal region (reachability), but the robot may not
halt if it does not realize that it is in the goal region (recognizability) [42]. The notion
of a termination condition has been quite useful for formulating robot plans that tell the
robot when to halt, based on its current, partial information [42], [70], [86]. The same
concept can be introduced in a game-theoretic formulation by defining a binary-valued
mapping (as part of a strategy),

T Ci
k: I i

k → {true, false},(14)

and enforcing the constraint that ifT Ci
k = true, thenT Ci

k+1 = true. Thetruecondition
indicates that the robot should halt, and can be considered as a special action that can
be considered by a decision maker (and hence incorporated into a strategy that uses
information feedback). The loss functional can be defined so thatl i

k = 0 if T Ci
k = true.

Thus, the robot has the opportunity to accept the loss at the current stage, as opposed
to attempting to improve its loss. This termination condition, in the determination of
an optimal strategy, is equivalent to anoptimal stopping rule, which has been studied
for problems such as deciding when to stop gambling [13]. The termination condition
represents a special action that can be considered by a robot, and can be applied in a
variety of contexts for designing motion strategies.

Performance Preimages. One concept that is complementary in many ways to the
forward projection is thepreimage[42], [70], [86]. A preimage is classically defined as
the set of all configurations from which a robot is guaranteed to halt in the goal region
under a constant motion command. This principle can be significantly generalized within
the game-theoretic framework to yield aperformance preimage, which is the set of all
states (or information states) from which the performance lies within some specified
bounds under the implementation of a fixed feedback strategy. This concept additionally
relates closely to navigation functions [9], [99] and progress measures [39].
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Assume that a strategy encodes a termination condition in addition to motion control,
and that there is only a single decision maker (other than nature). Suppose that there is
nondeterministic uncertainty, which is standard in preimage planning research. Consider
some subset of the reals,R ⊆ R. Theperformance preimage on Xis the subset ofX
that is given by

π̌x(γ,R) = {x1 ∈ X |Ľ(x1, γ ) ∈ R},(15)

in which Ľ(x1, γ ) represents the worst-case loss that could be obtained under the im-
plementation ofγ with an initial statex1. The setπ̌x(γ,R) ⊆ X indicates places in the
state space from which if the robot begins, the loss will lie inR.

The state space,X , can be partitioned intoisoperformance classesby defining an
equivalence clasšπx(γ, {r }) for eachr ∈ [0,∞). For a 0-1 loss functional (0 if the goal
is achieved),π̌x(γ, {0}) yields the classical preimage. With a general loss functional,
andR = [0,m) a performance preimage is obtained that indicates allx1 ∈ X from
which the goal will be achieved with a loss that is guaranteed to be less thanm. If the
termination condition is neglected, thenπ̌ (γ, {0}) yields abackprojectionsimilar to that
in [42].

Suppose probabilistic uncertainty is considered instead of nondeterministic uncer-
tainty. The performance preimage becomes

π̄x(γ,R) = {x1 ∈ X |L̄(x1, γ ) ∈ R},(16)

in which L̄(x1, γ ) represents theexpectedloss that is obtained under the implementation
of γ from x1. Suppose thatR = [0, r ] for somer ≥ 0. The performance preimage
yields places inX from which the expected performance will be less than or equal to
r . If R = {r } for some pointr ≥ 0, then places inX are obtained in which equal
expected performance will be obtained. With a 0-1 loss functional and ignoring the
termination condition, the performance preimages can give isoprobability curves which
are equivalent to the probabilistic backprojections in [17].

Some examples of preimages are shown in Figure 3 (see also [78]). Figure 3(a) shows
a performance preimage under nondeterministic uncertainty and a loss functional that
returns 0 when the goal is achieved, and 1 otherwise. The curve shown in Figure 3(a)
corresponds closely to the classical preimage that has been determined for this problem
in previous manipulation planning research (e.g., [42] and [69]). Figure 3(b) assumes
probabilistic uncertainty, and shows probabilistic backprojections that are quite similar
to those that appear in [17]. Figure 3(c) shows performance preimages for a case in
which a Gaussian error model is used to represent the uncertainty in control, as opposed
to a bounded uniform pdf as in [17]. Figure 3(d) shows performance preimages of
a computed optimal strategy. These results were all computed using variants of the
algorithm discussed in Section 4.

Performance preimages can also be defined on the information space to account for
sensing uncertainty, and for multiple decision makers [75].

Decoupling Multiple Robots. Consider the problem of coordinating multiple robots
that have independent goals. Approaches to multiple-robot motion coordination are often
categorized ascentralizedor decoupled. A centralized approach typically constructs a
path in a composite configuration space, which is formed by combining the configuration
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Fig. 3. Several performance preimages for the classic peg-in-hole problem using the motion model given in
Section 3: (a) a classical preimage; (b) a single-stage probabilistic preimage for a uniform pdf; (c) a single-stage
probabilistic preimage for a truncated Gaussian state transition pdf; and a computed optimal strategy for a
different problem; (d) performance preimages for the optimal solution using a minimum-distance criterion.

spaces of the individual robots (e.g., [8] and [102]). A decoupled approach typically
generates paths for each robot independently, and then considers the interactions between
the robots (e.g., [41], [59], and [91]). The suitability of one approach over the other is
usually determined by the tradeoff between computational complexity associated with
a given problem and the amount of completeness that is lost.

A variety of multiple-robot coordination problems can be formulated by defining
appropriate state spaces [75]. Suppose there is a collection ofN robots that share a
common workspace and have free spacesC1

free, . . . , CN
free. The state space can be defined

as the Cartesian product

X = C1
free× C2

free× · · · × CN
free.(17)

The subset ofX in which two or more robots collide is avoided in a successful motion
strategy. The dimensionality of this composite space has previously prompted many
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approaches that decouple the problem. Motion strategies are more or less constructed
for each robot independently, and then combined to coordinate the robots.

For fixed-path coordination, it is assumed that a collision-free pathτ i : [0,1]→ C i
free

is given for each robot, and the state space is defined as the Cartesian product [0,1]N .
Instead of a single collision-free path, suppose that each robot is given a network of
collision-free paths, referred to as aroadmap. LetRi denote a space that is formed by
combining the domains of the roadmap paths for thei th robot. A roadmap coordination
space can be defined as

X = R1×R2× · · · ×RN .(18)

In general, many other combinations of constrained spaces are possible to define the
state, leading to a variety of ways to define decoupled planning problems.

Multiple-Robot Optimality. Little concern has been given in previous research to op-
timality for multiple-robot coordination problems. Previous approaches that consider
optimality project the vector of individual losses onto a scalar loss [15], [104], [109].
As a result, these methods can fail to find many potentially useful motion strategies.
There are many well-studied optimality concepts from game-theory and multiobjective
optimization literature that can be applied in this case. An optimality concept will be
briefly described for the multiple-robot planning problem that results in a small set of
alternative strategies that are guaranteed to be better than or equivalent to (in terms of
losses) any other possible strategy.

For each robot, assume there are no uncertainties and define a loss functional of the
form

Li (xinit, xgoal,u
1, . . . ,uN)(19)

=
∫ T

0
l i (t, xi (t),ui (t))dt +

∑
j 6=i

ci j (x(·))+ qi (xi (T)),

which maps to the extended reals, and

ci j (x(·)) =
{

0 if x(t) ∈ Xvalid for all t,
∞ otherwise,

(20)

and

qi (xi (T)) =
{

0 if xi (T) = xi
goal,

∞ otherwise.
(21)

The variablesxinit andxgoal represent the initial and goal configurations for all of the
robots.

The integrandl i represents a continuous cost function, which is a standard form that
is used in optimal control theory. It is additionally required, however, that

l i (t, xi (t),ui (t)) = 0 if xi (t) = xi
goal.(22)

This implies that no additional cost is received while thei th robot “waits” atxi
goal until
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time T . The term (20) penalizes collisions between the robots. The subsetXvalid ⊂ X
represents the (closed) set of all states at which no robots or obstacles are in collision.
This has the effect of preventing any robots from considering game strategies that lead
to collision. The term (21) represents the goal in terms of performance. If thei th robot
fails to achieve its goal,xi

goal, then it receives infinite loss.
Suppose that the initial state is given. For each game strategy,γ = {γ 1, . . . , γ N}, a

vector of losses will be obtained. A partial ordering,¹, can be defined on the space of
game strategies,0. For a pair of elementsγ, γ ′ ∈ 0 let γ ¹ γ ′ if Li (γ ) ≤ Li (γ ′) for
every i . The minimal game strategies with respect to¹ are better than or equal to all
other game strategies in0, and it is shown in [75] that very few minimal game strategies
typically exist (ignoring those that produce equivalent losses).

These solutions can be generated using algorithms that are based on the dynamic
programming principle. For other applications this was observed in [26]. For the criterion
(19) it is shown that minimal solutions are consistent with other well-established forms of
optimality from optimization literature [75]. The minimal game strategies are equivalent
to thenondominatedstrategies used in multiobjective optimization andPareto optimal
game strategies used in cooperative game theory. Furthermore, it can be shown that the
minimal game strategies satisfy the Nash equilibrium condition from noncooperative
game theory, which implies that for a game strategyγ ∗ = {γ 1∗ · · · γ N∗}, the following
holds for eachi and eachγ i ∈ 0i :

Li (γ 1∗, . . . , γ i∗, . . . , γ N∗) ≤ Li (γ 1∗, . . . , γ i−1∗, γ i , γ i+1∗, . . . , γ N∗).(23)

Thus, the minimal game strategies represent reasonable coordination strategies for mul-
tiple robots under a variety of different interpretations.

Moving Obstacles and Other Nonstationary Systems. It has been assumed so far that
the system is not time-varying. From a control perspective, this corresponds to asta-
tionaryproblem. Optimal solutions to problems of this type depend only on state (or the
information state with sensing uncertainty) and not on time or the stage index.

By allowing time-varying models, many interesting motion strategy problems can be
defined. Suppose, for instance, that several moving obstacles exist in the workspace. For
a single-robot problem, this leads to a time-varying free configuration spaceX (t) ≡
Cfree(t) [69], which can be approximated in discrete time as

X [k] =
⋂

t∈[(k−1)1t,k1t)

X (t).(24)

In general, many game items from Section 2 can encode time-dependent models. In these
cases the motion strategiesγ i

k andγ i
k+1 will generally be different due to changes in the

model.

Representing Nonholonomic Constraints. A simple example is presented to illustrate
how the state space formulation can be utilized for encoding nonholonomic constraints
and dynamics. Suppose that one would like to design a motion strategy for a car-like robot
that has a bounded turning radius Figure 4. Consider the classical case in which only
kinematics are taken into account. Letx = [x1 x2 x3], which spans a three-dimensional
state space (X = R2 × S1). Let x1 andx2 represent the translational position of the car
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L u

x1 2x
3x ,

Fig. 4.A car-like robot.

in the plane, and letx3 ∈ [0,2π) represent the orientation. Letu represent the steering
angle. The velocity constraints can be specified in the formẋ = f (x,u):

ẋ = s

 cos(x3)

sin(x3)

tan(u)/L

 ,(25)

in which L is the distance between the front and rear axles, ands is the vehicle speed.
A discrete-time representation is straightforward to obtain [75]. In this formulation, the
car is only allowed to drive forward.

Suppose that some dynamic constraints must additionally be satisfied. A very naive
model is given here as an example; vehicle dynamics models are usually much more
complicated. Letx4 denote a fourth state variable, which represents the speed of the car.
Let fmax be the maximum centrifugal force that the car can withstand before laterally
slipping or toppling. Letϕmax be the maximum steering angle (based on mechanical
limits), and letsmax be the maximum speed the car can go with steering angleϕmax. Let
m be the mass of the car andL, be the distance between the front and rear angles of the
car. Thus,

fmax= ms2
maxtanϕmax

L
.(26)

If the car is going at a speedx4, then the limit on the steering angle,u1, is

ms2L tanu1 ≤ fmax.(27)

Using (26),

u1 ≤ arctan(s2
maxtanϕmax/s

2).(28)

A second input,u2, represents the acceleration of the car (which is assumed to be
bounded). This results in

ẋ =


x4 cos(x3)

x4 sin(x3)

x4 tan(u1)/L
u2

 ,(29)
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in which u1 must obey (28), resulting in a state-dependent action space,U1(x4). In
this new state space, there are standard geometric obstacle constraints on the variables
x1, x2, x3, and an additional constraint on the speed,x4, can exist. This dynamical model
is quite simple, and a variety of other, more sophisticated models [45] could be formulated
in state-space terms.

In general, robot dynamics can be expressed in terms ofq, q̇, andq̈. If the state vector,
x, is defined asx = [q q̇], the dynamics can be written in the forṁx = f (x(t),u(t)).
This is a common representation from control theory, which converts higher-order
differential equations into higher-dimensional first-order differential equations. In the
case of robot dynamics on ann-dimensional configuration space, the state space is 2n-
dimensional.

4. Computing Optimal Strategies. This section presents general algorithm issues
that result from computing approximate optimal motion strategies using the game-
theoretic models. The intention is not to present an algorithm that advances the state-of-
the-art for a particular problem, but instead to indicate some of the general computational
issues that arise for a broad class of problems. For many particular problems that fall
within the game-theoretic framework, it might be possible to exploit special properties to
develop an algorithm that is far superior to the general methods stated here. For example,
in [80], a combinatorial representation of the information space led to a complete algo-
rithm for computing a motion strategy for a pursuer in a two-dimensional environment,
which is guaranteed to lead to line-of-sight visibility of an evading target.

The quality of the approximate solutions computing by the method described in this
section depends on the resolution of the representation chosen for the state space and
action space. In basic path planning, a single algorithm can be often applied with only
minor modification to a variety of specific problems. For example, the randomized path
planner in [8] has been applied to many examples including manipulator systems and
rigid robots. Part of the ease of this applicability is due to the common configuration
space representation. To make the game-theoretic ideas convincing, algorithms devel-
oped within the broader mathematical foundation should have similar portability. Indeed
this is the case with the algorithm that is presented and discussed in this section. The
particular case of computing optimal feedback strategies for a robot that has perfect
sensing and probabilistic uncertainty in predictability is discussed; however, variants of
this approach have been applied to other forms of uncertainty and to coordinating mul-
tiple robots. Related details and dozens of computed examples for a variety of motion
strategy problems are presented in [75].

The efforts are restricted to obtaining approximate solutions for three primary rea-
sons: (1) known lower-bound hardness results for basic path planning and a variety of
extensions; (2) exact methods often depend strongly on specialized analysis for a specific
problem class; and (3) the set of related optimal-control and dynamic-game problems
for which analytical solutions are available is quite restrictive. The computational hard-
ness results have curbed many efforts to find efficient, complete algorithms to general
motion strategy problems. In [96] the basic path planning problem was shown to be
PSPACE-hard for polyhedral robots withn links. In [22] is was shown that computing
minimum-distance paths in a three-dimensional workspace is NP-hard. It was also shown
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that the compliant motion control problem with sensing uncertainty is nondeterminis-
tic exponential time hard. In [97] it was shown that planning the motion of a disk in a
three-dimensional environment with rotating obstacles is PSPACE-hard. In [98], a three-
dimensional pursuit-evasion problem is shown to be exponential time hard, even though
there is perfect sensing information. Such results have turned efforts toward approximate
techniques. For example, a polynomial-time algorithm is given in [94] for computing
epsilon approximations of minimum-distance paths in a three-dimensional environment.
Also, randomized techniques are used to compute solutions for high degree-of-freedom
problems that are unapproachable by complete methods [1], [9], [60], [107].

The second motivation for considering approximate solutions is to avoid specialized
analysis of particular cases, with the intent of allowing the algorithms to be adaptable
to other problem classes. Of course, in many cases there is great value in obtaining an
exact solutions to a specialized class of problems. The approach described in this paper
can be considered as a general way to approximate solutions that might be sufficient for
a particular application, or the approach might at least provide some understanding of
the solutions.

The final motivation for considering approximate solutions is that the class of re-
lated optimal-control and dynamic-game problems that can be solved directly is fairly
restrictive. In both control theory and dynamic-game theory, the classic set of problems
that can be solved are those with a linear state transition equation and quadratic loss
functional [2], [5], [18], [65]. Because few problems can be solved analytically, there
has been a large focus on numerical dynamic optimization procedures [12], [13], [66],
[67], particularly in robotics applications [6], [54], [90], [106].

The algorithm description is organized into three parts. First, the general principle
of optimality is described, which greatly reduces the amount of effort that is required
to compute optimal strategies. The next part describes how cost-to-go functions are
computed as an intermediate representation of the optimal strategy. The third part de-
scribes how the cost-to-go is used as a navigation function to execute the represented
strategy (i.e., selecting optimal actions during on-line execution). Following this, basic
complexity assessments are given.

Exploiting the Principle of Optimality. Because the decision making expressed in
Item 6 of Section 2 is iterative, the dynamic programming principle can generally be em-
ployed to avoid brute-force enumeration of alternative strategies, and it forms the basis
of the general algorithm. Although there are obvious connections to dynamic program-
ming in graph search, it is important to note the distinctions between Dijkstra’s algorithm
and the usage of the dynamic programming principle in this paper. In optimal control
theory, the dynamic programming principle is represented as a differential equation (or
difference equation in discrete time) that can be used to directly solve a problem such
as the linear-quadratic Gaussian regulator [65], or can be used for computing numerical
approximations of optimal strategies [66]. In the general case the differential equation is
expressed in terms of time-dependentcost-to-gofunctions. The cost-to-go is a function
on the state space (or information space if there is imperfect sensing) that expresses the
cost that is received under the implementation of an optimal strategy from that particular
state and time. In some cases the time index can be eliminated, as in the special case of
values stored at vertices (states) in the execution of Dijkstra’s algorithm.
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For the discrete-time model in Section 2, the dynamic programming principle is
expressed as a difference equation. First, consider the special case ofxk+1 = f (xk,uk)

(i.e., a single robot and there are no uncertainties), and the task is to compute an optimal
state-feedback strategy (i.e., perfect sensing). The cost-to-go function at stagek is defined
as

L∗k(xk) = min
uk,...,uK

{
K∑

i=k

l i (xi ,ui )+ l K+1(xK+1)

}
.(30)

Sincexk is given, the choice ofuk locally specifies the strategyγk (i.e., uk = γk(xk)).
The cost-to-go can be separated:

L∗k(xk) = min
uk

min
uk+1,...,uK

{
lk(xk,uk)+

K∑
i=k+1

lk(xk,ui (xi ))+ l K+1(xK+1)

}
.(31)

The second min does not affect thelk term; thus, it can be removed to obtain

L∗k(xk) = min
uk

[
lk(xk,uk)+ min

uk+1,...,uK

{
K∑

i=k+1

lk(xk,ui (xi ))+ l K+1(xK+1)

}]
.(32)

The second portion of the min represents the cost-to-go function for stagek+1, yielding
[11]

L∗k(xk) = min
uk

{
lk(xk,uk(xk))+ L∗k+1(xk+1)

}
.(33)

This final form represents a powerful constraint on the set of optimal strategies. The
optimal strategy at stagek and statex depends only cost-to-go values at stagek + 1.
Furthermore, only the particular cost-to-go values that are reachable from the state
transition equation,xk+1 = f (xk,uk), need to be considered. The dependencies are
local; yet, the globally optimal strategy is characterized.

Expressions similar to (33) can be obtained for many extensions, variants, and op-
timality concepts. For example, suppose that there is probabilistic uncertainty in pre-
dictability, resulting in the state transition equationxk+1 = f (xk,uk, θk). The actions for
nature are sampled from the probability densityp(θk). Using this model, a probability
density function can be derived for next states of the formp(xk+1|xk,uk). The task is
to design a strategy that is optimal in the expected sense. In this case the cost-to-go is
defined as [12]

L̄∗k(xk) = E

{
K∑

i=k

l i (xi ,ui )+ l K+1(xK+1)

}
,(34)

in which E{} denotes expectation taken over the actions of nature. The dynamic pro-
gramming principle yields

L̄∗k(xk) = min
γk∈0k

{
lk(xk,uk)+

∫
L̄∗k+1(xk+1)p(xk+1|xk,uk)dxk+1

}
,(35)

which is analogous to (33). Other variations include finding multiple Nash equilibria,
worst-case strategies, and determining cost-to-go functions directly on the information
space when there is uncertainty in sensing [75].
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Iteratively Approximating Cost-to-Go Functions. An optimal strategy can be computed
by successively building approximate representations of the cost-to-go functions. One
straightforward way to represent a cost-to-go function is to specify its values at each
location in a discretized representation of the state space. Note that this requires visiting
the entire state space to determine a strategy. Although this is normally unacceptable for
a basic path planning problem, for the extensions considered in this paper the solution
is a feedback mapping instead of a fixed path (i.e., the domain of the function in the
solution isn-dimensional instead of one-dimensional). Since a strategy must produce an
appropriate action from any state, it is quite reasonable to visit the entire state space (the
dynamic programming principle avoids brute-force exploration of thestrategy space).
Additionally note that the cost-to-go function is encoding a globally optimal solution
which must take into account all of the appropriate geometric and topological information
at a given resolution. Artificial potential functions have often been constructed very
efficiently in path planning approaches; however, these approaches heuristically estimate
the cost-to-go and are typically prone to have local minima [9], [63].

Suppose there are no uncertainties, and an optimal state-feedback strategy is sought
using (33). Assume that the problem isstationary, which implies that no model compo-
nents are time varying. The first step is to construct a representation ofL∗K+1. The final
term,l K+1(xK+1), of the loss functional is directly used to assign values ofL∗K+1(xK+1)

at discretized locations. Typically,l K+1(xK+1) = 0 if xK+1 lies in the goal region, and
l K+1(xK+1) = ∞ otherwise. This only permits trajectories that terminate in the goal
region.

The dynamic programming equation (33) is used to compute the next cost-to-go func-
tion, L∗K , and subsequent cost-to-go functions. For each quantized state,xk, a quantized
set of actionsuk ∈ U are evaluated. For a given actionuk, the next state obtained by
xk+1 = f (xk,uk) generally might not lie on a quantized state. Linear interpolation be-
tween neighboring quantized states can be used, however, to obtain the appropriate loss
value without restricting the motions to the grid (see Figure 5(a)). Other schemes, such
as quadratic interpolation, can be used to improve numerical accuracy at the expense
of computation time [67]. Convergence properties of the quantization and interpolation
are discussed in [11] and [12]. For a motion planning problem, the obstacle constraints
must additionally be taken into account. The constraints can be directly evaluated each
time to determine whether eachxk+1 lies in the free space, or a bitmap representation
of the configuration space can be used for quick evaluations (an efficient algorithm for
building a bitmap representation ofCfree is given in [62]).

Note thatL∗K represents the cost of the optimal one-stage strategy from each state
xK . More generally,L∗K−i represents the cost of the optimal(i + 1)-stage strategy
from each statexK−i . For a motion strategy problem, one is typically concerned only
with strategies that require a finite number of stages before terminating in the goal re-
gion. For a positiveδ ≈ 0 the dynamic programming iterations are terminated when
|L∗k(xk) − L∗k+1(xk+1)| < δ for all values in the state space. This assumes that the
robot is capable of selecting actions that halt it in the goal region. The resulting stabi-
lized cost-to-go function can be considered as a representation of the optimal strategy.
Note that no choice ofK is necessary. Also, only the representation ofL∗k+1 is re-
tained while constructingL∗k; earlier representations can be discarded to save storage
space.
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Fig. 5. The computations are illustrated with a one-dimensional state space. (a) The cost-to-go is obtained
from at the next stage by interpolation of the values at the neighboring quantized states. (b) During execution,
interpolation can also be used to obtain a smooth trajectory.

The general applicability of these kinds of computations was noted long ago in [66]:
(1) extremely general types of system equations, performance criteria, and constraints
can be handled; (2) particular questions of existence and uniqueness are avoided; (3) a
true feedback solution is directly generated.

These same advantages apply to motion strategy problems that are formulated in
this paper. For example, suppose that there is probabilistic uncertainty in predictability,
which results in the dynamic programming equation (35). The computation ofL∗k(xk)

was previously computed by trying choices ofuk; however, in the probabilistic case, for
each actionuk, the actions of nature,θa

k , are attempted. The cost-to-go is computed by
selecting the action that produces the minimum expectation over the actions of nature.
Using nondeterministic uncertainty and worst-case analysis, the action is selected that
produces the least loss, over all of the actions of nature. In the case of uncertainty in
sensing, cost-to-go functions are instead defined and computed on the information space
(or an approximation of the information space). Some problems involve nonstationary
information, such as tracking a predictable target in a cluttered environment; in this case
optimal solutions can be computed by retaining all cost-to-go functions from stages 1 to
K + 1 [81]. In some problems, multiple “optimal” solutions are possible. This occurs,
for instance, in the coordination of multiple robots that have independent goals [77]. One
might want to compute the set of Nash equilibria, as discussed in Section 3. Instead of
storing a scalar loss, the cost-to-go at a state can be expanded to include a set of alternative
strategies and corresponding vectors of losses. Several variations are discussed in further
detail in [75]. In all of these cases, feedback strategies are determined that can respond
quickly to on-line changes, without necessarily making the traditional assumption that
the motion strategy and on-line control are decoupled.

Using the Cost-to-Go as a Navigation Function. To execute the optimal strategy, an
appropriate action must be chosen using the cost-to-go representation from any given
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state (see Figure 5(b)). One approach would be simply to store the action that produced
the optimal cost-to-go value, for each quantized state. The appropriate action could then
be selected by recalling the stored action at the nearest quantized state. This method
could cause errors, particularly since it does not utilize any benefits of interpolation. A
preferred alternative is to select actions by locally evaluating (33) (or the appropriate
dynamic programming equation) at the exact current state. Linear interpolation can
be used as before. Note that although the approach to select the action is local (and
efficient), the global information is still taken into account (it is encoded in the cost-to-
go function). This concept is similar to the use of a numerical navigation function in
previous motion planning literature [9], [99], and the cost-to-go is a form ofprogress
measure, as considered in [39]. When considering the cost-to-go as a navigation function,
it is important to note that it does not contain local minima because it is constructed as a
by product of determining the optimal solution. Once the optimal action is determined,
an exact next state is obtained. This form of iteration continues until the goal is reached
or a termination condition is met. During the time between stages, the state trajectory can
be linearly interpolated between the endpoints given by the discrete-time state transition
equation, or can be integrated using an original continuous-time state transition equation.

Computational Expense. Consider the computation time for the dynamic programming
algorithm for the basic case modeled by(33). Letcdenote the number of quantized values
per axis of the state space. Letn denote the dimension of the state space. Leta denote
the number of quantized actions. Each stage of the cost-to-go computations takes time
O(cna), and the number of stages before stabilization is nearly equal to the longest
optimal trajectory (in terms of the number of stages) that reaches the goal. The space
complexity is obviouslyO(cn). The algorithm is efficient for fixed dimension, yet suffers
from the exponential dependence on dimension that appears in most deterministic path
planning algorithms. The utilization of the cost-to-go function during execution requires
O(a) time in each stage. These time complexities assume constant evaluation time
of the cost-to-go at the next stage; however, if multilinear interpolation is used, then
additional exponential-time computation is added because 2n neighbors are evaluated.
Consider the case of uncertainty in predictability. Letθ denote the number of actions
available to nature. In this case the time complexity of each cost-to-go computation
stage isO(cna θ), and the time to execute the strategy isO(aθ) per stage. The space
complexity remains unchanged. Related dynamic programming algorithms that apply
to variants such as nonstationarity, multiple robots, and sensing uncertainty are also
straightforward to analyze.

Execution times for practical examples vary dramatically depending on the reso-
lutions, but computation times typically range from a few seconds for a basic two-
dimensional problem up to several hours for a challenging three-dimensional or four-
dimensional problem with uncertainties, on a typical workstation [75]. It is important to
note, however, that this algorithm is not competing with known algorithms that apply to
the basic path planning problem, since the algorithm described in this paper computes a
state-feedback strategy.

Computed Examples. To indicate the level of difficulty that can be handled by the dy-
namic programming approach described in this section, examples of two motion planning
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Fig. 6.Optimal solutions are indicated for two problems that involve uncertainty in environment predictability.

problems that can be solved appear in Figure 6. These particular problems involve an
environment that changes over time and is not completely predictable (more details ap-
pear in [82]). Figure 6(a) shows a problem for which there is a single rigid robot that
can rotate in place or translate along its major axis. There are two doors that can become
open or closed at various points in the future, and the behavior of the doors is modeled
with a Markov process. The state space for this problem is the Cartesian product of
the configuration space of the robot and a set of four possible combinations of open
and closed doors. Figures 6(b) and (c) show two simulated executions under the imple-
mentation of a computed strategy that minimizes the expected time to reach the goal.
Different trajectories are taken in different executions because the openings and closings
of doors vary; however, both behaviors are obtained from the same strategy. Figure 6(d)
shows a problem in which there is a nonholonomic car robot that is capable of only
moving in a forward direction and has a limited turning radius. There are two regions in
the workspace that are designated as service areas. In this case, the robot interacts with
the environment by processing service requests that can occur at various points in the
future (again modeled with a Markov process). Figures 6(e) and (f) show two simulated
executions under the implementation of the strategy that minimizes the expected time
to reach the goal region while there are no outstanding requests. Other examples, which
illustrate the breadth of the approach, appear in [75].

Algorithm Improvements. By making some restrictions of the problems considered,
several improvements can be made to the dynamic programming algorithm. As it is
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formulated in Section 4, the entire state space is explored at each stage; however, in
practice, only a small portion of the cost-to-go function actually changes in each iteration.
Dijkstra’s algorithm is able to find optimal paths by making a quick pass over the graph
because the cost-to-go is guaranteed to be stabilized once a vertex is visited. A similar idea
can be applied for continuous-state dynamic programming by identifying the “frontier”
in the state space at which the loss values become stabilized [73]. For problems that
involve uncertainty, this region of interest could be quite narrow or potentially large
enough to span the entire space, depending on the problem. One might also be able
to use admissible heuristics to preclude part of the space from consideration as in the
A∗-search extension of Dijkstra’s graph algorithm.

Even with such improvements, however, the time complexity would still be exponen-
tial in the dimension of the state space (or information space). In the case of basic path
planning, randomized search algorithms have been developed that perform well in prac-
tice for many high degree-of-freedom problems by relying on the notion of probabilistic
completeness [1], [9], [60], [107]. These planners are formulated for problems in which
path optimality is not a central concern and in which there is perfect configuration pre-
dictability (i.e., the solutions are open-loop paths in the configuration space). One could
also consider developing randomized search techniques using the formulation presented
in Section 2 to obtain solution trajectories in the state space for nonholonomic, kinody-
namic, or other problems in which there is perfect predictability and optimality is a not
central concern (or if solutions within some factor of optimal are acceptable). Following
the general framework in this paper, a randomized data structure known as a Rapidly-
exploring Random Tree (RRT) [74] has been developed recently for nonholonomic and
kinodynamic path planning in high-dimensional state spaces [79].

Although the framework has been applied so far to several classes of problems, one
important direction for future research will be to characterize and analyze additional
problems. In many cases, useful concepts from the existing literature can be combined
with the mathematical structure, such as in the case of using preimage planning research
to develop the performance preimage. Such constructions are useful for developing
algorithms, and are compatible with the dynamic game-theoretic concepts.

5. Conclusion. A dynamic game-theoretic framework has been proposed in this paper
to serve as a mathematical foundation for a broad class of motion planning problems.
Results obtained by following this perspective were presented with the intent of indicating
the general utility of this foundation. By no means is it intended to provide a general
solution to this broad class of problems, but instead it provides a useful characterization
upon which motion strategy algorithms can be developed. In this way, it can serve the
same purpose that configuration space concepts served for basic path planning problems.

This foundation can provide several key advantages for future research: (1) A com-
mon, unified structure facilitates the comparison of techniques. Just as configuration
space concepts provided a precise, ideal formulation of basic path planning, the dynamic
game-theoretic concepts provide a formulation of the ideal (or optimal) strategies that
can be achieved. For many difficult problems, tradeoffs are inevitably made to improve
computational performance. As approximate or incomplete methods are proposed, it is
useful for the purposes of analysis to have precise, ideal formulations. (2) Clear directions
are provided along which the concepts and methods can be generalized. For example,
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Fig. 7.A taxonomy of motion strategy problems.

the preimage and forward projection concepts have been shown to apply in very gen-
eral settings by generalizing their definitions within the framework. This has provided
a clear relationship between nondeterministic and probabilistic uncertainty models, and
numerical navigation functions and preimages. (3) A variety of different models can be
incrementally tested. One of the greatest difficulties in determining motion strategies
under uncertainties is determining appropriate models of uncertainty, while previous al-
gorithms have often applied to very specific uncertainty models. The framework allows
the substitutions of a variety of different models while many of the principles remain
unchanged. This is particularly true of the algorithm discussed in Section 4, which makes
few restrictions on the models.

Figure 7 shows a taxonomy of motion strategy problems that is based on the game-
theoretic framework. Each bar indicates a particular class of problems. The black area
depicts the author’s subjective interpretation of the amount of progress to date relative
to the size or importance of the problem. The bar at the lower left represents the path
planning problem, which is the most basic in the taxonomy. Each column corresponds to
a different space, increasing in difficulty from left to right: the configuration space, the
state space, and the information space. Each row represents a different solution concept,
and computing a navigation function (or feedback motion strategy) is considered more
difficult than computing a path. Most existing research on the motion strategy problem
falls into the category of path planning in configuration space; however, it is hoped that
eventually general algorithms are developed that further advance the state-of-the-art for
some of the other challenging categories.
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[49] O. Hájek.Pursuit Games. Academic Press, New York, 1975.
[50] J. C. Harsanyi. Games with incomplete information played by Bayesian players.Management Sci.,

14(3):159–182, November 1967.
[51] K. W. Hipel, K. J. Radford, and L. Fang. Multiple participant-multiple criteria decision making.IEEE

Trans. Systems Man Cybernet., 23(4):1184–1189, 1993.
[52] Y.-C. Ho and K.-C. Chu. Team decision theory and information structures in optimal control

problems—part I.IEEE Trans. Automat. Control, 17:15–22, 1972.
[53] H. Hu and M. Brady. A Bayesian approach to real-time obstacle avoidance for a mobile robot.Autom.

Robots, 1(1):69–92, 1994.
[54] H. Hu, M. Brady, and P. Probert. Coping with uncertainty in control and planning for a mobile robot.

In Proc. IEEE/RSJ Internat. Workshop Intell. Robots Systems, pages 1025–1030, Osaka, November
1991.

[55] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation in three dimensions. InProc. IEEE
Internat. Conf. Robotics Automat., 1999.

[56] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces.IEEE Trans. Robotics Automat., 12(4):566–580, June 1996.

[57] R. Isaacs.Differential Games. Wiley, New York, 1965.
[58] A. Isidori. Nonlinear Control Systems. Springer-Verlag, Berlin, 1989.
[59] K. Kant and S. W. Zucker. Toward efficient trajectory planning: the path-velocity decomposition.

Internat. J. Robotics Res., 5(3):72–89, 1986.
[60] L. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration space for path planning.

In Proc. IEEE Internat. Conf. Robotics Automat., pages 2138–2139, 1994.



464 S. M. LaValle

[61] L. E. Kavraki. Random Networks in Configuration Space for Fast Path Planning. Ph.D. thesis, Stanford
University, Stanford, CA, 1994.

[62] L. E. Kavraki. Computation of configuration-space obstacles using the Fast Fourier Transform.IEEE
Trans. Robotics Automat., 11(3):408–413, 1995.

[63] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.Internat. J. Robotics
Res., 5(1):90–98, 1986.

[64] K. H. Kim and F. W. Roush.Team Theory. Ellis Horwood, Chichester, 1987.
[65] P. R. Kumar and P. Varaiya.Stochastic Systems. Prentice-Hall, Englewood Cliffs, NJ, 1986.
[66] R. E. Larson. A survey of dynamic programming computational procedures.IEEE Trans. Automat.

Control, 12(6):767–774, December 1967.
[67] R. E. Larson and J. L.Casti.Principles of Dynamic Programming, Part II. Marcel Dekker, New York,

1982.
[68] R. E. Larson and W. G. Keckler. Optimum adaptive control in an unknown environment.IEEE Trans.

Automat. Control, 13(4):438–439, August 1968.
[69] J.-C. Latombe.Robot Motion Planning. Kluwer, Boston, MA, 1991.
[70] J.-C. Latombe, A. Lazanas, and S. Shekhar. Robot motion planning with uncertainty in control and

sensing.Artificial Intelligtence, 52:1–47, 1991.
[71] J.-P. Laumond. Singularities and topological aspects in nonholonomic motion planning. In Z. Li and

J. F. Canny, editors,Nonholonomic Motion Planning, pages 149–200. Kluwer, Boston, MA, 1993.
[72] J. P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholonomic motion planning for mobile

robots. In J.-P. Laumond, editor,Robot Motion Planning and Control, pages 1–53. Springer-Verlag,
Berlin, 1998.

[73] S. M. LaValle. Numerical computation of optimal navigation functions on a simplicial complex. In
P. Agarwal, L. Kavraki, and M. Mason, editors,Robotics: The Algorithmic Perspective. A K Peters,
Wellesley, MA, 1998.

[74] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Computer Science Dept.,
Iowa State University.<http://janowiec.cs.iastate.edu/papers/rrt.ps>, Oct. 1998.

[75] S. M. LaValle. A Game-Theoretic Framework for Robot Motion Planning. Ph.D. thesis, University of
Illinois, Urbana, IL, July, 1995.

[76] S. M. LaValle and S. A. Hutchinson. An objective-based stochastic framework for manipulation
planning. InProc. IEEE/RSJ/GI Internat. Conf. Intell. Robots Systems, pages 1772–1779, September
1994.

[77] S. M. LaValle and S. A. Hutchinson. Optimal motion planning for multiple robots having independent
goals. InProc. IEEE Internat. Conf. Robotics Automat., pages 2847–2852, April 1996.

[78] S. M. LaValle and S. A. Hutchinson. An objective-based framework for motion planning under sensing
and control uncertainties.Internat. J. Robotics Res., 17(1):19–42, January 1998.

[79] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. InProc. IEEE Internat. Conf.
Robotics Automat., 1999.

[80] S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe, and R. Motwani. Finding an unpredictable target
in a workspace with obstacles. InProc. IEEE Internat. Conf. Robotics Automat., pages 737–742,
1997.

[81] S. M. LaValle, H. H. Gonz´alez-Ba nos, C. Becker, and J.-C. Latombe. Motion strategies for maintain-
ing visibility of a moving target. InProc. IEEE Internat. Conf. Robotics Automat., pages 731–736,
1997.

[82] S. M. LaValle and R. Sharma. On motion planning in changing, partially-predictable environments.
Internat. J. Robotics Res., 16(6):775–805, December 1997.

[83] Z. Li and J. F. Canny.Nonholonomic Motion Planning. Kluwer, Boston, MA, 1993.
[84] C.-F. Lin and W.-H. Tsai. Motion planning for multiple robots with multi-mode operations via dis-

junctive graphs.Robotica, 9:393–408 1990.
[85] T. Lozano-P´erez. Spatial planning: a configuration space approach.IEEE Trans. Comput., 32(2):108–

120, 1983.
[86] T. Lozano-P´erez, M. T. Mason, and R. H. Taylor. Automatic systhesis of fine-motion strategies for

robots.Internat. J. Robotics Res., 3(1):3–24, 1984.
[87] V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a point mobile automaton moving

amidst unknown obstacles of arbitrary shape.Algorithmica, 2:403–430, 1987.



Robot Motion Planning: A Game-Theoretic Foundation 465

[88] K. M. Lynch and M. T. Mason. Pulling by pushing, slip with infinite friction, and perfectly rough
surfaces.Internat. J. Robotics Res., 14(2):174–183, 1995.

[89] M. T. Mason. Automatic planning of fine motions: Correctness and completeness. InProc. IEEE
Internat. Conf. Robotics Automat., pages 492–503, 1984.

[90] J. Miura and Y. Shirai. Planning of vision and motion for a mobile robot using a probabilistic model of
uncertainty. InProc. IEEE/RSJ Internat. Workshop on Intell. Robots Systems, pages 403–408, Osaka,
May 1991.

[91] P. A. O’Donnell and T. Lozano-P´erez. Deadlock-free and collision-free coordination of two robot
manipulators. InIEEE Internat. Conf. Robotics Automat., pages 484–489, 1989.

[92] C. O’Dunlaing and C. K. Yap. A retraction method for planning the motion of a disc.J. Algorithms,
6:104–111, 1982.

[93] G. Owen.Game Theory. Academic Press, New York, 1982.
[94] C. H. Papadimitriou. An algorithm for shortest-path planning in three dimensions.Inform. Process.

Lett., 20(5):259–263, 1985.
[95] C. H. Papadimitriou. Games against nature.J. Comput. System Sci., 31:288–301, 1985.
[96] J. H. Reif. Complexity of the mover’s problem and generalizations. InProc. IEEE Symp. Found.

Comput. Sci., pages 421–427, 1979.
[97] J. H. Reif and M. Sharir. Motion planning in the presence of moving obstacles. InProc. IEEE Symp.

Found. Comput. Sci., pages 144–154, 1985.
[98] J. H. Reif and S. R. Tate. Continuous alternation: the complexity of pursuit in continuous domains.

Algorithmica, 10:157–181, 1993.
[99] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential fields.IEEE Trans.

Robotics Automat., 8(5):501–518, 1992.
[100] Y. Sawaragi, H. Nakayama, and T. Tanino.Theory of Multiobjective Optimization. Academic Press,

New York, 1985.
[101] J. T. Schwartz and M. Sharir. On the piano movers’ problem: II. General techniqies for computing

topological properties of algebraic manifolds.Comm. Pure Appl. Math., 36:345–398, 1983.
[102] J. T. Schwartz and M. Sharir. On the piano movers’ problem: III. Coordinating the motion of several

independent bodies.Internat. J. Robotics Res., 2(3):97–140 1983.
[103] R. Sharma, S. M. LaValle, and S. A. Hutchinson. Optimizing robot motion strategies for assembly with

stochastic models of the assembly process.IEEE Trans.Robotics Automat., 12(2):160–174, April 1996.
[104] K. G. Shin and Q. Zheng. Minimum-time collision-free trajectory planning for dual-robot systems.

IEEE Trans. Robotics Automat., 8(5):641–644, 1992.
[105] A. Stentz. Optimal and efficient path planning for partially-known environments. InProc. IEEE Inter-

nat. Conf. Robotics Automat., pages 3310–3317, 1994.
[106] S.-H. Suh and K. G. Shin. A variational dynamic programming approach to robot-path planning with

a distance-safety criterion.IEEE Trans. Robotics Automat., 4(3):334–349, June 1988.
[107] P. Svestka and M. H. Overmars. Coordinated motion planning for multiple car-like robots using

probabilistic roadmaps. InProc. IEEE Internat. Conf. Robotics Automat., pages 1631–1636, 1995.
[108] R. H. Taylor, M. T. Mason, and K. Y. Goldberg. Sensor-based manipulation planning as a game with

nature. InProc. Fourth Internat. Symp. Robotics Res., pages 421–429, 1987.
[109] F.-Y. Wang and P. J. A. Lever. A cell mapping method for general optimum trajectory planning of

multiple robotic arms.Robots Auton. Systems, 12:15–27, 1994.
[110] Y. Yavin and M. Pachter.Pursuit-Evasion Differential Games. Pergamon Press, Oxford, 1987.
[111] J. Yong. On differential evasion games.SIAM J. Control Optim., 26(1):1–22, January 1988.
[112] J. Yong. On differential pursuit games.SIAM J. Control Optim., 26(2):478–495, March 1988.
[113] Q. Zhu. Hidden Markov model for dynamic obstacle avoidance of mobile robot navigation.IEEE

Trans. Robotics Automat., 7(3):390–397, June 1991.
[114] S. Zionts. Multiple criteria mathematical programming: an overview and several approaches. In P.

Serafini, editor,Mathematics of Multi-Objective Optimization, pages 227–273. Springer-Verlag,
Berlin, 1985.


