Algorithmica (2000) 26: 100-125 . .
DOI: 10.10075004539910006 Al go rithmica

© 2000 Springer-Verlag New York Inc.

Efficient Orthogonal Drawings of High Degree Graphs
A. Papakostasand I. G. Tolli$

Abstract. Most of the work that appears in the two-dimensional orthogonal graph drawing literature deals
with graphs whose maximum degree is four. In this paper we present an algorithm for orthogonal drawings
of simple graphs with degree higher than four. Vertices are represented by rectangular boxes of perimeter less
than twice the degree of the vertex. Our algorithm is based on creating gpaussof vertices of the graph.

The orthogonal drawings produced by our algorithm have area at(mostl) x (m/2 + 2). Two important
properties of our algorithm are that the drawings exhibit a small total number of bends (less) tlaad that

there is at most one bend per edge.

Key Words. Graph drawing, Orthogonal graph drawing, Algorithms, Information visualization, Graphical
user interfaces.

1. Introduction. Most of the work that appears in the two-dimensional orthogonal
graph drawing literature deals with graphs whose maximum degree is four [3], [8], [12],
[14]-[16], [18], [19], [22]. The drawings produced by these algorithms require at least
two bends per edge. This is a big restriction since in most applications graphs generally
have degree higher than four. Orthogonal drawings of graphs of high degree are useful
for visualizing database schemas or the internal structure of large software systems. In
these applications, vertices are boxes catélescontaining fields, which are placed
vertically one below the other. These fields can be attributes of some entity (in the case of
a database) or a specification list (in the case of a software module). For a survey of graph
drawing algorithms and other related results, see [5]. In this paper we consider graphs
with n vertices andn edges. Also, the area of a drawing is expressesdidih x height

FoRmeier and Kaufmann [11] presented an extension of Tamassia’s algorithm [20] for
minimizing the total number of bends of planar embedded graphs of maximum degree
four to planar graphs of arbitrary degree. The vertices are represented by squares of
size depending on the degree of the vertex. No discussion is made on the area or the
number of bends per edge of the resulting orthogonal drawings. Their algorithm runs in
O(n?logn) time.

GIOTTO [6] is another algorithm for orthogonal drawings of graphs of degree higher
thanfour. Itis also based on Tamassia’s algorithm [20] for minimizing the total number of
bends. Dummy vertices are used to represent crossings, and all vertices of the drawing
are represented by boxes. The disadvantage of GIOTTO is that the boxes may grow
arbitrarily in size, regardless of the degree of the vertex they represent. Experimental

1 This research was supported in part by NIST, Advanced Technology Program Grant Number 7ONANB5H11.
2 Network Management Division, NEC America, 1525 W. Walnut Hill Lane, Irving, TX 75038, USA.
papakos@asl.dl.nec.com.

3 Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75083-0688, USA.
tollis@utdallas.edu.

Received January 15, 1997; revised February 1, 1998. Communicated by T. Nishizeki, R. Tamassia, and
D. Wagner.

Efficient Orthogonal Drawings of High Degree Graphs 101

results of GIOTTO’s performance with respect to various aesthetic measures on a large
database of about 11,500 graphs can be found in [6].

Even and Granot [9] presented two algorithms for placing rectangular modules and
connections between them in an orthogonal fashion in the plane. The size of the modules
and the positions of the terminals around the modules are part of the input. The edges
of the graph are attached to the terminals of the modules. Their first algorithm produces
planar orthogonal drawings starting from a visibility representation [17], [21] of the given
graph. Their second algorithm places the modules diagonally in the plane and routes the
edges around them. In both cases, the final orthogonal drawing has area@osy x
(H + m) whereW (H) is the total width (height) of all modules, andis the number of
edges of the graph. No edge has more than four bends and both algorithm©rgm)in

There is a short discussion in [3] about producing a drawing of a general (i.e., not
necessarily planar) biconnected graph with degree higher than four. The authors extend
their algorithm for maximum degree four graphs and they propose an approach in which
each vertex is represented by a vertical line segment consisting of multiple grid points.
The area of the resulting drawing is at m@st— n+ 1) x (m—n/2+ ny/2), wheren;
is the number of vertices of degree two. If we change the vertex representation to that
of a box of the same height as the line segment and width one, we obtain an orthogonal
drawing with area at mogtm + 1) x (m—n/2+ ny/2). The total number of bends is at
most 2n — 2n + 4 and each edge has at most two bends. Drawings resulting from this
approach turn out to be very tall, skinny, and they have many crossings.

In this paper we present a different approach for dealing with orthogonal drawings
of simple graphs with degree higher than four. Vertices are represented by rectangular
boxes of perimeter less than twice the degree of the vertex. Our algorithm is based on
creating groupgairs of vertices of the graph both before and during the construction
of the graph drawing. The orthogonal drawings produced by our algorithm have area
at most(m — 1) x (m/2 + 2). Two important properties of our algorithm are that the
drawings exhibit small total number of bends (less ttinand that there is at most one
bend per edge. For more details on applications of this technique and for results on 3D
orthogonal drawing of high degree graphs see [13].

Independently, Biedl [1] recently presented a technique that produces orthogonal
drawings of high degree graphs with at mosbends and(m + 1 + 3n)/2) x ((m+
1+ 3n)/2) area [2]. For rather dense graphs, the above area bounds are better than
than the ones in this paper. However, for sparse graphs that have some nodes of high
degree, our area bounds are better than the ones of [1]. Notice that in practice, graphs
that are involved in visualization applications are typically rather sparse. For example,
in the large experimental study reported in [6] the average degree in all 11,500 graphs
considered was about 2.7 (in other words, the total number of edges was @it 1
This is also the case with many other collections of graphs.

2. A Box Representation for Vertices and a Simple Algorithm. Clearly, a point
representation for vertices of a graph does not suffice if we want to remove any restriction
aboutthe degree of its vertices. In this paper, we usetangular boxo represent vertices

of the graph. Using boxes to represent vertices has the advantage that the area inside
the box can be used to record information (e.g., label, database tables, etc.) pertaining
to some vertex. From an aesthetic point of view, using boxes reduces significantly the
number of bends in the drawing, both total and per edge. We call the boundary edges

102 A. Papakostas and I. G. Tollis

3]
l COl'llCE connectors

edge

edge

sich e box

ede
CONNEctors ¢ cage

(a)

Fig. 1. (a) A box with its sides and connectors, (b) a sample orthogonal drawing produced by the Simple
Algorithm.

of a boxsides Figure 1(a) shows a box with its four sidésp, left, bottom andright.

Each side has a number odnnectorsvhere all the edges of the graph incident to the
vertex that this box represents are attached to. Each connector point can be incident to
only one edge (except for the four corner connectors).

When a box is used to represent a vertex in an orthogonal drawing, its sides lie on lines
of the underlying integer grid and its connectors have integer coordinates. Also, the area
of the box is sufficiently large so that all the incident edges can be attached to different
connectors of the box boundary. We present now a Simple Algorithm for producing
an orthogonal drawing. The Simple Algorithm inserts the vertices in the drawing, one
vertex at a time. For simplicity, we assume that the given graph is biconnected, and that
an st-numbering [10] has been computed on the graph. Note that the edges of the graph
are directed from lower to higher numbered vertices, as a result of the st-numbering. The
size (and also the area) of each box to be inserteduseydecided whem is the next
vertex to be inserted in the drawing. The box size depends on the number of incoming
and outgoing edges associated with vertex

All outgoing edges of vertexare attached to the top side connectors (see Figure 2(a)).
This implies that the width of the box is at least equal to the number of outgoing edges
of the vertex. If the box has only one outgoing edge, we still use two columns for the
box (i.e., a box with width one, see Figure 2(b)). We also use a box of width one for the
unique sink, that is the vertex with no outgoing edges.

) © (d)

Fig. 2. Various types of bow: (a) seven incoming and four outgoing edges, (b) only one outgoing edge,
(c) only one incoming edge. (d) A degree two vertex represented by a box.

Efficient Orthogonal Drawings of High Degree Graphs 103

The incoming edges af are split between the right and left side connectors. More
specifically, ifv hasindegv) incoming edges, thetindegv)/2| incoming edges are
attached to the right side and the remainjitgdegv) /2] incoming edges are attached
to the left side of box (see Figure 2(a)). If has one or two incoming edges, we still
use two rows for the box (i.e., a box with height one, see Figure 2(c)). We also use a
box of height one for the unique source, that is the vertex with no incoming edges. Each
incoming edge of originally has vertical direction since it is an outgoing edge of some
other box which has already been placed. Then it bends only once, and finally assumes
horizontal direction before it is attached to the appropriate (right or left) side connector
of v.

At most [indegv)/2] new rows andutdedv) (i.e., number of outgoing edges of
v) new columns need to open up when the Simple Algorithm inserts the next wertex
Vertices with less than two outgoing edges are the exception since two new columns
need to open up to accommodate their boxes. Also, vertices with at most two incoming
edges are exceptions, since two new rows need to open up for their boxes.

Before we describe how boxes are placed, we give some definitiomss the next
vertex to be inserted, we locates incoming edges and the columns which they are
assigned to. The vertices of the drawing whessincoming edges come from, avés
predecessord et us assume first thandegv) is even. Since all the columns of the
current drawing are always ordered from left to right, we find the two colunasdc,
holding the incoming edges ande,, respectively, ob with the following properties:

e C; is to the left ofcy,
e there arandegv)/2 — 1 columns holding incoming edges oto the left ofc,, and
o there aréndegv)/2 — 1 columns holding incoming edges oto the right ofc;.

Edgese; ande, are calledmedian incoming edges vertexv, and more specifically,
e is theleft median incomingdge andk;, is theright median incomingedge ofv. If
indeg(v) is odd, there is only one median incoming edgmm this case, it is the column
holding e, there ard indegv) /2| columns holding incoming edges ofto the left and
right of c. The function of the median incoming edge(s) is to establish where to split the
incoming edges between the right and left side.of

When the Simple Algorithm places vertexit first creates the box to represerand
then it opens up the appropriate number of new columns betwsenedian incoming
edges and new rows above the current drawing, and platiesre. Ifv has only one
median incoming edge; is placed to the right of this edge. Figure 1(b) shows a few
vertices placed by the Simple Algorithm, as part of a larger orthogonal drawing. If we
are given am-vertexm-edge biconnected graph, then the following theorem holds for
the Simple Algorithm:

THEOREM2.1. Let G be a biconnected graph with n vertices and m edgessider
each edge as being oriented from its lower to its higher numbered yéotea given
st-numbering of GThe Simple Algorithm produces an orthogonal drawing of G {im®
time Each vertex with degree de@) is represented by a box whose perimeter is less
than2 x degv). The width of the resulting orthogonal drawing is at mostm,, 1, and

the height is at most {12 + Nggq/2 + Nin1 + Nin2, Where Ryt is the number of vertices
with one outgoing edg®,qq is the number of vertices with an odd number of incoming

104 A. Papakostas and I. G. Tollis

edgesand nn1 (nin2) is the number of vertices with orfevo) incoming edgés). The
drawing has at most m bendshile no edge bends more than once

PrOOF If we use the data structure proposed by Dietz and Sleator [7], we can answer
column order queries for two columns (1) time. This means that the (left or right)
median incoming edge(s) can be compute®ifindeqv)) time, wherev is the vertex

that is being inserted. Hence, the total running time of the Simple Algorith@is).

For each vertex, the box representinghas width at mostutdegv) and height at most
indegv)/2]. Hence, the perimeter of each box is at most @egv).

The bounds on the area and the number of bends of the orthogonal drawing follow
from the above discussion. More specifically, the width involves the total number of
outgoing edgesn, and the fact that boxes with one outgoing edge require two columns.
The height involves half the total number of incoming edgas?, and the following
two facts: boxes with one or two incoming edges take up two rows; alvath an odd
number of incoming edges requireslegv)/2 + % rows. O

Notice that if the graph is of constant degree, then at myd) time is spent each
time a vertex (box) is inserted, for a total ©f(n) running time. The reason we do not
attach any incoming edges to the bottom side of the box (except the corner connectors)
is twofold: First, the incoming edges of a box are not necessarily on contiguous grid
columns. Second, if some incoming edge was usisgottom side, then we would have
to stretch the box which this edge was coming from (sporizontally, in order to
create space for the restw@f outgoing edges.

3. Algorithm BOX _ORTHOGONAL: Preprocessing Phase. In this section we de-
scribe a new algorithm which produces orthogonal drawings for any given graph, with
better bounds than the Simple Algorithm of the previous section. We call this new algo-
rithm BOX_ORTHOGONAL, and it has many similarities to the Simple Algorithm. It
uses boxes to represent vertices of the graph, except for vertices of degree one, two, some
vertices of degree three, and some special cases of degree four, which are represented
by points. We use the point representation for some small degree vertices mainly for
aesthetic reasons. If a degree two vertex with one incoming and one outgoing edge is
represented by a box (see Figure 2(d)), then there is clearly a waste of space.

Thepreprocessing phasaf the algorithm consists of two operations: First, we com-
pute a numbering of the vertices of the graph. This numbering specifies the order that
the vertices will follow to enter the drawing. The second operation is to perform a
grouping/pairing of some of its vertices. Avair consists of two vertices andgroup
consists of more than two vertices. All vertices belonging to the same fairpare
considered and placed together by Algorithm B@RTHOGONAL. As we will see
later, groupingpairing contributes to orthogonal drawings with better bounds in terms
of area.

We start by describing the vertex numbering. We computiitial numberingfor
the given graph; this numbering may be modified (if necessary) resulting tingéde
numbering The numbering provides the vertex order required by the algorithm. Let us
assume that we are given a conneatecertex graphG. If G is biconnected, then the

Efficient Orthogonal Drawings of High Degree Graphs 105

initial numbering is an st-numbering [10] of the vertices@flf G is not biconnected,
thenwe breaks into its biconnected components, and compute a numberiggorthat:

there is a unique source (the source is assigned number 1),

there are one or more sinks,

the numbering is an st-numbering within each biconnected component, and

there is exactly one sink per biconnected component, which has the highest number
among all vertices of the component.

The initial numbering of the vertices implies an orientation of the edg€&s b that
every edge that connects two vertices is directed from the lower numbered vertex to the
higher numbered vertex. It is also clear that the initial numbering can be computed in
O(m) time, wherem is the number of edges @. A vertexv with b incoming anda
outgoing edges is calleda a-vertex

The purpose of modifying the initial numbering to the final numbering is to eliminate
specific patterns of vertex types that result in drawings with large area under the Simple
Algorithm. More specifically, we consider eabhl-vertex whose outgoing edge enters
a vertexw which is neither a sink, nor a, &-vertex @ > 1), nor anotheb, 1-vertex
(b > 1). From thesd, 1-vertices, we form a seéB consisting ofb, 1-vertices,v, that
satisfy exactly one of the following:

e bisodd andb > 5,
e b=1orb=3,andw is a 2 a-vertex @& > 1) so thatw’s other predecessor is not a
b’, 1-vertex withb’ = 1 orb’ = 3.

We scan the vertices of directed gra@hlooking for b, 1-vertices that belong to set
B. We reverse the direction of the edge betweerlitHevertex andw. As a result, the

b, 1-vertex becomes a sink + 1), 0-vertex, and + 1 is an even number. Notice that
no edge reversal creates a newl-vertex. Also, no directed cycle is formed since one
of the vertices affected by the edge reversal is now a sink.

LetG’ be the directed graph resulting after all possible edge reve@&aiaplies many
numberings of the vertices that are consistent with the edge directions. We construct one
such numbering using a topological sorting algorithmQOitm) time. This is the order
that will be followed when placing the vertices in the drawing. Clearly, the whole process
for producing the final numbering tak€3(m) time. The second operation performed
in the preprocessing phase is groupipairing. Vertex groupingpairing takes place in
four passes. In the first pass, we scan the vertic&s ¢doking for specific patterns of
vertices. If a vertex satisfies more than one patterns, we only consider the first pattern it
satisfied in the following provided order. More specifically, we look for:

1. b, 1-vertices b > 1) whose outgoing edge enters aivertex @ > 1); we pair the
two vertices.

2. ¢, d-vertices such that > 1 is odd andl > 2, which are predecessors of at least one
1, a-vertex @ > 1); we pair each such vertex with theatvertex.

3. ¢, d-vertices such that > 1 is odd andd > 2, which have at least one predecessor
b, 1-vertex p > 1); we pair each such vertex with its predecedsdrvertex.

In the second pass, we look for&vertices & > 1) which have at least one prede-
cessom, 1-vertex p even), or two predecessbry 1-vertices so that = 1 orb = 3. In

106 A. Papakostas and I. G. Tollis

the first case, we pair the 2-vertex with its predecessbr 1-vertex, and in the second
case we group the, 2-vertex with both its predecessby1-vertices.

In the last two passes we only considemdvertices & > 1) that have not been
groupedpaired in a previous pass. In the third pass, we scan, thevértices in decreas-
ing order of their assigned number. For as long as we encountes-aettex whose
predecessor is also gd-vertex, we put them both in the same group. The groups of
1, a-vertices formed this way are also callgthins In the fourth and final pass, we scan
the remaining la-vertices and we pair,-vertices that have the same predecessor.
Vertex groupingpairing can be completed i@ (m) time.

LEMMA 3.1. After vertex groupingpairing is completgany1, a-vertex v, which does
not belong to a groufpair has a predecessar, which is exactly one of the following

1. uis a source
2. uis al, a-vertex that participates in some grotgair,
3. uisagd-vertex where od > 2.

Alsa there cannot be anothdr, a-vertex v’, which does not belong to any grotgair
and has the same predecessowas

PrROOFE Let us consider a,l-vertex,v, which does not belong to any groipair. If
v’s predecessoty, were ab, 1-vertex, therv andu would have formed a pair in the first
pass. Therefora) can be either a source, or anotheadvertex, or ac, d-vertex where
c,d > 2. Ifuis a 1 a-vertex, it must belong to some grotgair, because if it did not,
v andu would have formed a chain. Finally, if there were anothea-%ertex,v’, which
did not belong to any groyjpair and had vertew as its predecessor, themndv’ would
have been paired in the fourth pass. O

The end of the groupingpairing operation is also the end of the preprocessing phase.
The drawing phasés the phase that follows preprocessing. This is the time when we
actually draw the resulting (after the preprocessing phase) graph in the plane.

4. Algorithm BOX _ORTHOGONAL.: Placement Techniques. One disadvantage of

the Simple Algorithm is that vertices with one outgoing edge and sinks contribute extra
to the width of the drawings (see Theorem 2.1). In Algorithm BORTHOGONAL,

we follow the general rules of the Simple Algorithm for creating and placing boxes
of vertices in the orthogonal drawing. However, we introduce a different placement
technique for vertices with one outgoing edge, and this is discussed in Section 4.1. The
way we use to insefld, 1-vertices may call for a special placement of some vertices with

at least two incoming and at least two outgoing edges. This is presented in Section 4.2.
Finally, Section 4.3 discusses how to insert sources and sinks. Except for the situations
described in Sections 4.1-4.3 which immediately follow, any other individual vertex
insertion in the drawing is handled in a way similar to the Simple Algorithm. In what
follows, we assume that is the next vertex considered for insertion by the drawing
algorithm.

Efficient Orthogonal Drawings of High Degree Graphs 107

Fig. 3. Placingv with one outgoing edge to the top ot its predecessor

4.1. Vertexv Has Only One Outgoing Edge Let us first consider the case where the
b, 1-vertexv has three or more incoming edges. In this case, we use a box to represent
The width of the box is always one. The height of the box is typicatideqv)/2] — 1.
However, ifindegv) = 3 or vertexv is paired with another vertex that followsin

the drawing phase, then the heightlindegv)/2|. We will see pairs of that type in
Section 5.1 (where &, 1-vertex is paired with a,la-vertex) and Section 5.2 (where
ab, 1-vertex is paired with a vertex with an odd number of more than one incoming
edges). In the case where thel-vertexv has one or two incoming edges, we represent
v with a point in the plane.

Before we actually place vertexin the drawing, we compute its median incoming
edge(s). v has only one median incoming edge, we plackrectly above boxi where
its median incoming edge comes from (see Figure 3(a)). Note that helf wfcoming
edges are attached to the left sidevpéind the other half to the right side ofIf vertex
v has both left and right median incoming edges, we pick one of the two for placing
depending on which portion of the row ofs top side we want to reuse (if any). For
example, placing directly above the box where its right median incoming edge comes
from (see Figure 3(b)) allows reusing the portion of noto the right ofv. Figure 3(c)
demonstrates the opposite case wheig placed above the box where its left median
incoming edge comes from. This row reuse is important when placing a pair containing
ab, 1-vertex.

When we inserb, 1-vertices our goal is to ensure that all boxes placed above a single
common predecessor vertex share each other’s columns. This is shown in Figure 3(d),
wherev is the next vertex to be inserted amés its predecessor above whiclis placed.

As we can see in Figure 3(d), we use the next available columrsafutgoing edges
from right to left, and we attach baxalong that column. Note that there is no bend in
the edge connecting the box of almyl-vertex placed abovwe and boxu itself.

If vertex v is represented by a point, we follow the same procedure except that we
attachv along the next available column afs outgoing edges from left to right (see
Figure 4(a)). The reason we do not nix1-vertices represented by points and boxes

108 A. Papakostas and I. G. Tollis

() (b) (©

Fig. 4. (a) Placingv above its predecessor vertexvhenv is a point, (b) bending an edge in order to reuse a
column is avoided, (c) vertexopens up one new column.

is to avoid having to bend one of the incoming edges of the vertex represented by a
point. This is illustrated in Figure 4(b), where we bend edgeorder for boxv’ (which
follows later) to reuse a column. Moreoverypiis a 2,1-vertex, we use its right median
incoming edge for placing it (see Figure 4(a)).

The advantage of placing 1-vertices in this way is that we do not have to open up
any new columns to insert such a vertex. We simply use existing columns. The only
exception to this is when both of the following two situations hold: (a) We place the first
b, 1-vertex p > 2) v above a vertex with at least two outgoing edges, and (b) ventex
is represented by a box. This is depicted in Figure 4{c)-vertexv opens up one new
column to the right of boxi. A b, 1-vertex whose insertion requires opening up one new
column in the drawing is aolumn-taker On the other hand, la, 1-vertex that entirely
reuses existing columns when it is placed in the drawingcslamn-saver

4.1.1. Placing v Above Another pl-Vertex Let us assume thdt, 1-vertexv is the

next vertex to be inserted into the drawing. According to the discussion above, we find
its predecessor vertax above whichv is going to be placed. Sometimes, it happens
that vertexu is ab, 1-vertex too. From an implementation standpoint, dachvertex
“remembers” (by keeping a pointer) its closest ancestor vertex with at least two outgoing
edges above which it is placed. We call this vertexdbeer boxof the b, 1-vertex. Let

w beu’s cover box wherv is about to be inserted. We distinguish two cases:

1. Vertexu is represented by a point. If vertexs also a point, we simply insert it right
aboveu as shown in Figure 5(a). If is a box, we move columug, containingu
to occupy the next available column ofs outgoing edges from right to left. Any
columns ofw’s outgoing edges holding only, 1-vertices represented by points that
are to the right of column, are now shifted to the left. This is depicted in Figure 5(b)
(before the move), and Figure 5(c) (after the move of colepgand insertion ob).

2. Vertexu is represented by a box. If vertexs itself a point, we simply insert it above
u as shown in Figure 6(a). Otherwise (i.e., verteis a box), we have two further
subcases:

(a) Vertexv does not have any incoming edges froi-vertices represented by
boxes, placed in columns to the left o column, and having the same cover
box. We move the column with baxto occupy the next available column with

Efficient Orthogonal Drawings of High Degree Graphs 109

(b)

(a) (b)

—

Fig. 5. Insertingv above its predecessomwhenu is a point.

w’s outgoing edges from right to left. Figure 6(b) shows the situation befere
insertion, and Figure 6(c) shows the result aftés inserted. Note that when we
moveu, the rows that boxi is occupying in Figure 6(b) are removed and then
re-opened to place in Figure 6(c).

Vertexv receives incoming edges from one or mbré-vertices represented by
boxes, placed in columns to the left & column, and having the same cover
box. Letu’ be one of these vertices located at the column which is the closest to
the column of vertexi. We move boxu to occupy a position immediately to the
right of the column holding verter'. We placev aboveu so that edgesu, v)
and (U’, v) do not have any bends (see Figure 6(d) for the situation aftexrs
moved). Note that anly, 1-vertex that comes later and has to be placed abpve
can do so without requiring any move of any column.

(a) (b) © @

Fig. 6. Insertingv above its predecessomwhenu is a box.

110 A. Papakostas and I. G. Tollis

ProPOSITION4.1. Any h 1-vertex placed directly above another bvertex u is a
column-saver and has the same cover box.as u

Proor Immediate from the discussion in this subsection. O

PrROPOSITION4.2. There is at most one column-taker among alltvertices with the
same cover bax

PrOOF From Proposition 4.1, we have that amyl-vertex placed above anothgrl-

vertex is a column-saver. In the case we have a cover box with two or more outgoing
edges, &, 1-vertex represented by a box and attached along the rightmost outgoing edge
of the cover box is a column-taker (see Figure 4(c)). All othetr-vertices of the cover

box reuse existing columns (see Figure 3(d)). O

4.2. Vertexv Has at Least Two Incoming and Two Outgoing Edged/e locate the
median incoming edge(s) ofand placev as described in the Simple Algorithm. More
specifically, we find verten wherev’s (left) median incoming edge comes from, and we
open upoutdedv) new columns immediately to the right of However, as we explain

in the rest of this subsection, this is not always possibletibppens to be a vertex with
only one outgoing edge. Consider the case where all the following hold (see Figure 7(a)):

1. Vertexu has only one outgoing edge,

2. vertexu is placed directly above another bax

3. there is at least one other verighavingw as a cover box, and
4. vertexu’ is placed to the right od.

In this situation, we cannot open optdedv) new columns immediately to the right
of u because that would distort (stretch) the box representing vertinstead, we open
up these new columns immediately to the right of the rightmost box that lassa cover
box and place there (see Figure 7(b)). After we plageas shown in Figure 7(b), it is

previous

drawing

(a)

(b)

Fig. 7. (a) Boxv cannot be inserted immediately to the right of its predecess() routing some ob’s
incoming edges to's bottom side, (c) placing souree

Efficient Orthogonal Drawings of High Degree Graphs 111

possible that there are incoming edges which are supposed to attachute right side,
but these edges are now along columns located to the left of bichis happens because
we moved box away from the column carrying its (left) median incoming edgev).

If this is the case, we do the following:

1. Identify all the vertices of the current drawing which
e have outgoing edges that enter vertexand
e are located in betweaeris (left) median incoming edge and boxtself.

2. For each one of the vertices identified in the previous step, we draw an edge that exits
the box of the vertex from the top right connector having horizontal direction and
then bends once to enter boxhrough its bottom side.

This is all explained in Figure 7(b). Recall thais the vertex where’s (left) median
incoming edge comes from. We also assume that verticaadu” are all the vertices
identified in Step 1 of the above procedure. Note that in all cases, the vertices identified
in this step areb, 1-vertices having the same cover box The number of incoming
edges of these vertices is either three or an even number (see the previous section on
the preprocessing phase), and therefore there is no other edge that exits the same top
connector having horizontal direction. If some of these vertices are represented by points,
the edge is drawn from the point to the right and then turned upward towenter

If an edge that enters baxfrom its bottom side comes from a column-taker-
vertex, then we have this edge attach to one of the two corners of the bottom side of box
v (see the way edgel”, v) is routed in Figure 7(b)). On the other hand, if we have more
edges entering from its bottom side and boxs width is not sufficient to accommodate
all of them, we make as wide as necessary. The phenomenon of growing the width of
the box representing a vertex in order to accommodate incoming edges entering through
the bottom side of the box, is call&dx inflation We also say that these incoming edges
cause box inflation

LEMMA 4.1. Box inflation can only be caused by incoming edges that originate at
column-saver bl-vertices

ProoFE Clearly, the vertices that cause box inflation are alwayisvertices with the

same cover box. From Proposition 4.2 we know that at most one column-taker can be
placed above a single cover box. The edge that comes from this column-taker can never
cause box inflation when it is routed to the bottom side of another box, because it is

forced to always attach to a corner of that box. Therefore, the statement of the lemma
holds. O

Finally, when we attach the incoming edges of a box to a side (right or left) of a
box, we try to avoid unnecessary crossings. Namely, the incoming edge (column) that
is closer to the box should attach to connectors of lower y-coordinate of the side of the
box.

4.3. Vertexv Is a Source or a Sink The initial numbering of the vertices of the given
graph yields one source and at least one sink. However, more sgaintessmay be

112 A. Papakostas and I. G. Tollis

created after modifying the initial numbering. A source is inserted as a box of height
one, and can be placed without opening up any new rows (except for vertex number 1
which is the original source). An example is depicted in Figure 7(c), where the box of
sourcev is placed right off the end of the right margin of the current drawing.

Placing a sink follows the same rules as placing-vertices discussed above. In
order to maximize row reuse, we can delay the placement of all sinks until the very end
(in fact we can ensure this by assigning appropriate numbers to them). This is possible
since sinks do not participate in groypsirs. Placing sinks does not require opening up
any new columns.

5. Grouping/Pairing Problematic Vertices. Another disadvantage of the Simple Al-
gorithm is that vertices with one, two, or an odd number of three or more incoming edges
contribute extra to the height of the drawings (see Theorem 2.1). We call these vertices
theproblematicvertices of the drawing phase. In Section 3 we discussed how problem-
atic vertices can be assigned to gropars in the preprocessing phase. When the time
comes to insert a groypair of vertices to the drawing, we create the boxes of the vertices
in a way similar to the Simple Algorithm, and then we place all vertices involved in the
group/pair in one step. In Sections 5.1-5.3 we show how different types of gfpajrs

are placed in the drawing.

If there are problematic vertices that were not groyjpaited in the preprocessing
phase, we try to groyjpair them as we place them, that is during the time the drawing
phase is going on. Thanks to the groupipairing of problematic vertices, we are able to
produce area-efficient drawings occupying at rmesblumns and at mosti/2+ ¢ rows
(cis a small constant). We assume thas the next vertex considered by the drawing
algorithm for insertion.

5.1. Vertexv Has Only One Incoming Edge If the next vertex to be inserteds a 1 a-
vertex @ > 1), then we have the following cases, assuming thags groupegpaired
in the preprocessing phase:

e \ertexv is the first vertex of a chain of at least twodtvertices. We open up a new
line, and we place the boxes of all the vertices of the chain horizontally, as shown in
Figure 8(a). Notice that the boxes of the chain are placed right off the end of the right
or left margin of the current drawing so that one row is reused.

e Vertexv and another Jla-vertex have the same predecessor and belong to the same
pair. We open up one new row and we place the two boxes of the pair right off the end
of the right and left margins of the current drawing, as shown in Figure 8(b). Hence,
one row is reused.

e Vertexv and ab, 1-vertex p > 1) belong to the same pair. Then, thel-vertex isv’s
predecessor andis placed along the row of the top side of the box ofth&-vertex
so that no new row opens up. The situation is described in Figure & éven, and
in Figure 8(d) ifb is odd. Note that is again placed right off the end of the right or
left margin of the current drawing.

In case the Jla-vertexv was not assigned to any pair or chain in the preprocessing
phase, we try to place itwithout opening up any new rows. We have two options depending

Efficient Orthogonal Drawings of High Degree Graphs 113

Fig. 8. Placing a grouppair containing a la-vertex.

on the type of predecessor that vertelxas (see Lemma 3.1):

o If vertex v’s predecessor is either a source or anothervdertex belonging to some
pair or chainy is placed right next to the box of its predecessor; in this placement, two
rows are reused. Figure 8(e) illustrates this whisrmpredecessor belongs to a chain.

e If v's predecessou, is ac, d-vertex wherec,d > 2, then we look for the most
recently placed source in the drawing, sgyWe draw an edge from the bottom wf
toward the row ofus's top side and place next tovs without opening any new rows,
as shown in Figure 8(f). Note that such a placement is always possible since there is
no edge between vertexand sources.

LEMMA 5.1. Letm(1, a) be the total number ofincoming edges of a graugir in which
a l, a-vertex participatednserting this grouppair to the drawing requires opening up
at mostlm(1, a)/2| new rows

PrROOF Ifthere are only la-vertices in the groufpair, then only one new row opens up
in the drawing, as discussed above. Since such a gpatithas at least two, h-vertices,
the statement of the lemma clearly holds. H,d.-vertex and a la-vertex belong to the
same pair, then we have two cases:

e If b is even then we open up/2 new rows for theb, 1-vertex and no new rows
for the 1 a-vertex. Clearly, the number of rows we open up for the palb/i8 =
L[(b+1)/2] = [m(1, a)/2].

o If bis odd then we open ufb/2] new rows for theb, 1-vertex and no new rows
for the 1 a-vertex. Clearly, the number of rows we open up for the pajibi] =
(b+1)/2=[(b+1)/2] = Im(L, a)/2]. O

5.2. Vertexv Has an Odd Number of Incoming Edged_ et us assume now that the
vertex to be inserted next, has an odd number of more than one incoming edges.
Note thatv also has at least two outgoing edgesv lielongs to a pair, we distinguish

114 A. Papakostas and I. G. Tollis

(b)

Fig. 9. Placing a vertex with an odd number of incoming edges when it is paired with a (@) \ertex,
(b) b, 1-vertex.

two cases. In both of these cases, venigx inserted in a way similar to the Simple
Algorithm. If v’'s median incoming edge happens to bé,d-vertex, we may have

to use the special placement fordescribed in Section 4.2. The two cases are as
follows:

e Vertexv is the predecessor of ad-vertex and the two vertices form a pair. First we
insert vertexv. Then we attach the edge connecting the two vertices of the pair to the
top right corner connector af and place the ,Ja-vertex outside the current drawing,
as shown in Figure 9(a).

e \ertex v belongs to the same pair withka 1-vertex p > 1) which is one ofv’s
predecessors. We first insert the predecebsbrvertex and then we place vertex
making sure that the top side of the box representindttievertex and the bottom
side of boxv use the same row (see Figure 9(b)). We assume thé&t theertex has
been placed higher than the rest&f predecessors; this can be achieved by delaying
the placement of thi, 1-vertex until it is time to place.

If v were not paired in the preprocessing phase, we try to pair it with the first vertex
v’ to be inserted aftev which is not a source and has three or more outgoing edges.
This pairing takes place during the drawing phase! Hoes not already belong to any
group/pair and has one of the following properties, then the two vertices can be paired:

e v andv are adjacent,

e v' andv are not adjacent and has an odd number of incoming edges greater than
one,

e v’ andv are not adjacenty has an even number of incoming edges, and the median
incoming edge ob is not between the two median incoming edges’of

We placev andv’ so that one row is reused. This is illustrated in Figure 10(a)—(c) for
the three different cases of (see above). Figure 10 clearly shows that the top side of
and the bottom side af share the same row. This type of pairing is not always possible
though. If we are unable to pairwith v/, then we have two different options:

o If there were another vertaxwith an odd number of incoming edges that we were
unable to pair in the past, then we paiwith u. Vertexu has already been placed,
S0 we now place vertex so that one row is reused, as shown in Figure 11(a). More
specifically, the bottom side af and the top side afi use the same row. Notice that

Efficient Orthogonal Drawings of High Degree Graphs 115

(a) (®)

Fig. 10.Pairing vertexy with the vertex followingv so that one row is reused.

v is placed at a higher position than(we open up the appropriate number of rows
there), and it is possible that somewd incoming edges are attached to the bottom
side of their corresponding boxes.

This type of vertex insertion would not have been possible if at least onés of
incoming edges were coming frombal-vertex. This is because the outgoing edge
of any b, 1-vertex cannot leave the bottom side of the box oftih&-vertex going
down without crossing another box. However, we never have such a case here since
no predecessor afis ab, 1-vertex (if it were,v would have been paired with it).

o If there is no unpaired vertex with an odd number of incoming edges inserted to
the drawing before, we simply placev in the drawing as described in the Simple
Algorithm (see Figure 11(b)).

LEMMA 5.2. Let myyq be the total number of incoming edges of a pair that contains a
vertex with an odd number of more than one incoming and at least two outgoing edges
Inserting this pair to the drawing requires opening up at mastqq/2] new rows

(b)

(a)

Fig. 11.(a) Pairingv with an existing unpaired vertax (b) placing unpaired vertex

116 A. Papakostas and I. G. Tollis

PROOF Letv be a vertex withm, incoming edgesr), > 1 is odd) and at least two
outgoing edges. I6 were paired in the preprocessing phase, we distinguish two cases:

e \ertexv belongs to the same pair with aa-vertex. We open upm, /2] new rows
for vertexv and no rows for the Ja-vertex. Clearly, the number of rows we open up
for the pairisfm, /2] = (M, + 1)/2] = | Moqgd/2].

e Vertexv belongs to the same pair withba 1-vertex (which ha® incoming edges).
First we open up at mogb/2] new rows for theb, 1-vertex. Then we place vertex
v S0 that it reuses one row (see Figure 9(b)). Because of the row reuse o]
new rows are required in order to place the box of verte€learly, the number of
rows we open up for the pair is at mdst/2] + |m,/2]. If b is odd, then the total is

at most
b+1 m, b+m,+1 b+ m, m
SE L _ _ Mo,
2 2 2 | 2 2

since(b + m,) is even. Ifb is even, then the total is at most

b m, b+ m, Modd
§+L7J_{ 2 _‘L 2 J
Let us now assume that vertexs paired during the drawing phase. In this case,

forms a pair with the immediately following vertax (see Figure 10) which has,
incoming edges. Since one row is reused, we opefnyg2] new rows to place and
[m, /2] — 1 new rows to place’. For the pair, at most(m, + m,)/2] = [Mygq/2]
rows are required no matter whetmey is odd or even. For the situation of Figure 11(a)
where vertex is paired with a previously inserted and unpaired vetgxe can argue
in a similar way to show that the number of rows for the pair is at mogty/2]. O

LEMMA 5.3. There may be at most one vertewith an odd number of more than one
incoming and at least two outgoing edges which is not paired in the end of the drawing
phase

PROOF Let us assume that there is a vertexith m, incoming edgesnf, > 1 is odd)

and at least two outgoing edges, which was inserted to the drawing by itself (i.e., not
as a member of a pair). There are three possibilities for any other wen@ih an odd
number of more than one incoming and at least two outgoing edges which is inserted to
the drawing after vertex:

1. Vertexw was already paired in the preprocessing phase.
2. Vertexw is paired with vertexw” # v in the drawing phase.
3. Vertexw is paired with vertew in the drawing phase.

In cases 1 and 2, vertexemains unpaired after is inserted to the drawing. In case 3
(and afterw is inserted), there is no unpaired vertex with an odd number of more than
one incoming and at least two outgoing edges any more. Therefore, at any time during
the drawing phase as well as in the end of the drawing phase, the statement of the lemma
holds. The unique unpaired vertexopens ugm, /2] new rows when it is placed in the
drawing. O

Efficient Orthogonal Drawings of High Degree Graphs 117

(a) b)

Fig. 12.Placing a 2a-vertex when it is groupefgbaired with its predecessor(s).

5.3. Vertexv Has Two Incoming Edges If vertexv has two incoming edges and belongs
to a grougpair, we distinguish the following cases:

e \ertexv is paired with one of its predecessors which Is &-vertex p even), sayw.
We place vertices andv one after the other so that the bottom side aihd the top
side ofu share the same row (see Figure 12(a)).

o Vertexv is grouped with both its predecessors, gandu’. In Figure 12(b), we show
how we can reuse rows and plage’, v opening up only four new rows; in this case,
bothu andu’ are 3,1-vertices. Note that this placement also saves one bend from edge
(u, v). Similar row reuse can take place when at least oneafdu’ is a 1,1-vertex.

Note that in both of the above cases, placing the box of vertegens up only one
new row in the drawing. Before we describe how to insert a-Zertexv which does
not belong to any groyjpair, we give some definitions. A group of@vertices which
have already been placed is caltgaen if and only if all the following hold:

e The group is formed during the drawing phase.

o No member of the group belongs to any other graagir.

e The box of each vertex of the group shares one row with the box of some other vertex
of the same group.

Clearly, if there arg 2, a-vertices in such an open group, then the placement of
their boxes requires a total of+ 1 rows in the drawingr(> 1). Figure 13(a) shows
an example with an open group of thregavertices. An open group of, a-vertices
becomes closeithe moment when a new a-vertexu is placed in the drawing so that
shares two rows with the set of boxes of the open group. A closed grou) efvertices
requiresr rows in the drawing. If the next vertex to be inserted into the drawing is a
2, a-vertex which was not groupg¢gaired in the preprocessing phase, we try to assign
this vertex to a groufpair at insertion time. We have the following options:

e We consider the first vertex to be inserted aftevhich is not a source, say. If v’
has an even number of more than two incoming edges, at least two outgoing edges,
and the columns af’'s incoming edges are not positioned between the columns of the
left and right median incoming edgesf then we pain with v" and we place them
as shown in Figure 13(b). Note that the top side @ihd the bottom side af share
the same row.

o If there exists an open group of &vertices, then we placeso thatv shares one or
two rows with the boxes of the open group. Note thagan always be placed so that

118 A. Papakostas and I. G. Tollis

(b)

Fig. 13. (a) An open group of three, 2-vertices placed in four rows, (b) placingandv’ reuses one row,
(c) adding a 2a-vertexv to an open group sharing one row.

one row is shared, even if this placement requires one or both incoming edges of
to attach to the bottom side of their corresponding boxes and extend in a downward
direction. This is shown in Figure 13(c), where ventag a member of the open group.
Such a placement is always possible since nonésgfredecessors isla 1-vertex.
If v shares one row with the rest of the open group, then the group remains open; if it
shares two rows, then the group is now a closed group.

e If vertexv can neither be paired with the next incoming vertex nor join an open group,
then we simply place in a way similar to the Simple Algorithm. Note thatnow
starts a new open group, and opens up two new rows in the drawing.

PrOPOSITIONS.1. At any time during the drawing phagbere can be at most one open
group of2, a-vertices

PrROOF In order to have two or more open groups, we must have a situation where
an open group already exists in the current drawing and a newconaevetex
starts a new open group. However, this is a contradiction, since the newcomer 2
vertex has to join the existing open group (if no other groupradring for this vertex is
possible). |

LEMMA 5.4, Let\, 4 be the set of al?, a-vertices placed by Algorithm BO®RTHO-
GONAL The total number of new rows created by the insertion of all vertices inirv
the drawing is at mostv, 4| + 1.

PrOOF We have the following cases with respect to the grouping of the vertidés,of
in the end of the drawing phase:

1. Each vertexin V, 5 was groupegdpaired either in the preprocessing or the drawing
phase with vertices not iN, 5 (i.e., no open or closed groups afd&vertices were
formed). In either case, the insertion of vertereuses one row and opens up only
one new row. So, all the verticesVf 5 collectively open up at mo$V;, 5| new rows.

Efficient Orthogonal Drawings of High Degree Graphs 119

2. There is at least one closed group oB2ertices, but there is no open group of
2, a-vertices. We have seen that a closed group requires as many rows as the number
of 2, a-vertices it contains. If we combine this with case 1 above, we have that all the
vertices inV, 5 collectively open up at mos$¥, 4| new rows.

3. There is one open group of &vertices. From Proposition 5.1 above, we have that
there cannot be any other open group. We have also seen that the number of rows
that the members of an open group require is at most one more than the number of
2, a-vertices it contains.

By combining the above cases, we obtain that all the verticesdrcollectively open
up at mostVy, 4| + 1 new rows. O

6. The Drawing Algorithm and Its Analysis. After the preprocessing phase is com-
plete, Algorithm BOXORTHOGONAL considers the vertices in the order of the final
numbering, places them in the plane following the special instructions discussed above
for groups, pairs, and individual vertices, and draws the edges. The vertices are repre-
sented as described above (point or box), depending on the number of their incoming
edges. Here is an outline of our algorithm:

Algorithm BOX_ORTHOGONAL

Input A graphG.
Output An orthogonal drawing o6.

1. Compute an initial numbering & having the properties specified in
Section 3. IfG is biconnected, the initial numbering is an st-numbering.

2. Modify the initial numbering to obtain the final numbering, as discussed

in Section 3.

Apply the groupingpairing procedure on the vertices Gf

Place vertex; using a box of height one and widtlutdedv,) — 1.

REPEAT

(a) Consider the next vertex according taG’s final numbering.

(b) If vi has already been placed, then continue with the next vertex.

(c) If v; belongs to a grouyfpair, then place all members of this
group/pair as described in the previous section for the specific kind
of groupypair.

(d) If v; is a problematic vertex which does not belong to any gypap,
then try to grouppair itin the drawing phase and place it as discussed
in the previous section.

(e) If v; is none of the above, then place it as described in the Simple
Algorithm, while taking into account the special situations discussed
in Sections 4.1-4.3.

UNTIL there are no vertices left.

7. End.

o w

IS

THEOREMG6.1. Algorithm BOXORTHOGONAL produces an orthogonal drawing of

120 A. Papakostas and I. G. Tollis

any graph G with m edges in @) time Each vertexv with degree degp) > 3 is
represented by a box whose perimeter is less thardegv). The produced orthogonal
drawing has the following properties

the width is at most m- 1,

the height is at most j12 + 2,

the total number of bends is at most-#2, and
each edge has at most one bend

PrOOF The key to computing the running time of the algorithm is to find out how
much time we spend when a vertex is inserted. In order to balance its incoming edges
between the left and the right side of its box, we have to compute its (left and right)
median incoming edge(s) first. In other words, we need to know the relative order among
all the columns holding the incoming edges of the vertex to be inserted. This is not
a trivial task since new columns can be inserted arbitrarily anywhere in the current
drawing.

If we use the data structure proposed by Dietz and Sleator [7], we can answer
column order queries for two columns i@(1) time. This means that if we use a
linear time median finding algorithm (e.g., see [4]), the (left and right) median in-
coming edge(s) can be computed@indegv)) time, wherev is the vertex that is
being inserted. Clearly, the total running time of the algorithnOign). However,
if we wish to attachv’s incoming edges to the left and right side ofin a way
that avoids as many crossings as possible, we need to know the total order of all
the incoming edges of. This order can be computed in the end collectively for all
edges inO(m) time using bucketsort. Then a simple scan of all the columns from
left to right decides the correct connector where each edge will be attached (see Fig-
ure 2(a)).

As we saw in the previous sections, if a verteis represented by a box, then the
height of the box is always at moghdegv)/2]. The width of any box representing a
vertexv is at mostoutdedv), except in the case where the box is widened due to box
inflation. In this case, the width of the box can grow upitedegv)/2]. In other words,
the width of any box representing a verteis maxoutdedv), indegv)/2}. Clearly, the
perimeter of the box is less thandegv), at all times.

In order to compute the total area taken by an orthogonal drawing produced by the
algorithm, we have to count the total number of rows and columns in the drawing that
are occupied by edges afat boxes. Let us start with the rows. As we have seen, for
each box we balance its incoming edges. This means that we attach half of them to the
left and the other half to the right side of the box.

With the only exception of the problematic vertices, the number of rows that the
algorithm opens up in the drawing in order to insert the box of any other vertex, is never
more than half the number of the incoming edges of the vertex (see Simple Algorithm
and Theorem 2.1). Recall that problematic vertices ageVkrtices, 2a-vertices, and
vertices with an odd number of incoming and at least two outgoing edges. These vertices
are groupegpaired with other vertices. The result of this is to introduce row reuse in
order to minimize the number axtrarows that the boxes of these vertices require.
The following facts show how many extra rows of the final drawing must be attributed

Efficient Orthogonal Drawings of High Degree Graphs 121

to problematic vertices. Note that the word “extra” here means “in addition to half the
number of the incoming edges.”

1. From Lemma 5.1 and Section 5.1 we have that the insertionaf/értices to the
drawing contributes no extrarows no matter whether these vertices are grpaped
or not.

2. From Lemma 5.3 we have that at most one vertex with an odd number of more
than one incoming and at least two outgoing edges contributes one extra row to the
drawing. Any other such vertex participates in a pair which requires no extra rows
(see Lemma 5.2).

3. From Lemma 5.4 we have that at most one unit has to be added to the total number of
rows, and this unit comes from the &vertex which started the unique open group
(if there is one in the end of the drawing phase).

Also keep in mind that the following hold:

1. Unpaired 1,1-vertices and sinks with one or three incoming edges can always be
placed so that they share rows with other vertices of the same type or with other
boxes. Also, 3,1-vertices that do not belong to any gypap may be reduced to a
point (they are boxes originally) so that each one of them occupies only one row.

2. Vertexu; (i.e., the first vertex to be inserted to the drawing) occupies two rows but
it can always share one row with oneatvertex that hag; as its predecessor. No
other source opens up any new rows (see Section 4.3).

Hence, we have that the total number of rows in the final drawing is atmy@st 1+ 1+ 1
and the height is at most/2 4+ 3 —1=m/2 + 2.

Let us now count the total number of columns in the final drawing. From Section 4.3,
we have that sinks do not open up any new columns when they are inserted. Any other
vertexv with outdedgv) > 1 outgoing edges requires opening up at noasgtiegv) new
columns atv’s insertion time. From this, we have that the total number of columns the
algorithm opens up simply to insert vertices is at mmsHowever, recall the following
facts:

1. From Section 4.1 we have that mdstl-vertices can be placed so that they reuse
already existing columns. Sudh 1-vertices do not open up any new columns and
are known as column-savers. L@&f be the total number of column-savers.

2. Some vertices may experience vertex inflation (see Section 4.2 bt the total
number of columns in the final drawing that are attributed to vertex inflation.

Because of these two observations, the total number of columns in the final drawing is
adjusted tan + C; — Cs. From Lemma 4.1, we have th@ < Cg, and therefore the
width of the drawingisatmosh+C; —Cs—1<m— 1.

An important advantage of this algorithm is that it introduces very few bends. More
specifically, every edge of the drawing has at most one bend, no matter whether it enters
a box through its right, left, or bottom side. Also, all boxesints representing sinks
or vertices with only one outgoing edge have one incoming edge with no bends (see
Figures 3 and 4). Clearly, there is at least one sink and at leadb,dneertex in the
final drawing of any given graph with more than two vertices. Hence, the total number
of bends of any drawing under Algorithm BORRTHOGONAL is at mosin — 2. O

122 A. Papakostas and I. G. Tollis

(a) (b)

Fig. 14.Pairing two vertices in the drawing phase so that one row is shared.

7. Additional Pairing in the Drawing Phase. The pairing step that we describe here

is not required in the drawing phase in order to prove the area and bends upper bounds for
Algorithm BOX_ORTHOGONAL (see the previous section). However, if it can be done,

it can improve the area of the resulting drawing. Let us consider a vesath an even
number of more than two incoming edges and at least two outgoing edges, which was not
groupedpaired in the preprocessing phase. Let us also assumeitithie next vertex to

be inserted into the drawing by Algorithm BORRTHOGONAL. We try to paiw with

the first vertex to be inserted aftewhich is not a source, say. If v’ already belongsto a
group/pair, then we do not pairand we simply insert itin a way similar to the Simple Al-
gorithm. If, on the other hand, does not participate in any gropir, we check whether

e the column of the (right) median incoming edgewvofs positioned to the left of the
column of the left median incoming edge wfor

e the column of the (left) median incoming edgewiis positioned to the right of the
column of the right median incoming edgewof

In either of the above two cases we paivith v and we place the two vertices in the
drawing so that one rowis reused. This s illustrated in Figure 14(a) which depicts the first
case, and in Figure 14(b) which depicts the second case. Observe that the topuside of
and the bottom side af share the same row. If we have none of the above two cases, then
no pairing is possible; in this case, we simply ingeaind continue with the next vertex.

8. Further Optimizations. In practice, we expect the orthogonal drawings produced
by Algorithm BOX_ ORTHOGONAL to exhibit better bounds in terms of height, width,
and total number of bends. More specifically, if more row reuse can take place when a
new vertex is inserted, we take it. This may be done either during the drawing phase, or
at arefining phasdollowing the conclusion of the algorithm. For example, additional
row reuse (and therefore smaller height for the drawing) results from pairing that we do
in the drawing phase for vertices with an even number of more than two incoming and
at least two outgoing edges (see the previous section).

As far as the width of the drawing is concerned, we expect it to be smaller than the
upper bound for three reasons: First, if there are vertices for which some outgoing edge
exits the vertex horizontally (and not vertically), the width of the vertex may be decreased

Efficient Orthogonal Drawings of High Degree Graphs 123

(a)

Fig. 15.Reshuffling the order af’'s outgoing edges to eliminate crossings.

by one unit, as shown in Figures 8(a),(e), 9(a), and 10(a) (recall that veaiéginally
occupiesoutdegv) columns). Second, when some of the incoming edges of a vertex

v enter its bottom side (situation discussed in Section 4.2), we do not always have to
widen the vertex by the number of these incoming edges, since there are usually available
connectors in the bottom side of Third, we may shift some already placed boxes
horizontally in order to reuse columns. This can be done at a final reficdmgpaction

phase after the end of the algorithm.

The number of edges that have no bends in the drawing produced by Algorithm
BOX_ORTHOGONAL may be more than just the number of vertices with zero or one
outgoing edge. This is due to three reasons: First, for vertices that are adjacent and be-
long to the same group/pair, we draw the edge connecting the boxes of the two vertices
horizontally without bends (see Figsures 8-10 and 12). Second, shifting boxes horizon-
tally to reuse columns (see previous paragraph) may bring a box right above one of its
predecessors; if this happens, the edge connecting the two boxes now has no bends.
Third, in the refining phase, we can move 1,1-vertices on the bend of their outgoing edge
(if there is such a bend), thus saving a bend for each 1,1-vertex.

Finally, another area where we can improve the quality of the drawing during the
refining phase is the number of crossings. Let us consider the following scenario: Vertex
v has three outgoing edges which enter three different vertices positioned on the same
side (right or left) ofv. This situation is depicted in Figure 15(a), where the three vertices
are located to the left of, and each one af’'s outgoing edges crosses the other two.

We can reshuffle the relative positions of the three outgoing edges so that there are no
crossings (see Figure 15(b)).

In Figure 16 we show an example of a 12-vertex and 31-edge nonplanar @raph
drawn by Algorithm BOXORTHOGONAL. Notice thats has one vertex with degree
eight (vertex 9) and five vertices with degree six each (vertices 1, 2, 3, 7, and 11). In the
drawing of Figure 16 we have already applied the refining phase which provided column
reuse, thus saving more bends. The width of the final drawing is 17, the height is 14,
and we have a total of 18 bends. Finally, the aspect ratio of the drawingig £71.21
which is close to 43 = 1.33, the standard screen aspect ratio.

9. Contributions and Future Work. We introduced an algorithm for drawing graphs
with degree higher than four, based on grouppwjring vertices of the graph for row

124 A. Papakostas and I. G. Tollis

Fig. 16.An example drawing using Algorithm BQORTHOGONAL.

reuse. It is interesting that vertices can form groagrs even at the time they are in-
serted. The algorithmis very efficient in terms of its running time. Also, the performance
of the algorithm regarding the area and the number of bends (both total and per edge) of
the drawing is better than any other known algorithm to address the same problem. The
main advantages of our algorithm are the following:

Vertices are represented by boxes of perimeter less than twice the degree of the vertex.
It exhibits low area when compared with other algorithms.

It provides the first upper bound on the area of any drawing of any graph.

The width is larger than the height of the resulting orthogonal drawing (by approxi-
matelym/2) for better aspect ratio.

The edges have either one bend or no bends; this increases the clarity of the drawing.

e Our algorithm is geared toward high degree vertices; the performance in terms of area

increases when the graph has many vertices of high degree.

The input graph does not have to be biconnected; our algorithm avoids the extra
overhead of dealing with non-biconnected graphs.

If the graph is not biconnected, the various components can be clearly identified in
the drawing since all the vertices of the same component are drawn together.

Itis open to see if we can find other representation schemes for graph vertices when

their degree is higher than four. For the technique that we proposed, we would like to
improve the upper bounds in the area and the number of bends. These, together with
extending high degree orthogonal drawing to support interaction with the user, seem to
be natural directions for future research.

Efficient Orthogonal Drawings of High Degree Graphs 125

Acknowledgment. We would like to thank an anonymous referee for suggestions that
substantially improved the presentation of our ideas.

(1]
(2]
(3]

(4]
(5]

(6]

(7]
(8]
(9]
[10]
[11]

[12]
[13]

[14]

[15]

[16]
[17]
[18]
[19]
[20]
[21]

[22]

References

T. Biedl, Drawing High-Degree Graphs with Small Grid-Size, Tech. Report RRR 37-96, RUTCOR,
Rutgers University, November 1996.

T. Biedl, Personal communication, December 1996.

T. Biedl and G. Kant, A Better Heuristic for Orthogonal Graph Drawir@sc. 2nd Ann European
Symposium on Algorithn(&SA 94), Lecture Notes in Computer Science, vol. 855, Springer-Verlag,
Berlin, 1994, pp. 24-35.

T. Cormen, C. Leiserson, and R. Rivasitroduction to AlgorithmsMIT Press, Cambridge, MA, 1990.

G. Di Battista, P. Eades, R. Tamassia, and I. Tollis, Algorithms for drawing graphs: an annotated
bibliography,Comput Geom Theory Appl, 4(5) (1994), 235-282. Also available via anonymfips

from ftp.cs.brown.edu , gdbiblio.tex.Z andgdbiblio.ps.Z in /pub/papers/compgeo

G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu, An Experimental
Comparison of Three Graph Drawing AlgorithmBroc. ACM Symp on Computational Geome-

try, 1995, pp. 306-315. The version of the paper with the four algorithms can be obtained from
http://www.cs.brown/people/rt

P. F. Dietz and D. D. Sleator, Two algorithms for maintaining order in afistc. 1%h Ann ACM Symp

on Theory of Computind 987, pp. 365-372.

S. Even and G. Granot, Rectilinear Planar Drawings with Few Bends in Each Edge, Tech. Report 797,
Comput. Science Dept., Technion, Israel Institute of Technology, 1994.

S. Even and G. Granot, Grid Layouts of Block Diagrams - Bounding the Number of Bends in Each
ConnectionProc. DIMACS Workshop GD94, Lecture Notes in Computer Science, vol. 894, Springer-
Verlag, Berlin, 1994, pp. 64—75.

S. Even and R. E. Tarjan, Computing an st-numberTingoret Comput Sci, 2 (1976), 339-344.

U. F6Bmeier and M. Kaufmann, Drawing High Degree Graphs with Low Bend Nunibers \WWorkshop

GD '95, Lecture Notes in Computer Science, vol. 1027, Springer-Verlag, Berlin, 1995, pp. 254-266.
G. Kant, Drawing planar graphs using the canonical ordeAfgprithmica 16(1) (1996), 4-32.

A. Papakostas, Information Visualization: Orthogonal Drawings of Graphs, Ph.D. Thesis, Computer
Science Dept., The University of Texas at Dallas, November 1996.

A. Papakostas and |. G. Tollis, Algorithms for area-efficient orthogonal drawidgs)put Geom
Theory Appl, 9 (1998), 83—-110.

A. Papakostas and I. G. Tollis, A Pairing Technique for Area-Efficient Orthogonal Drawgs,
Workshop GD 96, Lecture Notes in Computer Science, vol. 1190, Springer-Verlag, Berlin, 1996,
pp. 355-370.

A. Papakostas and I. G. Tollis, Interactive orthogonal graph drawiigE Trans Comput, 47(11)
(1998), 1297-1309.

P. Rosenstiehl and R. E. Tarjan, Rectilinear planar layouts and bipolar orientations of planar graphs,
Discrete ComputGeom, 1 (1986), 343—-353.

M. Scheffter, Drawing graphs on rectangular grifiiscrete ApplMath., 63 (1995), 75-89.

J. Storer, On minimal node-cost planar embeddinggworks 14 (1984), 181-212.

R. Tamassia, On embedding a graph in the grid with the minimum number of (s&idd,d Comput,

16 (1987), 421-444.

R. Tamassia and |. G. Tollis, A unified approach to visibility representations of planar giipbste
Comput Geom, 1 (1986), 321-341.

R. Tamassia and |. Tollis, Planar grid embeddings in linear tiEeE Trans Circuits and System86
(1989), 1230-1234.

