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Efficient Orthogonal Drawings of High Degree Graphs1

A. Papakostas2 and I. G. Tollis3

Abstract. Most of the work that appears in the two-dimensional orthogonal graph drawing literature deals
with graphs whose maximum degree is four. In this paper we present an algorithm for orthogonal drawings
of simple graphs with degree higher than four. Vertices are represented by rectangular boxes of perimeter less
than twice the degree of the vertex. Our algorithm is based on creating groups/pairs of vertices of the graph.
The orthogonal drawings produced by our algorithm have area at most(m− 1)× (m/2+ 2). Two important
properties of our algorithm are that the drawings exhibit a small total number of bends (less thanm), and that
there is at most one bend per edge.

Key Words. Graph drawing, Orthogonal graph drawing, Algorithms, Information visualization, Graphical
user interfaces.

1. Introduction. Most of the work that appears in the two-dimensional orthogonal
graph drawing literature deals with graphs whose maximum degree is four [3], [8], [12],
[14]–[16], [18], [19], [22]. The drawings produced by these algorithms require at least
two bends per edge. This is a big restriction since in most applications graphs generally
have degree higher than four. Orthogonal drawings of graphs of high degree are useful
for visualizing database schemas or the internal structure of large software systems. In
these applications, vertices are boxes calledtablescontaining fields, which are placed
vertically one below the other. These fields can be attributes of some entity (in the case of
a database) or a specification list (in the case of a software module). For a survey of graph
drawing algorithms and other related results, see [5]. In this paper we consider graphs
with n vertices andm edges. Also, the area of a drawing is expressed aswidth×height.

Fößmeier and Kaufmann [11] presented an extension of Tamassia’s algorithm [20] for
minimizing the total number of bends of planar embedded graphs of maximum degree
four to planar graphs of arbitrary degree. The vertices are represented by squares of
size depending on the degree of the vertex. No discussion is made on the area or the
number of bends per edge of the resulting orthogonal drawings. Their algorithm runs in
O(n2 logn) time.

GIOTTO [6] is another algorithm for orthogonal drawings of graphs of degree higher
than four. It is also based on Tamassia’s algorithm [20] for minimizing the total number of
bends. Dummy vertices are used to represent crossings, and all vertices of the drawing
are represented by boxes. The disadvantage of GIOTTO is that the boxes may grow
arbitrarily in size, regardless of the degree of the vertex they represent. Experimental
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results of GIOTTO’s performance with respect to various aesthetic measures on a large
database of about 11,500 graphs can be found in [6].

Even and Granot [9] presented two algorithms for placing rectangular modules and
connections between them in an orthogonal fashion in the plane. The size of the modules
and the positions of the terminals around the modules are part of the input. The edges
of the graph are attached to the terminals of the modules. Their first algorithm produces
planar orthogonal drawings starting from a visibility representation [17], [21] of the given
graph. Their second algorithm places the modules diagonally in the plane and routes the
edges around them. In both cases, the final orthogonal drawing has area at most(W+m)×
(H +m) whereW (H ) is the total width (height) of all modules, andm is the number of
edges of the graph. No edge has more than four bends and both algorithms run inO(m).

There is a short discussion in [3] about producing a drawing of a general (i.e., not
necessarily planar) biconnected graph with degree higher than four. The authors extend
their algorithm for maximum degree four graphs and they propose an approach in which
each vertex is represented by a vertical line segment consisting of multiple grid points.
The area of the resulting drawing is at most(m− n+ 1)× (m− n/2+ n2/2), wheren2

is the number of vertices of degree two. If we change the vertex representation to that
of a box of the same height as the line segment and width one, we obtain an orthogonal
drawing with area at most(m+ 1)× (m− n/2+ n2/2). The total number of bends is at
most 2m− 2n+ 4 and each edge has at most two bends. Drawings resulting from this
approach turn out to be very tall, skinny, and they have many crossings.

In this paper we present a different approach for dealing with orthogonal drawings
of simple graphs with degree higher than four. Vertices are represented by rectangular
boxes of perimeter less than twice the degree of the vertex. Our algorithm is based on
creating groups/pairs of vertices of the graph both before and during the construction
of the graph drawing. The orthogonal drawings produced by our algorithm have area
at most(m− 1) × (m/2+ 2). Two important properties of our algorithm are that the
drawings exhibit small total number of bends (less thanm), and that there is at most one
bend per edge. For more details on applications of this technique and for results on 3D
orthogonal drawing of high degree graphs see [13].

Independently, Biedl [1] recently presented a technique that produces orthogonal
drawings of high degree graphs with at mostm bends and((m+ 1+ 3n)/2) × ((m+
1 + 3n)/2) area [2]. For rather dense graphs, the above area bounds are better than
than the ones in this paper. However, for sparse graphs that have some nodes of high
degree, our area bounds are better than the ones of [1]. Notice that in practice, graphs
that are involved in visualization applications are typically rather sparse. For example,
in the large experimental study reported in [6] the average degree in all 11,500 graphs
considered was about 2.7 (in other words, the total number of edges was about 1.35n).
This is also the case with many other collections of graphs.

2. A Box Representation for Vertices and a Simple Algorithm. Clearly, a point
representation for vertices of a graph does not suffice if we want to remove any restriction
about the degree of its vertices. In this paper, we use arectangular boxto represent vertices
of the graph. Using boxes to represent vertices has the advantage that the area inside
the box can be used to record information (e.g., label, database tables, etc.) pertaining
to some vertex. From an aesthetic point of view, using boxes reduces significantly the
number of bends in the drawing, both total and per edge. We call the boundary edges
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Fig. 1. (a) A box with its sides and connectors, (b) a sample orthogonal drawing produced by the Simple
Algorithm.

of a boxsides. Figure 1(a) shows a box with its four sides,top, left, bottom, andright.
Each side has a number ofconnectorswhere all the edges of the graph incident to the
vertex that this box represents are attached to. Each connector point can be incident to
only one edge (except for the four corner connectors).

When a box is used to represent a vertex in an orthogonal drawing, its sides lie on lines
of the underlying integer grid and its connectors have integer coordinates. Also, the area
of the box is sufficiently large so that all the incident edges can be attached to different
connectors of the box boundary. We present now a Simple Algorithm for producing
an orthogonal drawing. The Simple Algorithm inserts the vertices in the drawing, one
vertex at a time. For simplicity, we assume that the given graph is biconnected, and that
an st-numbering [10] has been computed on the graph. Note that the edges of the graph
are directed from lower to higher numbered vertices, as a result of the st-numbering. The
size (and also the area) of each box to be inserted (sayv) is decided whenv is the next
vertex to be inserted in the drawing. The box size depends on the number of incoming
and outgoing edges associated with vertexv.

All outgoing edges of vertexv are attached to the top side connectors (see Figure 2(a)).
This implies that the width of the box is at least equal to the number of outgoing edges
of the vertex. If the box has only one outgoing edge, we still use two columns for the
box (i.e., a box with width one, see Figure 2(b)). We also use a box of width one for the
unique sink, that is the vertex with no outgoing edges.

Fig. 2. Various types of boxv: (a) seven incoming and four outgoing edges, (b) only one outgoing edge,
(c) only one incoming edge. (d) A degree two vertex represented by a box.
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The incoming edges ofv are split between the right and left side connectors. More
specifically, ifv hasindeg(v) incoming edges, thenbindeg(v)/2c incoming edges are
attached to the right side and the remainingdindeg(v)/2e incoming edges are attached
to the left side of boxv (see Figure 2(a)). Ifv has one or two incoming edges, we still
use two rows for the box (i.e., a box with height one, see Figure 2(c)). We also use a
box of height one for the unique source, that is the vertex with no incoming edges. Each
incoming edge ofv originally has vertical direction since it is an outgoing edge of some
other box which has already been placed. Then it bends only once, and finally assumes
horizontal direction before it is attached to the appropriate (right or left) side connector
of v.

At most dindeg(v)/2e new rows andoutdeg(v) (i.e., number of outgoing edges of
v) new columns need to open up when the Simple Algorithm inserts the next vertexv.
Vertices with less than two outgoing edges are the exception since two new columns
need to open up to accommodate their boxes. Also, vertices with at most two incoming
edges are exceptions, since two new rows need to open up for their boxes.

Before we describe how boxes are placed, we give some definitions. Ifv is the next
vertex to be inserted, we locatev’s incoming edges and the columns which they are
assigned to. The vertices of the drawing wherev’s incoming edges come from, arev’s
predecessors. Let us assume first thatindeg(v) is even. Since all the columns of the
current drawing are always ordered from left to right, we find the two columnsc1 andc2

holding the incoming edgese1 ande2, respectively, ofv with the following properties:

• c1 is to the left ofc2,
• there areindeg(v)/2− 1 columns holding incoming edges ofv to the left ofc1, and
• there areindeg(v)/2− 1 columns holding incoming edges ofv to the right ofc2.

Edgese1 ande2 are calledmedian incoming edgesof vertexv, and more specifically,
e1 is the left median incomingedge ande2 is theright median incomingedge ofv. If
indeg(v) is odd, there is only one median incoming edgee; in this case, ifc is the column
holdinge, there arebindeg(v)/2c columns holding incoming edges ofv to the left and
right of c. The function of the median incoming edge(s) is to establish where to split the
incoming edges between the right and left side ofv.

When the Simple Algorithm places vertexv, it first creates the box to representv and
then it opens up the appropriate number of new columns betweenv’s median incoming
edges and new rows above the current drawing, and placesv there. Ifv has only one
median incoming edge,v is placed to the right of this edge. Figure 1(b) shows a few
vertices placed by the Simple Algorithm, as part of a larger orthogonal drawing. If we
are given ann-vertexm-edge biconnected graph, then the following theorem holds for
the Simple Algorithm:

THEOREM2.1. Let G be a biconnected graph with n vertices and m edges. Consider
each edge as being oriented from its lower to its higher numbered vertex, for a given
st-numbering of G. The Simple Algorithm produces an orthogonal drawing of G in O(m)
time. Each vertexv with degree deg(v) is represented by a box whose perimeter is less
than2×deg(v). The width of the resulting orthogonal drawing is at most m+nout 1, and
the height is at most m/2+ nodd/2+ nin 1 + nin 2, where nout 1 is the number of vertices
with one outgoing edge, nodd is the number of vertices with an odd number of incoming
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edges, and nin 1 (nin 2) is the number of vertices with one(two) incoming edge(s). The
drawing has at most m bends, while no edge bends more than once.

PROOF. If we use the data structure proposed by Dietz and Sleator [7], we can answer
column order queries for two columns inO(1) time. This means that the (left or right)
median incoming edge(s) can be computed inO(indeg(v)) time, wherev is the vertex
that is being inserted. Hence, the total running time of the Simple Algorithm isO(m).
For each vertexv, the box representingv has width at mostoutdeg(v) and height at most
dindeg(v)/2e. Hence, the perimeter of each box is at most 2× deg(v).

The bounds on the area and the number of bends of the orthogonal drawing follow
from the above discussion. More specifically, the width involves the total number of
outgoing edges,m, and the fact that boxes with one outgoing edge require two columns.
The height involves half the total number of incoming edges,m/2, and the following
two facts: boxes with one or two incoming edges take up two rows; a boxv with an odd
number of incoming edges requiresindeg(v)/2+ 1

2 rows.

Notice that if the graph is of constant degree, then at mostO(1) time is spent each
time a vertex (box) is inserted, for a total ofO(n) running time. The reason we do not
attach any incoming edges to the bottom side of the box (except the corner connectors)
is twofold: First, the incoming edges of a box are not necessarily on contiguous grid
columns. Second, if some incoming edge was usingv’s bottom side, then we would have
to stretch the box which this edge was coming from (sayu) horizontally, in order to
create space for the rest ofu’s outgoing edges.

3. Algorithm BOX ORTHOGONAL: Preprocessing Phase. In this section we de-
scribe a new algorithm which produces orthogonal drawings for any given graph, with
better bounds than the Simple Algorithm of the previous section. We call this new algo-
rithm BOX ORTHOGONAL, and it has many similarities to the Simple Algorithm. It
uses boxes to represent vertices of the graph, except for vertices of degree one, two, some
vertices of degree three, and some special cases of degree four, which are represented
by points. We use the point representation for some small degree vertices mainly for
aesthetic reasons. If a degree two vertex with one incoming and one outgoing edge is
represented by a box (see Figure 2(d)), then there is clearly a waste of space.

Thepreprocessing phaseof the algorithm consists of two operations: First, we com-
pute a numbering of the vertices of the graph. This numbering specifies the order that
the vertices will follow to enter the drawing. The second operation is to perform a
grouping/pairing of some of its vertices. Apair consists of two vertices and agroup
consists of more than two vertices. All vertices belonging to the same group/pair are
considered and placed together by Algorithm BOXORTHOGONAL. As we will see
later, grouping/pairing contributes to orthogonal drawings with better bounds in terms
of area.

We start by describing the vertex numbering. We compute aninitial numberingfor
the given graph; this numbering may be modified (if necessary) resulting to thefinal
numbering. The numbering provides the vertex order required by the algorithm. Let us
assume that we are given a connectedn-vertex graphG. If G is biconnected, then the
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initial numbering is an st-numbering [10] of the vertices ofG. If G is not biconnected,
then we breakG into its biconnected components, and compute a numbering forG so that:

• there is a unique source (the source is assigned number 1),
• there are one or more sinks,
• the numbering is an st-numbering within each biconnected component, and
• there is exactly one sink per biconnected component, which has the highest number

among all vertices of the component.

The initial numbering of the vertices implies an orientation of the edges ofG, so that
every edge that connects two vertices is directed from the lower numbered vertex to the
higher numbered vertex. It is also clear that the initial numbering can be computed in
O(m) time, wherem is the number of edges ofG. A vertexv with b incoming anda
outgoing edges is called ab,a-vertex.

The purpose of modifying the initial numbering to the final numbering is to eliminate
specific patterns of vertex types that result in drawings with large area under the Simple
Algorithm. More specifically, we consider eachb,1-vertex whose outgoing edge enters
a vertexw which is neither a sink, nor a 1,a-vertex (a > 1), nor anotherb,1-vertex
(b ≥ 1). From theseb,1-vertices, we form a setB consisting ofb,1-vertices,v, that
satisfy exactly one of the following:

• b is odd andb ≥ 5,
• b = 1 or b = 3, andw is a 2,a-vertex (a > 1) so thatw’s other predecessor is not a

b′,1-vertex withb′ = 1 orb′ = 3.

We scan the vertices of directed graphG looking for b,1-vertices that belong to set
B. We reverse the direction of the edge between theb,1-vertex andw. As a result, the
b,1-vertex becomes a sink(b+ 1),0-vertex, andb+ 1 is an even number. Notice that
no edge reversal creates a newb,1-vertex. Also, no directed cycle is formed since one
of the vertices affected by the edge reversal is now a sink.

LetG′ be the directed graph resulting after all possible edge reversals.G′ implies many
numberings of the vertices that are consistent with the edge directions. We construct one
such numbering using a topological sorting algorithm inO(m) time. This is the order
that will be followed when placing the vertices in the drawing. Clearly, the whole process
for producing the final numbering takesO(m) time. The second operation performed
in the preprocessing phase is grouping/pairing. Vertex grouping/pairing takes place in
four passes. In the first pass, we scan the vertices ofG′ looking for specific patterns of
vertices. If a vertex satisfies more than one patterns, we only consider the first pattern it
satisfied in the following provided order. More specifically, we look for:

1. b,1-vertices (b ≥ 1) whose outgoing edge enters a 1,a-vertex (a > 1); we pair the
two vertices.

2. c,d-vertices such thatc > 1 is odd andd ≥ 2, which are predecessors of at least one
1,a-vertex (a > 1); we pair each such vertex with the 1,a-vertex.

3. c,d-vertices such thatc > 1 is odd andd ≥ 2, which have at least one predecessor
b,1-vertex (b ≥ 1); we pair each such vertex with its predecessorb,1-vertex.

In the second pass, we look for 2,a-vertices (a > 1) which have at least one prede-
cessorb,1-vertex (b even), or two predecessorb,1-vertices so thatb = 1 or b = 3. In
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the first case, we pair the 2,a-vertex with its predecessorb,1-vertex, and in the second
case we group the 2,a-vertex with both its predecessorb,1-vertices.

In the last two passes we only consider 1,a-vertices (a > 1) that have not been
grouped/paired in a previous pass. In the third pass, we scan the 1,a-vertices in decreas-
ing order of their assigned number. For as long as we encounter a 1,a-vertex whose
predecessor is also a 1,a-vertex, we put them both in the same group. The groups of
1,a-vertices formed this way are also calledchains. In the fourth and final pass, we scan
the remaining 1,a-vertices and we pair 1,a-vertices that have the same predecessor.
Vertex grouping/pairing can be completed inO(m) time.

LEMMA 3.1. After vertex grouping/pairing is complete, any1,a-vertex, v, which does
not belong to a group/pair has a predecessor, u, which is exactly one of the following:

1. u is a source,
2. u is a1,a-vertex that participates in some group/pair,
3. u is a c,d-vertex where c,d ≥ 2.

Also, there cannot be another1,a-vertex, v′, which does not belong to any group/pair
and has the same predecessor asv.

PROOF. Let us consider a 1,a-vertex,v, which does not belong to any group/pair. If
v’s predecessor,u, were ab,1-vertex, thenv andu would have formed a pair in the first
pass. Therefore,u can be either a source, or another 1,a-vertex, or ac,d-vertex where
c,d ≥ 2. If u is a 1,a-vertex, it must belong to some group/pair, because if it did not,
v andu would have formed a chain. Finally, if there were another 1,a-vertex,v′, which
did not belong to any group/pair and had vertexu as its predecessor, thenv andv′ would
have been paired in the fourth pass.

The end of the grouping/pairing operation is also the end of the preprocessing phase.
The drawing phaseis the phase that follows preprocessing. This is the time when we
actually draw the resulting (after the preprocessing phase) graph in the plane.

4. Algorithm BOX ORTHOGONAL: Placement Techniques. One disadvantage of
the Simple Algorithm is that vertices with one outgoing edge and sinks contribute extra
to the width of the drawings (see Theorem 2.1). In Algorithm BOXORTHOGONAL,
we follow the general rules of the Simple Algorithm for creating and placing boxes
of vertices in the orthogonal drawing. However, we introduce a different placement
technique for vertices with one outgoing edge, and this is discussed in Section 4.1. The
way we use to insertb,1-vertices may call for a special placement of some vertices with
at least two incoming and at least two outgoing edges. This is presented in Section 4.2.
Finally, Section 4.3 discusses how to insert sources and sinks. Except for the situations
described in Sections 4.1–4.3 which immediately follow, any other individual vertex
insertion in the drawing is handled in a way similar to the Simple Algorithm. In what
follows, we assume thatv is the next vertex considered for insertion by the drawing
algorithm.



Efficient Orthogonal Drawings of High Degree Graphs 107

Fig. 3.Placingv with one outgoing edge to the top ot its predecessoru.

4.1. Vertexv Has Only One Outgoing Edge. Let us first consider the case where the
b,1-vertexv has three or more incoming edges. In this case, we use a box to representv.
The width of the box is always one. The height of the box is typicallybindeg(v)/2c− 1.
However, if indeg(v) = 3 or vertexv is paired with another vertex that followsv in
the drawing phase, then the height isbindeg(v)/2c. We will see pairs of that type in
Section 5.1 (where ab,1-vertex is paired with a 1,a-vertex) and Section 5.2 (where
a b,1-vertex is paired with a vertex with an odd number of more than one incoming
edges). In the case where theb,1-vertexv has one or two incoming edges, we represent
v with a point in the plane.

Before we actually place vertexv in the drawing, we compute its median incoming
edge(s). Ifv has only one median incoming edge, we placev directly above boxu where
its median incoming edge comes from (see Figure 3(a)). Note that half ofv’s incoming
edges are attached to the left side ofv, and the other half to the right side ofv. If vertex
v has both left and right median incoming edges, we pick one of the two for placingv,
depending on which portion of the row ofv’s top side we want to reuse (if any). For
example, placingv directly above the box where its right median incoming edge comes
from (see Figure 3(b)) allows reusing the portion of rowr to the right ofv. Figure 3(c)
demonstrates the opposite case wherev is placed above the box where its left median
incoming edge comes from. This row reuse is important when placing a pair containing
ab,1-vertex.

When we insertb,1-vertices our goal is to ensure that all boxes placed above a single
common predecessor vertex share each other’s columns. This is shown in Figure 3(d),
wherev is the next vertex to be inserted andu is its predecessor above whichv is placed.
As we can see in Figure 3(d), we use the next available column ofu’s outgoing edges
from right to left, and we attach boxv along that column. Note that there is no bend in
the edge connecting the box of anyb,1-vertex placed aboveu and boxu itself.

If vertex v is represented by a point, we follow the same procedure except that we
attachv along the next available column ofu’s outgoing edges from left to right (see
Figure 4(a)). The reason we do not mixb,1-vertices represented by points and boxes
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Fig. 4. (a) Placingv above its predecessor vertexu whenv is a point, (b) bending an edge in order to reuse a
column is avoided, (c) vertexv opens up one new column.

is to avoid having to bend one of the incoming edges of the vertex represented by a
point. This is illustrated in Figure 4(b), where we bend edgee in order for boxv′ (which
follows later) to reuse a column. Moreover, ifv is a 2,1-vertex, we use its right median
incoming edge for placing it (see Figure 4(a)).

The advantage of placingb,1-vertices in this way is that we do not have to open up
any new columns to insert such a vertex. We simply use existing columns. The only
exception to this is when both of the following two situations hold: (a) We place the first
b,1-vertex (b > 2) v above a vertexu with at least two outgoing edges, and (b) vertexv

is represented by a box. This is depicted in Figure 4(c):b,1-vertexv opens up one new
column to the right of boxu. A b,1-vertex whose insertion requires opening up one new
column in the drawing is acolumn-taker. On the other hand, ab,1-vertex that entirely
reuses existing columns when it is placed in the drawing is acolumn-saver.

4.1.1. Placing v Above Another b,1-Vertex. Let us assume thatb,1-vertexv is the
next vertex to be inserted into the drawing. According to the discussion above, we find
its predecessor vertexu above whichv is going to be placed. Sometimes, it happens
that vertexu is ab,1-vertex too. From an implementation standpoint, eachb,1-vertex
“remembers” (by keeping a pointer) its closest ancestor vertex with at least two outgoing
edges above which it is placed. We call this vertex thecover boxof theb,1-vertex. Let
w beu’s cover box whenv is about to be inserted. We distinguish two cases:

1. Vertexu is represented by a point. If vertexv is also a point, we simply insert it right
aboveu as shown in Figure 5(a). Ifv is a box, we move columncu containingu
to occupy the next available column ofw’s outgoing edges from right to left. Any
columns ofw’s outgoing edges holding onlyb,1-vertices represented by points that
are to the right of columncu are now shifted to the left. This is depicted in Figure 5(b)
(before the move), and Figure 5(c) (after the move of columncu and insertion ofv).

2. Vertexu is represented by a box. If vertexv is itself a point, we simply insert it above
u as shown in Figure 6(a). Otherwise (i.e., vertexv is a box), we have two further
subcases:
(a) Vertexv does not have any incoming edges fromb,1-vertices represented by

boxes, placed in columns to the left ofu’s column, and having the same cover
box. We move the column with boxu to occupy the next available column with
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Fig. 5. Insertingv above its predecessoru whenu is a point.

w’s outgoing edges from right to left. Figure 6(b) shows the situation beforev’s
insertion, and Figure 6(c) shows the result afterv is inserted. Note that when we
moveu, the rows that boxu is occupying in Figure 6(b) are removed and then
re-opened to placeu in Figure 6(c).

(b) Vertexv receives incoming edges from one or moreb,1-vertices represented by
boxes, placed in columns to the left ofu’s column, and having the same cover
box. Letu′ be one of these vertices located at the column which is the closest to
the column of vertexu. We move boxu to occupy a position immediately to the
right of the column holding vertexu′. We placev aboveu so that edges(u, v)
and(u′, v) do not have any bends (see Figure 6(d) for the situation afteru has
moved). Note that anyb,1-vertex that comes later and has to be placed abovev,
can do so without requiring any move of any column.

Fig. 6. Insertingv above its predecessoru whenu is a box.
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PROPOSITION4.1. Any b,1-vertex placed directly above another b,1-vertex u is a
column-saver and has the same cover box as u.

PROOF. Immediate from the discussion in this subsection.

PROPOSITION4.2. There is at most one column-taker among all b,1-vertices with the
same cover box.

PROOF. From Proposition 4.1, we have that anyb,1-vertex placed above anotherb,1-
vertex is a column-saver. In the case we have a cover box with two or more outgoing
edges, ab,1-vertex represented by a box and attached along the rightmost outgoing edge
of the cover box is a column-taker (see Figure 4(c)). All otherb,1-vertices of the cover
box reuse existing columns (see Figure 3(d)).

4.2. Vertexv Has at Least Two Incoming and Two Outgoing Edges. We locate the
median incoming edge(s) ofv and placev as described in the Simple Algorithm. More
specifically, we find vertexu wherev’s (left) median incoming edge comes from, and we
open upoutdeg(v) new columns immediately to the right ofu. However, as we explain
in the rest of this subsection, this is not always possible ifu happens to be a vertex with
only one outgoing edge. Consider the case where all the following hold (see Figure 7(a)):

1. Vertexu has only one outgoing edge,
2. vertexu is placed directly above another boxw,
3. there is at least one other vertexu′ havingw as a cover box, and
4. vertexu′ is placed to the right ofu.

In this situation, we cannot open upoutdeg(v) new columns immediately to the right
of u because that would distort (stretch) the box representing vertexw. Instead, we open
up these new columns immediately to the right of the rightmost box that hasw as a cover
box and placev there (see Figure 7(b)). After we placev as shown in Figure 7(b), it is

Fig. 7. (a) Box v cannot be inserted immediately to the right of its predecessoru, (b) routing some ofv’s
incoming edges tov’s bottom side, (c) placing sourcev.
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possible that there are incoming edges ofv which are supposed to attach tov’s right side,
but these edges are now along columns located to the left of boxv. This happens because
we moved boxv away from the column carrying its (left) median incoming edge(u, v).
If this is the case, we do the following:

1. Identify all the vertices of the current drawing which
• have outgoing edges that enter vertexv, and
• are located in betweenv’s (left) median incoming edge and boxv itself.

2. For each one of the vertices identified in the previous step, we draw an edge that exits
the box of the vertex from the top right connector having horizontal direction and
then bends once to enter boxv through its bottom side.

This is all explained in Figure 7(b). Recall thatu is the vertex wherev’s (left) median
incoming edge comes from. We also assume that verticesu′ andu′′ are all the vertices
identified in Step 1 of the above procedure. Note that in all cases, the vertices identified
in this step areb,1-vertices having the same cover boxw. The number of incoming
edges of these vertices is either three or an even number (see the previous section on
the preprocessing phase), and therefore there is no other edge that exits the same top
connector having horizontal direction. If some of these vertices are represented by points,
the edge is drawn from the point to the right and then turned upward to enterv.

If an edge that enters boxv from its bottom side comes from a column-takerb,1-
vertex, then we have this edge attach to one of the two corners of the bottom side of box
v (see the way edge(u′′, v) is routed in Figure 7(b)). On the other hand, if we have more
edges enteringv from its bottom side and boxv’s width is not sufficient to accommodate
all of them, we makev as wide as necessary. The phenomenon of growing the width of
the box representing a vertex in order to accommodate incoming edges entering through
the bottom side of the box, is calledbox inflation. We also say that these incoming edges
cause box inflation.

LEMMA 4.1. Box inflation can only be caused by incoming edges that originate at
column-saver b,1-vertices.

PROOF. Clearly, the vertices that cause box inflation are alwaysb,1-vertices with the
same cover box. From Proposition 4.2 we know that at most one column-taker can be
placed above a single cover box. The edge that comes from this column-taker can never
cause box inflation when it is routed to the bottom side of another box, because it is
forced to always attach to a corner of that box. Therefore, the statement of the lemma
holds.

Finally, when we attach the incoming edges of a box to a side (right or left) of a
box, we try to avoid unnecessary crossings. Namely, the incoming edge (column) that
is closer to the box should attach to connectors of lower y-coordinate of the side of the
box.

4.3. Vertexv Is a Source or a Sink. The initial numbering of the vertices of the given
graph yields one source and at least one sink. However, more sources/sinks may be
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created after modifying the initial numbering. A source is inserted as a box of height
one, and can be placed without opening up any new rows (except for vertex number 1
which is the original source). An example is depicted in Figure 7(c), where the box of
sourcev is placed right off the end of the right margin of the current drawing.

Placing a sink follows the same rules as placingb,1-vertices discussed above. In
order to maximize row reuse, we can delay the placement of all sinks until the very end
(in fact we can ensure this by assigning appropriate numbers to them). This is possible
since sinks do not participate in groups/pairs. Placing sinks does not require opening up
any new columns.

5. Grouping/Pairing Problematic Vertices. Another disadvantage of the Simple Al-
gorithm is that vertices with one, two, or an odd number of three or more incoming edges
contribute extra to the height of the drawings (see Theorem 2.1). We call these vertices
theproblematicvertices of the drawing phase. In Section 3 we discussed how problem-
atic vertices can be assigned to groups/pairs in the preprocessing phase. When the time
comes to insert a group/pair of vertices to the drawing, we create the boxes of the vertices
in a way similar to the Simple Algorithm, and then we place all vertices involved in the
group/pair in one step. In Sections 5.1–5.3 we show how different types of groups/pairs
are placed in the drawing.

If there are problematic vertices that were not grouped/paired in the preprocessing
phase, we try to group/pair them as we place them, that is during the time the drawing
phase is going on. Thanks to the grouping/pairing of problematic vertices, we are able to
produce area-efficient drawings occupying at mostm columns and at mostm/2+c rows
(c is a small constant). We assume thatv is the next vertex considered by the drawing
algorithm for insertion.

5.1. Vertexv Has Only One Incoming Edge. If the next vertex to be insertedv is a 1,a-
vertex (a > 1), then we have the following cases, assuming thatv was grouped/paired
in the preprocessing phase:

• Vertexv is the first vertex of a chain of at least two 1,a-vertices. We open up a new
line, and we place the boxes of all the vertices of the chain horizontally, as shown in
Figure 8(a). Notice that the boxes of the chain are placed right off the end of the right
or left margin of the current drawing so that one row is reused.
• Vertexv and another 1,a-vertex have the same predecessor and belong to the same

pair. We open up one new row and we place the two boxes of the pair right off the end
of the right and left margins of the current drawing, as shown in Figure 8(b). Hence,
one row is reused.
• Vertexv and ab,1-vertex (b ≥ 1) belong to the same pair. Then, theb,1-vertex isv’s

predecessor andv is placed along the row of the top side of the box of theb,1-vertex
so that no new row opens up. The situation is described in Figure 8(c) ifb is even, and
in Figure 8(d) ifb is odd. Note thatv is again placed right off the end of the right or
left margin of the current drawing.

In case the 1,a-vertexv was not assigned to any pair or chain in the preprocessing
phase, we try to place it without opening up any new rows. We have two options depending
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Fig. 8.Placing a group/pair containing a 1,a-vertex.

on the type of predecessor that vertexv has (see Lemma 3.1):

• If vertex v’s predecessor is either a source or another 1,a-vertex belonging to some
pair or chain,v is placed right next to the box of its predecessor; in this placement, two
rows are reused. Figure 8(e) illustrates this whenv’s predecessor belongs to a chain.
• If v’s predecessor,u, is a c,d-vertex wherec,d ≥ 2, then we look for the most

recently placed source in the drawing, sayvs. We draw an edge from the bottom ofu
toward the row ofvs’s top side and placev next tovs without opening any new rows,
as shown in Figure 8(f). Note that such a placement is always possible since there is
no edge between vertexv and sourcevs.

LEMMA 5.1. Let m(1,a)be the total number of incoming edges of a group/pair in which
a 1,a-vertex participates. Inserting this group/pair to the drawing requires opening up
at mostbm(1,a)/2c new rows.

PROOF. If there are only 1,a-vertices in the group/pair, then only one new row opens up
in the drawing, as discussed above. Since such a group/pair has at least two 1,a-vertices,
the statement of the lemma clearly holds. If ab,1-vertex and a 1,a-vertex belong to the
same pair, then we have two cases:

• If b is even then we open upb/2 new rows for theb,1-vertex and no new rows
for the 1,a-vertex. Clearly, the number of rows we open up for the pair isb/2 =
b(b+ 1)/2c = bm(1,a)/2c.
• If b is odd then we open updb/2e new rows for theb,1-vertex and no new rows

for the 1,a-vertex. Clearly, the number of rows we open up for the pair isdb/2e =
(b+ 1)/2= b(b+ 1)/2c = bm(1,a)/2c.

5.2. Vertexv Has an Odd Number of Incoming Edges. Let us assume now that the
vertex to be inserted next,v, has an odd number of more than one incoming edges.
Note thatv also has at least two outgoing edges. Ifv belongs to a pair, we distinguish
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Fig. 9. Placing a vertexv with an odd number of incoming edges when it is paired with a (a) 1,a-vertex,
(b) b,1-vertex.

two cases. In both of these cases, vertexv is inserted in a way similar to the Simple
Algorithm. If v’s median incoming edge happens to be ab,1-vertex, we may have
to use the special placement forv described in Section 4.2. The two cases are as
follows:

• Vertexv is the predecessor of a 1,a-vertex and the two vertices form a pair. First we
insert vertexv. Then we attach the edge connecting the two vertices of the pair to the
top right corner connector ofv and place the 1,a-vertex outside the current drawing,
as shown in Figure 9(a).
• Vertex v belongs to the same pair with ab,1-vertex (b ≥ 1) which is one ofv’s

predecessors. We first insert the predecessorb,1-vertex and then we place vertexv
making sure that the top side of the box representing theb,1-vertex and the bottom
side of boxv use the same row (see Figure 9(b)). We assume that theb,1-vertex has
been placed higher than the rest ofv’s predecessors; this can be achieved by delaying
the placement of theb,1-vertex until it is time to placev.

If v were not paired in the preprocessing phase, we try to pair it with the first vertex
v′ to be inserted afterv which is not a source and has three or more outgoing edges.
This pairing takes place during the drawing phase. Ifv′ does not already belong to any
group/pair and has one of the following properties, then the two vertices can be paired:

• v′ andv are adjacent,
• v′ andv are not adjacent andv′ has an odd number of incoming edges greater than

one,
• v′ andv are not adjacent,v′ has an even number of incoming edges, and the median

incoming edge ofv is not between the two median incoming edges ofv′.

We placev andv′ so that one row is reused. This is illustrated in Figure 10(a)–(c) for
the three different cases ofv′ (see above). Figure 10 clearly shows that the top side ofv

and the bottom side ofv′ share the same row. This type of pairing is not always possible
though. If we are unable to pairv with v′, then we have two different options:

• If there were another vertexu with an odd number of incoming edges that we were
unable to pair in the past, then we pairv with u. Vertexu has already been placed,
so we now place vertexv so that one row is reused, as shown in Figure 11(a). More
specifically, the bottom side ofv and the top side ofu use the same row. Notice that
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Fig. 10.Pairing vertexv with the vertex followingv so that one row is reused.

v is placed at a higher position thanu (we open up the appropriate number of rows
there), and it is possible that some ofv’s incoming edges are attached to the bottom
side of their corresponding boxes.

This type of vertex insertion would not have been possible if at least one ofv’s
incoming edges were coming from ab,1-vertex. This is because the outgoing edge
of any b,1-vertex cannot leave the bottom side of the box of theb,1-vertex going
down without crossing another box. However, we never have such a case here since
no predecessor ofv is ab,1-vertex (if it were,v would have been paired with it).
• If there is no unpaired vertexu with an odd number of incoming edges inserted to

the drawing beforev, we simply placev in the drawing as described in the Simple
Algorithm (see Figure 11(b)).

LEMMA 5.2. Let modd be the total number of incoming edges of a pair that contains a
vertex with an odd number of more than one incoming and at least two outgoing edges.
Inserting this pair to the drawing requires opening up at mostbmodd/2c new rows.

Fig. 11.(a) Pairingv with an existing unpaired vertexu, (b) placing unpaired vertexv.
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PROOF. Let v be a vertex withmv incoming edges (mv > 1 is odd) and at least two
outgoing edges. Ifv were paired in the preprocessing phase, we distinguish two cases:

• Vertexv belongs to the same pair with a 1,a-vertex. We open updmv/2e new rows
for vertexv and no rows for the 1,a-vertex. Clearly, the number of rows we open up
for the pair isdmv/2e = b(mv + 1)/2c = bmodd/2c.
• Vertexv belongs to the same pair with ab,1-vertex (which hasb incoming edges).

First we open up at mostdb/2e new rows for theb,1-vertex. Then we place vertex
v so that it reuses one row (see Figure 9(b)). Because of the row reuse, onlybmv/2c
new rows are required in order to place the box of vertexv. Clearly, the number of
rows we open up for the pair is at mostdb/2e + bmv/2c. If b is odd, then the total is
at most ⌊

b+ 1

2

⌋
+
⌊mv

2

⌋
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⌊
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Let us now assume that vertexv is paired during the drawing phase. In this case,v

forms a pair with the immediately following vertexv′ (see Figure 10) which hasmv′

incoming edges. Since one row is reused, we open updmv/2e new rows to placev and
dmv′/2e − 1 new rows to placev′. For the pair, at mostb(mv + mv′)/2c = bmodd/2c
rows are required no matter whethermv′ is odd or even. For the situation of Figure 11(a)
where vertexv is paired with a previously inserted and unpaired vertexu, we can argue
in a similar way to show that the number of rows for the pair is at mostbmodd/2c.

LEMMA 5.3. There may be at most one vertexv with an odd number of more than one
incoming and at least two outgoing edges which is not paired in the end of the drawing
phase.

PROOF. Let us assume that there is a vertexv with mv incoming edges (mv > 1 is odd)
and at least two outgoing edges, which was inserted to the drawing by itself (i.e., not
as a member of a pair). There are three possibilities for any other vertexw with an odd
number of more than one incoming and at least two outgoing edges which is inserted to
the drawing after vertexv:

1. Vertexw was already paired in the preprocessing phase.
2. Vertexw is paired with vertexw′ 6= v in the drawing phase.
3. Vertexw is paired with vertexv in the drawing phase.

In cases 1 and 2, vertexv remains unpaired afterw is inserted to the drawing. In case 3
(and afterw is inserted), there is no unpaired vertex with an odd number of more than
one incoming and at least two outgoing edges any more. Therefore, at any time during
the drawing phase as well as in the end of the drawing phase, the statement of the lemma
holds. The unique unpaired vertexv opens updmv/2e new rows when it is placed in the
drawing.
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Fig. 12.Placing a 2,a-vertex when it is grouped/paired with its predecessor(s).

5.3. VertexvHas Two Incoming Edges. If vertexv has two incoming edges and belongs
to a group/pair, we distinguish the following cases:

• Vertexv is paired with one of its predecessors which is ab,1-vertex (b even), sayu.
We place verticesu andv one after the other so that the bottom side ofv and the top
side ofu share the same row (see Figure 12(a)).
• Vertexv is grouped with both its predecessors, sayu andu′. In Figure 12(b), we show

how we can reuse rows and placeu,u′, v opening up only four new rows; in this case,
bothu andu′ are 3,1-vertices. Note that this placement also saves one bend from edge
(u, v). Similar row reuse can take place when at least one ofu andu′ is a 1,1-vertex.

Note that in both of the above cases, placing the box of vertexv opens up only one
new row in the drawing. Before we describe how to insert a 2,a-vertexv which does
not belong to any group/pair, we give some definitions. A group of 2,a-vertices which
have already been placed is calledopen, if and only if all the following hold:

• The group is formed during the drawing phase.
• No member of the group belongs to any other group/pair.
• The box of each vertex of the group shares one row with the box of some other vertex

of the same group.

Clearly, if there arer 2,a-vertices in such an open group, then the placement of
their boxes requires a total ofr + 1 rows in the drawing (r ≥ 1). Figure 13(a) shows
an example with an open group of three 2,a-vertices. An open group of 2,a-vertices
becomes closedthe moment when a new 2,a-vertexu is placed in the drawing so thatu
shares two rows with the set of boxes of the open group. A closed group ofr 2,a-vertices
requiresr rows in the drawing. If the next vertex to be inserted into the drawing is a
2,a-vertex which was not grouped/paired in the preprocessing phase, we try to assign
this vertex to a group/pair at insertion time. We have the following options:

• We consider the first vertex to be inserted afterv which is not a source, sayv′. If v′

has an even number of more than two incoming edges, at least two outgoing edges,
and the columns ofv’s incoming edges are not positioned between the columns of the
left and right median incoming edges ofv′, then we pairv with v′ and we place them
as shown in Figure 13(b). Note that the top side ofv and the bottom side ofv′ share
the same row.
• If there exists an open group of 2,a-vertices, then we placev so thatv shares one or

two rows with the boxes of the open group. Note thatv can always be placed so that
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Fig. 13. (a) An open group of three 2,a-vertices placed in four rows, (b) placingv andv′ reuses one row,
(c) adding a 2,a-vertexv to an open group sharing one row.

one row is shared, even if this placement requires one or both incoming edges ofv

to attach to the bottom side of their corresponding boxes and extend in a downward
direction. This is shown in Figure 13(c), where vertexu is a member of the open group.
Such a placement is always possible since none ofv’s predecessors is ab,1-vertex.
If v shares one row with the rest of the open group, then the group remains open; if it
shares two rows, then the group is now a closed group.
• If vertexv can neither be paired with the next incoming vertex nor join an open group,

then we simply placev in a way similar to the Simple Algorithm. Note thatv now
starts a new open group, and opens up two new rows in the drawing.

PROPOSITION5.1. At any time during the drawing phase, there can be at most one open
group of2,a-vertices.

PROOF. In order to have two or more open groups, we must have a situation where
an open group already exists in the current drawing and a newcomer 2,a-vertex
starts a new open group. However, this is a contradiction, since the newcomer 2,a-
vertex has to join the existing open group (if no other grouping/pairing for this vertex is
possible).

LEMMA 5.4. Let V2,a be the set of all2,a-vertices placed by Algorithm BOXORTHO-
GONAL. The total number of new rows created by the insertion of all vertices in V2,a in
the drawing is at most|V2,a| + 1.

PROOF. We have the following cases with respect to the grouping of the vertices ofV2,a

in the end of the drawing phase:

1. Each vertexv in V2,a was grouped/paired either in the preprocessing or the drawing
phase with vertices not inV2,a (i.e., no open or closed groups of 2,a-vertices were
formed). In either case, the insertion of vertexv reuses one row and opens up only
one new row. So, all the vertices inV2,a collectively open up at most|V2,a| new rows.
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2. There is at least one closed group of 2,a-vertices, but there is no open group of
2,a-vertices. We have seen that a closed group requires as many rows as the number
of 2,a-vertices it contains. If we combine this with case 1 above, we have that all the
vertices inV2,a collectively open up at most|V2,a| new rows.

3. There is one open group of 2,a-vertices. From Proposition 5.1 above, we have that
there cannot be any other open group. We have also seen that the number of rows
that the members of an open group require is at most one more than the number of
2,a-vertices it contains.

By combining the above cases, we obtain that all the vertices inV2,a collectively open
up at most|V2,a| + 1 new rows.

6. The Drawing Algorithm and Its Analysis. After the preprocessing phase is com-
plete, Algorithm BOXORTHOGONAL considers the vertices in the order of the final
numbering, places them in the plane following the special instructions discussed above
for groups, pairs, and individual vertices, and draws the edges. The vertices are repre-
sented as described above (point or box), depending on the number of their incoming
edges. Here is an outline of our algorithm:

Algorithm BOX ORTHOGONAL

Input: A graphG.
Output: An orthogonal drawing ofG.

1. Compute an initial numbering ofG having the properties specified in
Section 3. IfG is biconnected, the initial numbering is an st-numbering.

2. Modify the initial numbering to obtain the final numbering, as discussed
in Section 3.

3. Apply the grouping/pairing procedure on the vertices ofG.
4. Place vertexv1 using a box of height one and widthoutdeg(v1)− 1.
5. REPEAT

(a) Consider the next vertexvi according toG’s final numbering.
(b) If vi has already been placed, then continue with the next vertex.
(c) If vi belongs to a group/pair, then place all members of this

group/pair as described in the previous section for the specific kind
of group/pair.

(d) If vi is a problematic vertex which does not belong to any group/pair,
then try to group/pair it in the drawing phase and place it as discussed
in the previous section.

(e) If vi is none of the above, then place it as described in the Simple
Algorithm, while taking into account the special situations discussed
in Sections 4.1–4.3.

6. UNTIL there are no vertices left.
7. End.

THEOREM6.1. Algorithm BOXORTHOGONAL produces an orthogonal drawing of
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any graph G with m edges in O(m) time. Each vertexv with degree deg(v) > 3 is
represented by a box whose perimeter is less than2× deg(v). The produced orthogonal
drawing has the following properties:

• the width is at most m− 1,
• the height is at most m/2+ 2,
• the total number of bends is at most m− 2, and
• each edge has at most one bend.

PROOF. The key to computing the running time of the algorithm is to find out how
much time we spend when a vertex is inserted. In order to balance its incoming edges
between the left and the right side of its box, we have to compute its (left and right)
median incoming edge(s) first. In other words, we need to know the relative order among
all the columns holding the incoming edges of the vertex to be inserted. This is not
a trivial task since new columns can be inserted arbitrarily anywhere in the current
drawing.

If we use the data structure proposed by Dietz and Sleator [7], we can answer
column order queries for two columns inO(1) time. This means that if we use a
linear time median finding algorithm (e.g., see [4]), the (left and right) median in-
coming edge(s) can be computed inO(indeg(v)) time, wherev is the vertex that is
being inserted. Clearly, the total running time of the algorithm isO(m). However,
if we wish to attachv’s incoming edges to the left and right side ofv in a way
that avoids as many crossings as possible, we need to know the total order of all
the incoming edges ofv. This order can be computed in the end collectively for all
edges inO(m) time using bucketsort. Then a simple scan of all the columns from
left to right decides the correct connector where each edge will be attached (see Fig-
ure 2(a)).

As we saw in the previous sections, if a vertexv is represented by a box, then the
height of the box is always at mostdindeg(v)/2e. The width of any box representing a
vertexv is at mostoutdeg(v), except in the case where the box is widened due to box
inflation. In this case, the width of the box can grow up tobindeg(v)/2c. In other words,
the width of any box representing a vertexv is max{outdeg(v), indeg(v)/2}. Clearly, the
perimeter of the box is less than 2× deg(v), at all times.

In order to compute the total area taken by an orthogonal drawing produced by the
algorithm, we have to count the total number of rows and columns in the drawing that
are occupied by edges and/or boxes. Let us start with the rows. As we have seen, for
each box we balance its incoming edges. This means that we attach half of them to the
left and the other half to the right side of the box.

With the only exception of the problematic vertices, the number of rows that the
algorithm opens up in the drawing in order to insert the box of any other vertex, is never
more than half the number of the incoming edges of the vertex (see Simple Algorithm
and Theorem 2.1). Recall that problematic vertices are 1,a-vertices, 2,a-vertices, and
vertices with an odd number of incoming and at least two outgoing edges. These vertices
are grouped/paired with other vertices. The result of this is to introduce row reuse in
order to minimize the number ofextra rows that the boxes of these vertices require.
The following facts show how many extra rows of the final drawing must be attributed
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to problematic vertices. Note that the word “extra” here means “in addition to half the
number of the incoming edges.”

1. From Lemma 5.1 and Section 5.1 we have that the insertion of 1,a-vertices to the
drawing contributes no extra rows no matter whether these vertices are grouped/paired
or not.

2. From Lemma 5.3 we have that at most one vertex with an odd number of more
than one incoming and at least two outgoing edges contributes one extra row to the
drawing. Any other such vertex participates in a pair which requires no extra rows
(see Lemma 5.2).

3. From Lemma 5.4 we have that at most one unit has to be added to the total number of
rows, and this unit comes from the 2,a-vertex which started the unique open group
(if there is one in the end of the drawing phase).

Also keep in mind that the following hold:

1. Unpaired 1,1-vertices and sinks with one or three incoming edges can always be
placed so that they share rows with other vertices of the same type or with other
boxes. Also, 3,1-vertices that do not belong to any group/pair may be reduced to a
point (they are boxes originally) so that each one of them occupies only one row.

2. Vertexv1 (i.e., the first vertex to be inserted to the drawing) occupies two rows but
it can always share one row with one 1,a-vertex that hasv1 as its predecessor. No
other source opens up any new rows (see Section 4.3).

Hence, we have that the total number of rows in the final drawing is at mostm/2+1+1+1
and the height is at mostm/2+ 3− 1= m/2+ 2.

Let us now count the total number of columns in the final drawing. From Section 4.3,
we have that sinks do not open up any new columns when they are inserted. Any other
vertexv with outdeg(v) ≥ 1 outgoing edges requires opening up at mostoutdeg(v) new
columns atv’s insertion time. From this, we have that the total number of columns the
algorithm opens up simply to insert vertices is at mostm. However, recall the following
facts:

1. From Section 4.1 we have that mostb,1-vertices can be placed so that they reuse
already existing columns. Suchb,1-vertices do not open up any new columns and
are known as column-savers. LetCs be the total number of column-savers.

2. Some vertices may experience vertex inflation (see Section 4.2). LetCi be the total
number of columns in the final drawing that are attributed to vertex inflation.

Because of these two observations, the total number of columns in the final drawing is
adjusted tom+ Ci − Cs. From Lemma 4.1, we have thatCi ≤ Cs, and therefore the
width of the drawing is at mostm+ Ci − Cs − 1≤ m− 1.

An important advantage of this algorithm is that it introduces very few bends. More
specifically, every edge of the drawing has at most one bend, no matter whether it enters
a box through its right, left, or bottom side. Also, all boxes/points representing sinks
or vertices with only one outgoing edge have one incoming edge with no bends (see
Figures 3 and 4). Clearly, there is at least one sink and at least oneb,1-vertex in the
final drawing of any given graph with more than two vertices. Hence, the total number
of bends of any drawing under Algorithm BOXORTHOGONAL is at mostm− 2.
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Fig. 14.Pairing two vertices in the drawing phase so that one row is shared.

7. Additional Pairing in the Drawing Phase. The pairing step that we describe here
is not required in the drawing phase in order to prove the area and bends upper bounds for
Algorithm BOX ORTHOGONAL (see the previous section). However, if it can be done,
it can improve the area of the resulting drawing. Let us consider a vertexv with an even
number of more than two incoming edges and at least two outgoing edges, which was not
grouped/paired in the preprocessing phase. Let us also assume thatv is the next vertex to
be inserted into the drawing by Algorithm BOXORTHOGONAL. We try to pairv with
the first vertex to be inserted afterv which is not a source, sayv′. If v′ already belongs to a
group/pair, then we do not pairv and we simply insert it in a way similar to the Simple Al-
gorithm. If, on the other hand,v′ does not participate in any group/pair, we check whether

• the column of the (right) median incoming edge ofv′ is positioned to the left of the
column of the left median incoming edge ofv, or
• the column of the (left) median incoming edge ofv′ is positioned to the right of the

column of the right median incoming edge ofv.

In either of the above two cases we pairv with v′ and we place the two vertices in the
drawing so that one row is reused. This is illustrated in Figure 14(a) which depicts the first
case, and in Figure 14(b) which depicts the second case. Observe that the top side ofv

and the bottom side ofv′ share the same row. If we have none of the above two cases, then
no pairing is possible; in this case, we simply insertv and continue with the next vertex.

8. Further Optimizations. In practice, we expect the orthogonal drawings produced
by Algorithm BOX ORTHOGONAL to exhibit better bounds in terms of height, width,
and total number of bends. More specifically, if more row reuse can take place when a
new vertex is inserted, we take it. This may be done either during the drawing phase, or
at arefining phasefollowing the conclusion of the algorithm. For example, additional
row reuse (and therefore smaller height for the drawing) results from pairing that we do
in the drawing phase for vertices with an even number of more than two incoming and
at least two outgoing edges (see the previous section).

As far as the width of the drawing is concerned, we expect it to be smaller than the
upper bound for three reasons: First, if there are vertices for which some outgoing edge
exits the vertex horizontally (and not vertically), the width of the vertex may be decreased
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Fig. 15.Reshuffling the order ofv’s outgoing edges to eliminate crossings.

by one unit, as shown in Figures 8(a),(e), 9(a), and 10(a) (recall that vertexv originally
occupiesoutdeg(v) columns). Second, when some of the incoming edges of a vertex
v enter its bottom side (situation discussed in Section 4.2), we do not always have to
widen the vertex by the number of these incoming edges, since there are usually available
connectors in the bottom side ofv. Third, we may shift some already placed boxes
horizontally in order to reuse columns. This can be done at a final refining/compaction
phase after the end of the algorithm.

The number of edges that have no bends in the drawing produced by Algorithm
BOX ORTHOGONAL may be more than just the number of vertices with zero or one
outgoing edge. This is due to three reasons: First, for vertices that are adjacent and be-
long to the same group/pair, we draw the edge connecting the boxes of the two vertices
horizontally without bends (see Figsures 8–10 and 12). Second, shifting boxes horizon-
tally to reuse columns (see previous paragraph) may bring a box right above one of its
predecessors; if this happens, the edge connecting the two boxes now has no bends.
Third, in the refining phase, we can move 1,1-vertices on the bend of their outgoing edge
(if there is such a bend), thus saving a bend for each 1,1-vertex.

Finally, another area where we can improve the quality of the drawing during the
refining phase is the number of crossings. Let us consider the following scenario: Vertex
v has three outgoing edges which enter three different vertices positioned on the same
side (right or left) ofv. This situation is depicted in Figure 15(a), where the three vertices
are located to the left ofv, and each one ofv’s outgoing edges crosses the other two.
We can reshuffle the relative positions of the three outgoing edges so that there are no
crossings (see Figure 15(b)).

In Figure 16 we show an example of a 12-vertex and 31-edge nonplanar graphG
drawn by Algorithm BOXORTHOGONAL. Notice thatG has one vertex with degree
eight (vertex 9) and five vertices with degree six each (vertices 1, 2, 3, 7, and 11). In the
drawing of Figure 16 we have already applied the refining phase which provided column
reuse, thus saving more bends. The width of the final drawing is 17, the height is 14,
and we have a total of 18 bends. Finally, the aspect ratio of the drawing is 17/14= 1.21
which is close to 4/3= 1.33, the standard screen aspect ratio.

9. Contributions and Future Work. We introduced an algorithm for drawing graphs
with degree higher than four, based on grouping/pairing vertices of the graph for row
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Fig. 16.An example drawing using Algorithm BOXORTHOGONAL.

reuse. It is interesting that vertices can form groups/pairs even at the time they are in-
serted. The algorithm is very efficient in terms of its running time. Also, the performance
of the algorithm regarding the area and the number of bends (both total and per edge) of
the drawing is better than any other known algorithm to address the same problem. The
main advantages of our algorithm are the following:

• Vertices are represented by boxes of perimeter less than twice the degree of the vertex.
• It exhibits low area when compared with other algorithms.
• It provides the first upper bound on the area of any drawing of any graph.
• The width is larger than the height of the resulting orthogonal drawing (by approxi-

matelym/2) for better aspect ratio.
• The edges have either one bend or no bends; this increases the clarity of the drawing.
• Our algorithm is geared toward high degree vertices; the performance in terms of area

increases when the graph has many vertices of high degree.
• The input graph does not have to be biconnected; our algorithm avoids the extra

overhead of dealing with non-biconnected graphs.
• If the graph is not biconnected, the various components can be clearly identified in

the drawing since all the vertices of the same component are drawn together.

It is open to see if we can find other representation schemes for graph vertices when
their degree is higher than four. For the technique that we proposed, we would like to
improve the upper bounds in the area and the number of bends. These, together with
extending high degree orthogonal drawing to support interaction with the user, seem to
be natural directions for future research.
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