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Approximating Satisfiable Satisfiability Problems*
L. Trevisart

Abstract. We study the approximability of the Maximum Satisfiability Problema@MSAT) and of the
booleark-ary Constraint Satisfaction Problem £ kCSP) restricted to satisfiable instances. For both prob-
lems we improve on the performance ratios of known algorithms for the unrestricted case.

Our approximation for satisfiable Ax 3CSP instances is better than any possible approximation for the
unrestricted version of the problem (unléds= NP). This result implies that the requirement of perfect
completeness weakens the acceptance power of non-adaptive PCP verifiers that read 3 bits.

We also present the first non-trivial results about PCP classes defined in terms of free bits that collapse
toP.
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1. Introduction. In the Max SAT problem we are given a boolean formula in con-
junctive normal form (CNF) and we are asked to find an assignment of values to the
variables that satisfies the maximum number of clauses. More generally, we can assume
that each clause has a non-negative weight and that we want to maximize the total weight
of satisfied clauses.

MAX SAT is a standartNP-hard problem and considerable research effort has been
devoted in the last two decades to the development of approximation algorithms for it.
An r-approximate algorithm for x SAT (where 0< r < 1) is a polynomial-time
algorithm that given a formula finds an assignment that satisfies clauses of total weight
at least times the optimum.

MAX SAT is also the prototypical element of a large family of optimization problemsin
which we are given a set of weightednstraintover (not necessarily boolean) variables,
and we want to find an assignment of values to such variables that maximizes the total
weight of satisfied constraints. Problems of this kind, called constraint satisfaction prob-
lems, are of central interest in Artificial Intelligence. Their approximability properties
are of interest in Theory of Computing since they can express theMkESSNP [PY],
[KMSV] and the computation of PCP verifiers [ALM, [T1]; complete classifications
of their approximability properties, for the case of boolean variables, appear in [C] and
[KSW]. We call Max KCSP the boolean constraint satisfaction problem where every
constraint involves at mogtvariables.

In this paper we consider the following restriction of the problem-approximating
Max SAT and Max kKCSP: given a satisfiable instance oAMSAT (resp. Max KCSP),
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find in polynomial time an assignment that satisfies at least a fractiointhe total

weight of clauses (resp. constraints). The issue of approximating constraint satisfaction
problems restricted to satisfiable instances has been considered by Petrank [P], and is
called theapproximation problem at gap location arfeetrank observed thatA SAT
remainsMAX SNP-complete when restricted to satisfiable instances, and proved that
the same is true for other problems, such as<\M8-COLORABLE SUBGRAPH and Max
3-DIMENSIONAL MATCHING. More recently, Khanna et al. [KSW] proved that for any
MAX SNP-complete constraint satisfaction problem for which deciding satisfiability is
NP-hard, the restriction to satisfiable instances remsiAX SNP-complete.

In partial contrast with the results of Petrank and of Khanna et al. we prove that
restricting Max SAT and Max kCSP to satisfiable instances makes the problems some-
what easier, since we can exploit satisfiability to develop new algorithms with improved
approximation guarantees. Our algorithms can also be used to show that certain classes
defined in terms of probabilistically checkable proofs with bourglgety bitor free bit
complexity are contained iR.

We now discuss our results in more detail.

THE MAXIMUM SATISFIABILITY PROBLEM. The Max SAT problem appears in a paper

by Johnson [J] which is the first paper where the term “approximation algorithm” was
introduced. Johnson proved that his algorithm \é’&'mproximate. It has been recently
showed that Johnson'’s algorithm is indeéehpproximate [CFZ]. In the last 5 years,
several improved approximation algorithms fomk SAT and its restricted versions
Max 2SAT and Max 3SAT have been developed; we summarize such previous results
in Table 1. There is a corresponding history of continuous improvementsin the nonap-
proximability; we do not mention it here (the interested reader can find it in [BGS]), and
we only recall that the best known hardnesZ;J}Se due to Histad [H3], and it still holds
when restricting to satisfiable instances with exactly three literals per clause.

Our Results We present a polynomial-time algorithm that, given a satisfiable M
SAT instance, satisfies a fractighof the total weight of clauses, and an algorithm that,
given a satisfiable Mx 3SAT instance, satisfies a fractioB26 of the total weight of
clauses.

Table 1. Evolution of the approximation factors for M SAT and Max 3SAT.
The factors depicted with an asterisi @lo not appear explicitly in papers [GW2]

and [FG].
Max SAT Max 3SAT Due to

.75 .75 [Y]
.75 .75 [GW1]
.758 765 [GW2] (using [GW1])
762 Nee [FG] (using [GW1] and [GW2])
.765 .769 [AHO] (using [Y], [GW1] and [GW2])

.801 [TSSW] (using [FG])
a7 [A] (using [Y], [GW1], [GW2], [FG], and [AHO])

.8 .826 This paper for satisfiable instances
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Table 2. Evolution of the approximation factors forM 3CSP
with and without the satisfiability promise.

Satisfiable instances Arbitrary instances Due to
125 .125 [PY]
.299 [BGS]
.25 [T1]
.367 367 [TSSW]
514 This paper

Source of our Improvement In both cases we show how to reduce the given instance
to an instance without unit clauses. The reduction sequentially applies a series of sub-
stitutions of values to variables. Th@26 approximation for Mx 3SAT then follows

by adapting the analysis of [TSSW] to the case of no unit clauses.. g lapproxi-
mation for Max SAT involves the use of known algorithms, with a couple of small
changes.

MAXIMUM 3-ARY CONSTRAINTSATISFACTION PROBLEM (AND 3-QUERY PCP). The

PCP Theorem states that membership proofs forNiyanguage can be probabilisti-

cally checked by a verifier that uses logarithmic randomnesgérdsct completeness
soundnes’S% andnon-adaptivelyeads a constant number of bits from the proof. Since

its appearance, there was interest in understanding the tightest possible formulation of
the PCP Theorem, especially in terms of how low the number of query bits could be
made.

It is easy to see that, with two queries, it is impossible to get perfect completeness,
while with three it is possible (see, e.g., [BGS]). The challenging question arises of
determining which is the best soundness achievable with three bits and perfect com-
pleteness. The state of the art for this question isNiPatan be checked with soundness
.75+ ¢ [H3], while this is impossible with soundnes367 [TSSW], unles® = NP.
Furthermore, it is possible to cheblP with three queries, soundne$s+ ¢ and com-
pleteness k- ¢ for anye > 0 [H3]. The latter result implies that Mk 3SAT is hard to
approximate Withirg + ¢, but not when restricted to satisfiable instances. A different and
more complicated proof was needed to prove%thes hardness result also for satisfiable
instances [H3]. It was an open question whether soundBess is achievable with
three queries and perfect completeness.

Our Result We show that for PCP verifiers fP languages with three non-adaptive
queries and perfect completeness, the soundness is bounded away from .5, and has to be
at least514 (unles$ = NP).

Source of our Improvement We give a.514-approximate algorithm for satisfiable
instances of Mx 3CSP. A preprocessing step reduces the instance to an instance where

3 Roughly speaking, a verifier hagrfect completeneskit accepts a correct proof with probability 1, while
thesoundnesss the probability of accepting a wrong proof (see Definition 7).
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any constraint has at least three satisfying assignments and each satisfying assignment
is consistent with the set of linear constraints. We then apply two algorithms and take
the best solution. In one algorithm we reduce all the constraints to 2SAT using gadgets,
extending an idea of [TSSW]. In the other algorithm we take a random solution for the
set of linear constraints.

MAXIMUM k-ARY CONSTRAINT SATISFACTION PROBLEM. The approximability of the

Max kCSP problem is an algorithmic rephrasing of the accepting power of PCP verifiers
that non-adaptively reakl bits of the proof. The restriction to satisfiable instances of
Max KCSP corresponds to the restriction to non-adaptive PCP verifierspaifiect
completenesd he requirement of perfect completeness and non-adaptiveness appeared
in the first definitions of PCP and in several subsequent papers [AS], [ALRAGLR],

[BS]. Recently, adaptiveness (with perfect completeness) was used in [BGS], and a
verifier without perfect completeness (but non-adaptive) appears in [H3]. The latter
result was of particular interest, because it formerly appeared that “current techniques”
could only yield PCP constructions with perfect completeness. The study of which PCP
classes lie irP was initiated in [BGS]. The best known approximation forMkCSP,

for generak, is 2% [T1].

Our Results  We improve the approximation {& + 1)2 for satisfiable instances.

Source of our Improvement We again use substitutions (but of a more general kind)

as a preprocessing step. The substitutions reduce the problem to an instance where any
k-ary constraint has at leakt+ 1 satisfying assignments, and any such assignment is
consistent with the set of linear constraints. We then take a random feasible solution for
the set of linear constraints, and this satisfies each constraint with probability at least
(k+ 127k,

FREeBITS. Besides the number of query bits, there is another very important parame-
ter of the verifier that is studied in the field of probabilistic proof-checking: the number
of free bits It is arelaxationof the notion of query bit: if a verifier queries bits on

the proof, then it uses at modt free bits, but a verifier using free bits can read
arbitrarily many bits. The interest in this parameter (implicit in [FK] and explicitly in-
troduced in [BS]) lies in the fact that the “efficiency” of the reduction from PCP to
Max CLIQUE [FGL™] depends only on the number of free bits of the verifier (indeed,

it depends only on thamortizednumber of free bits [BGS], but we will not exploit the
latter notion here). Since the same reduction is used to derive the best known hardness
result for MN VERTEX COVER, further improvements in the hardness of approximat-
ing MIN VERTEX COVER could be obtained by improved PCP constructions with low
free bits complexity. Roughly speaking, a verifier udefee bits if, after making its
queries to the proof, there at most possible answers that make him accept (this is
why f cannot be larger than the number of query bits). This definition has been used
almost always, including in &tad’'s papers on Ak CLIQUE (where he used the free
bit-efficient complete te3t One exception is [BGS], where auaptiveversion of the
definition of free bits is used. We also mention that the free bit parameter has almost
always been used for verifiers with perfect completeness (Bellare et al. [BGS] also
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show that one can always reduce the free bit complexity by reducing the complete-
ness). However, the currently best hardness result fior WERTEX COVER is due to
Hastad [H3] and uses a verifier with low free bit complexity and completeness, 1

for anye > O.

Even in the simple case of thmn-adaptivedefinition and ofperfect completeness
there was basically no result about PCP classes with low free bit complexity collapsing
to P. The only result was that, with perfect completeness, itis impossible to characterize
NP with only 1 free bit, while log 3 free bits are sufficient [BGS]. It has been conjectured
that with log 3 free bits and perfect completeness it is possible to achieve any soundness.

Our Result Under the weak (non-adaptive) definition of free bits, we prove that a
verifier with perfect completeness,that ugefsee bits, and whose soundness is less than
2f/22'-1 can only captur®.

Source of our Improvement We adapt the previously described reductions and algo-
rithms.

INDEPENDENT ANDSUBSEQUENTRESULTS In an independent and simultaneous re-
search, Karloff and Zwick [KZ] found a new semidefinite relaxation of thexX\8SAT
problem, and a new way of analysing the randomized rounding of solutions of the
relaxation. As a consequence of their new technique, they were ableto pregent}}
approximate algorithm for kix 3SAT, for anye > 0. Such an algorithm is the best
possible, since we recall theé + g)-approximating Mx 3SAT isNP-hard [H3]. More
recently, Zwick [Z] applied the techniques of [KZ] to the study cAM3CSP, and came

up with a%-approximate algorithm, which is again the best possible. Using ideas from the
presentpaper, Zwick [Z] also improved our approximation of satisfiable instancesofM
3CSP, developing g—approximate algorithm for this restricted problem. Guruswami et
al. [GLST] applied Zwick’s ideas to kx 4CSP, and obtained .83-approximate al-
gorithm for this problem (which improves and generalize @125-approximation for
satisfiable instances). Our resultsfor satisfiable instancesaaf RCSP are still (as of
February 1999) the best known for> 5.

ORGANIZATION OF THE PAPER.  Basic definitions on constraint satisfaction problems,
PCP, and gadgets are given in Section 2. We prove a simple combinatorial result in
Section 3. We present the A SAT approximation algorithms in Section 4 and the
Max kCSP approximation algorithms (as well as the implication swith PCP classes) in
Sections 5 and 6. The free bit parameter is discussed in Section 7.

2. Preliminaries. For an integen, we denote byr] the set{1, ..., n}. We see ele-
ments of{0, 1}" as vectors in the vector spaGé(2)". We denote with the same symbol
@ both the boolearor between elements §0, 1} and thebitwisexor between elements
of {0, 1}". We use boldface letters to denote element$0ofl}"; we also denote by
0=1(0,...,0) (respl=(1,...,1)the element of0, 1}" whose entries are all O (resp.
1), wheren will depend on the contexLinear equationsre alwaydinear equations on
GF(2).
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2.1. Constraint Satisfaction We begin with a definition of the constraint satisfaction
problem, that unifies the definitions of all the problems we are interested in.

DEFINITION 1. A (k-ary) constraint functioris a boolean functiori : {0, 1} — {0, 1}.

When it is applied to variables, . . ., xk (see the following definitions) the functioh
is thought of as imposing the constraiintx, . .., Xx) = 1.

DEFINITION 2. A constraint familyF is a finite collection of constraint functions. The
arity of F is the maximum number of arguments of the functionginA constraint C
over avariable sety, ..., X, is a pairC = (f, (i1, ...,ix) wheref: {0, 1} — {0, 1}

is a constraint function anigl € [n] for j € [k]. The constrainC is said to besatisfied

by an assignmerd=a;,...,a,t0 X, ..., Xy if C(ay, ..., an) d:'Eff(a*-l,...,a{-k)zl.

We say that constrair@@ is from F if f € F.
We also write a constrairgtf, (i1, ..., ix)) as(f X, ..., X,) = 1).

DEFINITION 3 (Satisfying Table). A satisfying table for a constraint functforf0, 1} —
{0, 1} with s satisfying assignments is @nx k boolean matrix whose rows are the sat-
isfying assignments of .

Sometimes, we blur the important distinction between a boolean function and a con-
straint, e.g., we talk about the satisfying table of a constraint.

The satisfying table is not unigue since the matrix representation imposes an order to
the assignments. Even if it would be more natural to represent the satisfying assignments
as a set of vectors rather than a matrix, the latter representation is more suitable for
combinatorial arguments, especially because wesearit as a set of k vectors of length
s (see Section 3).

DEFINITION 4 (Constraint Families). Aiteral is either a variable or the negation of a
variable. We define the following constraint families:

kCSP: the set of alh-ary functionsh < k.

kKCSP: the set of alk-ary functions with satisfying assignments.
kSAT: the set of all functions expressible as theof at mostk literals.
SAT: the set of all functions expressible as theof literals.

We also sometimes see the constants 0 andzémsary functions

We say that a constraint functioh(x, ..., Xx) is linear if either f(xg, ..., Xx) =
X1 - ®Xc 0or f(Xg,..., %) = 1®X1P --- & x. (Note that linear functions are
also, more appropriately, calledfinein other papers, e.g. in [KSW].)

DerINITION 5 (Constraint Satisfaction Problems). For a function farilyMAax F is

the optimization problem whose instances consishofieighted constraints fronf,

on n variables, and whose objective is to find an assignment to the variables which
maximizes the total weight of satisfied constraints.
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Note that Definitions 4 and 5 give rise to the problemsxXVSAT, Max 3SAT, and
Max kCSP, that are defined in the standard way. A constraint from SAT is also called a
clause

Observe that Mx F is equivalent to Mx F U {0, 1}, since adding constraints
that are always false does not change a problem, while adding constraints that
are always true can only make the problem easier to approximate. For this reason,
we always assume that O-constraints and 1-constraints can occur in axy*M
problem.

Given an instance of a constraint satisfaction problem,we denotd by (¢) the set
of linear constraints ap.

GL1-MAX F#is the restriction of Mx F to instances where all the constraints are
simultaneously satisfiable.

We say that a maximization problem iisapproximabler < 1 if there exists a
polynomial-time algorithm that, for any instance, finds a solution whose cost is at least
r times the optimum (such a solution is said torb&pproximate).

2.2. Gadgets We also need the definition ghdgets

DEFINITION 6 (Gadget [BGS]). For e R, a function f: {0, 1} — {0,1}, and a
constraint familyF, an«a-gadgetreducing f to F is a finite collection of constraints

C; from F over primary variables X, ..., xx andauxiliary variables y, ..., y,, and
associated real weights; > 0, with the property that, for boolean assignmeat®
X1, ..., Xcandbtoyi, ..., ¥s, the following are satisfied:
1) ~vVa f(@ =1 (vb): Z wiCj(ab) < a,

j
2) va f@ =1 @b): ijcj (@ b) = a,

j
3) Va f@=0) (vb): > wiCjah) <a-1

j

Gadgets can be used in approximation algorithms in the following way [TSSW]. As-
sume we have a satisfiable instance of a constraint satisfaction problem, with constraints
of total weightm, and there is an-gadget reducing each such constraint to 2SAT. Then
we can build a 2SAT instancg whose optimum isgm and such that any solution of
costc for ¢ has cost at least— (¢ — 1)m for the old instance.

In a more general setting, assume that,ifef 1, ..., k, we have typa-constraints
of total weightw;, and that there exists an-gadget reducing type-constraints to
2SAT. Assume also that the whole CSP instance is satisfiable. Then the optimum of the
instance isy_; wi; applying all the gadgets we have a 2SAT instaifoghose optimum

is Zi o Wi .

4 GL1 stands for “Gap Location 1”, which is the terminology of Petrank [P].
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Applying a 8-approximate algorithm tgr, we obtain a solutionfor the original in-
stance whose cost is at least

D Boiwi = 3 (@i — Dwi = Y (B — (1= B)lei — Dywy.

In the following, we refer to such kinds of reductions as T&SW techniquésee
Section 2.5.2 below). The FGW [GW?2], [FG] algorithm ford 2SAT is.931-approxi-
mate.

2.3. Probabilistically Checkable Proofs We now talk about PCP classes and their
relation with the approximability of Mx kCSP.

DerINITION 7 (Restricted Verifier).  Averifier V for a languagel is a probabilistic
polynomial-time Turing machine that during its computations has oracle access to a
string calledproof We denote byACC[V 7™ (x)] the probability over its random tosses
thatV accepts when accessing proaf. We also denote bACC[V (x)] the maximum

of ACC[V™(x)] over all proofsr. We say that

e V has query complexity (whereq is an integer) if, for any input, any proofr, and
any outcome of its random bit¥, reads at mogy bits from;

e V has soundnessik foranyx ¢ L, ACC[V(X)] <s;

e V has completenesdfcforanyx € L, ACC[V (x)] > c. V hasperfect completeness
if it has completeness 1.

DEerINITION 8 (PCP Classes).L € PCP.[log, q] if L admits a verifielV with com-
pleteness, soundness, query complexityy, and that use® (log n) random bits, where
n is the size of the input. We say thiate naPCP¢ s[log, q] if V, in addition, queries the
g bits non-adaptively

THEOREM9 [ALM *].  If GL1-MAX kCSPis r-approximablethennaPCP4 ¢[log, k] <
Pforanys<r.

Note that the relation between PCP classes ana MCSP problems holds also in
the case of non-perfect completeness and for adaptive verifiers.

THEOREM10 [T1]. If MAX KCSPis r-approximablethenPCP. s[log, k] < P for any
c/s<r.

We define free bits as a property of boolean functions. There are two possible
definitions.

DEFINITION 11. A functionf: {0, 1}9 — {0, 1} usesf non-adaptive free bitg it has
at most 2 satisfying assignments. It usésadaptive free bitsf it can be expressed by
a DNF with at most 2 terms such that any two terms are inconsistent.
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It is easy to see that if a function uséson-adaptive free bits that it also uses at most
f adaptive free bits. On the other hand, there are functions using one adaptive free bit
and requiring arbitrarily many non-adaptive free bits.

DerFINITION 12. A PCP verifier used adaptive (resp. non-adaptive) free bits if for
any input, and any fixed random string, its acceptance or rejectance (which is a boolean
function of the proof) can be expressed as a boolean function thaf wesdsptive (resp.
non-adaptive) free bit§PCP s[log, f]isthe class oflanguages admitting a PCP verifier
with logarithmic randomness, completenessoundness, that usesf adaptive free

bits. The classaFPCP ¢[log, f]is defines analogously by using the non-adaptive free
bit parameter.

Regarding recent constructions of verifiers optimized for the free bitparameter, the ver-
ifiers that use th€omplete TestH2] are non-adaptive, while the verifier that uses the
Extended Monomial Basis Td®&GS] is adaptive.

The notion of free bit was originally introduced to prove hardness results for M
CLIQUE. An amortized version of the free bit parameterhas been defined in [BS]. We do
not deal with this amortized version in this paper, since an essentially tight result has
been established: a$tad [H1] has shown that it is possible to characteXiPeusing
¢ > 0 amortized free bits, for any fixed> 0.

For the non-amortized version of this parameter, it is still an open question to find
the best possible characterization®\&f. Improved PCP constructions with low free bit
complexity are alsomotivated by the following application to thei M ERTEX COVER
problem. (Recall that an-approximate algorithm for Vertex Cover, for> 1, is an
algorithm that computes a cover whose number of nodes is atmiimses the size of
the optimum cover.)

THEOREM 13 [BGS]. If NP € FPCP[log, f], then for anye > 0, it is NP-hard to
approximateMIN VERTEX COVER within

cC—sS

The best result in this respect, due tadtad, is thallP = FPCP;_, s .[log, 2] for any
¢ > 0. This implies that Vertex Cover is hard to approximate Wit%]i-ﬂs foranye > O.

2.4. Substitutions Let ¢ be a set of weighted constraints fraf over variables
X1, ..., X%,. LetX; = ag @ @je[n]_{i}ajxj with & € {0,1} for j € {0,...,n} —{i}
be a linear equation. L& = (f(x,,...,X,) = 1) be a constraint op. Then the
applicationof the substitutiono = [ < ap @ @je[n]—{i} a;%;] to C (denoted byCo)
is defined as follows:

1. If x; does not occur i, thenC is left unchanged by the substitution. More formally,
ifi & {ir, ... ik} thenC[x < a0 ® D;m_si X1 =C.
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2. If x; occurs inC, then the occurrence of is substituted by the expressiag ®
D;crn—(i) & %;- More formally, ifi = in for someh e [K], then

C |:Xi «—a® @ anj:|E(f (Xil,...,Xih_l,aoéB @ anj,XihH,,_,,xik) :1),

jeln]—{i} jeln]—{i}

We note that in the second case, the set of variables occurring in the constraint becomes
{i, ....iy = {iyu{jeln —{i} a =1}.
Thewidth of a substitution is the number of non-zero coefficientior j > 1. Thus,
a width-zero substitution is of the formn<«— 0 orx < 1, and always decreases the arity
of the constraintitis applied to. A width-1 substitution is of the fotre— y orx <« —y,
and it either leaves the arity of the constraint unchanged, or it decreases the arity.
We note that if we apply a width-1 or a width-2 substitution to a SAT (resp. 3SAT)
constraint, then we obtain another SAT (resp. 3SAT) consttakdditionally, if we
apply to akCSP constrain€ a substitutioro such that all the variables occurring in
the left-hand side of the equation eéfalready occur irC, thenCo is a(k — 1)CSP
constraint.
For an instance of a constraint satisfaction problem and substitutionve denote
by ¢o the instance obtained by applying the substitutioto all the constraints af.

2.5. Approximation Algorithms and Techniques fdinx SAT. For the rest of this
section we fix a satisfiable instangeof MAaX SAT, that has clauses of total weight

For anyi > 1, m; is the total weight of clauses with exacitlyliterals. We examine
different algorithms, and different ways to ext¢nax them. Under the assumption that
the formula be satisfiable, the cost of the solutions provided by all the algorithms below
will always be lower bounded by some linear combination ofrtis.

2.5.1. Algorithms
JOHNSON S ALGORITHM [J]. It finds a solution that satisfies clauses of total weight at

least
Z (1 — fll) m;.

FGW ALGORITHM [GW2], [FG]. Given an instance of Mk 2SAT, it satisfies at least
a fractiong = .931 of the cost of an optimum solution.

2SAT ALGORITHM. If a 2SAT instance is satisfiable, it is possible to find a satisfying
assignment in polynomial time.

LINEAR SysTEMS MOD2. If a system of linear equations over variablgs. . ., X, is
satisfiable, we can find in polynomial time an explicit description for the set of its

5 We can indeed obtain the 0-constraint or the 1-constraint, but we note that we can assume 3SAT and SAT
contain such constraint without loss of generality.
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solution, that is, a vecton = (uy,...,uy) € {0, 1}" that is a feasible solution, and
vectorsy?, ..., y¥ such that the set of feasible solutions is precisely

uday'® - day*: ay,...,a € {0, 1}}.
2.5.2. Techniques

GW TECHNIQUE[GW2]. This allows us to extendgrapproximate algorithm for ix
2SAT (e.g. the FGW algorithm) to theM SAT problem. Here we present a simplified
analysis of the GW technique that is sufficient to deal with satisfiable instances»of M
SAT.

Any clause of lengtlk > 3 and weightw is substituted by thé‘;) clauses of length
2 obtained by taking in all possible ways two literals oukoEach new clause receives
weightw/(;). We then apply &3-approximate algorithm to the resulting instance of
MAx 2SAT.

The number of clauses in the original formula that are satisfied in this way is at least

2
Blmi+mp) + 3 o pm.
k

TSSW TECHNIQUE[TSSW]. Thistechnique has been already described in Section 2.2.
As an application to Mx SAT, we note that if, for somle we have awy-gadget reducing
kSAT to 2SAT, then we can substitutg — (1 — 8)(ax — 1)) in place of(2/k)8 in the
analysis of the GW technique.

CT TeCHNIQUE[CT]. This technique is parameterized with an integesind a real

0 < p < 1. Ifwe have an algorithm fasL1-MAx kSAT which satisfies clauses of length

i of total weightpoim;, 1 <i <k, then the CT technique allows us to design an algorithm
for GL1-MAX SAT that satisfies clauses of total weight

k

Y d-pd-pHam+ Y @-@1d-pHm.

i=1 i>k+1

3. An Application of the Linear Algebra Method. The linear algebra method in
combinatorics [BF] is a collection of techniques that allow us to prove combinato-
rial results by making use of the following well-known fact: if we have a seh-of
dimensional vectors that are linearly independent, then the size of the set is at. most
In this section we provide some definitions and prove easy bounds using linear alge-
bra. Despite the triviality of the results, they have powerful applications in Sections 5
and 6.

DeFINITION 14.  For a vectou # 0, we say that a collectioxy, . .., X, of elements of
{0, 1}" is (k, u)-dependenif there are valuesy, ..., an € {0, 1} such that 1< |{i =
1,...,m a =1} <kandax; ®--- @ anXm = agu. A collection isu-dependenif it
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is (k, u)-dependent for somle A collection is (k, u)-)independenif it is not ((k, u)-)
dependent.

More intuitively, the vectorxy, ..., Xm are(k, u)-independent if anyxor of at mostk
of them is differentfron® and fromu.

LEMMA 15. Foranyu # 0, if Xq, ..., Xm € {0, 1}" are (2, u)-independenthen m<
2"-1 _ 1. The bound is tight

ProOR All the 2m + 2 vectors0, X1, ..., Xm, U, (UB X1), ..., (UD Xm) are distinct.
Therefore 2n+ 2 < 2". To prove the tightness of the bound, Uet= 1 and consider the
set of 2-1 — 1 vectors of{0, 1}" — {0} whose first entry is zero. Clearly, these vectors
form a(2, 1)-independent collection. O

LEMMA 16. Foranyu # O, if X4, ..., Xm € {0, 1}" areu-independenthen m< n—1.
The bound is tight

PROOF Them + 1 vectorsu, X, ..., Xy are distinct and linearly independent in the
ordinary sense. Therefore + 1 < n. To prove the tightness, let= 1 and consider a
linearly independent set of — 1 vectors of{0, 1}" whose first entries are zero. Such a
set must exist, since the set of element§fl}" whose first entry is zero form a linear
subspace of0, 1}" of dimensiom — 1. Itis easy to see that such a set Isiadependent
collection. O

In the following sections we use the special case where 1. Let f be ak-ary
constraint function witts satisfying assignments, and gt be a satisfying table fof .
Ifthe columns oM are(2, 1)-independent, thekn < 25-1—1, thatiss > 1+[log(k+1)7,
which impliess = 2 if k = 1 ands > 3 if k > 2.If the columns oM arel-independent,
then we can draw the stronger statenentk + 1.

4. TheMAXx SAT Algorithms

LEMMA 17. If GL1-MAX SAT (resp GL1-MAX 3SAT) restricted to instances without
unit clauses is r-approximabléhen it is r-approximable for arbitrary instances

PrROOF We describe an algorithm that given a satisfiable instancdé Max SAT
over variables, ..., Xy, finds a new satisfiable instangéver a subset of variables
X' C {xy,..., X%} = Xand aseSofwidth-1 linear equations, such that any assignment
to X’ can be extended to an assignmenXtaising the equations d. The important
properties ofy’ are thaty’ has no unit clause, and arapproximate solution fap’, when
extended withS, becomes an-approximate solution fap.

The algorithm is described in Figure 1.

CLAIM 18. NoUnary runs in polynomial time
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algorithm NoUnary
input: ¢;
begin
S:=0,
while ¢ has unit clausedo begin
for each positive unit clauséx) € ¢ do begin
S:=SU{x=21}
¢ = g[x < 1]
end;
for each negative unit clausé—x) € ¢ do begin
S:=SU{x=0}

¢ =[x < 0]
end;
end,
return (¢, S);

end.

Fig. 1. The Max SAT reduction.

PROOF Each substitution requires at most linear time. Furthermore, each substitution
reduces the number of variablesofit follows that there can beat most a linear number

of substitutions and thus the algorithm runs at most in quadratic time. (A more careful
analysis would show that in fact a linear time implementation is possible. We choose not
to do so since this would not improve the performance of the overall algorithm, that is
dominated by the running time of the FGW algorithm.) O

Let now ¢ be some satisfiable instance ofakl SAT over variable seiX, and let
NoUnary (¢) = (¢’, S). The following two claims are easily proved by induction on the
number of substitutions performed by the algorithm.

CLaim 19. ¢’ is satisfiable Indeed any satisfying assignment fer is a satisfying
assignment fop’ and is consistent with.S

CLaiM 20. Letd be an assignment to’Xand leta be the extension @& to X using
S. Then the total weight of clauses @fthat are satisfied bg’ equals the total weight
of clauses o that are satisfied bg.

CLaiM 21. If ¢ is an instance oMAX 3SAT,theng’ is an instance oMAx 3SAT.
PROOFE A substitution can never make a clause longer. O
The lemma now follows. O

LEMMA 22. There exists a polynomial-tim&26-approximate algorithm foL1-MAX
3SAT without unit clauses
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PrROOE We use the TSSW technique applied to the FGW algorithm and Johnson'’s
algorithm. We assume we have argadget reducing 3SAT to 2SAT, and we usg-a
approximate algorithm for kx 2SAT. Lety be an instance of kx 3SAT with no

unit clause. Letn be the total weight of clauses of let m, be total weight of binary
clauses, and letnz be the total weight of ternary clauses. If we denoteAty) the

total weight of clauses satisfied by the above outlined algorithm we obtain the following
relation:

Alp) > max{3m; + {mg, fmz + (B — (1 — B) (o — 1))m}
= max{3m+ ims, Bm— (1 — B)(a — 1))ms}

81l-pB (-1 3 1
(tsapra—s) Gm+im)

1
T <1+8(1_ﬂ)(a_1))(ﬂm—(l—ﬂ)(a—l)ma)

1

1+81—B)a—1)

x (6m(1— B)(a — 1) +m3(1— B)(a— 1)+ m—mz(l— B)(a —1)
B+6(1—B)a—1)
1+8a—-1)(1-p)’

where first equality follows from the substitutiom, = m — ms, and the next step uses a
convex combination in place of max. FBr= .931 andx = 3.5 the last term evaluates
to0 .82605. O

For the Max SAT analysis we resort to a methodology of analysis introduced in [AE].
We have to study the performance of an approximation algorithm that consists of running
several approximation algorithms and then take the best solution. If the performance of
each individual approximation algorithm is a linear function of some parameters of
the instance (e.g. the total weightiery clauses), then finding thveorst case for the
best algorithncan be formulated as a linear program. We could have applied the same
methodology in the proof of Lemma 22, but we preferred to present a traditional analysis
because it gives a closed formula that depends only on the quality of the approximation
and of the gadget.

LEMMA 23. There exists a polynomial-tim&-approximate algorithm foGL1-MAX
SAT without unit clauses

ProOF We use:

J: Johnson'’s algorithm.

FGW: the FGW algorithm, extended to length-3 and length-4 clauses with the TSSW
method, and to longer clauses with the GW method. We usg-ga&lget for length-3
clauses and a new 6-gadget for length-4 clauses (see Lemma 52 below).
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CTp: the 2SAT algorithm extended to longer clauses with the CT methodology. We
use all the possible values pf 0 < p < .5, with a sufficiently small increment (e.g.
5 =.001).

For an instance of MAax SAT with no unit cluase, letn; be the total weight of the
clauses with exactliliterals, and letA(¢) be the total weight of the clauses satisfied by
our algorithm. Then

Alp) > maX{ > (1— 2—1|> mi,

2
.931Im, +.7588m; + .586m, + 3 | —m;,
i

Semax { P(L— p)my + iZ(l— - p)')mi} }
Itis easy to cast the search for a worst case as a linear program [AE]. The only seeming
difficulty is that we would need infinitely many variables, ms, .. .. Indeed, we can
choose a large enough upper boudd(e.g. N = 100), and then we use variables

my, ..., my to represent the total weight of clauses with 2 , N literals, and a variable

M., to represent the total weight of clauses with more thaliterals. The contribution

of clauses with more thaN literals to the FGW algorithm is ignored; the contribution to

the other algorithms is lower bounded with the contribution that there would be if they
were all withN + 1 literals. An optimal solution to the following linear program is thus

a lower bound to the performance ration of the combined algorithm:

min ratio

subject to
Y 1 1

i=1
N
2
ratio > .931m, + 7585, + 58, + ) _ —m,

i=1

N

ratio > p(1— p)mz+ Y _(1—(1—pHm + (1 — 1 — p"*hmy,
i—1

p=is for i=0,..., 4,

N

domi+my =1,
i=1

mi, My > 0.

Foré = .001 andN = 100 the linear program above has an optimal solutaiio =
.8000939. The same solution can be obtained using only one vahjeamely,p = .082
(the value.082 has been found with numerical experiments). O

THEOREM24. There exists a8-approximate algorithm fo6L1-MAX SAT and a.826-
approximate algorithm focL1-MAx 3SAT.
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algorithm Simplify
begin
S=0;
while ¢ is not simplifieddo begin
for each constraintC = (f (x,, ..., x,) = 1) with a(2, 1)-dependent satisfying table
do begin
Comment: C enforces a linear relatiotj)qj = adanXiy, );
@ = p[X;; < ao®anXi,];
S:i= SU{(x; = ao®anxi,)};
end,
for each constraintC one whose satisfying assignment is inconsistent WitN (¢)
remove such assignment from the satisfying tabl€ of
end;
return (¢, S);
end

Fig. 2. Algorithm reducing an instance ai.1-Max 3CSP to a simplified instance.

5. TheMax 3CSPAlgorithm

DEFINITION 25.  We say that an instangeof MAx KCSP issimplifiedif the following
conditions hold for any constrai@ = (f, (i1, ..., ix)) of ¢:

1. The columns of a satisfying table Gfare(2, 1)-independent.

2. EitherCislinear or allits satisfying assignments are consistentiii{¢). More for-
mally, if f isnotlinear,thenforanyvalues, ..., ax € {0, 1} suchthatf (a; ..., a)
1, the systenIN(¢) U {(Xi, = &), ..., (Xi, = &)} is satisfiable.

LEMMA 26. If GL1-MAX 3CSPis r-approximable when restricted to simplified in-
stancesthenGL1-Max 3CSPis r-approximable

PrROOF Given a general instange of GL1-MAx 3CSP, we reduce it to a simplified
instancey’. The reduction is described in Figure 2.
The proof now continues with the same structure as the proof of Lemma 17.

CLAIM 27. For any instancep, Simplify  (¢) terminates in polynomial time

PrOOF Each step eitherreduces the size of the satisfying table of a constraint or reduces
the number of variables occurring n Thus, the number of possible steps is bound-

ed by the length of the description @f Each step can be implemented in polynomial
time. O

Let now ¢ be a satisfiable instance of A 3CSP over variable seX, and let
Simplify  (p) = (¢/, S). Let X’ be the variable set af'.

CLAIM 28. ¢’ is satisfiable Indeed any satisfying assignment fagr is a satisfying
assignment fop’ and is consistent with.S
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PrROOFE By induction on the number of substitutions performed by the algorithm.

CLAIM 29. Leta be an assignment to’Xand leta be the extension & to X using
S. Then the total weight of clauses @fthat are satisfied bg’ equals the total weight
of clauses op that are satisfied bwg.

This completes the proof of Lemma 26. O
LEMMA 30. GL1-MAx 3CSPrestricted to simplified instances.8145approximable

ProOOF From Lemma 15¢ has no unit constraint (besides the always true constraint),
the 2-ary constraints can only be from 2SAT, the 3-ary constraints must have at least
three satisfying assignments. Inaf be the total weight of 2SAT constraints, andteé?,
m®, m® m®, andm® be the total weight of 3-ary constraints that have, respectively,
3, 4,5, 6, and 7 satisfying assignments. We alsanét’ be the total weight of 3-ary
linear constraints anoh*® = m® — m©“b),

We use two algorithms and take the best solution.

In the first algorithm, we simply consider a random feasible solutioifidi(p). On
the average, the total weiglkanp Of satisfied constraints is at least

3 3m® 4 2m@0) 4 m@L) 4 5m® 4 8m® 4 Iy
Aranp = 3Mz + 5M® 4 am@ 4 m*) 4 Zm® + em® + gm(®.

Derandomization is possible using the method of conditional expectation.

The other algorithm uses the TSSW method and the FGW algorithm. We have to
find gadgets reducing the various possible 3-ary constraints to 2SAT constraints. The
new constructions (and the old ones that we use) are listed in Table 3. More details are
available in Section 8. Using the FGW algorithm with the TSSW method and the gadgets
of Table 3, we have an algorithm that satisfies constraints of total weight

Acap > .931Im;, + .6205m® + .241m“L
+.6205M“9 4 .43075n® + .6205M® + 7585,

Table 3. Gadgets used.

Source Target
constraint constraint o Due to
3SAT 2SAT 35 [TSSW]
ASAT 2SAT 6 This paper
3CsP 2SAT 55 This paper
3CcsP 2SAT 55 This paper
not linear
3CSP 2SAT 11 [BGS]
linear
3CSP 2SAT 825 This paper

3CcsP 2SAT 55 This paper
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If we take the best solution, then we satisfy constraints of total weight
max{ARAND, AGAD} > .4315AraND + 05685AGAD > 5145m,

wherem = mp + m® + m@b 4 M@0 4+ m® + m® 4+ m®, O

THEOREM31. There exists a polynomial-timél45approximate algorithm fosL1-
Max 3CSP.

THEOREM32. naPCPq s514log, 3] C P.

Recall that Histad [H3] proved thamaPCP;_1/2..[l0g,3] = NP and that
NaPCP4 3/44.[l0g, 3] = NP for anye > 0

6. The Max KCSP Algorithm. The general pattern of the results of this paper is
that we take an instance of a constraint satisfaction problem and, using approximation
preserving reductions, we transform it into an instance where each constraint has a
“reasonably large” set of satisfying assignments. For the new instance, the approach of
taking a random solution will then work well enough.

In order to bound from below the number of satisfying assignments of the constraints
in the new instance, we use algebraic properties of the satisfying table. Foath&NT
algorithm we just use the fact that the new instance has no unit clause.A0B®ISP
we go one step further, and we use the fact that the constraints of the new instance have
a (2, 1)-independent satisfying table. ForAaM KCSP we enforce full-independency
among the row of the satisfying table.

It turns out that it is easier to define an approximation algorithm for a generalization
of Max kCSP.

DerINITION 33 (MAX KCSP+LIN). For any positive integds, the Max kCSP+LIN
problem is defined as follows: dnstanceis a pair(¢, S), whereg is an instance of
Max KCSP andSis a system of linear equations.fAasible solutioris an assignment
of 0/1 values to the variables occurringgrnand S, such that all the equations &fare
satisfied. Theneasureof a solution is the total weight of satisfied constraintgin

Thus, the difference betweenA¥ kCSP+LIN and M\x kCSP is that in the former
problem we also have a setmfandatoryinear constraints that must be satisfied by any
feasible solution. Mx kCSP can be seen as the special caseof KCSP+LIN where
the setSis empty.

DerINITION 34. We say that an instance, S) of MAx KCSP+LIN isover-simplified
if, for any constrainC of ¢, the following properties hold:

1. the columns of the satisfying table ©fare1-independent.

2. any assignment to the variables occurrin@ithat satisfie€ is consistent witts.

Note that the first property implies that in an over-simplified instap¢é&) no constraint
in ¢ can be linear.
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algorithm OverSimp
input: ¢, S;
begin
while (¢, S) is not over-simplifiedlo begin
for each C € ¢ that is lineardo begin
¢ =9 —{C}
S:=SU{C};
end,
foreachC = (f (i, ..., X,) = 1) € ¢ with al-dependent satisfying table
do begin
Comment: C enforces a linear relatioxqj = ap® @h# anXi,;
C :=C[x; < a® Dy anXinl;
S:=SU{X; = a® D) anXi};
end,
for eachC € ¢ one whose satisfying assignments is inconsistent @i
remove such assignment from the satisfying tabl€ ;of
end,
return (¢, S);
end

Fig. 3. The algorithm that reduces a p&ir, S) to an over-simplified paify’, S).

LEMMA 35. If GL1-MAX KCSP+LIN is r-approximable when restricted to over-
simplified instanceghencL1-MAx KCSP+LINis r-approximable

PROOF Let (¢, S) be an instance o6L1-MAx kCSP+LIN. Consider the procedure
OverSimp described in Figure 3. Lely’, S) = OverSimp (¢, S). It is easy to see
thatOverSimp has a polynomial-time implementation. The following claims prove the
lemma.

CLaM 36. (¢, S) is an instance oL1-MAX kCSP.

PrOOFE  Algorithm OverSimp never replaces a constraint with a constraint of bigger
arity. Thusy'’ is an instance of Mx kCSP. By induction on the number of substitutions
performed by the algorithm, we can prove that any satisfying assignme( f&) is
also a satisfying assignment fav', S) O

CLaim 37. If an assignmend’ is feasible and r-approximate fak’, S), then it is
feasible and r-approximate fdr, S).

PROOF By induction on the number of steps. O

LEMMA 38. GL1-MAX KCSP+LINis (k + 1) /2¢-approximable when restricted to sim-
plified instances
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PROOFE Let(p, S) be a simplified instance of M« KCSP+LIN. Ifh < kis the arity of a
constrainC in ag, then, by Lemma 187 has at least + 1 satisfying assignments, and
arandom assignment satisfies it with probability at lghast 1) /2" > (k+ 1)/2%. If we
take a random feasible solution f8rit satisfies all constraints and, on the average,
afraction at leastk + 1) /2 of the total weight of the constraints @f Derandomization
is possible with the method of conditional expectation. O

THEOREM39. There exists a polynomial-timé + 1)/2-approximate algorithm for
GL1-MAX kCSP.

THEOREM40. Forany q=> 3,for any s< (q + 1)/2%, naPCP g[log, q] C P.

Observe that the bound of Lemma 39 abov% fer MAX 3CSP.

7. Free Bits. We now state some results (the first ones wiith- 1) aboutnaFPCP
classes that collapse R

THEOREM41. The following statements hold

1. naFPCP 4[log, f] € naPCP; ([log, 22'~ — 1].
2. naFPCP; ([log, f] C Pforalls > (2")/22'~*and f > log 3.

PROOF LetL € naFPCPqg[log, f]. Let V be the verifier witnessing this fact. Given
X, we can find in polynomial time an instangg of a constraint satisfaction problem
with the following property:

e Each constraint uses non-adaptive free bits, that is, has at mo5tsatisfying as-
signments.

e If X € L, thengy is satisfiable, otherwise at most a fracti®of the constraints is
satisfiable.

Indeed,px has a constrainty for any random strindR of V with input x. The weight
of Cr is the probability of the random string being selected. A boolean variable is
associated to each position of the proof, and the consi@xins satisfied precisely by
the assignments corresponding with proofs that would be accept®dviath input x
and random stringRr.

We run algorithmSimplify  with input 4. We obtain an instancg, and a set of
equationsSthat enjoy the following properties:

1. No constrainC of i, has more than 2satisfying assignments$implify  never
makes the satisfying table of a constraint larger).

2. Any constraint injy has a(2, 1)-independent satisfying table.

3. If ¢y is satisfiable, theryy is satisfiable.

4. An assignment satisfying a fractisrof the constraints of/, can be extended, using
S, to an assignment satisfying at least a frac8af the constraints opy.
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From the first two properties, it follows that no constraint/ip has arity larger than
22'-1 _ 1. From the other properties we have:

e If X € L, thenyy is satisfiable.
e If X € L, then at most a fractios of the constraints of/ is satisfiable.

We now describe a verifier fdr that uses logarithmic randomness, has perfect com-
pleteness, soundnes&nd queries -1 _ 1 bits. Givenx, the verifier computegry,
and assumes that the proof contains a satisfying assignme faihe verifier picks a
random constraint of, reads from the proof the value of the variables occurring in the
constraint, and accepts if and only if the constraint is satisfied. Clearly, the verifier reads
at most 2'~1 — 1 bits. Ifx ¢ L, thenyy is satisfiable and so there exists a proof that
makes the verifier accept with probability 1. Observe that the probability of acceptance
of the verifier is equal to the fraction of constraints that are satisfied by the proof; if
x ¢ L, then no proof can make the verifier accept with probability larger ghan

This establishes the first part of the theorem.

To establish the second part, we use algoritbwerSimp . Let OverSimp (px) =
(Y, S). We have the following properties:

1. No constrainC of ¥ has more than 2satisfying assignment©gerSimp never
makes the satisfying table of a constraint larger).

2. Any constraint inyy has al-independent satisfying table.

3. If ¢y is satisfiable, theryy is satisfiable.

4. An assignment satisfying a fractisrof the constraints of/,, and all equations of
also satisfies at least a fractiemf the constraints opy.

From the first two properties, it follows that no constraingirhas arity larger than2-1.
If s < 2 /22'~1 then we are able to satisfy more than a fracmf the constraints of
©x Wheneveix € L. This implies that we have a polynomial-time algorithm kor O

Observe that, in particular, we have

naFPCPy 3/4.[log, log 3] € P, Ve > 0,

and
ﬂaFPCP]_,]_/Z_g['Og, 2] C P, Ve > 0.

The first inclusion means that using a Proof System with perfect completeness, non-
adaptiveness, and log 3 free bits, the stronger hardness result that can be shown for
Vertex Cover isi—g — ¢ for any s (weaker than ldStad’s result that uses almost-perfect
completeness [H3]). Using 2 free bits, the stronger res%IHs, which equals ldstad’s
result. With log 5 free bits or more, we can only do worse. The moral of this result is that
the only way to improve thé — ¢ hardness result for Vertex Cover is to use non-perfect
completeness aridr adaptiveness.

An interesting open question is to find the impossibility result for non-adaptive veri-
fiers. Indeed, we suspect that, with a bounded number of adaptive free bits and perfect
completeness, it is impossible to achieve an arbitrary good soundness. In particular, it

may be the case th&PCPq s[log, f] € P whens < 222f.
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8. Gadget Construction

8.1. Methodology All the new gadgets used in this paper are computer-constructed
using the methodology of [TSSW]. We refer the reader to that paper for details about
the method. (A full version is available from the authors. See also the presentation
in [T2].) In short, [TSSW] show that the problem of finding the best possible gad-
get reducing a function to 2SAT (in general, the target can behangditaryfamily,

that is, any family that is closed under substitutions) can be reduced to a linear pro-
gram.

This method has been implemented by Greg Sorkin. His implementation consists of
an APL2 program that given the description of the source family and of the target family
generates the appropriate linear program and then solves it using OSL (the IBM Op-
timization Subroutine Library, a commercial package for mathematical programming).
Almost all the gadgets reported in [TSSW] have been found with Sorkin’s program. In
order to deal with the computing environment of the University of Geneva we had to
develop a different implementation. Our implementation is much more rudimentary but
only requires public domain resources.

In ourimplementation, the LP is generatgdaaC program. The program is specialized
to the case where the target family is 2SAT and the source function is 3-ary. The function
that we want to reduce to 2SAT is specified in a header file. To find gadgets reducing
different functions to 2SAT it is thus necessary to edit the header and then recompile the
program. To find the gadget reducing 4SAt to 2SAT we also had to alter the program itself
slightly. Another special case arose for gadgets reducing functions in“30 S AT.

There were 34 cases to be considered (see Lemma 48), so we modified the program in
order to have it generate all the cases itself, solve all of them, and then report the 34
solutions.

Finally, we remark that a straightforward application of the technique of [TSSW]
would lead to exceedingly too big linear programs in some cases. For example, in
order to find the best gadget reducing 4SAT to 2SAT we would have to solve a lin-
ear program with & constraints. To deal with such cases, we used a method al-
ready employed in [TSSW] that reduces the size of the linear program at the cost
of possibly producing non-optimal gadgets. Alternatively, it is possible to reduce the
size of the linear programs at the cost of possibly producing unfeasible gadgets of
super-optimal cost. When the two approaches produce gadgets of the same cost, then
we have a guarantee of optimality. The reader is again referred to [TSSW] for more
details.

The generated LP is solved using a public domain LP solgesplve version 2,
written by Michel Berkelaar (with some additions by Jeroen Dirks), available at the
URL ftp://ftp.zib.de/pub/mathprog/Ip-berkelaar/lp-solve/. Once the LP is solved, the
solution is reported inIeX. The descriptions of the gadgets appearing in Section 8.2,
except the gadget reducing 4SAT to 2SAT, are unedited outputs of our program.

We used a SUN SPARCstation4 running Solaris, with 64 Mb of memory. Our program
and thdp_solve libraries have been compiled with GNUjsc. The larger linear programs
that we solved had- 200 variables and- 1000 constraints. It took roughly 2 minutes
to solve them. All other LPs had only 100 to 200 constraints and less than 100 variables,
and they were solved in a few seconds.



Approximating Satisfiable Satisfiability Problems 167
8.2. Constructions

LEMMA 42. For any f € 2CSPthat is not identically0 nor identically 1, there is a
2-gadget reducing f t@SAT.

LEMMA 43. If f € 3CSPhas a(2, 1)-dependent satisfying tabléhen there is &-
gadget reducing f t@SAT.

DEFINITION 44.  For two functionsf, g: {0, 1} — {0, 1}, we say thatf is derivable
fromgif f(X1, ..., %) = g(x, ..., lzK) Wherer is a permutation ofl, ..., k} and
li is eitherx; or X;.

For example, iff (X1, X2, X3) = g(X3, 1 — X1, X2), then f is derivable fromg.

LEmMA 45. If f is derivable from g and there is arrgadget reducing g t8SAT,then
there is also amv-gadget reducing f t@SAT.

LEMMA 46. For any f € 3CSP, there is a5.5-gadget reducing f t@SAT, and it is
optimal

PrRoOF By Lemma 43 it is sufficient to consider only functions with(2, 1)-
independent satisfying table. By Lemma 45, we can consider only functions such that
each column of the satisfying table has more zeros than ones (all other functions can be
then obtained using complementation). We can also assume that columns are in lexico-
graphic order. It is thus sufficient to consider only the function 1-in-3 with the following
satisfying table:

X1 X2 X2
0O 0 1
0O 1 O
1 0 O

There is a ®-gadget reducing 1-in-3 to 2SAT. The gadget has the following clauses:

weight Q5: (X2 V X3), (X1 V X2), (X1 V X3), .
weight 15: (=X V =X3), (5X1V —X2), (—X2V —X3).

LEMMA 47 [BGS], [TSSW]. For any 3-ary linear function f, there is anll-gadget

reducing f to2SAT,and it is optimal

LEMMA 48. Forany f € 3CSP that is not lineasthere is a5.5-gadget reducing f to
2SAT. It is optimal for some of these functions

PROOFE  Asusual, we restrict ourselves to functions witf2al)-independent satisfying
table. It is easy to see that we can also restrict to functiosach thatf (0, 0, 0) = 1.
(Any other function is derivable from a function that is satisfied@y0, 0).) To sum up,
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Table 4. Gadgets reducing non-linear functions in
3CSP to 2SAT.

Columns chosen Cost of the gadget

{1,4,6},{1,4,7},{1,5,6)}, 2
{1,5,7},{2,4,5},{2,4,7},
{2,5,6},{2,6,7}, {3,4,5},
{3.4,6}{3,5,7},{3,6,7}

{4,5,6},.{4,5,7},{4,6,7}, 3
{5.6,7
{1,2,4},{1,2,5}, {1, 2, 6}, 4.5

{1,2,7},{1, 3,4}, {1, 3,5},
{1,3,6},{1,3,7},{2,3,4},
{2,398 .{2,3,8,{2,3,%

{1,4,5},{1,6,7}, {2 4,6}, 55
{2.5,7},{3,4,7},{3,5,6}

we have to consider all the functions whose satisfying table is obtained by taking three
out of the seven columns of the following matrix, except the function obtained by taking
the first three columns (it is linear!):

0 00O0O0OOOP O
0 001111
0110011
1 010101

There are(}) — 1 = 34 cases to be considered. For space reasons we do not report all
the gadgets. In Table 4 we report the costs of the optimal gadgets for all the cases. The
description of the 34 gadgets are available on request from the author. O

LEMMA 49. Forany f € 3CSP, there is an8.25-gadget reducing f t@SAT. This is
optimal for some of these functions

PrOOF Up to permutation of variables and complementation, there are only three
possible constraints. We show their satisfying tables:

X1 X2 X3 X1 X2 X3 X1 X2 X3

0O 0 O 0O 0 O 0O 0 O
0 0 1 0O 0 1 0O 0 1
0O 1 O 0O 1 O 0O 1 O
1 0 O 1 0 O 1 0 1
1 1 1 0O 1 1 1 1 O
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We have an 25-gadget reducing the first one to 2SAT:

weight Q25: (—=X3 V =Xs), (X1 V —Xs), (—X1 V Xs),
(X1 VXg),  (X3V Xs),
weight 5: X3V =X7), (=X2VXs), (—=X2V Xe),

(7X2 V =X5), (=X1V —Xg), (X2V X7),
(7X3V =Xp), (7X1V —X7),

weight Q75: (X3 V —1X4), (—X3 V X4),

weight 1: (X2 V —1Xy),

weight 125: (X1 V —Xy),

a 2-gadget for the second:
weight 1: (mX1 V =X2),  (—X1 V —X3),

and a 35-gadget for the third:

weight Q5: (X2 V X3), (X1 V =X3), (X1 V —X2),
(=X1V X2), (X1 V Xa),
weight 15: (X2 V —X3).
The 825-gadget is optimal [SS]. O

LEMMA 50. For any f e 3CSP with a 2-independent satisfying tablthere is a5.5-
gadget reducing f t@SAT.This is optimal for some of the functions

PrOOF Inthis case there are again three basic cases. Indeed, we can assume with no loss
of generality that the function is false in 000, then the other non-satisfying assignment
can have three ones, and be 111, or two ones, and be 011 without loss of generality, or
one one and be 001 without loss of generality.

X1 X2 X3 X1 X2 X3 X1 X2 X3

PR RPROOO
POORERFLRO
OrRr ORFROR
PR RPRRPROO
PR OORO
RPORrROOR
P RRPRPROO
PR OORR
PORrRORO

The first constraint is also known as 3-set-splitting. There i%agadget reducing it to
2SAT:

weight Q5: (=X V =X2), (—X1V =X3), (X1V X3),
(X1 V X2), (X2 V X3), (—X2 V —X3).

The second constraint gives rise to a constraint satisfaction problem such that, given a sat-
isfiable instance, itislP-hard to satisfy more than a fracti@nJr ¢ of the constraint [H3].
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We have a %-gadget for this constraint:

weight Q5: (X1 V Xg), (=X V =Xg), (—X3V —Xg),
(7X1V Xg), (7X3V —Xg), (X3V Xo),
X3V Xg),  (X1V —Xg),

weight 1: (—X2 V Xg), (X2 V —Xg).

Our gadget, combined with the non-approximability result of [H3] gives an alternative
proof of the fact that Mx 2SAT is hard to approximate With%—l—s. The third constraint
iS justx; V Xo. This 55-gadget is optimal. O

LEMMA 51 [TSSW]. For any f € 3CSP = 3SAT, there is a3.5-gadget reducing f
to 2SAT,and it is optimal

LEMMA 52. Forany f € 4SAT,there is a6-gadget reducing f t@SAT.

PROOF The 6-gadget reducing; Vv Xo V X3 V X4) to 2SAT is

X3V VY2), (4X3V =Xg), (7X3V —=yq),
X2V =Y2), (YsV =Y2), (X1 V=Y, (XaVYa),

where y; and y, are auxiliary variables. All the constraints in the gadget have
weight 1. O
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