
DOI: 10.1007/s004530010035

Algorithmica (2000) 28: 145–172 Algorithmica
© 2000 Springer-Verlag New York Inc.

Approximating Satisfiable Satisfiability Problems1

L. Trevisan2

Abstract. We study the approximability of the Maximum Satisfiability Problem (MAX SAT) and of the
booleank-ary Constraint Satisfaction Problem (MAX kCSP) restricted to satisfiable instances. For both prob-
lems we improve on the performance ratios of known algorithms for the unrestricted case.

Our approximation for satisfiable MAX 3CSP instances is better than any possible approximation for the
unrestricted version of the problem (unlessP = NP). This result implies that the requirement of perfect
completeness weakens the acceptance power of non-adaptive PCP verifiers that read 3 bits.

We also present the first non-trivial results about PCP classes defined in terms of free bits that collapse
to P.

Key Words. Approximation algorithms, Maximum satisfiability, Constraint satisfaction.

1. Introduction. In the MAX SAT problem we are given a boolean formula in con-
junctive normal form (CNF) and we are asked to find an assignment of values to the
variables that satisfies the maximum number of clauses. More generally, we can assume
that each clause has a non-negative weight and that we want to maximize the total weight
of satisfied clauses.

MAX SAT is a standardNP-hard problem and considerable research effort has been
devoted in the last two decades to the development of approximation algorithms for it.
An r -approximate algorithm for MAX SAT (where 0≤ r ≤ 1) is a polynomial-time
algorithm that given a formula finds an assignment that satisfies clauses of total weight
at leastr times the optimum.

MAX SAT is also the prototypical element of a large family of optimization problems in
which we are given a set of weightedconstraintsover (not necessarily boolean) variables,
and we want to find an assignment of values to such variables that maximizes the total
weight of satisfied constraints. Problems of this kind, called constraint satisfaction prob-
lems, are of central interest in Artificial Intelligence. Their approximability properties
are of interest in Theory of Computing since they can express the classMAX SNP [PY],
[KMSV] and the computation of PCP verifiers [ALM+], [T1]; complete classifications
of their approximability properties, for the case of boolean variables, appear in [C] and
[KSW]. We call MAX kCSP the boolean constraint satisfaction problem where every
constraint involves at mostk variables.

In this paper we consider the following restriction of the problem ofr -approximating
MAX SAT and MAX kCSP: given a satisfiable instance of MAX SAT (resp. MAX kCSP),

1 An extended abstract of this paper was presented at the 5th European Symposium on Algorithms (ESA ’97),
Graz, 1997. This work was done while the author was at the University of Geneva.
2 Department of Computer Science, Columbia University, 1214 Amsterdam Avenue, New York, NY 10027,
USA. luca@cs.columbia.edu.

Received August 1997; revised February 1999. Communicated by G. J. Woeginger.
Online publication May 10, 2000.

146 L. Trevisan

find in polynomial time an assignment that satisfies at least a fractionr of the total
weight of clauses (resp. constraints). The issue of approximating constraint satisfaction
problems restricted to satisfiable instances has been considered by Petrank [P], and is
called theapproximation problem at gap location one. Petrank observed that MAX SAT
remainsMAX SNP-complete when restricted to satisfiable instances, and proved that
the same is true for other problems, such as MAX 3-COLORABLE SUBGRAPH and MAX

3-DIMENSIONAL MATCHING. More recently, Khanna et al. [KSW] proved that for any
MAX SNP-complete constraint satisfaction problem for which deciding satisfiability is
NP-hard, the restriction to satisfiable instances remainsMAX SNP-complete.

In partial contrast with the results of Petrank and of Khanna et al. we prove that
restricting MAX SAT and MAX kCSP to satisfiable instances makes the problems some-
what easier, since we can exploit satisfiability to develop new algorithms with improved
approximation guarantees. Our algorithms can also be used to show that certain classes
defined in terms of probabilistically checkable proofs with boundedquery bitor free bit
complexity are contained inP.

We now discuss our results in more detail.

THE MAXIMUM SATISFIABILITY PROBLEM. The MAX SAT problem appears in a paper
by Johnson [J] which is the first paper where the term “approximation algorithm” was
introduced. Johnson proved that his algorithm was1

2-approximate. It has been recently
showed that Johnson’s algorithm is indeed2

3-approximate [CFZ]. In the last 5 years,
several improved approximation algorithms for MAX SAT and its restricted versions
MAX 2SAT and MAX 3SAT have been developed; we summarize such previous results
in Table 1. There is a corresponding history of continuous improvementsin the nonap-
proximability; we do not mention it here (the interested reader can find it in [BGS]), and
we only recall that the best known hardness is7

8+ε due to Håstad [H3], and it still holds
when restricting to satisfiable instances with exactly three literals per clause.

Our Results. We present a polynomial-time algorithm that, given a satisfiable MAX

SAT instance, satisfies a fraction.8 of the total weight of clauses, and an algorithm that,
given a satisfiable MAX 3SAT instance, satisfies a fraction.826 of the total weight of
clauses.

Table 1. Evolution of the approximation factors for MAX SAT and MAX 3SAT.
The factors depicted with an asterisk (∗) do not appear explicitly in papers [GW2]

and [FG].

MAX SAT MAX 3SAT Due to

.75 .75 [Y]

.75 .75 [GW1]

.758 .765∗ [GW2] (using [GW1])

.762∗ .77∗ [FG] (using [GW1] and [GW2])

.765 .769 [AHO] (using [Y], [GW1] and [GW2])
.801 [TSSW] (using [FG])

.77 [A] (using [Y], [GW1], [GW2], [FG], and [AHO])

.8 .826 This paper for satisfiable instances

Approximating Satisfiable Satisfiability Problems 147

Table 2.Evolution of the approximation factors for MAX 3CSP
with and without the satisfiability promise.

Satisfiable instances Arbitrary instances Due to

.125 .125 [PY]

.299 [BGS]
.25 [T1]

.367 .367 [TSSW]

.514 This paper

Source of our Improvement. In both cases we show how to reduce the given instance
to an instance without unit clauses. The reduction sequentially applies a series of sub-
stitutions of values to variables. The.826 approximation for MAX 3SAT then follows
by adapting the analysis of [TSSW] to the case of no unit clauses. The.8 approxi-
mation for MAX SAT involves the use of known algorithms, with a couple of small
changes.

MAXIMUM 3-ARY CONSTRAINTSATISFACTION PROBLEM (AND 3-QUERY PCP). The
PCP Theorem states that membership proofs for anyNP language can be probabilisti-
cally checked by a verifier that uses logarithmic randomness, hasperfect completeness,
soundness3 1

2 andnon-adaptivelyreads a constant number of bits from the proof. Since
its appearance, there was interest in understanding the tightest possible formulation of
the PCP Theorem, especially in terms of how low the number of query bits could be
made.

It is easy to see that, with two queries, it is impossible to get perfect completeness,
while with three it is possible (see, e.g., [BGS]). The challenging question arises of
determining which is the best soundness achievable with three bits and perfect com-
pleteness. The state of the art for this question is thatNP can be checked with soundness
.75+ ε [H3], while this is impossible with soundness.367 [TSSW], unlessP = NP.
Furthermore, it is possible to checkNP with three queries, soundness.5+ ε and com-
pleteness 1− ε for anyε > 0 [H3]. The latter result implies that MAX 3SAT is hard to
approximate within7

8+ε, but not when restricted to satisfiable instances. A different and
more complicated proof was needed to prove the7

8+ε hardness result also for satisfiable
instances [H3]. It was an open question whether soundness.5+ ε is achievable with
three queries and perfect completeness.

Our Result. We show that for PCP verifiers ofNP languages with three non-adaptive
queries and perfect completeness, the soundness is bounded away from .5, and has to be
at least.514 (unlessP = NP).

Source of our Improvement. We give a.514-approximate algorithm for satisfiable
instances of MAX 3CSP. A preprocessing step reduces the instance to an instance where

3 Roughly speaking, a verifier hasperfect completenessif it accepts a correct proof with probability 1, while
thesoundnessis the probability of accepting a wrong proof (see Definition 7).

148 L. Trevisan

any constraint has at least three satisfying assignments and each satisfying assignment
is consistent with the set of linear constraints. We then apply two algorithms and take
the best solution. In one algorithm we reduce all the constraints to 2SAT using gadgets,
extending an idea of [TSSW]. In the other algorithm we take a random solution for the
set of linear constraints.

MAXIMUM k-ARY CONSTRAINT SATISFACTION PROBLEM. The approximability of the
MAX kCSP problem is an algorithmic rephrasing of the accepting power of PCP verifiers
that non-adaptively readk bits of the proof. The restriction to satisfiable instances of
MAX kCSP corresponds to the restriction to non-adaptive PCP verifiers withperfect
completeness. The requirement of perfect completeness and non-adaptiveness appeared
in the first definitions of PCP and in several subsequent papers [AS], [ALM+], [BGLR],
[BS]. Recently, adaptiveness (with perfect completeness) was used in [BGS], and a
verifier without perfect completeness (but non-adaptive) appears in [H3]. The latter
result was of particular interest, because it formerly appeared that “current techniques”
could only yield PCP constructions with perfect completeness. The study of which PCP
classes lie inP was initiated in [BGS]. The best known approximation for MAX kCSP,
for generalk, is 21−k [T1].

Our Results. We improve the approximation to(k+ 1)2−k for satisfiable instances.

Source of our Improvement. We again use substitutions (but of a more general kind)
as a preprocessing step. The substitutions reduce the problem to an instance where any
k-ary constraint has at leastk + 1 satisfying assignments, and any such assignment is
consistent with the set of linear constraints. We then take a random feasible solution for
the set of linear constraints, and this satisfies each constraint with probability at least
(k+ 1)2−k.

FREEBITS. Besides the number of query bits, there is another very important parame-
ter of the verifier that is studied in the field of probabilistic proof-checking: the number
of free bits. It is a relaxationof the notion of query bit: if a verifier queriesq bits on
the proof, then it uses at mostf free bits, but a verifier usingf free bits can read
arbitrarily many bits. The interest in this parameter (implicit in [FK] and explicitly in-
troduced in [BS]) lies in the fact that the “efficiency” of the reduction from PCP to
MAX CLIQUE [FGL+] depends only on the number of free bits of the verifier (indeed,
it depends only on theamortizednumber of free bits [BGS], but we will not exploit the
latter notion here). Since the same reduction is used to derive the best known hardness
result for MIN VERTEX COVER, further improvements in the hardness of approximat-
ing MIN VERTEX COVER could be obtained by improved PCP constructions with low
free bits complexity. Roughly speaking, a verifier usesf free bits if, after making its
queries to the proof, there at most 2f possible answers that make him accept (this is
why f cannot be larger than the number of query bits). This definition has been used
almost always, including in H˚astad’s papers on MAX CLIQUE (where he used the free
bit-efficientcomplete test). One exception is [BGS], where anadaptiveversion of the
definition of free bits is used. We also mention that the free bit parameter has almost
always been used for verifiers with perfect completeness (Bellare et al. [BGS] also

Approximating Satisfiable Satisfiability Problems 149

show that one can always reduce the free bit complexity by reducing the complete-
ness). However, the currently best hardness result for MIN VERTEX COVER is due to
Håstad [H3] and uses a verifier with low free bit complexity and completeness 1− ε,
for anyε > 0.

Even in the simple case of thenon-adaptivedefinition and ofperfect completeness
there was basically no result about PCP classes with low free bit complexity collapsing
to P. The only result was that, with perfect completeness, it is impossible to characterize
NP with only 1 free bit, while log 3 free bits are sufficient [BGS]. It has been conjectured
that with log 3 free bits and perfect completeness it is possible to achieve any soundness.

Our Result. Under the weak (non-adaptive) definition of free bits, we prove that a
verifier with perfect completeness,that usesf free bits, and whose soundness is less than
2 f /22 f−1 can only captureP.

Source of our Improvement. We adapt the previously described reductions and algo-
rithms.

INDEPENDENT ANDSUBSEQUENTRESULTS. In an independent and simultaneous re-
search, Karloff and Zwick [KZ] found a new semidefinite relaxation of the MAX 3SAT
problem, and a new way of analysing the randomized rounding of solutions of the
relaxation. As a consequence of their new technique, they were ableto present a(7

8− ε)-
approximate algorithm for MAX 3SAT, for anyε > 0. Such an algorithm is the best
possible, since we recall that(7

8 + ε)-approximating MAX 3SAT isNP-hard [H3]. More
recently, Zwick [Z] applied the techniques of [KZ] to the study of MAX 3CSP, and came
up with a1

2-approximate algorithm, which is again the best possible. Using ideas from the
present paper, Zwick [Z] also improved our approximation of satisfiable instances of MAX

3CSP, developing a58-approximate algorithm for this restricted problem. Guruswami et
al. [GLST] applied Zwick’s ideas to MAX 4CSP, and obtained a.33-approximate al-
gorithm for this problem (which improves and generalize our.3125-approximation for
satisfiable instances). Our resultsfor satisfiable instances of MAX kCSP are still (as of
February 1999) the best known fork ≥ 5.

ORGANIZATION OF THE PAPER. Basic definitions on constraint satisfaction problems,
PCP, and gadgets are given in Section 2. We prove a simple combinatorial result in
Section 3. We present the MAX SAT approximation algorithms in Section 4 and the
MAX kCSP approximation algorithms (as well as the implication swith PCP classes) in
Sections 5 and 6. The free bit parameter is discussed in Section 7.

2. Preliminaries. For an integern, we denote by [n] the set{1, . . . ,n}. We see ele-
ments of{0,1}n as vectors in the vector spaceGF(2)n. We denote with the same symbol
⊕ both the booleanxor between elements of{0,1} and thebitwisexor between elements
of {0,1}n. We use boldface letters to denote elements of{0,1}n; we also denote by
0= (0, . . . ,0) (resp.1= (1, . . . ,1)) the element of{0,1}n whose entries are all 0 (resp.
1), wheren will depend on the context.Linear equationsare alwayslinear equations on
GF(2).

150 L. Trevisan

2.1. Constraint Satisfaction. We begin with a definition of the constraint satisfaction
problem, that unifies the definitions of all the problems we are interested in.

DEFINITION 1. A (k-ary) constraint functionis a boolean functionf : {0,1}k → {0,1}.

When it is applied to variablesx1, . . . , xk (see the following definitions) the functionf
is thought of as imposing the constraintf (x1, . . . , xk) = 1.

DEFINITION 2. A constraint familyF is a finite collection of constraint functions. The
arity of F is the maximum number of arguments of the functions inF . A constraint C
over avariable setx1, . . . , xn is a pairC = (f, (i1, . . . , i k)) where f : {0,1}k → {0,1}
is a constraint function andi j ∈ [n] for j ∈ [k]. The constraintC is said to besatisfied

by an assignmenta= a1, . . . ,an to x1, . . . , xn if C(a1, . . . ,an)
def= f (ai1, . . . ,aik) = 1.

We say that constraintC is fromF if f ∈ F .

We also write a constraint(f, (i1, . . . , i k)) as(f (xi1, . . . , xik) = 1).

DEFINITION 3 (Satisfying Table). A satisfying table for a constraint functionf : {0,1}k →
{0,1} with s satisfying assignments is ans× k boolean matrix whose rows are the sat-
isfying assignments off .

Sometimes, we blur the important distinction between a boolean function and a con-
straint, e.g., we talk about the satisfying table of a constraint.

The satisfying table is not unique since the matrix representation imposes an order to
the assignments. Even if it would be more natural to represent the satisfying assignments
as a set of vectors rather than a matrix, the latter representation is more suitable for
combinatorial arguments, especially because we cansee it as a set of k vectors of length
s (see Section 3).

DEFINITION 4 (Constraint Families). Aliteral is either a variable or the negation of a
variable. We define the following constraint families:

kCSP: the set of allh-ary functions,h ≤ k.
kCSPi : the set of allk-ary functions withi satisfying assignments.
kSAT: the set of all functions expressible as theor of at mostk literals.
SAT: the set of all functions expressible as theor of literals.

We also sometimes see the constants 0 and 1 aszero-ary functions.
We say that a constraint functionf (x1, . . . , xk) is linear if either f (x1, . . . , xk) =

x1⊕ · · · ⊕ xk or f (x1, . . . , xk) = 1⊕ x1⊕ · · · ⊕ xk. (Note that linear functions are
also, more appropriately, calledaffinein other papers, e.g. in [KSW].)

DEFINITION 5 (Constraint Satisfaction Problems). For a function familyF , MAX F is
the optimization problem whose instances consist ofm weighted constraints fromF ,
on n variables, and whose objective is to find an assignment to the variables which
maximizes the total weight of satisfied constraints.

Approximating Satisfiable Satisfiability Problems 151

Note that Definitions 4 and 5 give rise to the problems MAX SAT, MAX 3SAT, and
MAX kCSP, that are defined in the standard way. A constraint from SAT is also called a
clause.

Observe that MAX F is equivalent to MAX F ∪ {0,1}, since adding constraints
that are always false does not change a problem, while adding constraints that
are always true can only make the problem easier to approximate. For this reason,
we always assume that 0-constraints and 1-constraints can occur in any MAX F
problem.

Given an instanceϕ of a constraint satisfaction problem,we denote byLIN(ϕ) the set
of linear constraints ofϕ.

GL1-MAX F4 is the restriction of MAX F to instances where all the constraints are
simultaneously satisfiable.

We say that a maximization problem isr -approximabler < 1 if there exists a
polynomial-time algorithm that, for any instance, finds a solution whose cost is at least
r times the optimum (such a solution is said to ber -approximate).

2.2. Gadgets. We also need the definition ofgadgets.

DEFINITION 6 (Gadget [BGS]). Forα ∈ R, a function f : {0,1}k → {0,1}, and a
constraint familyF , anα-gadgetreducing f to F is a finite collection of constraints
Cj from F over primary variables x1, . . . , xk andauxiliary variables y1, . . . , yn, and
associated real weightswj ≥ 0, with the property that, for boolean assignmentsa to
x1, . . . , xk andb to y1, . . . , yn, the following are satisfied:

(∀a: f (a) = 1) (∀b):
∑

j

wj Cj (a,b) ≤ α,(1)

(∀a: f (a) = 1) (∃b):
∑

j

wj Cj (a,b) = α,(2)

(∀a: f (a) = 0) (∀b):
∑

j

wj Cj (a,b) ≤ α − 1.(3)

Gadgets can be used in approximation algorithms in the following way [TSSW]. As-
sume we have a satisfiable instance of a constraint satisfaction problem, with constraints
of total weightm, and there is anα-gadget reducing each such constraint to 2SAT. Then
we can build a 2SAT instanceψ whose optimum isαm and such that any solution of
costc for ψ has cost at leastc− (α − 1)m for the old instance.

In a more general setting, assume that, fori = 1, . . . , k, we have type-i constraints
of total weightwi , and that there exists anαi -gadget reducing type-i constraints to
2SAT. Assume also that the whole CSP instance is satisfiable. Then the optimum of the
instance is

∑
i wi ; applying all the gadgets we have a 2SAT instanceψ whose optimum

is
∑

i αiwi .

4 GL1 stands for “Gap Location 1”, which is the terminology of Petrank [P].

152 L. Trevisan

Applying aβ-approximate algorithm toψ , we obtain a solutionfor the original in-
stance whose cost is at least∑

i

βαiwi −
∑

i

(αi − 1)wi =
∑

i

(β − (1− β)(αi − 1))wi .

In the following, we refer to such kinds of reductions as theTSSW technique(see
Section 2.5.2 below). The FGW [GW2], [FG] algorithm for MAX 2SAT is.931-approxi-
mate.

2.3. Probabilistically Checkable Proofs. We now talk about PCP classes and their
relation with the approximability of MAX kCSP.

DEFINITION 7 (Restricted Verifier). Averifier V for a languageL is a probabilistic
polynomial-time Turing machine that during its computations has oracle access to a
string calledproof. We denote byACC[Vπ (x)] the probability over its random tosses
thatV acceptsx when accessing proofπ . We also denote byACC[V(x)] the maximum
of ACC[Vπ (x)] over all proofsπ . We say that

• V has query complexity q(whereq is an integer) if, for any inputx, any proofπ , and
any outcome of its random bits,V reads at mostq bits fromπ ;
• V has soundness sif, for any x 6∈ L, ACC[V(x)] ≤ s;
• V has completeness cif, for any x ∈ L, ACC[V(x)] ≥ c. V hasperfect completeness

if it has completeness 1.

DEFINITION 8 (PCP Classes).L ∈ PCPc,s[log,q] if L admits a verifierV with com-
pletenessc, soundnesss, query complexityq, and that usesO(logn) random bits, where
n is the size of the input. We say thatL ∈ naPCPc,s[log,q] if V , in addition, queries the
q bitsnon-adaptively.

THEOREM9 [ALM +]. If GL1-MAX kCSPis r-approximable, thennaPCP1,s[log, k] ⊆
P for any s< r .

Note that the relation between PCP classes and MAX kCSP problems holds also in
the case of non-perfect completeness and for adaptive verifiers.

THEOREM10 [T1]. If MAX kCSPis r-approximable, thenPCPc,s[log, k] ⊆ P for any
c/s< r .

We define free bits as a property of boolean functions. There are two possible
definitions.

DEFINITION 11. A function f : {0,1}q → {0,1} usesf non-adaptive free bitsif it has
at most 2f satisfying assignments. It usesf adaptive free bitsif it can be expressed by
a DNF with at most 2f terms such that any two terms are inconsistent.

Approximating Satisfiable Satisfiability Problems 153

It is easy to see that if a function usesf non-adaptive free bits that it also uses at most
f adaptive free bits. On the other hand, there are functions using one adaptive free bit
and requiring arbitrarily many non-adaptive free bits.

DEFINITION 12. A PCP verifier usesf adaptive (resp. non-adaptive) free bits if for
any input, and any fixed random string, its acceptance or rejectance (which is a boolean
function of the proof) can be expressed as a boolean function that usesf adaptive (resp.
non-adaptive) free bits.FPCPc,s[log, f] is the class of languages admitting a PCP verifier
with logarithmic randomness, completenessc, soundnesss, that usesf adaptive free
bits. The classnaFPCPc,s[log, f] is defines analogously by using the non-adaptive free
bit parameter.

Regarding recent constructions of verifiers optimized for the free bitparameter, the ver-
ifiers that use theComplete Test[H2] are non-adaptive, while the verifier that uses the
Extended Monomial Basis Test[BGS] is adaptive.

The notion of free bit was originally introduced to prove hardness results for MAX

CLIQUE. An amortized version of the free bit parameterhas been defined in [BS]. We do
not deal with this amortized version in this paper, since an essentially tight result has
been established: H˚astad [H1] has shown that it is possible to characterizeNP using
ε > 0 amortized free bits, for any fixedε > 0.

For the non-amortized version of this parameter, it is still an open question to find
the best possible characterizations ofNP. Improved PCP constructions with low free bit
complexity are alsomotivated by the following application to the MIN VERTEX COVER

problem. (Recall that anr -approximate algorithm for Vertex Cover, forr ≥ 1, is an
algorithm that computes a cover whose number of nodes is at mostr times the size of
the optimum cover.)

THEOREM13 [BGS]. If NP ⊆ FPCPc,s[log, f], then, for anyε > 0, it is NP-hard to
approximateMIN VERTEX COVER within

1+ c− s

2 f − c
− ε.

The best result in this respect, due to H˚astad, is thatNP = FPCP1−ε,.5+ε[log,2] for any
ε > 0. This implies that Vertex Cover is hard to approximate within7

6− ε for anyε > 0.

2.4. Substitutions. Let ϕ be a set of weighted constraints fromF over variables
x1, . . . , xn. Let xi = a0 ⊕

⊕
j∈[n]−{i } aj xj with aj ∈ {0,1} for j ∈ {0, . . . ,n} − {i }

be a linear equation. LetC ≡ (f (xi1, . . . , xik) = 1) be a constraint ofϕ. Then the
applicationof thesubstitutionσ = [xi ← a0 ⊕

⊕
j∈[n]−{i } aj xj] to C (denoted byCσ)

is defined as follows:

1. If xi does not occur inC, thenC is left unchanged by the substitution. More formally,
if i 6∈ {i1, . . . , i k}, thenC[xi ← a0⊕

⊕
j∈[n]−{i } aj xj] ≡ C.

154 L. Trevisan

2. If xi occurs inC, then the occurrence ofxi is substituted by the expressiona0 ⊕⊕
j∈[n]−{i } aj xj . More formally, if i = i h for someh ∈ [k], then

C

[
xi←a0⊕

⊕
j∈[n]−{i }

aj xj

]
≡
(

f

(
xi1, . . . , xih−1,a0⊕

⊕
j∈[n]−{i }

aj xj , xih+1, . . . , xik

)
=1

)
.

We note that in the second case, the set of variables occurring in the constraint becomes
{i1, . . . , i k} − {i } ∪ { j ∈ [n] − {i }: aj = 1}.

Thewidthof a substitution is the number of non-zero coefficientsaj for j ≥ 1. Thus,
a width-zero substitution is of the formx← 0 orx← 1, and always decreases the arity
of the constraint it is applied to. A width-1 substitution is of the formx← y or x← ¬y,
and it either leaves the arity of the constraint unchanged, or it decreases the arity.

We note that if we apply a width-1 or a width-2 substitution to a SAT (resp. 3SAT)
constraint, then we obtain another SAT (resp. 3SAT) constraint.5 Additionally, if we
apply to akCSP constraintC a substitutionσ such that all the variables occurring in
the left-hand side of the equation ofσ already occur inC, thenCσ is a (k − 1)CSP
constraint.

For an instanceϕ of a constraint satisfaction problem and substitutionσ , we denote
by ϕσ the instance obtained by applying the substitutionσ to all the constraints ofϕ.

2.5. Approximation Algorithms and Techniques forMAX SAT. For the rest of this
section we fix a satisfiable instanceϕ of MAX SAT, that has clauses of total weightm.
For any i ≥ 1, mi is the total weight of clauses with exactlyi literals. We examine
different algorithms, and different ways to extend/mix them. Under the assumption that
the formula be satisfiable, the cost of the solutions provided by all the algorithms below
will always be lower bounded by some linear combination of themi ’s.

2.5.1. Algorithms

JOHNSON’S ALGORITHM [J]. It finds a solution that satisfies clauses of total weight at
least ∑

i

(
1− 1

2i

)
mi .

FGW ALGORITHM [GW2], [FG]. Given an instance of MAX 2SAT, it satisfies at least
a fractionβ = .931 of the cost of an optimum solution.

2SAT ALGORITHM. If a 2SAT instance is satisfiable, it is possible to find a satisfying
assignment in polynomial time.

LINEAR SYSTEMS MOD2. If a system of linear equations over variablesx1, . . . , xn is
satisfiable, we can find in polynomial time an explicit description for the set of its

5 We can indeed obtain the 0-constraint or the 1-constraint, but we note that we can assume 3SAT and SAT
contain such constraint without loss of generality.

Approximating Satisfiable Satisfiability Problems 155

solution, that is, a vectoru = (u1, . . . ,un) ∈ {0,1}n that is a feasible solution, and
vectorsy1, . . . , yk such that the set of feasible solutions is precisely

{u⊕a1y1⊕ · · ·⊕akyk: a1, . . . ,ak ∈ {0,1}}.

2.5.2. Techniques

GW TECHNIQUE[GW2]. This allows us to extend aβ-approximate algorithm for MAX

2SAT (e.g. the FGW algorithm) to the MAX SAT problem. Here we present a simplified
analysis of the GW technique that is sufficient to deal with satisfiable instances of MAX

SAT.
Any clause of lengthk ≥ 3 and weightw is substituted by the

(k
2

)
clauses of length

2 obtained by taking in all possible ways two literals out ofk. Each new clause receives
weightw/

(k
2

)
. We then apply aβ-approximate algorithm to the resulting instance of

MAX 2SAT.
The number of clauses in the original formula that are satisfied in this way is at least

β(m1+m2)+
∑

k

2

k
βmk.

TSSW TECHNIQUE[TSSW]. This technique has been already described in Section 2.2.
As an application to MAX SAT, we note that if, for somek, we have anαk-gadget reducing
kSAT to 2SAT, then we can substitute(β − (1− β)(αk − 1)) in place of(2/k)β in the
analysis of the GW technique.

CT TECHNIQUE[CT]. This technique is parameterized with an integerk and a real
0≤ p ≤ 1. If we have an algorithm forGL1-MAX kSAT which satisfies clauses of length
i of total weightρi mi , 1≤ i ≤ k, then the CT technique allows us to design an algorithm
for GL1-MAX SAT that satisfies clauses of total weight

k∑
i=1

(1− p(1− p)i−1)ρi mi +
∑

i≥k+1

(1− (1− p)i)mi .

3. An Application of the Linear Algebra Method. The linear algebra method in
combinatorics [BF] is a collection of techniques that allow us to prove combinato-
rial results by making use of the following well-known fact: if we have a set ofn-
dimensional vectors that are linearly independent, then the size of the set is at mostn.
In this section we provide some definitions and prove easy bounds using linear alge-
bra. Despite the triviality of the results, they have powerful applications in Sections 5
and 6.

DEFINITION 14. For a vectoru 6= 0, we say that a collectionx1, . . . , xm of elements of
{0,1}n is (k,u)-dependentif there are valuesa0, . . . ,am ∈ {0,1} such that 1≤ |{i =
1, . . . ,m: ai = 1}| ≤ k anda1x1⊕ · · · ⊕amxm = a0u. A collection isu-dependentif it

156 L. Trevisan

is (k,u)-dependent for somek. A collection is ((k,u)-)independentif it is not ((k,u)-)
dependent.

More intuitively, the vectorsx1, . . . , xm are(k,u)-independent if anyxor of at mostk
of them is differentfrom0 and fromu.

LEMMA 15. For anyu 6= 0, if x1, . . . , xm ∈ {0,1}n are (2,u)-independent, then m≤
2n−1− 1. The bound is tight.

PROOF. All the 2m+ 2 vectors0, x1, . . . , xm,u, (u⊕ x1), . . . , (u⊕ xm) are distinct.
Therefore 2m+ 2≤ 2n. To prove the tightness of the bound, letu = 1 and consider the
set of 2n−1 − 1 vectors of{0,1}n − {0} whose first entry is zero. Clearly, these vectors
form a(2,1)-independent collection.

LEMMA 16. For anyu 6= 0, if x1, . . . , xm ∈ {0,1}n areu-independent, then m≤ n−1.
The bound is tight.

PROOF. Them+ 1 vectorsu, x1, . . . , xm are distinct and linearly independent in the
ordinary sense. Thereforem+ 1 ≤ n. To prove the tightness, letu = 1 and consider a
linearly independent set ofn− 1 vectors of{0,1}n whose first entries are zero. Such a
set must exist, since the set of elements of{0,1}n whose first entry is zero form a linear
subspace of{0,1}n of dimensionn−1. It is easy to see that such a set is a1-independent
collection.

In the following sections we use the special case whereu = 1. Let f be ak-ary
constraint function withs satisfying assignments, and letM be a satisfying table forf .
If the columns ofM are(2,1)-independent, thenk ≤ 2s−1−1, that is,s ≥ 1+dlog(k+1)e,
which impliess= 2 if k = 1 ands ≥ 3 if k ≥ 2.If the columns ofM are1-independent,
then we can draw the stronger statements ≥ k+ 1.

4. TheMAX SAT Algorithms

LEMMA 17. If GL1-MAX SAT (resp. GL1-MAX 3SAT) restricted to instances without
unit clauses is r-approximable, then it is r-approximable for arbitrary instances.

PROOF. We describe an algorithm that given a satisfiable instanceϕ of MAX SAT
over variablesx1, . . . , xn, finds a new satisfiable instanceϕ′over a subset of variables
X′ ⊆ {x1, . . . , xn} = X and a setSof width-1 linear equations, such that any assignment
to X′ can be extended to an assignment toX using the equations ofS. The important
properties ofϕ′ are thatϕ′ has no unit clause, and anr -approximate solution forϕ′, when
extended withS, becomes anr -approximate solution forϕ.

The algorithm is described in Figure 1.

CLAIM 18. NoUnary runs in polynomial time.

Approximating Satisfiable Satisfiability Problems 157

algorithm NoUnary
input : ϕ;
begin

S := ∅;
while ϕ has unit clausesdo begin

for each positive unit clause(x) ∈ ϕ do begin
S := S∪ {(x = 1)};
ϕ := ϕ[x← 1]

end;
for each negative unit clause(¬x) ∈ ϕ do begin

S := S∪ {(x = 0)};
ϕ := ϕ[x← 0]

end;
end;
return (ϕ, S);

end.

Fig. 1.The MAX SAT reduction.

PROOF. Each substitution requires at most linear time. Furthermore, each substitution
reduces the number of variables ofϕ. It follows that there can beat most a linear number
of substitutions and thus the algorithm runs at most in quadratic time. (A more careful
analysis would show that in fact a linear time implementation is possible. We choose not
to do so since this would not improve the performance of the overall algorithm, that is
dominated by the running time of the FGW algorithm.)

Let now ϕ be some satisfiable instance of MAX SAT over variable setX, and let
NoUnary (ϕ) = (ϕ′, S). The following two claims are easily proved by induction on the
number of substitutions performed by the algorithm.

CLAIM 19. ϕ′ is satisfiable. Indeed, any satisfying assignment forϕ is a satisfying
assignment forϕ′ and is consistent with S.

CLAIM 20. Let a′ be an assignment to X′, and leta be the extension ofa′ to X using
S. Then the total weight of clauses ofϕ′ that are satisfied bya′ equals the total weight
of clauses ofϕ that are satisfied bya.

CLAIM 21. If ϕ is an instance ofMAX 3SAT, thenϕ′ is an instance ofMAX 3SAT.

PROOF. A substitution can never make a clause longer.

The lemma now follows.

LEMMA 22. There exists a polynomial-time.826-approximate algorithm forGL1-MAX

3SATwithout unit clauses.

158 L. Trevisan

PROOF. We use the TSSW technique applied to the FGW algorithm and Johnson’s
algorithm. We assume we have anα-gadget reducing 3SAT to 2SAT, and we use aβ-
approximate algorithm for MAX 2SAT. Letϕ be an instance of MAX 3SAT with no
unit clause. Letm be the total weight of clauses ofϕ, let m2 be total weight of binary
clauses, and letm3 be the total weight of ternary clauses. If we denote byA(ϕ) the
total weight of clauses satisfied by the above outlined algorithm we obtain the following
relation:

A(ϕ) ≥ max
{

3
4m2+ 7

8m3, βm2+ (β − (1− β)(α − 1))m3
}

= max
{

3
4m+ 1

8m3, βm− (1− β)(α − 1))m3
}

≥
(

8(1− β)(α − 1)

1+ 8(1− β)(α − 1)

) (
3
4m+ 1

8m3
)

+
(

1

1+ 8(1− β)(α − 1)

)
(βm− (1− β)(α − 1)m3)

= 1

1+ 8(1− β)(α − 1)

× (6m(1− β)(α − 1)+m3(1− β)(α − 1)+ βm−m3(1− β)(α − 1))

= m
β + 6(1− β)(α − 1)

1+ 8(α − 1)(1− β) ,

where first equality follows from the substitutionm2 = m−m3, and the next step uses a
convex combination in place of max. Forβ = .931 andα = 3.5 the last term evaluates
to .82605.

For the MAX SAT analysis we resort to a methodology of analysis introduced in [AE].
We have to study the performance of an approximation algorithm that consists of running
several approximation algorithms and then take the best solution. If the performance of
each individual approximation algorithm is a linear function of some parameters of
the instance (e.g. the total weight ofi -ary clauses), then finding theworst case for the
best algorithmcan be formulated as a linear program. We could have applied the same
methodology in the proof of Lemma 22, but we preferred to present a traditional analysis
because it gives a closed formula that depends only on the quality of the approximation
and of the gadget.

LEMMA 23. There exists a polynomial-time.8-approximate algorithm forGL1-MAX

SAT without unit clauses.

PROOF. We use:

J: Johnson’s algorithm.
FGW: the FGW algorithm, extended to length-3 and length-4 clauses with the TSSW
method, and to longer clauses with the GW method. We use a 3.5-gadget for length-3
clauses and a new 6-gadget for length-4 clauses (see Lemma 52 below).

Approximating Satisfiable Satisfiability Problems 159

CTp: the 2SAT algorithm extended to longer clauses with the CT methodology. We
use all the possible values ofp, 0≤ p ≤ .5, with a sufficiently small increment (e.g.
δ = .001).

For an instanceϕ of MAX SAT with no unit cluase, letmi be the total weight of the
clauses with exactlyi literals, and letA(ϕ) be the total weight of the clauses satisfied by
our algorithm. Then

A(ϕ) ≥ max

{∑
i

(
1− 1

2i

)
mi ,

.931m2+ .7585m3+ .586m4+
∑

i

2

i
mi ,

max
p∈{0,δ,2δ,...,.5}

{
p(1− p)m2+

∑
i

(1− (1− p)i)mi

}}
.

It is easy to cast the search for a worst case as a linear program [AE]. The only seeming
difficulty is that we would need infinitely many variablesm2,m3, Indeed, we can
choose a large enough upper boundN (e.g. N = 100), and then we use variables
m2, . . . ,mN to represent the total weight of clauses with 2, . . . , N literals, and a variable
m∞ to represent the total weight of clauses with more thanN literals. The contribution
of clauses with more thanN literals to the FGW algorithm is ignored; the contribution to
the other algorithms is lower bounded with the contribution that there would be if they
were all withN + 1 literals. An optimal solution to the following linear program is thus
a lower bound to the performance ration of the combined algorithm:

min ratio
subject to

ratio ≥
N∑

i=1

(
1− 1

2i

)
mi +

(
1− 1

2N+1

)
m∞,

ratio ≥ .931m2+ .7585m3+ .586m4+
N∑

i=1

2

i
mi ,

ratio ≥ p(1− p)m2+
N∑

i=1

(1− (1− p)i)mi + (1− (1− p)N+1)m∞,

p = i δ for i = 0, . . . , 1
2δ ,

N∑
i=1

mi +m∞ = 1,

mi ,m∞ ≥ 0.

For δ = .001 andN = 100 the linear program above has an optimal solutionratio =
.8000939. The same solution can be obtained using only one value ofp, namely,p = .082
(the value.082 has been found with numerical experiments).

THEOREM24. There exists a.8-approximate algorithm forGL1-MAX SAT and a.826-
approximate algorithm forGL1-MAX 3SAT.

160 L. Trevisan

algorithm Simplify ;
begin

S := ∅;
while ϕ is not simplifieddo begin

for eachconstraintC ≡ (f (xi1, . . . , xik) = 1) with a (2,1)-dependent satisfying table
do begin

Comment: C enforces a linear relation(xi j = a0⊕ahxih);
ϕ := ϕ[xi j ← a0⊕ahxih];
S := S∪ {(xi j = a0⊕ahxih)};

end;
for eachconstraintC one whose satisfying assignment is inconsistent withL I N (ϕ)

remove such assignment from the satisfying table ofC;
end;
return (ϕ, S);

end

Fig. 2.Algorithm reducing an instance ofGL1-MAX 3CSP to a simplified instance.

5. TheMAX 3CSPAlgorithm

DEFINITION 25. We say that an instanceϕ of MAX kCSP issimplifiedif the following
conditions hold for any constraintC = (f, (i1, . . . , i k)) of ϕ:

1. The columns of a satisfying table ofC are(2,1)-independent.
2. EitherC is linear or all its satisfying assignments are consistent withLIN(ϕ). More for-

mally, if f is not linear, then for any valuesa1, . . . ,ak ∈ {0,1}such thatf (a1 . . . ,ak) =
1, the systemLIN(ϕ) ∪ {(xi1 = a1), . . . , (xik = ak)} is satisfiable.

LEMMA 26. If GL1-MAX 3CSP is r-approximable when restricted to simplified in-
stances, thenGL1-MAX 3CSPis r-approximable.

PROOF. Given a general instanceϕ of GL1-MAX 3CSP, we reduce it to a simplified
instanceϕ′. The reduction is described in Figure 2.

The proof now continues with the same structure as the proof of Lemma 17.

CLAIM 27. For any instanceϕ, Simplify (ϕ) terminates in polynomial time.

PROOF. Each step either reduces the size of the satisfying table of a constraint or reduces
the number of variables occurring inϕ. Thus, the number of possible steps is bound-
ed by the length of the description ofϕ. Each step can be implemented in polynomial
time.

Let now ϕ be a satisfiable instance of MAX 3CSP over variable setX, and let
Simplify (ϕ) = (ϕ′, S). Let X′ be the variable set ofϕ′.

CLAIM 28. ϕ′ is satisfiable. Indeed, any satisfying assignment forϕ is a satisfying
assignment forϕ′ and is consistent with S.

Approximating Satisfiable Satisfiability Problems 161

PROOF. By induction on the number of substitutions performed by the algorithm.

CLAIM 29. Let a′ be an assignment to X′, and leta be the extension ofa′ to X using
S. Then the total weight of clauses ofϕ′ that are satisfied bya′ equals the total weight
of clauses ofϕ that are satisfied bya.

This completes the proof of Lemma 26.

LEMMA 30. GL1-MAX 3CSPrestricted to simplified instances is.5145-approximable.

PROOF. From Lemma 15,ϕ has no unit constraint (besides the always true constraint),
the 2-ary constraints can only be from 2SAT, the 3-ary constraints must have at least
three satisfying assignments. Letm2 be the total weight of 2SAT constraints, and letm(3),
m(4), m(5), m(6), andm(7) be the total weight of 3-ary constraints that have, respectively,
3, 4, 5, 6, and 7 satisfying assignments. We also letm(4L) be the total weight of 3-ary
linear constraints andm(4O) = m(4) −m(4L).

We use two algorithms and take the best solution.
In the first algorithm, we simply consider a random feasible solution forLIN(ϕ). On

the average, the total weightARAND of satisfied constraints is at least

ARAND≥ 3
4m2+ 3

8m(3) + 4
8m(4O) +m(4L) + 5

8m(5) + 6
8m(6) + 7

8m(7).

Derandomization is possible using the method of conditional expectation.
The other algorithm uses the TSSW method and the FGW algorithm. We have to

find gadgets reducing the various possible 3-ary constraints to 2SAT constraints. The
new constructions (and the old ones that we use) are listed in Table 3. More details are
available in Section 8. Using the FGW algorithm with the TSSW method and the gadgets
of Table 3, we have an algorithm that satisfies constraints of total weight

AGAD ≥ .931m2+ .6205m(3) + .241m(4L)

+ .6205m(4O) + .43075m(5) + .6205m(6) + .7585m(7).

Table 3.Gadgets used.

Source Target
constraint constraint α Due to

3SAT 2SAT 3.5 [TSSW]
4SAT 2SAT 6 This paper
3CSP3 2SAT 5.5 This paper
3CSP4 2SAT 5.5 This paper

not linear
3CSP4 2SAT 11 [BGS]
linear
3CSP5 2SAT 8.25 This paper
3CSP6 2SAT 5.5 This paper

162 L. Trevisan

If we take the best solution, then we satisfy constraints of total weight

max{ARAND, AGAD} ≥ .4315ARAND+ 0.5685AGAD ≥ .5145m,

wherem= m2+m(3) +m(4L) +m(4O) +m(5) +m(6) +m(7).

THEOREM31. There exists a polynomial-time.5145-approximate algorithm forGL1-
MAX 3CSP.

THEOREM32. naPCP1,.514[log,3] ⊆ P.

Recall that Håstad [H3] proved thatnaPCP1−ε,1/2+ε[log,3] = NP and that
naPCP1,3/4+ε[log,3] = NP for anyε > 0

6. The MAX kCSPAlgorithm. The general pattern of the results of this paper is
that we take an instance of a constraint satisfaction problem and, using approximation
preserving reductions, we transform it into an instance where each constraint has a
“reasonably large” set of satisfying assignments. For the new instance, the approach of
taking a random solution will then work well enough.

In order to bound from below the number of satisfying assignments of the constraints
in the new instance, we use algebraic properties of the satisfying table. For the MAX SAT
algorithm we just use the fact that the new instance has no unit clause. For MAX 3CSP
we go one step further, and we use the fact that the constraints of the new instance have
a (2,1)-independent satisfying table. For MAX kCSP we enforce full1-independency
among the row of the satisfying table.

It turns out that it is easier to define an approximation algorithm for a generalization
of MAX kCSP.

DEFINITION 33 (MAX kCSP+LIN). For any positive integerk, the MAX kCSP+LIN
problem is defined as follows: aninstanceis a pair(ϕ, S), whereϕ is an instance of
MAX kCSP andS is a system of linear equations. Afeasible solutionis an assignment
of 0/1 values to the variables occurring inϕ andS, such that all the equations ofS are
satisfied. Themeasureof a solution is the total weight of satisfied constraints inϕ.

Thus, the difference between MAX kCSP+LIN and MAX kCSP is that in the former
problem we also have a set ofmandatorylinear constraints that must be satisfied by any
feasible solution. MAX kCSP can be seen as the special case of MAX kCSP+LIN where
the setS is empty.

DEFINITION 34. We say that an instance(ϕ, S) of MAX kCSP+LIN isover-simplified
if, for any constraintC of ϕ, the following properties hold:

1. the columns of the satisfying table ofC are1-independent.
2. any assignment to the variables occurring inC that satisfiesC is consistent withS.

Note that the first property implies that in an over-simplified instance(ϕ, S) no constraint
in ϕ can be linear.

Approximating Satisfiable Satisfiability Problems 163

algorithm OverSimp
input : ϕ, S;
begin

while (ϕ, S) is not over-simplifieddo begin
for eachC ∈ ϕ that is lineardo begin
ϕ := ϕ − {C}
S := S∪ {C};

end;
for eachC ≡ (f (xi1, . . . , xik) = 1) ∈ ϕ with a1-dependent satisfying table
do begin

Comment: C enforces a linear relationxi j = a0⊕
⊕

h6= j ahxih ;
C := C[xi j ← a0⊕

⊕
h6= j ahxih];

S := S∪ {xi j = a0⊕
⊕

h6= j ahxih};
end;
for eachC ∈ ϕ one whose satisfying assignments is inconsistent withSdo

remove such assignment from the satisfying table ofC;
end;
return (ϕ, S);

end

Fig. 3.The algorithm that reduces a pair(ϕ, S) to an over-simplified pair(ϕ′, S′).

LEMMA 35. If GL1-MAX kCSP+LIN is r-approximable when restricted to over-
simplified instances, thenGL1-MAX kCSP+LINis r-approximable.

PROOF. Let (ϕ, S) be an instance ofGL1-MAX kCSP+LIN. Consider the procedure
OverSimp described in Figure 3. Let(ϕ′, S′) = OverSimp (ϕ, S). It is easy to see
thatOverSimp has a polynomial-time implementation. The following claims prove the
lemma.

CLAIM 36. (ϕ′, S′) is an instance ofGL1-MAX kCSP.

PROOF. Algorithm OverSimp never replaces a constraint with a constraint of bigger
arity. Thusϕ′ is an instance of MAX kCSP. By induction on the number of substitutions
performed by the algorithm, we can prove that any satisfying assignment for(ϕ, S) is
also a satisfying assignment for(ϕ′, S′)

CLAIM 37. If an assignmenta′ is feasible and r-approximate for(ϕ′, S′), then it is
feasible and r-approximate for(ϕ, S).

PROOF. By induction on the number of steps.

LEMMA 38. GL1-MAX kCSP+LINis (k+ 1)/2k-approximable when restricted to sim-
plified instances.

164 L. Trevisan

PROOF. Let(ϕ, S) be a simplified instance of MAX kCSP+LIN. Ifh ≤ k is the arity of a
constraintC in aϕ, then, by Lemma 16,C has at leasth+1 satisfying assignments, and
a random assignment satisfies it with probability at least(h+1)/2h ≥ (k+1)/2k. If we
take a random feasible solution forS, it satisfies all constraints ofSand, on the average,
a fraction at least(k+1)/2k of the total weight of the constraints ofϕ. Derandomization
is possible with the method of conditional expectation.

THEOREM39. There exists a polynomial-time(k + 1)/2k-approximate algorithm for
GL1-MAX kCSP.

THEOREM40. For any q≥ 3, for any s< (q + 1)/2q, naPCP1,s[log,q] ⊆ P.

Observe that the bound of Lemma 39 above is1
2 for MAX 3CSP.

7. Free Bits. We now state some results (the first ones withf > 1) aboutnaFPCP
classes that collapse toP.

THEOREM41. The following statements hold:

1. naFPCP1,s[log, f] ⊆ naPCP1,s[log,22 f−1− 1].
2. naFPCP1,s[log, f] ⊆ P for all s > (2 f)/22 f−1 and f ≥ log 3.

PROOF. Let L ∈ naFPCP1,s[log, f]. Let V be the verifier witnessing this fact. Given
x, we can find in polynomial time an instanceϕx of a constraint satisfaction problem
with the following property:

• Each constraint usesf non-adaptive free bits, that is, has at most 2f satisfying as-
signments.
• If x ∈ L, thenϕx is satisfiable, otherwise at most a fractions of the constraints is

satisfiable.

Indeed,ϕx has a constraintCR for any random stringR of V with input x. The weight
of CR is the probability of the random string being selected. A boolean variable is
associated to each position of the proof, and the constraintCR is satisfied precisely by
the assignments corresponding with proofs that would be accepted byV with input x
and random stringR.

We run algorithmSimplify with input ϕx. We obtain an instanceψx and a set of
equationsS that enjoy the following properties:

1. No constraintC of ψx has more than 2f satisfying assignments (Simplify never
makes the satisfying table of a constraint larger).

2. Any constraint inψx has a(2,1)-independent satisfying table.
3. If ϕx is satisfiable, thenψx is satisfiable.
4. An assignment satisfying a fractions of the constraints ofψx can be extended, using

S, to an assignment satisfying at least a fractions of the constraints ofϕx.

Approximating Satisfiable Satisfiability Problems 165

From the first two properties, it follows that no constraint inψx has arity larger than
22 f−1− 1. From the other properties we have:

• If x ∈ L, thenψx is satisfiable.
• If x 6∈ L, then at most a fractions of the constraints ofψx is satisfiable.

We now describe a verifier forL that uses logarithmic randomness, has perfect com-
pleteness, soundnesss and queries 22

f−1 − 1 bits. Givenx, the verifier computesψx,
and assumes that the proof contains a satisfying assignment forψx. The verifier picks a
random constraint ofψx, reads from the proof the value of the variables occurring in the
constraint, and accepts if and only if the constraint is satisfied. Clearly, the verifier reads
at most 22

f−1 − 1 bits. If x ∈ L, thenψx is satisfiable and so there exists a proof that
makes the verifier accept with probability 1. Observe that the probability of acceptance
of the verifier is equal to the fraction of constraints that are satisfied by the proof; if
x 6∈ L, then no proof can make the verifier accept with probability larger thans.

This establishes the first part of the theorem.
To establish the second part, we use algorithmOverSimp . Let OverSimp (ϕx) =

(ψ ′x, S′). We have the following properties:

1. No constraintC of ψx has more than 2f satisfying assignments (OverSimp never
makes the satisfying table of a constraint larger).

2. Any constraint inψx has a1-independent satisfying table.
3. If ϕx is satisfiable, thenψx is satisfiable.
4. An assignment satisfying a fractions of the constraints ofψ ′x and all equations ofS′

also satisfies at least a fractions of the constraints ofϕx.

From the first two properties, it follows that no constraint inψx has arity larger than 2f−1.
If s < 2 f /22 f−1, then we are able to satisfy more than a fractions of the constraints of
ϕx wheneverx ∈ L. This implies that we have a polynomial-time algorithm forL.

Observe that, in particular, we have

naFPCP1,3/4−ε[log, log 3]⊆ P, ∀ε > 0,

and

naFPCP1,1/2−ε[log,2] ⊆ P, ∀ε > 0.

The first inclusion means that using a Proof System with perfect completeness, non-
adaptiveness, and log 3 free bits, the stronger hardness result that can be shown for
Vertex Cover is13

12 − ε for anyε (weaker than H˚astad’s result that uses almost-perfect
completeness [H3]). Using 2 free bits, the stronger result is7

6−ε, which equals H˚astad’s
result. With log 5 free bits or more, we can only do worse. The moral of this result is that
the only way to improve the76 − ε hardness result for Vertex Cover is to use non-perfect
completeness and/or adaptiveness.

An interesting open question is to find the impossibility result for non-adaptive veri-
fiers. Indeed, we suspect that, with a bounded number of adaptive free bits and perfect
completeness, it is impossible to achieve an arbitrary good soundness. In particular, it

may be the case thatFPCP1,s[log, f] ⊆ P whens< 222 f

.

166 L. Trevisan

8. Gadget Construction

8.1. Methodology. All the new gadgets used in this paper are computer-constructed
using the methodology of [TSSW]. We refer the reader to that paper for details about
the method. (A full version is available from the authors. See also the presentation
in [T2].) In short, [TSSW] show that the problem of finding the best possible gad-
get reducing a function to 2SAT (in general, the target can be anyhereditaryfamily,
that is, any family that is closed under substitutions) can be reduced to a linear pro-
gram.

This method has been implemented by Greg Sorkin. His implementation consists of
an APL2 program that given the description of the source family and of the target family
generates the appropriate linear program and then solves it using OSL (the IBM Op-
timization Subroutine Library, a commercial package for mathematical programming).
Almost all the gadgets reported in [TSSW] have been found with Sorkin’s program. In
order to deal with the computing environment of the University of Geneva we had to
develop a different implementation. Our implementation is much more rudimentary but
only requires public domain resources.

In our implementation, the LP is generated by a C program. The program is specialized
to the case where the target family is 2SAT and the source function is 3-ary. The function
that we want to reduce to 2SAT is specified in a header file. To find gadgets reducing
different functions to 2SAT it is thus necessary to edit the header and then recompile the
program. To find the gadget reducing 4SAt to 2SAT we also had to alter the program itself
slightly. Another special case arose for gadgets reducing functions in 3CSP4 to 2SAT.
There were 34 cases to be considered (see Lemma 48), so we modified the program in
order to have it generate all the cases itself, solve all of them, and then report the 34
solutions.

Finally, we remark that a straightforward application of the technique of [TSSW]
would lead to exceedingly too big linear programs in some cases. For example, in
order to find the best gadget reducing 4SAT to 2SAT we would have to solve a lin-
ear program with 263 constraints. To deal with such cases, we used a method al-
ready employed in [TSSW] that reduces the size of the linear program at the cost
of possibly producing non-optimal gadgets. Alternatively, it is possible to reduce the
size of the linear programs at the cost of possibly producing unfeasible gadgets of
super-optimal cost. When the two approaches produce gadgets of the same cost, then
we have a guarantee of optimality. The reader is again referred to [TSSW] for more
details.

The generated LP is solved using a public domain LP solver,lp solve version 2,
written by Michel Berkelaar (with some additions by Jeroen Dirks), available at the
URL ftp://ftp.zib.de/pub/mathprog/lp-berkelaar/lp-solve/. Once the LP is solved, the
solution is reported in LATEX. The descriptions of the gadgets appearing in Section 8.2,
except the gadget reducing 4SAT to 2SAT, are unedited outputs of our program.

We used a SUN SPARCstation4 running Solaris, with 64 Mb of memory. Our program
and thelp solve libraries have been compiled with GNU’sgcc. The larger linear programs
that we solved had∼ 200 variables and∼ 1000 constraints. It took roughly 2 minutes
to solve them. All other LPs had only 100 to 200 constraints and less than 100 variables,
and they were solved in a few seconds.

Approximating Satisfiable Satisfiability Problems 167

8.2. Constructions

LEMMA 42. For any f ∈ 2CSPthat is not identically0 nor identically1, there is a
2-gadget reducing f to2SAT.

LEMMA 43. If f ∈ 3CSPhas a(2,1)-dependent satisfying table, then there is a2-
gadget reducing f to2SAT.

DEFINITION 44. For two functionsf, g: {0,1}k → {0,1}, we say thatf is derivable
from g if f (x1, . . . , xk) = g(lπ [1], . . . , lπ [k]) whereπ is a permutation of{1, . . . , k} and
l i is eitherxi or x̄i .

For example, iff (x1, x2, x3) = g(x3,1− x1, x2), then f is derivable fromg.

LEMMA 45. If f is derivable from g and there is anα-gadget reducing g to2SAT,then
there is also anα-gadget reducing f to2SAT.

LEMMA 46. For any f ∈ 3CSP3, there is a5.5-gadget reducing f to2SAT, and it is
optimal.

PROOF. By Lemma 43 it is sufficient to consider only functions with a(2,1)-
independent satisfying table. By Lemma 45, we can consider only functions such that
each column of the satisfying table has more zeros than ones (all other functions can be
then obtained using complementation). We can also assume that columns are in lexico-
graphic order. It is thus sufficient to consider only the function 1-in-3 with the following
satisfying table:

x1 x2 x2

0 0 1
0 1 0
1 0 0

There is a 5.5-gadget reducing 1-in-3 to 2SAT. The gadget has the following clauses:

weight 0.5: (x2 ∨ x3), (x1 ∨ x2), (x1 ∨ x3),

weight 1.5: (¬x1 ∨ ¬x3), (¬x1 ∨ ¬x2), (¬x2 ∨ ¬x3).

LEMMA 47 [BGS], [TSSW]. For any 3-ary linear function f, there is an11-gadget
reducing f to2SAT,and it is optimal.

LEMMA 48. For any f ∈ 3CSP4 that is not linear, there is a5.5-gadget reducing f to
2SAT. It is optimal for some of these functions.

PROOF. As usual, we restrict ourselves to functions with a(2,1)-independent satisfying
table. It is easy to see that we can also restrict to functionsf such thatf (0,0,0) = 1.
(Any other function is derivable from a function that is satisfied by(0,0,0).) To sum up,

168 L. Trevisan

Table 4. Gadgets reducing non-linear functions in
3CSP4 to 2SAT.

Columns chosen Cost of the gadget

{1,4,6}, {1,4,7}, {1,5,6}, 2
{1,5,7}, {2,4,5}, {2,4,7},
{2,5,6}, {2,6,7}, {3,4,5},
{3,4,6}{3,5,7}, {3,6,7}
{4,5,6}, {4,5,7}, {4,6,7}, 3
{5,6,7}
{1,2,4}, {1,2,5}, {1,2,6}, 4.5
{1,2,7}, {1,3,4}, {1,3,5},
{1,3,6}, {1,3,7}, {2,3,4},
{2,3,5} ,{2,3,6}, {2,3,7}
{1,4,5}, {1,6,7}, {2,4,6}, 5.5
{2,5,7}, {3,4,7}, {3,5,6}

we have to consider all the functions whose satisfying table is obtained by taking three
out of the seven columns of the following matrix, except the function obtained by taking
the first three columns (it is linear!):

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

There are
(7

3

) − 1 = 34 cases to be considered. For space reasons we do not report all
the gadgets. In Table 4 we report the costs of the optimal gadgets for all the cases. The
description of the 34 gadgets are available on request from the author.

LEMMA 49. For any f ∈ 3CSP5, there is an8.25-gadget reducing f to2SAT.This is
optimal for some of these functions.

PROOF. Up to permutation of variables and complementation, there are only three
possible constraints. We show their satisfying tables:

x1 x2 x3 x1 x2 x3 x1 x2 x3

0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 1
1 1 1 0 1 1 1 1 0

Approximating Satisfiable Satisfiability Problems 169

We have an 8.25-gadget reducing the first one to 2SAT:

weight 0.25: (¬x3 ∨ ¬x5), (x1 ∨ ¬x5), (¬x1 ∨ x5),

(¬x1 ∨ x4), (x3 ∨ x5),

weight 0.5: (x3 ∨ ¬x7), (¬x2 ∨ x4), (¬x2 ∨ x6),

(¬x2 ∨ ¬x5), (¬x1 ∨ ¬x6), (x2 ∨ x7),

(¬x3 ∨ ¬x6), (¬x1 ∨ ¬x7),

weight 0.75: (x3 ∨ ¬x4), (¬x3 ∨ x4),

weight 1: (x2 ∨ ¬x4),

weight 1.25: (x1 ∨ ¬x4),

a 2-gadget for the second:

weight 1: (¬x1 ∨ ¬x2), (¬x1 ∨ ¬x3),

and a 3.5-gadget for the third:

weight 0.5: (x2 ∨ x3), (x1 ∨ ¬x3), (x1 ∨ ¬x2),

(¬x1 ∨ x2), (¬x1 ∨ x3),

weight 1.5: (¬x2 ∨ ¬x3).

The 8.25-gadget is optimal [SS].

LEMMA 50. For any f ∈ 3CSP6 with a 2-independent satisfying table, there is a5.5-
gadget reducing f to2SAT.This is optimal for some of the functions.

PROOF. In this case there are again three basic cases. Indeed, we can assume with no loss
of generality that the function is false in 000, then the other non-satisfying assignment
can have three ones, and be 111, or two ones, and be 011 without loss of generality, or
one one and be 001 without loss of generality.

x1 x2 x3 x1 x2 x3 x1 x2 x3

0 0 1 0 0 1 0 1 0
0 1 0 0 1 0 0 1 1
0 1 1 1 0 0 1 0 0
1 0 0 1 0 1 1 0 1
1 0 1 1 1 0 1 1 0
1 1 0 1 1 1 1 1 1

The first constraint is also known as 3-set-splitting. There is a 2.5-gadget reducing it to
2SAT:

weight 0.5: (¬x1 ∨ ¬x2), (¬x1 ∨ ¬x3), (x1 ∨ x3),

(x1 ∨ x2), (x2 ∨ x3), (¬x2 ∨ ¬x3).

The second constraint gives rise to a constraint satisfaction problem such that, given a sat-
isfiable instance, it isNP-hard to satisfy more than a fraction3

4+ε of the constraint [H3].

170 L. Trevisan

We have a 5.5-gadget for this constraint:

weight 0.5: (x1 ∨ x8), (¬x1 ∨ ¬x8), (¬x3 ∨ ¬x9),

(¬x1 ∨ x9), (¬x3 ∨ ¬x8), (x3 ∨ x9),

(x3 ∨ x8), (x1 ∨ ¬x9),

weight 1: (¬x2 ∨ x9), (x2 ∨ ¬x8).

Our gadget, combined with the non-approximability result of [H3] gives an alternative
proof of the fact that MAX 2SAT is hard to approximate within21

22+ε. The third constraint
is justx1 ∨ x2. This 5.5-gadget is optimal.

LEMMA 51 [TSSW]. For any f ∈ 3CSP7 = 3SAT, there is a3.5-gadget reducing f
to 2SAT,and it is optimal.

LEMMA 52. For any f ∈ 4SAT, there is a6-gadget reducing f to2SAT.

PROOF. The 6-gadget reducing(x1 ∨ x2 ∨ x3 ∨ x4) to 2SAT is

(x3 ∨ y2) , (¬x3 ∨ ¬x4) , (¬x3 ∨ ¬y1) ,

(x2 ∨ ¬y2) , (y5 ∨ ¬y2) , (x1 ∨ ¬y1) , (x4 ∨ y2),

where y1 and y2 are auxiliary variables. All the constraints in the gadget have
weight 1.

Acknowledgements. I thank Greg Sorkin and Madhu Sudan for having checked some
of the gadget constructions of this paper. I am grateful to Pierluigi Crescenzi, Oded
Goldreich, Shafi Goldwasser, and Madhu Sudan for valuable discussions.

References

[A] T. Asano. Approximation algorithms for MAX SAT: Yannakakis vs. Goemans–Williamson. In
Proceedings of the5th IEEE Israel Symposium on Theory of Computing and Systems, pages 24–
37, 1997.

[AE] G. Andersson and L. Engebretsen. Better approximation algorithms for Set Splitting and Not-All-
Equal Sat.Information Processing Letters, 65(6):305–311, 1998.

[AHO] T. Asano, T. Hirata, and T. Ono. Approximation algorithms for the maximum satisfiability problem.
Nordic Journal of Computing, 3:388-404, 1996.

[ALM +] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of
approximation problems.Journal of the ACM, 45(3):501–555, 1998. Preliminary version inProc.
FOCS ’92.

[AS] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.Journal of
the ACM, 45(1):70–122, 1998. Preliminary version inProc. FOCS ’92.

[BF] L. Babai and P. Frankl.Linear Algebraic Methods in Combinatorics(2nd preliminary version).
Monograph in preparation, 1992.

[BGLR] M Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs
and applications to approximation. InProceedings of the25th ACM Symposium on Theory of
Computing, pages 294–304, 1993. See also the errata sheet inProc. STOC ’94.

Approximating Satisfiable Satisfiability Problems 171

[BGS] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCP’s and non-approximability – towards
tight results.SIAM Journal on Computing, 27(3):804–915, 1998. Preliminary version inProc.
FOCS ’95.

[BS] M. Bellare and M. Sudan. Improved non-approximability results. InProceedings of the26th ACM
Symposium on Theory of Computing, pages 184–193, 1994.

[C] N. Creignou. A dichotomy theorem for maximum generalized satisfiability problems.Journal of
Computer and System Sciences, 51(3):511–522, 1995.

[CFZ] J. Chen, D. Friesen, and H. Zheng. Tight bound on Johnson’s algorithm for MaxSAT. InProceedings
of the12th IEEE Conference on Computational Complexity, pages 274–281, 1997.

[CT] P. Crescenzi and L. Trevisan. MAX NP-completeness made easy. Technical Report TR97-039,
Electronic Colloquium on Computational Complexity, 1997.

[FG] U. Feige and M.X. Goemans. Approximating the value of two provers proof systems, with appli-
cations to MAX 2SAT and MAX DICUT. InProceedings of the3rd IEEE Israel Symposium on
Theory of Computing and Systems, pages 182–189, 1995.

[FGL+] U. Feige, S. Goldwasser, L. Lov´asz, S. Safra, and M. Szegedy. Interactive proofs and the hardness
of approximating cliques.Journal of the ACM, 43(2):268–292, 1996. Preliminary version inProc.
FOCS ’91.

[FK] U. Feige and J. Kilian. Two prover protocols - low error at affordable rates. InProceedings of the
26th ACM Symposium on Theory of Computing, pages 172–183, 1994.

[GLST] V. Guruswami, D. Lewin, M. Sudan, and L. Trevisan. A tight characterization of NP with 3
query PCPs. InProceedings of the39th IEEE Symposium on Foundations of Computer Science,
pages 8–17, 1998.

[GW1] M.X. Goemans and D.P. Williamson. New 3/4-approximation algorithms for the maximum satisfi-
ability problem.SIAM Journal on Discrete Mathematics, 7(4):656–666, 1994. Preliminary version
in Proc. IPCO ’93.

[GW2] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming.Journal of the ACM, 42(6):1115–1145,
1995. Preliminary version inProc. STOC ’94.

[H1] J. Håstad. Clique is hard to approximate withinn1−ε . In Proceedings of the37th IEEE Symposium
on Foundations of Computer Science, pages 627–636, 1996.

[H2] J. Håstad. Testing of the long code and hardness for clique. InProceedings of the28th ACM
Symposium on Theory of Computing, pages 11–19, 1996.

[H3] J. Håstad. Some optimal inapproximability results. InProceedings of the29th ACM Symposium on
Theory of Computing, pages 1–10, 1997.

[J] D.S. Johnson. Approximation algorithms for combinatorial problems.Journal of Computer and
System Sciences, 9:256–278, 1974.

[KMSV] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational views of
approximability.SIAM Journal on Computing, 28(1):164–191, 1999. Preliminary version inProc.
FOCS ’94.

[KSW] S. Khanna, M. Sudan, and D.P. Williamson. A complete classification of the approximability of
maximization problems derived from boolean constraint satisfaction. InProceedings of the29th
ACM Symposium on Theory of Computing, pages 11–20, 1997.

[KZ] B. Karloff and U. Zwick. A (7/8− ε)-approximation algorithm for MAX 3SAT? InProceedings
of the38th IEEE Symposium on Foundations of Computer Science, pages 406–415, 1997.

[P] E. Petrank. The hardness of approximations: gap location.Computational Complexity, 4:133–157,
1994. Preliminary version inProc. ISTCS ’93.

[PY] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.
Journal of Computer and System Sciences, 43:425–440, 1991. Preliminary version inProc. STOC
’88.

[SS] G.B. Sorkin and M. Sudan. Personal communication, 1997.
[T1] L. Trevisan. Positive linear programming, parallel approximation, and PCP’s. InProceedings of

the4th European Symposium on Algorithms, pages 62–75. LNCS 1136, Springer-Verlag, Berlin,
1996.

[T2] L. Trevisan. Reductions and (Non-)Approximability. Ph.D. thesis, University of Rome “La
Sapienza”, 1997. Also available at ECCC.

172 L. Trevisan

[TSSW] L. Trevisan, G.B. Sorkin, M. Sudan, and D.P. Williamson. Gadgets, approximation, and linear
programming. InProceedings of the37th IEEE Symposium on Foundations of Computer Science,
pages 617–626, 1996.

[Y] M. Yannakakis. On the approximation of maximum satisfiability.Journal of Algorithms, 17:475–
502, 1994. Preliminary version inProc. SODA ’92.

[Z] U. Zwick. Approximation algorithms for constraint satisfaction problems involving at most three
variables per constraint. InProceedings of the9th ACM–SIAM Symposium on Discrete Algorithms,
pages 201–210, 1998.

