Algorithmica (2000) 27: 348-381 . .
DOI: 10.10075004530010024 Al go rithmica

© 2000 Springer-Verlag New York Inc.

Definability Equals Recognizability of Partial 3-Trees
and k-Connected Partialk-Trees

D. Kaller?

Abstract. We consider graph decision problems on partial 3-trees that can be solved by a finite-state,
leaf-to-root tree automaton processing a width-3 tree decomposition of the given graph. The class of yes-
instances of such a problem is said torbeognizableby the tree automaton. In this paper we show that
any such class of recognizable partial 3-treedafinableby a sentence in CMS logic. Here, CMS logic is

the extension of Monadic Second-order logic with predicates to count the cardinality of sets modulo fixed
integers. We also generalize this result to show that recognizability (by a tree automaton that processes width-
k tree decompositions) implies CMS-definability foconnected partiat-trees. The converse—definability
implies recognizability—is known to hold for any class of parkétrees, and even for any graph class with

an appropriate definition of recognizability. It has been conjectured that recognizability implies definability
over partialk-trees; but a proof was previously known only fox 2. This paper proves the conjecture, and
hence the equivalence of definability and recognizability, over partial 3-treds-amuhected partidd-trees.

We use technigues that may lead to a proof of this equivalence over all faitéads.

Key Words. Partialk-trees, Treewidth, Monadic Second-order logic, Tree decompositions, Tree automata.

1. Introduction. Many NP-hard graph problems are known to have linear-time algo-
rithms over partiak-trees (see [1] for a survey of early results). Takamizawa et al. [26]
described a general technique to construct such algorithms over series-parallel graphs
(i.e., partial 2-trees). A number of more general formalisms were later developed [4]-
[6], [22], including several based on the Monadic Second-order (or MS) logic [3], [9],
[12], [14]. Often, it is very easy to define a given graph decision problem with a sen-
tence in MS logic; such a sentence can be automatically translated into a linear-time
dynamic-programming algorithm to solve the problem over paktitiees. Although

this automatic translation is intractable, it is nevertheless of major theoretical interest.
The resultant dynamic-programming algorithms are modeled by finite-state machines
calledtree automataTo use such a machine, the input graph must first be parsed into
a tree decompositigrthis parsing can also be done in a (theoretically) efficient way
[7]. The time complexity bounds for the parsing and for the dynamic-programming
are both linear in the size of the partiatree, with very large constants (which grow
superexponentially witk).

1 These results were presented at the 22nd Workshop on Graph-Theoretic Concepts in Computer Science [20],
and they form part of the author’s Ph.D. dissertation [19].

2 school of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
Current address: Pivotal Corporation, 300-224 West Esplanade, North Vancouver, British Columbia, Canada
V7M 3M6. dkaller@pivotal.com.

Received February 3, 1997; revised July 24, 1997. Communicated by H. L. Bodlaender.

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 349

A partialk-tree is a graph that can be constructed by gluing togdthsicgraphs—
each withk + 1 or fewer vertices—along the global shape of a tree. This tree, together
with the corresponding basic graphs, constitutes a widtke decomposition [25] of the
graph so constructed. Arnborg et al. [2] showed how to parse a given graph into &width-
tree decomposition (or conclude that the graph is not a partiae) in polynomial time;
later, Bodlaender [7] gave a linear-time algorithm to do this. A tree decomposition can
be encoded as a rooted tree with nodes labeled from a finite set of basic graphs. A tree
automaton processes a tree decomposition by assigning each of its nodes to one of a
finite number of states—computed as a function of the node’s label and the states of its
children. The tree is accepted iff its root is thus assigned to a designated accepting state.
Only constant time is needed to compute the state of each node; so a tree automaton
decides in linear time whether or not to accept a tree decomposition. In order for a tree
automaton to be a decision algorithm over pakitiees, it must accept either all of the
width-k tree decompositions of a given graph, or none of them (as graphs do not have
unique tree decompositions).

A subclass of the partidt-trees is said to beecognizedby a tree automaton that
accepts exactly the tree decompositions of graphs in that subclass. Courcelle [10] was
the first to show that if a sentence of t®unting Monadic Second-ordéor CMS)
logic defines a subclass (sal) of the partiak-trees, then there exists a tree automaton
to recognizdl. Here, CMS logic is the extension of MS logic with predicates to count
the cardinality of sets modulo fixed integers. Similar results were given by Arnborg
et al. [3] and by Borie et al. [9]. These results have far-reaching consequences: The
guestion of whether or not a given graph belongs to a certain class is general enough
to capture many commonly studied decision problems, and a large humber of these
problems can be encoded as CMS sentences [9], [11], [12], [19]. For many such classes
(such as Hamiltonian graphs or 3-colorable graphs), the “counting” predicates are not
needed: these classes can be defined by MS sentences. On the other hand, the “counting”
predicates are needed to define, for example, the class of graphs with an even number of
vertices: these graphs cannot be defined by an MS sentence, but they can be defined by
a CMS sentence [12]. In other cases, it is not possible for a CMS sentence to define all
the graphs with a given property, but a CMS sentence can nevertheless define the partial
k-trees with the property; an example of this is given by the class of graphs for which
the vertex set can be partitioned into fixed-size independent sets [16]. Courcelle’s result
[10], [12] says that the parti&-trees in any of these classes can be recognized in linear
time by a tree automaton. In fact, most of the standard NP-complete graph problems [15]
can be solved in linear time over partiatrees in this way.

The “definability implies recognizability” result is given by Courcelle [12] for classes
of structures (more general than parkigrees) that can be constructed recursively using
a finite set of “gluing” operations. The notion of “recognizability” must be generalized
appropriately for such structures. The recognizability of paktikes by tree automata
is analogous to the recognizability of regular sets by conventional finite-state automata,
and it is well known that a set of finite strings is recognizable iff it can be defined by a
regular expression [17], [24]. However, for a long time it was an open question whether
CMS logic analogously characterizes the sets of paktimees that are recognizable
by tree automata. Although CMS-definability was known to imply recognizability, the
converse implication had not been established. The converse was known to hold only

350 D. Kaller

for partial 1-trees [12], partial 2-trees [13], and, with the results presented here, partial
3-trees andk-connected partid-trees. Also, Kabanets [18] showed the converse holds
for partial k-paths(i.e., partialk-trees that can be composed by gluing together basic
graphs along the global shape of a path). Very recently, Lapoire [21] finally settled the
question, establishing the equivalence for all pakitiees.

Courcelle [12] shows how CMS predicates encoding the structure of a tree decompo-
sition could be used to encode whether itis accepted by a given tree automaton. Hence, to
prove that recognizability implies CMS-definability, we need only show that CMS pred-
icates can indeed encode the structure of a fixed tree decomposition of anykatagel
This is easy fok = 1 because a tree is (roughly speaking) its own tree decomposition.
In fact, MS logic is sufficient to encode a fixed tree decomposition of any partial 1-tree
[12]; the “counting” feature of CMS logic is needed only to simulate a tree automaton
on that encoded structure. Courcelle [13] also showed that MS logic can encode a fixed
tree decomposition of any partial 2-tree. In this paper we extend this result, showing
that MS logic can encode a fixed tree decomposition of any partial 3-tleeannected
partialk-tree. We then appeal to Courcelle’s result [12] to conclude that recognizability
implies CMS-definability over those classes of graphs.

The rest of this paper is organized as follows: In Section 2 we review graph-theoretic
notation and preliminaries. In Section 3 we discuss paktiabes and tree decomposi-
tions. In Section 4 we describe a general approach for proving that MS logic can encode
a fixed tree decomposition of a partlatree, and in Section 5 we explain how this en-
ables CMS logic to encode the behavior of a tree automaton. In Section 6 we show that
any connected partid-tree admits asimpletree decomposition—this can be used to
decompose a partilttree intotrunk-graphgwhich are partial 3-paths). In Section 7 we
decompose a 2-connected partial 3-tree into a hierarchy of these trunk-graphs, and we
develop several important properties of the hierarchy. In Section 8 we show how those
properties enable MS predicates to encode the vertex set and edge set of each trunk-
graph, and in Section 9 we show how they enable MS predicates to encode the structure
of apyramidin each trunk-graph. These results are combined in Section 10 to show that
MS predicates can describe a fixed tree decomposition of any 2-connected partial 3-tree.
In Section 11 we draw the conclusion that recognizability implies CMS-definability of
partial 3-trees. In Section 12 we generalize the prook-ttonnected partiak-trees.
Finally, in Section 13, we make concluding remarks and discuss open problems.

2. Preliminaries. The graphsinthis paper are finite, simple, loop-free, and undirected.
The vertex set of a grapB is denoted by/ (G), and its edge set is denoted ByG).

We write G’ C G to indicate thatG’ is a subgraph ofs. The subgraph of induced by

V' € V(G) is denoted byGyq. If V' is a set (but not necessarily a subset/dfs)),
thenG\ V' is the subgraph oB induced by (G) — V’. For a singleton s€t}, we may
write simply G\v for G\{v}. For a subgrapls’ of G, we may write simplyG\G’ for
G\V(G).

A cut-setof a graphG is a subse¥’ of V(G) such thatG has fewer components
thanG\V’. The unique element of a singleton cut-set is calledtavertex A cut-set (or
cut-vertex)V'’ is said toseparateany pair of vertices that are in the same component of
G, but in different components @\V'.

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 351

If bis a vertex of a rooted treE, thenT,, is the subtree of that is rooted ab. In this
paper deaf of a rooted tree is either a degree-1 vertex other than the root, or a degree-0
vertex (which is the root). This definition is for the convenience of having a unique leaf
in any path that is rooted at one of its endpoints.

DEFINITION 2.1. Supposq is a rooted tree. Arunkin T is a rooted patiP = T
between some vertaxof T and some leaf of,; v is then taken to be the root &.

SupposeP andP’ are paths in some graph:\f(P) NV (P’) = ¢, thenP andP’ are
calledvertex-disjointpaths. Ifv € V(P) N V(P’) implies thatv is an endpoint of both
P andP’, then they are callethternally vertex-disjoinpaths. We adopt the following
definition for the connectivity of a graph.

DEFINITION 2.2. An{-connectedyraph (for¢ € N) is a graph for which there are
internally vertex-disjoint paths between each pair of nonadjacent vertices.

It is more usual to define aficonnected graph, alternatively, as a graph from which at
least? vertices must be removed in order to obtain either a disconnected graph, or the
graph with a single vertex [8]. Lemma 2.3 (first given by Menger [23]) shows that these
two characterizations are equivalent for graphs with more thaertices.

LEMMA 2.3. Let? € N, and suppose G is a connected graphYenl or more vertices
G containgt internally vertex-disjoint paths between each pair of vertices iff there is no
cut-set of G with cardinality less thah

By Definition 2.2, a graph o# or fewer vertices ig-connected iff it is a clique; by the
alternative definition, no such small graph would¢beonnected.

DerINITION 2.4. Ablockof a graphG is a 2-connected subgraph@fthat is induced
by a maximal subset of (G).

Under our notion of connectivity (Definition 2.2) a block may consist of a single vertex
or a pair of adjacent vertices.

3. Partial k-Trees and Tree Decompositions. A k-treeis either the clique ok ver-

tices, or a graph that can be obtained (recursively) frokati@e G by adding a new

vertex and making it adjacent to akydistinct vertices that induce a clique @&. A

partial k-treeis a subgraph of &-tree. For example, a graph is a partial O-tree iff its
edge set is empty; a graph is a partial 1-tree iff it is a forest. Series-parallel graphs and
outerplanar graphs are subclasses of the partial 2-trees; Halin graphs form a subclass of
the partial 3-trees. It is not hard to show (see, e.g., [28]) that a graph is a jatried

iff it admits awidth-k tree decomposition

DerINITION 3.1. Atree decompositionf a graphG is a pair(T, X') whereT is a tree
andX = {Xa}aev(m) is a collection of subsets &f (G), indexed by the nodes df, for

352 D. Kaller

which the following three properties are satisfied:

* Uaevm Xa=V(G).
e Each edge o6 has both endpoints in some s&t € X.
e If a,b,c € V(T) such thab lies on the path betweemandc, thenX; N Xc € Xp,.

We refer to elements df (T) asnodes so as not to confuse them with vertices@f
The setXy, is called thebagindexed byb € V(T). If no bag inX’ contains more than
k + 1 vertices, theT, x) is called awidth-ktree decomposition. [f” is a subgraph of
T, thenXy: is the collection of bags indexed B(T’); and X+ is the the union of those
bags:

Xr={XaeX|aeV(T)), Xr= J Xa
aeV(T")

We refer to the subgraph @ that is induced byXt as the subgraptinderlying T. It
will be useful to designatk or fewer vertices of a partidd-tree agerminals

DEFINITION 3.2. Aterminal sebf a partialkk-treeG is a proper subsét’ of V (G) with
cardinality|V’| < k, such thatG admits a widthk tree decomposition in whick’ is a
subset of some bag.

We assume that any gra@hhas a specially designated (possibly empty) terminal set,
denoted bWierm(G). We canthen construct a tree decomposition such that these terminals
all belong to the bag indexed by a designated root:

DEFINITION 3.3. Arootedtree decomposition of a grafghis a triple(T, r, X') where
T is a rooted treer € V(T) is the root;(T, x) is a tree decomposition d&; and
Vierm(G) € X:.

If (T,r, x) is arooted tree decomposition, then we may refeXtas theroot bag and
we may refer to any bag indexed by a leaflofs aleaf bag For ease of expression, if
a € V(T) is the parent (or child, ancestor, descendant, etd)®V (T), then we may
simply say thatX, is the parent (or child, ancestor, descendant, etcq,of

DEFINITION 3.4. Suppos€T,r, x) is a rooted tree decomposition of a graphand
letb € V(T). If b =r, then each vertex ak, — Vterm(G) is called adrop vertex ofb;
otherwise, each vertex of, — X, is called adrop vertex ofb, wherep € V(T) is the
parent ofb. If v € X}, is not a drop vertex df, thenv is called anondropvertex ofb.

We use the notion of a “drop” vertex to assign each bag of a wkditbe decomposition
to one of a constant number (dependent onlkpaf equivalence classes:

DEFINITION 3.5. Abasic k-graphs a graph ork + 1 or fewer vertices—each labeled
with a distinct integer between 1 akdt 1, and each designated as either a “drop” or
a “nondrop” vertex. Two basic graphB, and B’, areequivalentif there is an isomor-
phism betweeW (B) andV (B’) that respects the labels and designations of each vertex.

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 353

The collection of these equivalence classes is calle#ttierivation alphabefdenoted
by Ek).

The next proposition follows easily from Definitions 3.1 and 3.5, providing us with a
labeled tree to encode any given tree decomposition. Such a tree will be input to a tree
automaton, as discussed in Section 5.

PrROPOSITION3.6. Let Ty be the k-derivation alphabetnd suppos€T,r, x) is a
width-k rooted tree decomposition of a graphThere exists a function: V(T) — X,
such that

e each vertex of G can be labeled with an integer betwieand k+ 1, such that
o for each be V(T), the subgraph G, is equivalent tar (b), where a vertex of ¢,
is designated as a “drop” vertex iff it is a drop vertex of b

Such a functiow is called aderivation functiorfor G on the tree T

In order to modify tree decompositions, we use the following two operations to
contractedges andplit nodes.

DEFINITION 3.7. Suppos€T, r, x) is arooted tree decomposition such that V (T)
is the parent ot € V(T). Let T’ be the tree obtained frof\ {b, c} by adding a new
node (say’) and making it adjacent to each node that was adjacénvta. Letr’ = b/,
if r € {b, c}; otherwise,let’ =r.LetX’ = X —{Xp, XcJU{Xp}, whereXy = XpU Xe.
We say thatT’,r’, X’) is obtained from(T, r, x) by contracting{b, c}.

DEFINITION 3.8. Supposé€T, r, x) is arooted tree decomposition such that V (T).
Let T’ be atree obtained frof\b by adding two new nodes (shyandb”) with the edge
{b’, b"}, and also adding one edge (eitarb’} or {a, b”}) whenever{a, b} € E(T).
Letr’ =, if r = b; otherwise, let’ =r. LetX' = X — {Xp} U {Xp, Xy} fOor some
Xy, Xpr € Xp. We say thatT’, r’, X”) is obtained from(T, r, x) by splitting b.

To use this operation, we must specify how to choose the edges incidémtrtdb”,
and how to choose the ba¥s and Xp:.

4. Counting Monadic Second-Order Logic. AgraphG = (V, E) can be interpreted

as a logical structure over the univerge E, with a predicateEdgee, v) that holds
whenever € V is an endpoint ok € E. Many different graph properties can then be
expressed as logical sentences consisting of the following symbols: individual variables
(to represent vertices or edges); set variables (to represent sets of vertices or edges); the
equality &) and membership) symbols; existentiald) and universalY) quantifiers;

the logical operators. (“and”), v (“or”), — (“not”), = (“implies”), and< (“if and only

if"); the Edgepredicate; and unary predicatesrd, . for nonnegative integer constants
¢,c (with £ < c). If Sis a set, thercard, ¢(S) is true iff S has cardinality’(modc).
Courcelle [12] has shown that these “counting” predicates do give the logic additional
expressive power.

354 D. Kaller

By a CMS “formula,” we mean a string of the symbols described above, constructed
such that the usual syntactic rules of logic are observed; quantification is allowed over
both individual and set variables. If a CMS formula has no occurrence of an unquantified
variable, then it is called €&MS sentencélNe write G = & to indicate that a CMS
sentenced is true on theevaluationgraphG. This sentence defines a certain class (say
IT) of graphs: thatisG = @ iff G € I1.

In a CMS formula®, some number (sag) of the unquantified variables may be
designated agrgumentsThis defines £MS predicate-which we denote by the sym-
bol “®” followed by an ¢-tuple of its arguments. If every unquantified variable has
been designated as an argument, tdeencodesa certain relation (say): that is,
(v1,v2,...,vp) € Liff ®(vy, vy, ..., v,) IS true on the evaluation graph. For example,

a CMS predicate encoding the (symmetric and irreflexive) edge relation can be encoded
as follows.

(4.2) Dagi(U, v) = —(u = v) A (Je)(Edgde, u) A Edgde, v)).

The following lemma shows that the transitive closurebg; can also be encoded:

LEmMMA 4.2, If a CMS predicate can encode a binary relation on the vertex set of a
graph then a CMS predicate can encode the transitive closure of that relation

PrROOF See Lemma 3.7 of [12]. O

Using the transitive closure ab,g;, it is easy to express (for example) the property
that a graph is connected. When writing CMS formulae in this paper, we often use high-
level expressions (such a6&'is connected”) rather than providing a detailed translation
into the low-level logical symbols of CMS. Refer to [3], [9], [11], or [12] for a further
discussion of encoding such expressions.

We now generalize the notion of a CMS predicate, allowing it to be defined with
unquantified variables that are not arguments.

DEFINITION 4.3. Supposeb is a CMS predicate defined witharguments and also
some other unquantified variables (callgarameter¥ the arguments and parameters
may denote individual vertices or edges, or sets of them. After letting each parameter
be substituted by some fixed value, [&be the relation such thatq, v,, ..., v) € L

iff ®(v1,v2,...,v) istrue on the evaluation graph. We say thiats anexistentially
definedpredicate encoding; or (more simply) thatb existentially encodes.

If @ isan existentially defined CMS predicate, then its parameterx{say, . .., Xq)
can be existentially quantified at the outermost level of a CMS sentence as follows:

(4.4) 3xq, X2, ..., Xg) (D).

Here,®’ is a CMS formula that does not contain any unquantified variable other than
X1, X2, ..., Xg; SO the predicat® can be used in writing the CMS sentence 4.4. Two
(or more) existentially defined predicates may be used together, in sentences of this
form, by quantifying all of their parameters at the outermost level. Thus these predicates

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 355

can depend upon a common list of parameters, subject to a common set of conditions.
We use this approach to encode the structure of a rooted tree decomposition of the
evaluation graple. To do this, some of the vertices Gfare designated agitnesses-

each representing a node of the tree decomposition.

DEFINITION 4.5. SupposBagandParentare binary CMS predicates. These predicates
are said talescribea rooted tree decompositidit, r, x) of a graphG if there exists a
one-to-one functiorf: X — V(G), such that

e Bag(v, X) holds iffv = f(X), and
e Parent(p, c) holds iff f ~1(p) and f ~X(c) exist, andf ~(p) is the parent off ~(c).

Forb € V(T), we then refer to the verteX(Xp) as thewitnessof b (or thewitness
of Xp).

We existentially define these CMS predicatBag andParent) to describe a rooted
tree decompositiodT, r, x) of any partial 3-tree ok-connected partik-tree. These
predicates can then be used to encode a rooted tree (isomorphijcao the set of
withesses: i.e., the following subset\6{G):

(4.6) V(T) ={ve V()| @3@X)Bagw, X)}.

In Section 5 we show how thgag andParent predicates can be used to write a CMS
sentence 4.4, wher®’ encodes whether the described tree decomposition is accepted by
a particular tree automaton. The validity of this CMS sentence is, of course, dependent
upon “correct” values having been chosen for the parameters. The following lemma
shows thatd’ can be written to ensure that “correct” values are indeed chosen.

LEMMA 4.7. SupposdBag and Parent are existentially defined CMS predicates with
parameters x, Xo, ..., Xq. There exists a CMS predicae with d arguments and zero
parameters such thab(cy, ¢y, ..., ¢g) is true iff Bag and Parent describe a width-k
rooted tree decomposition of the evaluation graph when each paramésesubstituted
by the valuec(1 <i < d).

PrOOFE LetG = (V, E) be the evaluation graph. Within the scope of quantification of
X1, X2, .. ., X4, the predicateb can identifyV (T) C V as in (4.6). Now® can easily
verify thatBagmaps one unique bag to eack V(T). By Lemma4.2, a CMS predicate
can encode the transitive closureR#rent, and this can be used to verify that a tree on
V(T) is encoded. Now, it is not difficult for CMS logic to encode the three properties
itemized in Definition 3.1. Thus, to verify thatddth-ktree decomposition is described,

® need only check thd&ag(v, X) = “|X| <k+ 1. O

We will need the following lemmas later in this paper:

LEMMA 4.8. A CMS predicate can existentially encode edge directions over any subset
of the edges of afundirected partial k-tree

356 D. Kaller

PROOF Supposes is a partiakk-tree; and leE’ € E(G). We can encode edge direc-
tions overE’ using a binary CMS predicate with k + 2 parameter¥y, Vs, ..., Vi1
andE”.

®(u,v) = (Jec E) (Edge(e, u) A Edgde, v) A =(Uu=v)

K kel
A<(ee E) < \/ \/(ue\/iAver)>>.

i=1lj=i+1

LetVy, Vo, ..., Vkr1 beindependent sets partitionigG). For any edge € E’, assume
without loss of generality that its endpoints are V; andv € V; wherei < j. Thus,

if e belongs to the edge subdet, then® (u, v) is true and® (v, u) is false. Otherwise,
®(u, v) is false and® (v, u) is true. The seE” consists of the edges directed from a
vertex in a lower-indexed s#t to a vertex in a higher-indexed sét(i < j). Therefore,

any choice of edge directions oviéf can be encoded by choosing an appropriate subset
E” of E'. O

LEMMA 4.9. A CMS predicate can existentially encode a constant-length string of bits
for each vertex and each edge of a graph

PrROOF We need only providé parameters{y, X, ..., X, to represent a string df
bits for each vertex or edge (say. Theith bit (1 <i < ¢)isturned oniffx € X;. O

5. Tree Automata. A tree automaton is a finite-state machine that can be used to
decide whether a partiéttree G belongs to a certain class of graphs. For this purpose,
the automaton’s input is the tr@eof a widthk rooted tree decomposition &, with the

nodes ofT labeled by a derivation function f&& (Proposition 3.6). By restricting the
input to be a labeled path (rather than any tree), we obtain a machine that is equivalent
to a conventional finite-state automaton.

DEFINITION 5.1. Atree automatowover an alphabeX is atripleA = (S, Sa, f) where
S is a finite set of (say) states § S, ..., §; Sa C S is the set ofacceptingstates;
andf: X x N — S is thetransition function

Theinputto A is a rooted tred labeled byo: V(T) — X. Each nodé of T is
then recursively assigned to the stdte (b), S N C|, S NC]|,...,|S NC|), where
C C V(T) consists of the children df. The treeT is acceptedy A iff its root is thus
assigned to a state .

If we say that a tree automaton processes widthee decompositions, we mean
that its alphabet is thk-derivation alphabeEy (see Definition 3.5). If we say that it
accepts a tree decompositioh, x) of G, we mean that it accepts the tr€édabeled by
o: V(T) — Zx wheneverw is a derivation function fot.

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 357

DEFINITION 5.2. LetIT be a class of partidd-trees; and supposé is a tree automaton
that processes widtkiree decompositions. We say thétecognizedl if the following
statements are equivalent:

e (T, x) is a widthk tree decomposition of some graphlin
e AacceptqT, x).

Since graphs do not have unique tree decompositions, this means that if a tree au-
tomaton recognizes a class of graphs, then it behaves consistently—either accepting or
rejecting all of the tree decompositions of any given graph. Courcelle [12] (see also [3]
and [9]) has shown that this type of tree automaton exists for any class of CMS-definable
partialk-trees. In fact, the specifications of the tree automaton are inherent in the CMS
sentence; a decision algorithm can be obtained automatically from the logical description
of the graph class.

THEOREM5.3. If ® is a CMS sentengéahen (for each k € N) there exists a tree
automaton that recognizes the intersectioN@f| G = @} with the class of partial
k-trees

The reader may be more familiar with an alternative definition of a tree automaton
[27] with a ternary transition functiori’: £ x S x S — S and an initial stat&: Here,
the input must be binarytree, and each nodeis assigned to the staté(o (b), S, S),
whereS, S € S are the states of its children (for a nonlédfor S = S = & (for
a leafb). However, if f/ is commutative in its second and third arguments, then it can
be simulated by the transition functioin (of Definition 5.1) by restricting the sum of
the ¢ numeric arguments to be zero or two. For our purposes, the commutativity is no
real restriction, because we are using tree automata to process tree decompositions, and
there is no notion of order among the children of a tree decomposition node. In fact,
for our purposes, the transition function of Definition 5.1 can (conversely) be simulated
by the alternative one. This is because a pakitlee always admits a widtk-tree
decomposition with a binary tree. Hence, a tree automaton is no weaker if we restrict its
input to binary tree decompositions. We prefer to work with general tree decompositions,
however, because we are unable to encode binary tree decompositions in CMS logic.
Courcelle [12, Proposition 5.4] has established that a tree automaton (in the sense of
Definition 5.1) can be simulated by CMS logic—provided a tree decomposition has
been encoded. Hence, to prove the converse of Theorem 5.3, we need only develop CMS
predicates to describe (Definition 4.5) a tree decomposition. In this paper, we show how
this can be done (under certain restrictions).

LEMMA 5.4. Suppose a subclads of the partial k-trees is recognized by some tree
automaton oveEy. Suppose further that there exist CMS predicates describing a width-k
rooted tree decomposition of any evaluated partial k-tiefellows that a CMS sentence

® can be written such that & @ iff G € II.

PROOF Let .4 be the tree automaton that recognifed et Bag andParent be CMS
predicates describing (Definition 4.5) a widthrooted tree decomposition of the eval-

358 D. Kaller

uated partiak-tree, sayG; and let(T, r, x) be the tree decomposition thus described.
Hence, the CMS sentendemust be written such th&@ = @ iff (T, r, x) is accepted.

To do this, a se¥V (T) € V(G) of witnesses is identified, as in (4.6), and this set is
partitioned into set§;, S, ..., § representing the states.df The tree decomposition

is accepted iff the witness ofis thus assigned to an accepting state. The CMS statement
® need only verify that each nodlec V (T) is assigned to the “correct” set: i.e., the one
representing the staté(o (b), |S N C|, | NC|,...,|S N C|), where the following
CMS formula is satisfiedc € C < ¢ € V(T) A Parent(b, c). Because the transition
function is periodic in its last arguments, this can be encoded usingrel predicates

of CMS logic—see Proposition 5.4 of [12] for details. O

6. Simple Tree Decompositions. To construct a CMS-encodable tree decomposition,
we begin with ssimpletree decomposition, and then modify it. In this section we discuss
how atrunk-graphis obtained by adding certain edges to the subgraph underlying a
trunk (Definition 2.1) in a simple tree decomposition; and we show that a trunk-graph
can be represented bypgramidstructure.

DEFINITION 6.1. Asimpletree decomposition is a rooted tree decompositibir, x)
for which each nodé of T satisfies the following properties:

P1. There is exactly one drop vertextof

P2. The subgraph underlying is connected.

P3. IfV'is a subset of the nondrop verticegpthenV’ is not a cut-set of the subgraph
underlyingTy,.

We will need the following consequence of these properties:

FACT 6.2. Suppose&T,r, x) is a simple tree decompositiolfib € V (T) is the parent
of ce V(T), then X contains the drop vertex of b

We now show that any connected parlieiree G admits a simple tree decomposi-
tion, provided no cut-set db is comprised exclusively of designated terminals (Defi-
nition 3.2). For exampléeVierm(G) = ¢ is suitable for this purpose; and provid€dis
£-connected withV (G)| > ¢+ 1, itis easy to find a suitable terminal set of cardinality

LEMMA 6.3. If G is a connected partial k-tree for which no subset gfXG) is a
cut-setthen G admits a width-k rooted tree decompositidnr, x) such that r satisfies
propertiesP1, P2andP3.

PROOF Supposes is a connected partid-tree for which no subset ofierm(G) is
a cut-set; and letT, x) be a widthk tree decomposition 0&. Without loss of gen-
erality, assumeVierm(G) is a subset of some bag iti; and choose the roat of T
such thatVierm(G) € X;. For any childc of r, we can assume tha{. is not a sub-
set of X;; for otherwise we could contract the edgec} (see Definition 3.7). Now, if
Vierm(G) = X, then we can augmenX; with some vertex oiX. — X;. Furthermore, if

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 359

Xr — Vierm(G) contains more than one vertex, then we can spiitto two nodes (see
Definition 3.8) such that the bag indexed by the new rodtdg,(G) U {v}, for some
vertexv € V(G) — Vierm(G). So without loss of generality, assumg — Vierm(G)| = 1.
Therefore,(T, r, x) is a widthk rooted tree decomposition & such that satisfies
P1;r also satisfies P2 and P3 beca@kés connected and no subset\dfm(G) is a
cut-set. O

LEMMA 6.4. If G is a connected partial k-tree for which no subset gf XG) is a
cut-setthen G admits a width-k simple tree decomposition

PrROOF By Lemma 6.3G admits a widthk rooted tree decompositiai, r, x) such
thatr satisfies P1, P2, and P3. Assume, inductively, #ais a connected subgraph
of T for whichr € V(T’) and each node of’ satisfies P1, P2, and P3. Suppase
is a child of some nodb € V(T’); and letG® be the subgraph underlying. With-
out loss of generality, assum@&®\ Xy, is connected; for otherwise we could create a
copy of (T, ¢, Xt,) for each component (sai) of G\ Xy, restricting the bags in
this copy to contain only the vertices ¥f(H) U X.. Assume also that each vertex in
Xc N Xp is adjacent to one or more vertices @f\ Xy; for otherwise we could delete
the violating vertices oX, N X from each bag in¥y,. Thus G is connected, and
no subset of the nondrop vertices ofis a cut-set of G°. We can now assume,
without loss of generality (by Lemma 6.3), trasatisfies P1, P2, and P3. It follows in-
ductively that there exists a tree decompositiorGoin which all nodes satisfy these
properties. O

In Section 7 we decompose a partialree by recursively choosing trunks (Defini-
tion 2.1) in the tree of a simple tree decomposition.

DEFINITION 6.5. Supposé€T,r, x) is a rooted tree decomposition of a graphand

let P be a trunk inT. Thetrunk-graphof P is obtained fronGx,; as follows: Add an
edge between each pair of vertices contained in the interseétionXc, for each child

c € V(T\P) of each node € V(P). The terminal set of this trunk-graph consists of
the nondrop vertices of the root &X.

Definition 6.5 yields a trunk-graph with tree decompositidh Xp). Any graph that
admits this type opath decompositiors called apartial k-path

DEFINITION 6.6. Asimple path decompositiéna simple tree decompositioR, r, X)
for which P is a path anda is an endpoint ofP. A simple partial k-pathis any graph
that admits a widthe simple path decomposition.

If (T,r, x) is a simple tree decomposition, aRdC T is a trunk rooted at’, then
it is not necessarily the case thd, r’, Xp) is asimplepath decomposition 0Bx,),
because the nodes &f do not necessarily satisfy properties P2 and P3 relative to the
subgraphGx,;. However, each node d? does satisfy these properties relative to the
trunk-graph ofP:

360 D. Kaller

LEMMA 6.7. Suppose€T,r, x) is a simple tree decompositipand letr € V(T). If
P isatrunkin T thatis rooted atythen(P, r’, Xp) is a simple path decomposition of
the trunk-graph of P

PrROOF Let G be the graph underlying@; and letR be the trunk-graph of a trunk
P rooted atr’. Since(P,r’, Xp) is a path decomposition @;x.;, andR is obtained
from Gx,; by adding edges only between pairs of vertices contained in a common
bag of Xp, it follows that (P, r’, Xp) is a path decomposition dR. It is clear that
each node of this path decomposition satisfies property P1. To complete the proof, we
need only show that each node satisfies properties P2 and P3 relative to the trunk-
graphR.

For the leab of P, the subgraph (oR) underlyingP, is identical to the subgraph (of
G) underlyingTy; so P2 and P3 are satisfied by the leafofAssume inductively that
all three properties are satisfied by= V (P), and leta be the parent ab. By Fact 6.2,
Xp contains the drop vertex (sayof a. Supposel € X5 — Xp suchthafu, v} & E(G).
By property P3 (relative t&), there is a path betweenandv with one or more internal
vertices inXy, — X. It follows thata has a childc € V(T\P) for whichu, v € Xc.
So, by Definition 6.5u andv are adjacent ifR. Thereforep is adjacent to each vertex
of X5 — Xp. The remaining vertices of the subgraph underlyiygare the vertices in
Xp,; andXp, induces (inductively) a connected subgraph that is not cut by any subset of
XaN Xp. Therefore, the subgraph underlyiRgis connected (hence, P2); antelongs
to every subset oK, that is cut-set of the subgraph underlyiRg(hence, P3). It follows
inductively that(P, r’, Xp) is a simple path decomposition B O

We now show that any simple partlajpath (i.e., any trunk-graph) containpyramid
consisting ofk vertex sequences. We use the gait —) to denote such a sequence,
where x — y” means thay € A immediate followsx € A. We use “>*" to denote
the transitive closure of%"; and we use “>*" to denote its reflexive, transitive closure.

DEFINITION 6.8. Suppose is a simple partiak-path. Apyramidin R consists of a
vertexv; € V(R) andk vertex sequence@A;, —i), 1 < i < k, with the following
properties:

D1. {A1, Ay, ..., Al is a partition ofV (R) — {v1}.

D2. For1l<i < k:v € A is adjacent ta; only if v is the first vertex of A;, —).

D3. For 1<i < k: v belongs toA; N Vierm(R) only if v is the last vertex of A, —).

D4. For 1<i < k: two verticesu, v € A; are adjacent (i.e{u, v} € E(R)) only if
uU—j v.

D5. For2< ¢ < k:if iy, iz, ...,i, are distinct indices between 1 akdand eachh;
(1 <] < ¢) contains two distinct vertices (say, —ﬁ u{l), then not all of the
following are edges oR: {u;,, uj_}, {ui,, ui_}, ..., {ui,_,, Ui }, {ui,, ui }.

The vertexv; is called theapexof the pyramid; and each sequendg, —;) is called
anaxisof the pyramid. An edge € E(R) is anapicaledge if one of its endpoints is the
apex;eis anaxial edge if both endpoints belong to the same axis; othergis@cross
edge.

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 361

apex —Q Q. Q.
terminals §> .) . @
® ® ® ® @ ®
Model Forbidden Edge Configurations

Fig. 1. A pyramid in a simple partial 3-path.

Figure 1 illustrates a pyramid in a simple partial 3-path with three terminals. If there
are fewer terminals, then not every axis ends with one. The apex may be adjacent only
to the first vertex of each axis. Axial edges exist only between consecutive vertices.
Property D5 says that pairs and triples of cross edges are forbidden to “criss-cross” as
illustrated. To construct a pyramid, we visit the bags of a simple path decomposition in
order from the leaf to the root: a vertex being seen for the last time is cadlexgpaertex
(Definition 3.4); and a vertex being seen for the first time is calleddavertex:

DEFINITION 6.9. SupposéP, r, X) is a simple path decomposition; andliet V (P).
If bis the leaf ofP, then each vertex oy, is called aradd vertex ofb; otherwise, each
vertex of X, — X, is called anadd vertex ofb, wherec € V (P) is the child ofb. If
v € Xp is not an add vertex di, thenv is called anhonaddvertex ofb.

LEMMA 6.10. There exists a pyramid in any simple partial k-path

PROOF SupposeR is a simple partiak-path; and let P, r, X) be a widthk simple
path decomposition dR. Choose the apex of the pyramid to be the drop vertex of the
leaf of P; and let each nondrop vertex of the leaf become the first element of a distinct
axis. Now, assume inductively thate V (P) is the parent ot € V(P) such that the
vertices ofXp, have already been assigned to axes; and k& the number of nonadd
vertices ofb (soh = |Xc N Xp| < K). Inductively, each vertex itk N X, is the last
element of a distinct axis, s@;, —;) for 1 <i < h; and Fact 6.2 allows us to assume
the last element ofAn, —1) is the drop vertex ob. There are at mos#t + 1 — h add
vertices ofb; so each can be placed at the end of a distinct@kis— i), forh <i < k.
It is easy to see that this approach will satisfy properties D1-D4.
Suppose property D5 is not satisfied So there éxist2 edgequi,, u;, }, {ui,, U;_},

Aui_y, Ui} {ui,, ui } whereu;, - i U, (1 <j <¢). Letb be the closest node to
the leaf ofP such thatXpb contams all'2 of these endpoints. Without loss of generality,
assume thau/1 is an add vertex db; hencey;, also belongs tXy, and so does; . i, Thus
(A, —i,) is the unique axis containing more than one verteX@fThereforeu{f is an
add vertex ob, but it is adjacent to a vertax, , ¢ X, (a contradiction). O

Each of the axes in a pyramid gives part of an elimination order for the vertices of the
corresponding partid-path. In Section 10 we show how these orders can be interleaved
to obtain a fixed path decomposition.

362 D. Kaller

7. A Trunk Hierarchy. In this section we decompose a 2-connected partial 3-tree
G into a hierarchy of trunk-graphs (Definition 6.5). We begin with a width-3 simple
tree decomposition 0B, and recursively choose trunk-graphs satisfying three special
properties.

DEFINITION 7.1. Supposé€T, r, x) is arooted tree decomposition of a graphA trunk
hierarchyof G is a collectionR of trunk-graphs obtained by partitioning(T) into a
collection of trunks—then taking the trunk-graph of each one. We say that this hierarchy
is admittedby (T, r, x).

Supposer is the trunk hierarchy obtained by partitioning the nodes aito trunks.
Let T’ be the subgraph df obtained by contracting each such trunk into a single node.
The trunk-graphs ifR have an obvious one-to-one correspondence Wiff'). We use
the terms “root,” “child,” “parent,” etc., with implied reference 10, when speaking of
these trunk-graphs.

REMARK. The pair(T’, R) is similar to a tree decomposition: A trunk-grapl corre-
spondsto each nodhef T'; each vertex o6 belongs to at least one of these trunk-graphs;
and each edge @ has both endpoints in some trunk-graph. Furthermor®, ifs the
parent ofR;, thenViem(Re) = V(Rp) NV (R:), andR, has an edge (possibly not an
edge ofG though) between each pair of vertices that are terminal& of

Throughout this sectios is a 2-connected partial 3-tree with either two or three
terminals. Without loss of generality, assume that no subsétai G) is a cut-set 06;
hence, by Lemma 6.4 admits a width-3 simple tree decomposition. We will show how
this tree decomposition can be perturbed so that it admits a hier&offiyrunk-graphs,
each satisfying Properties 7.2, 7.4, and 7.6. Our discussion describes how to obtain
a simple tree decompositiafT, r, x) with a trunk P rooted atr; the corresponding
trunk-graph then becomes the root®f Following this, a trunk-graph can be chosen
recursively from the subgraph underlyiiig, for each childc € V(T\P) of each node
peV(P).

The first property gives an order on the vertex set of each trunk-graph. In Section 8
we define a CMS predicate to identify these vertices inductively, in this order:

PROPERTY7.2. The vertices of each trunk-grafphe R can be ordered, v, ...,
vv(r) such that, for each = 2,3, ..., |V (R)|, there is a nonterminal vertex of R
(where 1< j <i — 1) for which at least one of the following conditions is satisfied:

C1. v; andv; are adjacent (i1G).

C2. RhasachildR’ € R for which Viem(R") = {vi, vj}.

C3. Rhas a childR" € R for which Viem(R") = {vi, vj, v}, wherej’ <i —1; and
there is a path i\ {v;, vj-} betweery; and some terminal iNiem(G).

We will show that Property 7.2 is enforced if each trunk-graph correspondstatared
trunk of a simple tree decompositi@f, r, x). This is a trunkP, rooted at , for which
each node satisfies two properties in addition to P1, P2, and P3 (Definition 6.1). When

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 363

we refer to a vertex as amaddvertex ofp € V (P), we mean that Definition 6.9 is to be
interpreted relative to the path decompositigh r, Xp): thatis,v € X, — X, for the
child c € V(P) of p; butv may belong to the ba¥., for any other child’ € V(T\P).

PROPOSITION7.3. G admits a width3 simple tree decompositidiT, r, x) such that T
contains acenteredrunk—this is a trunk Prooted atr, in which each node k& V (P)
satisfies the following properties

P4. If b has children ce V(P) and ¢ € V(T\P), then X contains at most one vertex
of Xp — Xe.

P5. If v is an add vertex of [then either € Vierm(G), or v is adjacent to some vertex
of G\XTb-

PROOF Suppos€T,r, x) is a simple tree decomposition &, and letb € V(T). It

follows from property P1 (Definition 6.1) and Fact 6.2 that a trihic T whose nodes

all satisfy P4 can be found with a greedy search from the rodt ¥fle now show how to
perturb the tree decomposition so that P5 is also satisfied by each node of the perturbed
trunk. This process is illustrated in Figure 2.

Supposeb € V(P) fails to satisfy P5; sd has an add vertex (say that is not a
terminal; and ifu € V(G) is adjacent ta, then bothu andv belong to a common bag
in A7,. Leta € V(P) be the ancestor di such that is the drop vertex o&; and let
a’ € V(P) bethe child oa (possiblya’ = b). It follows from property P3 (Definition 6.1)
that X5 € Xg; so we can contract (Definition 3.7) the ed@e a’} without violating
P2 or P3. The contracted node has two drop vertices (inclugingp we delete from
each bag indexed b\ T,. Now, b is the only node with two drop vertices; so we split
(Definition 3.8) intab’ andb”, with b’ the parentob”. Let Xy = Xp—{v}; let Xy = X;
and for each child of b, let its parent becomi”’ if v € X, andb’ otherwise. It is not
difficult to verify that each node of continues to satisfy P1, P2, and P3. Furthermore,
P4 is satisfied by each node of the trunk (8dyobtained fromP by contractinga, a'}
and replacindy with b’. Since Xp: contains fewer vertices thaXp, this operation can

be applied repeatedly until each node of the trunk also satisfies P5. O
Trunk P! iTrunk P’i
L § : :
node a—={ \) 3 : —— contracted
ST (aand a’)
x
node u'*—{ v)
! node b’
el / M) node b’’
by)
node : \71_17
"/' - \\ |
N)/
AN >
/ :

Fig. 2. Enforcing P5 (%" indicates there may be multiple similar subtrees).

364 D. Kaller

After choosing a centered trurik, we modify the simple tree decomposition so that
the trunk-graph of the (modified) centered trunk satisfies two additional properties:

PrROPERTY7.4. If y andz are vertices of a trunk-grapR € R, then there is a path
H C R betweeny andz that satisfies the following conditions:

H1. No internal vertex oH is a terminal ofR.
H2. If {u,v} € E(H) — E(G), thenG contains two internally vertex-disjoint paths
betweeru andv for which no internal vertex belongs &, nor to any ancestor d?.
Since the trunk-grapiR admits a simple path decompositioR, r, Xp), it follows
from Definition 6.1 that there is a path satisfying H1 between any pair of verticesRf
If this path does not satisfy H2, then we can use the following proposition to “promote
vertices belonging to bags indexed by descendanks of

”

PROPOSITION7.5. Suppose P is a centered trunk of a widkimple tree decomposition
(T,r, x) of G; and let be V (P). Suppose further thatis an add vertex of and let u
be the drop vertex of.lh.et G' be the subgraph of G induced by ®) — Xp U {u, v}. If

X is a cut-vertex of Gthat separates u from, then there exists a centered trunk ¢t
some width3 simple tree decomposition of, Guch that X% = Xp U {x}.

PrOOF By property P3 (Definition 6.1 has a chilcc € V(T\P) suchthau, v € X,

as shown on the left of Figure 3. If there is a cut-vertedf G’ that separates from v,
then this childc is unique, and belongs toXrt, — Xp. Let the (say) components of the
subgraph induced bXt, — X, — {x} be enumerate®;, G5, ..., G,. For1<i < ¢,

let Vi be the largest subset of, U {x} in which each vertex is adjacent to at least one
vertex of G{; and letG; be the subgraph d& induced byV (G{) U V;. A width-3 tree
decomposition o6; is obtained from(T¢, X7.) by deleting from each bag all vertices not
in V(G;j), and then adding to the bag indexed by each node on the path betwesrl
some node whose bag originally containedt now follows from Lemma 6.4 that there
exists a width-3 simple tree decompositidi, ri, i) of G;, whereViem(Gi) = V;'.

Trunk P’

le‘llllk P

d =
nmlu~(\ u\ (:
TR 9%

Fig. 3. Promoting a vertex (“*” indicates there may be multiple similar subtrees).

v X}———node b’

&

X
I

node b’

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 365

To construc{T’,r’, X’), we splitb (Definition 3.8) into two nodeb’, b” with b’ the
parent ofb”. Let P’ be the trunk (inT’) thus derived fronP. Let Xy, be X, U {x} — {u};
let Xy be Xy U {x} — {v}; and let each child’ € V(T\T.) of b become a child ob”.
To complete the construction, let eagh(1 < i < ¢) become a child of eithdy or b”,
depending upon whetheror u is contained inX,,. It is not difficult to verify that each
node of T’ satisfies properties P1, P2, and P3; and that each nddeat$o satisfies P4
and P5. O

The next property will be used for encoding the axes of a pyramid in each trunk-
graphR € R. For each axigA, —), the induced subgrapR 4; consists of a collection
of paths (by condition D4 of Definition 6.8). This property ensures there are enough
cross-edges so that a CMS formula can determine the order of these paths within each
axis.

PROPERTY7.6. Eachtrunk-grapR € R admits asimple path decompositid, r, Xp)
for which the following statement is satisfied whenesee V (P) is an ancestor of
b € V(P): if there are two internally vertex-disjoint paths H" C R between the drop
vertex ofb and some vertex iX,, then there is an internal vertex (s&yof eitherH or
H’ such thaix is either a nondrop vertex af or nonadd vertex ab, or x is adjacent to
some vertex iV (R) — V(H) — V(H).

We can enforce this property by “demoting” vertices from a centered tiruolka simple
tree decompositiofiT, r, x), as described below:

PROPOSITION7.7. Suppose that P is a centered trunk of a wiBtkimple tree decom-
position(T, r, x), and that Propositiory.5 cannot be applied to Pif (P, r, Xp) does
not satisfy the statement of Propeityg, then there exists a centered trunk & some
width-3 simple tree decomposition of, Guch that Propositioi7.5 cannot be applied to
P/, and|Xp/| < | Xp|.

PROOF Let R be the trunk-graph oP; and supposéP, r, Xp) does not satisfy the
statement of Property 7.6. So late V(P) be an ancestor df € V(P) such that
there are two internally vertex-disjoint pathisandH’ between the drop vertex (say

of b and some vertex (saw) in Xg; no internal vertex is adjacent to any vertex in
V(R) — V(H) — V(H’); no internal vertex belongs tdem(R); and no internal vertex
belongs to a bag indexed by a descendairtt of an ancestor od. Figure 4 shows the
pathsH andH’ with vertex sequencegsl, X - - - y, w) and(u, X’ - - -y, w).

Let G’ be the subgraph consisting of those componenG\dfi, w} containing one
or more vertices oV (H) U V(H’). Let the (sayt) components ofz’ be enumerated
G, G), ..., G,. Using an argument similar to that used in the proof of Proposition 7.5,
we obtain a width-3 simple tree decompositidh, r;, &;) of the subgraph o& induced
by V(G)) U {u, w}, with {u, w} as the terminal set.

We can construct the tree decompositidn, r’, X”) from (T, r, x) as follows: We
delete those subtreds C T whose bags contain only vertices\w{G’) U {u, w}; each
such subtree is rooted at a chddof a node on the path (iif) betweena andb. We

366 D. Kaller

) ‘Trunk P!
(Trunk P : | :
L \gi\\ Q w— node a’
node a1 ~1\ \/ : | N !
DN T
o T

: ‘//,\\7\ j /L
\\\/ /w 3 é u w (u)
[:

node b —~G\)> @«— node b’
u/ : :

Fig. 4. Demoting vertices.

delete any vertices d&’ from each bag of that path, and then adtb each of them.

Now, let eachr; (1 < i < ¢) become a child o&. To complete the construction, we
contract (Definition 3.7) each edge between a npdeV (P) and its parent whenevex

no longer has a drop vertex. It is not difficult to verify that each resulting node satisfies
properties P1-P5. Furthermore, this operation does not create any new instances where
Proposition 7.5 can be applied—since there are two internally vertex-disjoint paths
betweeru andw whose internal vertices now belong to bags indexed by descendants of
the trunkP’. O

LEMMA 7.8. G admits a width3 simple tree decomposition for which the trunk-graph
corresponding to some centered trunk satisfies Propertiéand7.6.

PrROOF Let (T,r, x) be a simple tree decomposition & such thatP C T is a
centered trunk. Without loss of generality, assume neither Proposition 7.5 nor 7.7 can
be applied toP. It follows immediately that the trunk-graph (sa) of P satisfies
Property 7.6.

CLAIM. Letvq be the drop vertex of the leaf of Por v € V (R), there is apath HC R
betweerny; andv that satisfies conditiond1 andH2 (of Property7.4).

Sincev; is not a terminal, it follows that there is a path satisfying H1 and H2 between
any pair of vertices inR. To prove the lemma, then, we need only prove the above
claim.

Since each vertex of the leaf bag is adjacent;tdhe claim is satisfied for all those
vertices. Suppose the claim is false, andilée the closest node to the leaf such that a
vertexv € Xy violates the claim. By Fact 6.2, the drop vertex (sdyf b satisfies the
claim. Nowwv would also satisfy the claim if there were an edg&dietweeru andv. It
follows from property P3 (Definition 6.1) thathas a unique child € V (T \ P) forwhich
u, v € Xc. Since Proposition 7.5 cannot be applied, there is no cut-vertex separating
from v in the subgraph induced by, — X, U {u, v}. Therefore, by Lemma 2.3, there
are two internally vertex-disjoint paths betwegandv for which each internal vertex
belongs toXt, — X}, (contradicting the supposition thatviolates the claim). O

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 367

THEOREM7.9. If G is a 2-connected partiaB-treg then some widtl3 simple tree
decomposition of G admits a trunk hierarci®y such that each trunk-graph R R
satisfies Propertie$.2, 7.4,and7.6.

PROOE Let (T,r, x) be a width-3 simple tree decomposition @f Without loss of
generality (by Lemma 7.8), assume thiatontains a centered trunk whose trunk-graph
satisfies Properties 7.4 and 7.6. Assume recursively, for eachcbiicach node of

this centered trunk, thafT, ¢, A7,) also contains a centered trunk whose trunk-graph
satisfies Properties 7.4 and 7.6. Ibe the collection of these trunk-graphs. To complete
the proof, we need only show that the vertices of each trunk-graph can be placed in a
sequence to satisfy Property 7.2. So suppg®se R is the trunk-graph oP C T. Let

the first vertexv; of the sequence be the drop vertex of the leaPof et the remaining
vertices of the leaf bag come next in the sequence; each such vertex is adjaggnt to
so it satisfies condition C1 (of Property 7.2). We complete the sequence by induction on
nodes ofP.

Supposeh, ¢ € V(P) such thatb is the parent of; and assume we have already
placed the vertices of. in the sequence. Sin€ is 2-connected, there are at most two
vertices inXp — X; let these add vertices come next in the sequence (in either order).
We need only show that each such vertex (sgysatisfies condition C1, C2, or C3.

If v; is adjacent to the drop vertex (say), thenv; satisfies C1. Otherwise, it follows
from property P3 thab has a child’ for whichvj, vj € Xp N X¢; and Xp N X yields
the terminal set of some child d®. If X, N X contains only the vertices andu;,
then condition C2 is satisfied. Otherwise, by property @l X contains at most one
other vertex (sayj). By property P4y, € X¢; soj’ <i — 1. By property P5, either
vi € Vierm(R), Or v; is adjacent (inR) to some vertex (say) of R\ Xp,. Such a vertex

v is an add vertex of some ancestorbpfthus P5 can be applied recursively to show
that there is a path i\ {v;, vj} betweeny; and some terminal iVeem(G). Therefore,
condition C3 is satisfied. O

8. EncodingaTrunk Hierarchy. Inthis sectionwe develop CMS predicatesto encode
the vertex and edge sets for each trunk-graph in a trunk hierarchy of a 2-connected partial
3-treeG. In Section 9 we show that a pyramid can be encoded in each trunk-graph; and
in Section 10 we combine these results to obtain CMS predicates describing a tree
decomposition ofs.

Throughout this sectio® = (V, E) is a 2-connected partial 3-tree with either two
or three terminals, an® is a trunk hierarchy admitted by a simple tree decomposition
of G. Without loss of generality (by Theorem 7.9), we assume each trunk-draptk
satisfies Properties 7.2 and 7.4. Note that each ver’éx®) — Vierm(G) is a nonterminal
vertex of exactly one trunk-graph .

DerINITION 8.1. Ifvis a nonterminal vertex @&, thenR(v) denotes the unique trunk-
graph inR such that is a nonterminal vertex dR(v).

By Lemma 4.9, a CMS predicate can encode any constant amount of information
pertaining to the role of each vertexn the trunk-graptR(v). This allows a nonterminal

368 D. Kaller

vertex (say) to be designated for each trunk-graph. In order to identify the other vertices
of R(v1) inductively, we use a (nonproper) vertex coloring:

PrOPOSITION8.2. V(G) can be partitioned intd 3 color classesuch that the nonter-
minal vertices of each trunk-graph R R belong to a common color clagsay O);
no terminal of R belongs to;Gand if t € Vierm(R) — Vierm(G), then no vertex of R)
belongsto C

PrOOF First, we arbitrarily color each terminal &. Then we repeatedly take some
trunk-graphR € R whose terminals are all colored, and we color its nonterminal vertices.
For eacht € Vierm(R), there are at most four color classes that cannot be used for
this. O

We identify the vertices of a trunk-gragR in an ordervy, vy, . .., vjy(r) given by
Property 7.2. Each verte (2 < i < |V(R)|) is identified with the help of a unique
edge incident to an already identified nonterminal vettegwherej < i — 1). Prop-
erty 7.2 gives three different conditions wheralhynay be identified: For condition C1,
{vi, v} is an edge ofG; so Lemma 4.9 allows us to encode that these endpoints be-
long to the same trunk-graph. Otherwise, bottandv; are terminals of some child
(say R) of R(vy); in this casew; will be identified with the help of a vertex (say
v) that is adjacent te; (as illustrated in Figure 5). We need the following lemma to
show thaty; is the “first” correctly colored vertex that separateffom the terminals
of G.

LEMMA 8.3. Suppose atrunk-graph BR'R has a child Re R; and lety; € Viem(R)),
Vj € Viem(R) — Vierm(R). Let U be the union of the nonterminal vertices ovéraRd
all descendants of 'Rand let G be the subgraph of G induced byW({v;}. Ifu,v e U
such thatfv;, v} € E(G) and u belongs to the same color classiashen G\u contains
a path betweem andv;.

Trunk-graph R

N e e oo

Fig. 5. G’ is not cut by any other vertex with the color qf

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 369

PrROOF Supposgvj, v} € E(G), forsomevertex € U.LetRy = RandR, = R’;and
letd > 1suchthaRy = R(v) andR,_; isthe parentoR, (1 < ¢ < d). Choose terminals
t; € Vierm(Ry) such that; = vj, and, for2< £ < d, t; € Vierm(R¢) — Vierm(Re—1).
Since{vj, v} € E(G), it follows thatv; is a terminal of eaclR, (1 < ¢ < d). By
Proposition 8.2, the color af; is distinct from the color of the nonterminal vertices of
eachR; (1 < ¢ < d). Suppose that € U has the same color as sou is not a vertex of
anyR, (0 < ¢ < d). By Property 7.4, then, there is a path with endpointg € V (Ry),
such that each internal vertex islih— {u}; and, for 1< ¢ < d — 1, there is a path with
endpointg,.,t, € V(R), such that each internal vertex idin— {u}. By concatenating
these paths, we obtain the required path betweamdv; . O

We now show how CMS predicates can determine the structuréa, for a desig-
nated nonterminal vertax. The vertex set oR(v;) is the minimal set (say’) containing
vy such that ifu; € V" has the same color asg, and there is an edge (sayincident to
vj, then certain other vertices are alsoih The opposite endpoint of such an edge
either another vertex dR(v1), or some nonterminal vertexof a descendant dR(v,).
In the latter case, another vertgxof R(v,) is found using Lemma 8.3.

LEmMA 8.4. Binary CMS predicatesunk , trunk-edge, andterm; (1 < j < 3) can
be existentially defined such that there is a subset A @)~ Vierm(G) containing
exactly one nonterminal vertex of each trunk-grapfkinand

e trunk (v1, V') holds iffv; € A, and V' is the vertex set of ®1); and

o trunk-edge(u, v) holds iff{u, v} is an edge of some trunk-graph’®; and

e for vy € Ariftis a terminal of Rvy), thenterm; (v4, t) holds for a unique index;j
andtermy(vy, t) v termy(vy, t) Vv termg(vy, t) holds only if t is a terminal of Rv1).

PROOF Let A be comprised of the first vertex of each trunk-graph in an order given
by Property 7.2. Supposé’ is the vertex set oR(v;), for somev; € A. To encode
trunk (vy, V'), we first identify a superseét” of V’, such thatV” does not contain
any nonterminal vertex of any descendantRifv1). Each vertex ofV” is identified
inductively, using one of the three conditions of Property 7.2. Throughout this proof,
vj € V" is either a nonterminal vertex &(v1), or an extra vertex iv” — V' that can

be weeded out later. In either case, our CMS formula forces any vertexbelong to

V" if itinteracts withv; according to one of the conditions of Property 7.2.

For each edge incident tp, we encode (by Lemma 4.8) whether its opposite endpoint
also belongs toR(vj). Thus a vertex is identified for membership ¥ whenever
condition C1 is satisfied. To identify a vertex satisfying condition C2 or C3, we use
any edggv, vj} such that both; andv; are terminals oR(v). Let Ry € R be the child
of R(vj) such that eitheR; = R(v), or Ry is an ancestor oR(v). By Lemma 4.9, we
can encode (for the edde, v;}) whetherR; has two or three terminals in total. If there
are two, then condition C2 may be applied to identify a vertehor membership in/”.

If there are three, then condition C3 may be applied to idemntify

ConditionC2: Vierm(R1) = {vi, vj}. If v happens to be a terminal G, then the CMS
formula can easily identify the correct terminal. Otherwise, si@de 2-connectedy;
is a cut-vertex ofG\v; that separates from Viem(G). By Lemma 8.3, ifu is another

370 D. Kaller

cut-vertex ofG\ v; that separatesfrom Vie;m(G), then the component @\ {v;, v;} that
containsv is a proper subgraph of the componen&f{v;, u} that contains.. Hence, a
CMS formula can identify; as the cut-vertex that placesnto a minimal component.

ConditionC3: Vierm(Ry) = {vi, vj, vy} where j <i —1. A CMS formula can encode
the following: Ifv;; € V7, andv; is a cut-vertex oG\ {v;, vj } separating from Vierm(G),
placingv into a minimal component o&\{v;, v, vj:} (over all choices oti), theny;
also belongs t&”. Extra vertices (o¥/” — V') may be identified in this way if the vertex
vj- is not chosen “correctly.”

The vertex order of Property 7.2 provides an inductive argumenMhabntains each
vertex of R(vy). The CMS formula can state th&t” is a minimal set satisfying the
requirements described above. Hence; i€ V” — V’ was chosen by condition C2 or
C3, then (by Property 7.4) cannot be a nonterminal vertex of any descendaR{(of),
unless eithep; or vj, also is. The minimality o¥/”, then, prevents this from happening.
Now, to identify the seV/’ C V”, we ensure that if condition C3 is used to identify a
vertexv, then it cutsG\{vj, vj-} such thab is placed in a minimal component over alll
choices ofv; € V”. It follows from Lemma 8.3 that exactly the vertices Rfv,) will
be identified in this way.
To encode the predicatésrm; (v, t), 1 < i < 3, we note that each vertex 8f(v;)
is identified with a unique edge. Hence, that edge can encode (by Lemma 4.9) the index
of any terminal it is used to identify. Then we encode tinahk-edge(u, v) holds iff
either{u, v} is an edge of5, or bothu andv are terminals of a common trunk-graj.

9. Encoding a Pyramid. In this section we restrict our attention to any trunk-graph
R in a trunk hierarchy of a 2-connected partial 3-t@eWe develop CMS predicates
encoding the axes of some pyramid (Definition 6.8)RnThese predicates shall be
defined over the univerd3é(R) U E(R); and in Section 10 we use them to encode a fixed
path decomposition d® over the univers¥ (G) UE(G). AlthoughR may contain edges
that are not edges @, we show (in Section 10) how such edges can be represented
within a CMS formula.

Throughout this sectiolR is a trunk-graph belonging to a trunk hierarchy of a 2-
connected partial 3-tree. Assume thsatisfies Property 7.6, and Ig®, r, Xp) be a
width-3 simple path decomposition Bfgiven by that property. LatA;, —i), 1 <i < 3,
be the axes of a pyramid iR. Without loss of generality, we assume the apex of the
pyramid is the drop vertex of the leaf &X.

CLAIM 9.1. For each be V(P), either b has no add verterr some add vertex of b
belongs the the same axis as the drop vertex of b

PrROOF This can easily be enforced within the proof of Lemma 6.10. O

By Lemma 8.4, a CMS predicate can determine the verteX @}, and can associate
each terminal € Vierm(R) with a distinctindexj (1 < j < 3). If v € V(R) — Viem(R),
thenR is the only trunk-graph having as a nonterminal vertex. So by Lemma 4.9, we
can encode which sé¥; (1 < i < 3) contains each nonterminal vertexRfSimilarly, it

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 371

0 add vertices ‘ | | add vertex ; [2 add vertices |

, . ,
u) upoug

| .
oo b |§

Fig. 6. The bags of a simple path decompositien (s the drop vertexy; anduj, when shown, are add
vertices).

can be encoded which axis contains the terminal associated with each index. Therefore,
we can use the sekgem(R), Az, Az, and Az to encode the orders$i” (1 <i < 3)
existentially.

Each nonleaf node d&® has at most two add vertices. By property P3 (Definition 6.1),
if uy is the drop vertex ob € V(P), then there is an edge & betweenu; and each
add vertex oh. By Claim 9.1, some such edge is axial (unledsas no add vertex).
Figure 6 illustrates the three possible situations, depending on how many add vertices
has:

0. Hencep has exactly two nonadd, nondrop vertices.
1. Henceb has at least one nonadd, nondrop vertex (and possibly a second).
2. Hencep has exactly one nonadd, nondrop vertex.

Each vertex in Figure 6 is namegl or uj (1 < i < 3); the subscript indicates that
the vertex belongs téy . We assume without loss of generality that the drop ventex
belongs toA;. The figure shows edges directed fromto each add vertex.

By property D4 (Definition 6.8), each st (1 < i < 3) induces a collection of paths
in R:

DEFINITION 9.2. For 1<i < 3, achainin A; is a component (sall) in the subgraph
Ra1- If H does not contain a terminal &, and no vertex of is adjacent to the apex,
thenH is said to be amternal chainin A;.

By Lemma 4.8, a CMS predicate can encode the vertex order within each chain. If a
chain is adjacent to the apex, then it precedes all other chains; if a chain contains a
terminal, then it follows all other chains. It remains to be shown how a CMS predicate
can determine the order of the internal chains in each axis.

DerINITION 9.3. For any vertex of R, Add(u) denotes the unique bag.rp such that
uis an add vertex oAdd(u). If u is a nonterminal vertex dR, thenDrop(u) denotes the
unique bag intp such thau is the drop vertex obrop(u).

For the rest of this section, we may refer to bags &ayXy, fora, b € V(P)) using
the notation of Definition 9.3: We then say that a vetiitex V (R) is an add (drop) vertex
of X, to mean that is an add (drop) vertex &. We write X, < X, to mean thaa is
an ancestor olf; and we writeX, < X, to mean that eithest = b or a is an ancestor
of b.

372 D. Kaller

DEFINITION 9.4. Let1<i < 3; and supposel is a chain inA;. The first vertex oH
(with respect to ;") is called theheadof H; and the last vertex dfl is called theail
of H. If uis the head oH, then the drop vertex gkdd(u) is called thesourceof H.

In the leftmost panel of Figure @; is the tail of some chain; in the rightmost panel,
uj is the head of some chain, andis its source.

PrROPOSITIONS.5. A binary CMS predicatg can be existentially defined such that

e if B(h, v), then h is the head of some chaamd Addh) < Add(v); and
e if h and t are the head and taftespectively of some internal chairtheng(h, v) is
true for some nondrop vertexof Drop(t).

PrROOF Using Lemma 4.8, let, A, « be binary CMS predicates encoding edge direc-
tions:

a(u,v) = “{u, v}is an axial edge withi —; v” (for i =1, 2 or 3);
A(u, v) = “uis the source of some chain whose head’js
u(u,v) = “{u, v}is across edge amddd(h) < Add(v), whereh is the head

of the chain containing.”

By Lemma 4.2, the transitive closure (denotet) and the reflexive-transitive closure
(denotedx*) of @ are also encodable. We now defifias follows:

(9.6) B(h,v) = (3s) (A(s, h) A (@™ (s, v)
V@, y)(@*(h, X) A (X, y) Aat(y.v).

It is clear thatB(h, v) is true only if Add(h) < Add(v), whereh is the head of some
chain. To complete the proof, we need only show that iéndu; are the head and tail
(respectively) of some internal chain (skly), theng(hy, v) is true for some nondrop
vertexv of Drop(u;). So supposg(hs, v) is false for each nondrop vertexof Drop(uy).
By Claim 9.1,Drop(u;) has no add vertex. Without loss of generality, assume Ay;
letu, € A, anduz € Az be the nondrop vertices dbrop(uy). For 2 < | < 3,
let H; be the maximal axial path containing, and leth; be the head oH; (see
Figure 7).

SinceB(hy, uy) is false andB(hy, ug) is false (by supposition), the source (s\of
H; cannot belong tdl, or Hz. Hence, eitheAdd(h;) < Add(h,) or Add(h;) < Add(hs).
Without loss of generality, we assumeld(h;) < Add(h,) andAdd(hs) < Add(hy). It
follows that the source (sa) of H, is a vertex ofHz. Now, Drop(s;) contains exactly
two nonadd vertices: i.ess and some vertex (say;) of H;. Because the underlying
graph is 2-connected, there are two vertex-disjoint paths betyggex } and{us, us}.
Hence, there is a cross edge between a vertexX(&f Hi and a vertex (say) of
eitherH, or Hz, wherex; —} x and eitheh, —3 y or s —>§ y. Thusu(x, y) is true.
Therefore, eithep(hy, uy) or B(hy, us) is true (a contradiction). O

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 373

} Drop(u)
(0 add vertices)

Drop(s])
(2 add vertices)

{=

sy

F

)

Fe e
oLo

Fig. 7. Proof of Proposition 9.5.

PROPOSITION9.7. For 1 < i < 3, a binary CMS predicater can be existentially
defined such that

e if y(h, v), then h is the head of some chain in, And h—; v; and
o if Hand H' are internal chains in Asuch that Himmediately follows Htheny (h, v)
is true for some vertex of H’, where h is the head of H

PrOOE Without loss of generality, we restrict our attention to the case-efl. We
begin by using the predicafe(of Proposition 9.5) to encode a subgédf y:

y'(h,v) = Au)(Bh,u) A“{u, v} € E" A (h,v € Ap)).

It follows easily from Proposition 9.5 that the predicateis consistent with the first
statementitemized above. To complete the proof, it may be necessary to define additional
ordered pairs iy, so that the second itemized statement is also satisfied.

SupposeH; and H; are internal chains i\, such thatH; immediately followsH;.
Let hy, ug, hi, t; be the head oHjy, tail of Hy, head ofHj, tail of H;, respectively (see
Figure 8). SayDrop(u;) = {uy, Uy, Uz}, Whereu, € A; andus € Ag; and letH, and

Add(h})

@ J (2 add vertices)
H; H
W ® }
H,

Fig. 8. Proof of Proposition 9.7.

374 D. Kaller

Hs be the chains containing, andus (respectively). Since the underlying graph is 2-
connectedAdd(h;) contains two nonadd vertices, s&y € V(H,) andxz € V (Hs).
Without loss of generality (by Proposition 9.5), we assuse;, us) is true. By (9.6),

if us —3% X, theng(hy, x) is also true. If any such vertexis adjacent to a vertex (say
v) of Hy, theny’(hy, v) is true, and the proof is complete.

CLAaM. If y’(hy, v) is false for eachv € V(H;), then there exist vertices ¥ V (Hy)
and y; € V (H3) such that

ot (Xa, Y2); @*(Xa, Y3); {Y2, Ya} € E(R); and Addh}) < Add(y2) < Drop(t;).

Whenevey' is insufficient to satisfy the second itemized statement of the proposition,
we choose some such edge, ys}. Using Lemma 4.8, we encode a binary prediéate
direct these edgeXys, ¥2). Now, we encode the following subset of they relation:

y"(h1, h)) = @Qys, Y2, X2) (B(h1, y3) A 8(y3, Y2) Aat (X, Y2) A (X2, hY)
A —(3s)(“sis between; andy,” A A(S, v) Av € Ay)).

The required predicatg(h, v) can be defined ag’(h, v) v y”(h, v). To complete the
proof, we need only prove the above claim. So suppose it is false, amftilygtus) is
true. Thus, there is no cross edge betwelgrand H;; andx; is the source ofl;.

Casel: Drop(t;) contains a vertex of pand avertexof Bl Since the underlying graph
is 2-connected, it follows thdf is adjacent to some vertexof H, such thaix, —>2+ X.
Without loss of generality, assume thatis not adjacent to any vertex that follows
(in the order “>,"). Therefore, by Property 7.6, there is an edge betwdgand some
internal vertex of one of eithexf — x, t;] or [xz, h} —1 t;] (a contradiction).

Case2: The tail(say b) of H, is not a terminaland Droft,) contains a vertex of H
and a vertex of Bl Since the claim is false, there is no edge betwgeand Hs. It
follows thatt; is adjacent to some vertex (saj) of H;. Hence, by Property 7.6, there
is an edge betweeH; and some internal vertex ok — 3 tp] or [xz, hy —% vy, to] (a
contradiction).

Case3: The tail(say &) of Hs is not a terminaland Drof(ts) contains a vertex of H
and avertex of bl Since the claim is false, there is no edge betweand any vertex
y2 such that; —7 y». Hencets is adjacent to some vertex éf; (a contradiction).

We have now established the following:

LEMMA 9.8. Thereis apyramid in each trunk-graphffor which each axisA;, —),
1 <i < 3,is existentially encodable by a CMS predicate

10. 2-Connected Partial 3-Trees. In this section we develop CMS predicates to de-
scribe (Definition 4.5) a fixed tree decomposition of a 2-connected partial &tiBedo
this, we use the trunk hierarcti constructed in Section 7. We have shown in Section 8
that CMS predicates can encode the structure of each trunk-grahaimd in Section 9

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 375

we showed how to encode a pyramid in each one. In this section we show how such a
pyramid enables CMS predicates to describe a path decomposition of the corresponding
trunk-graph. The collection of these path decompositions can then easily be assembled
into a tree decomposition @3

Throughout this sectio® = (V, E) is a 2-connected partial 3-tree with either two or
three terminals; an® is a trunk hierarchy admitted by a width-3 simple tree decompo-
sition of G. Without loss of generality (by Theorem 7.9), we assume each trunk-graph
in R € R has Properties 7.2, 7.4, and 7.6. In Section 9 we used Property 7.6 to show that
the axes of a pyramid iR can be encoded in CMS logic over the univevsd®r) U E(R):

LEMMA 10.1. Any CMS-encodable predicate over the univers&WU E(R) can be
expressed over the universe \VE.

PrROOF SinceV (R) € V, we need only show how to represent edgeE @) — E(G),
and how to represent sets of edges. Then, any predicateVaiRY U E(R) can be
expressed as a disjunction of predicates aer E.

A CMS predicate can encode thaits the apex of a child oR iff V (R) contains each
vertext for term; (v, t), 1 < j < 3 (see Lemma 8.4). Each pair of these terminals are
the endpoints of an edge B(R) — E(G). The apex» can be used to represent the (at
most three) edges between its terminals; and each such edge can be distinguished by its
index j.

To represent a sdE’ C E(R), we use a subset & (G) and three vertex subsets:
The edge subset contains the edgeE'afi E(G); and the vertex subsets contain apices
representing the edges Bf — E(G). Each such vertex subset corresponds to a distinct
pair of indicesj, j' (1 < j < j’ < 3). A vertexv belongs to this set iff is the apex of
some child ofR, andterm; (v, t) A termj. (v, t') for some edgégt, t’} € E' — E(G). O

Each axis of a pyramid iR gives part of an elimination order 8n(R). By interleaving
these orders in a fixed manner, we obtain a path decompositiBrfafwhich the leaf
bag contains the apex and the first vertex of each axis; each nonleaf bag contins the
maximal vertices of its child’s bag, as well as the immediate successor of one of them.
Property D5 (Definition 6.8) guarantees that the orders can be interleaved in this way.
The bags are well-defined if we impose an order on the axes, and adopt the convention
that we inductively advance along the first axis whenever possible, otherwise the second
axis if possible, and otherwise the third.

LEMMA 10.2. Each trunk-graph iR admits a width3 path decomposition that can
be described by existentially defined CMS predicB&gand Parent.

PrROOE By Lemma 9.8, the axe6A, —i), 1 < i < 3, can be encoded for some
pyramid inR € R. By Lemma 4.2, the transitive closures>"" can also be encoded.

We assume that eadh is nonempty—for otherwise, a simplification of the argument
carries through. We explain how to define tBag predicate for a path decomposi-

tion in which each bag has cardinality four, and adjacent bags intersect in exactly
three vertices. So each nonroot bag contains a unique drop vertex—which becomes

376 D. Kaller
.
ith 1 ‘!' ond &l 3rd
axis axis axis axis axis
A A A A A
‘ e u Y) ouy
t;) Ve U e—}
valid : :
u; e subsequence u, i Uy
e : o -
Y : u ./: U3

Fig. 9. Choosing a bag of the CMS-encoded path decomposition.

its witness. The witness of the root bag can be chosen arbitrarily from its (one or two)
drop vertices.

To identify the leaf bag, we encode the fact tBaig(v,, X) holds whenX contains
the designated apex as well as the first vertex in each axis. Each other¥agpntains
a unique pair of vertices;, u; € A (1 <i < 3) such thau; —; u;. The other two
verticesuj € Aj (1 < j < 3; j #1)in X can be identified as follows: Let € A
be the last vertex (in the order#;”) thatis adjacent tay; or any vertex that precedes
u; in theith axis; if there is no such adjacency, then weuebe the first vertex of the
jth axis by default. Let? € A; be the first vertex that is adjacentup or any vertex
that followsu; (or, by default, leu be the last vertex of theth axis). It follows from
property D5 (Definition 6.8) that; — u’; and we refer to the vertices betwegnand
u; as thevalid subsequendgee Figure 9). Itis clear that the vertgxe X must belong
to the valid subsequence: otherwise, there would be a cross edge incident tajetther
uj’ without both endpoints in a common bag.

In the case that no vertex of the valid subsequence is incident to a cross edge, then
anyvertex in that subsequence can be chosen @k effect the precedence convention
among the axes, we choosg as close as possible tf, if j < i, and choose; as
close as possible toj, if j > i. It is not hard to formalize this approach in CMS
logic.

Now, it is easy to encode thParent predicate: ifBag(c, X) and Bag(p, X’)
hold, whereX # X', thenParent(p, ¢) holds iff X’ contains all three maximal ver-
tices of X. O

The right-hand panel of Figure 9 illustrates the axes of a pyramid in a given patrtial
3-path. In this example, we haug —, uj. As explained in the proof of Lemma 10.2, the
cross edges between the second ghehxis (forj = 1, 3) are used to identify the valid
subsequencaj[, e u]f’]. To identify the verticesuy, uz for the bag{us, u,, U5, us},

a CMS formula need only consider the cross edges between the first and third axes.
>From the valid subsequence of the first axig,is selected as close as possible to

uj, under the constraint that there be no cross edge between a vertex pregeding
and a vertex followingu;. From the valid subsequence of the third axisjs selected

as close as possible td;, under the constraint that there be no cross edge between
a vertex preceding; and a vertex followinguz. By property D5 of a pyramid (Def-
inition 6.8), there exists no cross edge between a vertex precediagd a vertex
following ug.

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 377

LEMMA 10.3. Any2-connected partiaB-tree admits a widtt8 tree decomposition that
can be described by existentially defined CMS predidasesand Parent.

PROOF Supposé&s is a 2-connected partial 3-tree; and®be a trunk hierarchy given

by Theorem 7.9. We use Lemma 10.2 to encode a path decomposition for each trunk-
graph. To extend this to a tree decompositioGofve need only encode parents for the
roots of all but one of those path decompositions. By Lemma 8.4, a CMS predicate can
determine the terminal set of eaéhe R. If Vigrm(R) = Vierm(G), thenR is the root

of the trunk hierarchy. Otherwise, the parentois the unique trunk-grapR’ € R for

which Vigrm(R) € V(R) andViem(R) € Vierm(R'). ThusParent(p, ¢) can be encoded

for ¢ the witness of the root of the path decompositiorRyfand p the witness of the
closest node to the root of the path decompositioR‘asuch thatvierm(R) € X where
Bag(p, X) is true. O

11. Partial 3-Trees. In Section 10 we established that CMS predicates can describe
(Definition 4.5) a width-3 tree decomposition of any 2-connected partial 3-tree. Thus
each block (Definition 2.4) of a partial 3-tree has a CMS-definable width-3 tree decom-
position. In this section we use that result to draw the conclusion that definability equals
recognizability of partial 3-trees.

LEmmMA 11.1. Ifeachblock of agraph has a CMS-definable width-k tree decompasition
then the graph itself has a CMS-definable width-k tree decompasition

PROOF First, suppos& is aconnectedyraph withe distinct blocksGi, Go, ..., Gy,

each of which has a CMS-definable widtliree decomposition. No pair of these blocks
may intersectin more than one vertex—otherwise their union would also be 2-connected.
Hence, the blocks can be arranged in a tree suchGhas the parent ofG; only if

[V (Gi) NV (Gj)| = 1. The root block of this tree can be existentially encoded in CMS
logic (Definition 4.3) by providing a parameter to contain the vertex set of that block.
Furthermore, it is easy for a CMS predicate to encode whether any vertex subset induces
a block of G; hence, the CMS-definable widthtree decomposition of each block can

be determined independently. Without loss of generality, assume that if a Gloisk

the parent of a bloclG;, then the vertex iV (G;j) N V(G;) is a designated terminal

in Vierm(G;); this terminal will be contained in the root bag of the CMS-definable tree
decomposition o5;. Therefore, to encode a widthtree decomposition db, we need

only encode a parent for the root of the tree decomposition of each nonroot®jock

This parent can be encoded as the closest node to the root of the tree decomposition of
G;i (i.e., the parent 06;) such that the vertex of (G;) N V(G;j) is contained in the
corresponding bag.

Now, supposé& is a (possibly disconnected) graph for which each block has a CMS-
definable widthk tree decomposition. A widtk-tree decomposition can be encoded for
each component (as above). We then choose the root Jsafyany one of these tree
decompositions to be the root of a tree decompositioB.dEMS predicates can easily
encode that each other root becomes a child of O

378 D. Kaller

Lemmas 10.3 and 11.1 provide the following:

COROLLARY 11.2. Any partial 3-tree admits a widtt8 rooted tree decomposition that
can be described by existentially defined CMS predicates

Combining the above corollary with Lemmas 4.7 and 5.4 and Theorem 5.3, we can now
conclude the following:

THEOREM11.3. Definability equals recognizability of parti@trees

12. k-Connected Partialk-Trees. We now generalize the results of this paper to show
that definability equals recognizability kfconnected partid-trees. To do this, we need
only show that CMS predicates can describe a widtbeted tree decomposition of any
such graph. The results of Section 6 show that any pértisde can be decomposed into
a trunk hierarchy (Definition 7.1). Some of the results of Sections 7, 8, and 10 need to
be generalized.

Throughout this sectio® is ak-connected partidd-tree; andR is a trunk hierarchy
admitted by a simple widtk-tree decomposition o&. Since each trunk-graph h&s
terminals, Property 7.2 can be simplified to the following:

PrROPERTY12.1. The vertices of each trunk-graphe R can be ordered,, v, ...,

vv(r) such that, for each = 2, 3,...,|V(R)|, there is a nonterminal vertex of
R (where 1< j < i — 1) for which at least one of the following two conditions is
satisfied:

C1. v andv; are adjacent (i1G).
C3. R has a childR" € R for which v, v; € Viem(R'), andj’ < i for eachv; €
Vierm(R).

In Section 7 we enforced this property by choosirgateredrunk (Proposition 7.3)
in a simple widthk tree decompositioT, r, x) of G. However, now, sincé& is k-
connected, we hay&, N Xp| > k wheneverl andb are adjacent nodes of. It follows
that every trunk inT is a centered trunk.

Property 7.4 can be enforced by a straightforward generalization of Proposition 7.5.
Property 7.6 is not needed in the case @oBinectedartial 3-trees. Hence, a simplifi-
cation of the proof of Theorem 7.9 provides the following:

THEOREM12.2. If G is a k-connected partial k-tre¢hen some width-k simple tree
decomposition of G admits a trunk hierarci® such that each trunk-graph R R
satisfies Propertie&2.1and7.4.

The vertex set and edge set of each trunk-graphRircan now be encoded
by CMS predicates (as in Section 8). Proposition 8.2 can easily be generalized as
follows:

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 379

ProPOSITION12.3. V(G) can be partitioned intalk + 1 color classesuch that the
nonterminal vertices of each trunk-graphe€RR belong to a common color clagsay
C); no terminal of R belongs to Gand if t € Vierm(R) — Vierm(G), then no vertex of
R(t) belongsto C

The proof of Lemma 8.3 remains valid in the casekefonnected partiak-trees
(providedk > 2). The proof of Lemma 8.4 can be easily generalized, to give the
following:

LEMMA 12.4. Binary CMS predicateBunk , trunk-edge, andterm; (1 < j < k) can
be existentially defined such that there is a subset A @)\~ Vierm(G) containing
exactly one nonterminal vertex of each trunk-grapikinand

e trunk (v1, V') holds iffv; € A, and V' is the vertex set of ®,); and

o trunk-edge(u, v) holds iff{u, v} is an edge of some trunk-graph®; and

e forv; € Arift is a terminal of Rv1), thenterm; (vy, t) holds for a unique index; j
andterm(vy, t) Vv - - - v termy (v, t) holds only if t is a terminal of Rv1).

We do not need the results of Section 9 to encode the axes of a pyraRit@tause
each axis consists of a path between the apex and a distinct terminal: Lemma 9.8 becomes
a trivial consequence of property D4 (Definition 6.8). Now, the proof of Lemma 10.2
can be easily generalized to prove the following:

LEMMA 12.5. Any k-connected partial k-tree admits a width-k tree decomposition that
can be described by existentially defined CMS predidasesand Parent.

Using Lemmas 4.7 and 5.4 and Theorem 5.3, we can draw the following con-
clusion:

THEOREM12.6. Definability equals recognizability of k-connected partial k-trees

13. Conclusion. This paper has established that CMS-definability is a necessary and
sufficient condition for a subclass of the partial 3-treeskf@pnnected partidt-trees)
to be recognized by a finite-state tree automaton. It was known that CMS-definability
is sufficient for a subclass of the partiaitrees (for anyk) to be recognized in this
way, but it was an open question whether CMS-definability is necessark (fod).
Very recently, this question was resolved by Lapoire [21] who showed the equivalence
of definability and recognizability foany subclass of the partidd-trees. In this pa-
per we used a general strategy which may independently provide another proof of
necessity—by showing CMS logic can encode a tree decomposition of any gartal
G. We showed how this can be done in the cas& ef 3, and in the case th& is
k-connected.

The general strategy to encode a tree decomposition is first to decompose the partial
k-treeG into a collection okimplepartialk-paths. These partilitpaths cover the vertex
set ofG; and the union over their edge sets is a superset of the edgeGeMufreover,

380 D. Kaller

we may assume without loss of generality (by Lemma 11.1) @a$ 2-connected.
Encoding a tree decomposition @fis thus reduced to the following two tasks:

1. Determine which vertices belong to each of the (2-connected) simple fpapizhs.
2. Encode a path decomposition for each of the simple padmths. (These path
decompositions can then be easily assembled into a tree decomposi@on of

We have shown how the first task can be implemented £if3 or G is k-connected)
by inductively identifying the vertices of each partlapath (sayR). In these cases,
V(R) can be ordereds, v, ..., vy(r) such that each; (2 < i < |[V(R)|) satisfies
some logical condition relative to the 4@, v, ..., vi—1}: Forsomey; (1 < j <i—1)
in this set,v; can be uniquely identified by a CMS predicabgv;, v;). Furthermore,
the first vertexv, of the order does not belong to any other parkigdath in the de-
composition. Thus/ (R) is encoded as the minimal set containinmgand any vertex
v such thatd*(vy, vj), whered* is the transitive closureé. If this approach is gener-
alized in a straightforward way, then instead of identifying the vertices one at a time,
we would need to identify up to mjhk]|/2, k — ¢ + 1} vertices at a time—for a#é-
connected partidk-tree. Fork > 4 and¢ < k — 1, this quantity is greater than 1; so
it becomes much more difficult for a CMS formula to determine the vertices of such a
group.

We have shown how the second task can be implemented for 2-connected partial
3-trees (this could be generalized(to— 1)-connected partidt-trees). This completes
the proof that recognizability implies CMS-definability for partial 3-trees, because the
2-connected blocks of an arbitrary partial 3-ti@ecan be handled separately in this
way, and then the resulting collection of tree decompositions can be assembled together.
Recently, Kabanets [18] showed that CMS logic can encode a fixed path decompo-
sition of any partial k-path: i.e., the second task enumerated above can be done for
anyk.

References

[1] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability.
BIT, 25:2-33, 1985.

[2] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddingskitrae.SIAM
J. Algebraic Discrete Method$8:277-284, 1987.

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree decomposable Jrajgwithms
12:308-340, 1991.

[4] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial
k-trees Discrete ApplMath., 23:11-24, 1989.

[5] M.W.Bern, E.L. Lawler, and A.L. Wong. Linear-time computation of optimal subgraphs of decompos-
able graphsJ. Algorithms 8:216—-235, 1987.

[6] H.L. Bodlaender. Dynamic programming on graphs with bounded treewidtRrdn. 15th ICALP,
pages 105-119. Lecture Notes in Computer Science, volume 317. Springer-Verlag, Berlin, 1988.

[7] H.L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewsd#iM J
Comput, 25:1305-1317, 1996.

[8] B. Bollobas.Extremal Graph TheoryAcademic Press, London, 1978.

[9] R.B.Borie, R.G. Parker, and C.AoVey.Automatic generation of linear-time algorithms from predicate
calculus descriptions of problems on recursively constructed graph familgerithmica 7:555-581,
1992.

Definability Equals Recognizability of Partial 3-Trees &@onnected Partidd-Trees 381

(20]

[11]
[12]
[13]
[14]
[15]
[16]
(17]
(18]
[19]
[20]

[21]

[22]

(23]
[24]

[25]
[26]
[27]

(28]

B. Courcelle. On context-free sets of graphs and their monadic second-order thd@ngc.Imterna-
tional Workshop on Graph Grammarpages 133-146. Lecture Notes in Computer Science, volume
291. Springer-Verlag, Berlin, 1987.

B. Courcelle. Graph rewriting: an algebraic and logic approach. In J. van Leeuwen, Editaiood

of Theoretical Computer Scieno®lume B, pages 193—-242. Elsevier, Amsterdam, 1990.

B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite dinéqing.

and Comput 85:12-75, 1990.

B. Courcelle. The monadic second-order logic of graphs. V. On closing the gap between definability
and recognizabilityTheoret Comput Sci, 80:153-202, 1991.

B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposableldraptes.
Comput Sci, 109:49-82, 1993.

M.R. Garey and D.S. Johnsddomputers and IntractabilityA Guide to the Theory of NP-Completeness
Freeman, New York, 1979.

A. Gupta, D. Kaller, and T. Shermer. Linear-time algorithms for paktiske complementglgorith-

mica, this issue.

J.E. Hopcroft and J.D. Ulimanintroduction to Automata Theanfanguagesand Computation
Addison-Wesley, Reading, MA, 1979.

V. Kabanets. Recognizability equals definability for parkiadaths. InProc. 24th ICALP, pages 805—
815. Lecture Notes in Computer Science, volume 1256. Springer-Verlag, Berlin, 1997.

D. Kaller. Monadic Second-Order Logic and Linear-Time Algorithms for Graphs of Bounded Treewidth.
Ph.D. thesis, Simon Fraser University, Burnaby, B.C., Canada, 1996.

D. Kaller. Definability equals recognizability of partial 3-trees.Rroc. 22nd WG pages 239-253.
Lecture Notes in Computer Science, volume 1197. Springer-Verlag, Berlin, 1997.

D. Lapoire. Recognizability equals monadic second-order definability for sets of graphs of bounded
tree-width. InProc. 15th STACSpages 618-629. Lecture Notes in Computer Science, volume 1373.
Springer-Verlag, Berlin, 1998.

S. Mahajan and J.G. Peters. Regularity and localigsierminal graphsDiscrete ApplMath., 54:229—

250, 1994.

K. Menger. Zur allgemeinen kurventheorfeund Math., 10:96-115, 1927.

D. Perrin. Finite automata. In J. van Leeuwen, ediktgindbook of Theoretical Computer Science
volume B, pages 1-57. Elsevier, Amsterdam, 1990.

N. Robertson and P.D. Seymour. Graph minors. Il. Algorithmic aspects of tree-wWidklgorithms
7:309-322, 1986.

K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial problems on
series-parallel graphd. Assoc Comput Math., 29:623-641, 1982.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editmmgbood of Theoretical Computer
Sciencevolume B, pages 133-191. Elsevier, Amsterdam, 1990.

J. van Leeuwen. Graph algorithms. In J. van Leeuwen, editandbook of Theoretical Computer
Sciencevolume A, pages 527-631. Elsevier, Amsterdam, 1990.

