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Definability Equals Recognizability of Partial 3-Trees
and k-Connected Partialk-Trees1

D. Kaller2

Abstract. We consider graph decision problems on partial 3-trees that can be solved by a finite-state,
leaf-to-root tree automaton processing a width-3 tree decomposition of the given graph. The class of yes-
instances of such a problem is said to berecognizableby the tree automaton. In this paper we show that
any such class of recognizable partial 3-trees isdefinableby a sentence in CMS logic. Here, CMS logic is
the extension of Monadic Second-order logic with predicates to count the cardinality of sets modulo fixed
integers. We also generalize this result to show that recognizability (by a tree automaton that processes width-
k tree decompositions) implies CMS-definability fork-connected partialk-trees. The converse—definability
implies recognizability—is known to hold for any class of partialk-trees, and even for any graph class with
an appropriate definition of recognizability. It has been conjectured that recognizability implies definability
over partialk-trees; but a proof was previously known only fork ≤ 2. This paper proves the conjecture, and
hence the equivalence of definability and recognizability, over partial 3-trees andk-connected partialk-trees.
We use techniques that may lead to a proof of this equivalence over all partialk-trees.
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1. Introduction. Many NP-hard graph problems are known to have linear-time algo-
rithms over partialk-trees (see [1] for a survey of early results). Takamizawa et al. [26]
described a general technique to construct such algorithms over series-parallel graphs
(i.e., partial 2-trees). A number of more general formalisms were later developed [4]–
[6], [22], including several based on the Monadic Second-order (or MS) logic [3], [9],
[12], [14]. Often, it is very easy to define a given graph decision problem with a sen-
tence in MS logic; such a sentence can be automatically translated into a linear-time
dynamic-programming algorithm to solve the problem over partialk-trees. Although
this automatic translation is intractable, it is nevertheless of major theoretical interest.
The resultant dynamic-programming algorithms are modeled by finite-state machines
calledtree automata. To use such a machine, the input graph must first be parsed into
a tree decomposition; this parsing can also be done in a (theoretically) efficient way
[7]. The time complexity bounds for the parsing and for the dynamic-programming
are both linear in the size of the partialk-tree, with very large constants (which grow
superexponentially withk).
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A partial k-tree is a graph that can be constructed by gluing togetherbasicgraphs—
each withk + 1 or fewer vertices—along the global shape of a tree. This tree, together
with the corresponding basic graphs, constitutes a width-k tree decomposition [25] of the
graph so constructed. Arnborg et al. [2] showed how to parse a given graph into a width-k
tree decomposition (or conclude that the graph is not a partialk-tree) in polynomial time;
later, Bodlaender [7] gave a linear-time algorithm to do this. A tree decomposition can
be encoded as a rooted tree with nodes labeled from a finite set of basic graphs. A tree
automaton processes a tree decomposition by assigning each of its nodes to one of a
finite number of states—computed as a function of the node’s label and the states of its
children. The tree is accepted iff its root is thus assigned to a designated accepting state.
Only constant time is needed to compute the state of each node; so a tree automaton
decides in linear time whether or not to accept a tree decomposition. In order for a tree
automaton to be a decision algorithm over partialk-trees, it must accept either all of the
width-k tree decompositions of a given graph, or none of them (as graphs do not have
unique tree decompositions).

A subclass of the partialk-trees is said to berecognizedby a tree automaton that
accepts exactly the tree decompositions of graphs in that subclass. Courcelle [10] was
the first to show that if a sentence of theCounting Monadic Second-order(or CMS)
logic defines a subclass (say5) of the partialk-trees, then there exists a tree automaton
to recognize5. Here, CMS logic is the extension of MS logic with predicates to count
the cardinality of sets modulo fixed integers. Similar results were given by Arnborg
et al. [3] and by Borie et al. [9]. These results have far-reaching consequences: The
question of whether or not a given graph belongs to a certain class is general enough
to capture many commonly studied decision problems, and a large number of these
problems can be encoded as CMS sentences [9], [11], [12], [19]. For many such classes
(such as Hamiltonian graphs or 3-colorable graphs), the “counting” predicates are not
needed: these classes can be defined by MS sentences. On the other hand, the “counting”
predicates are needed to define, for example, the class of graphs with an even number of
vertices: these graphs cannot be defined by an MS sentence, but they can be defined by
a CMS sentence [12]. In other cases, it is not possible for a CMS sentence to define all
the graphs with a given property, but a CMS sentence can nevertheless define the partial
k-trees with the property; an example of this is given by the class of graphs for which
the vertex set can be partitioned into fixed-size independent sets [16]. Courcelle’s result
[10], [12] says that the partialk-trees in any of these classes can be recognized in linear
time by a tree automaton. In fact, most of the standard NP-complete graph problems [15]
can be solved in linear time over partialk-trees in this way.

The “definability implies recognizability” result is given by Courcelle [12] for classes
of structures (more general than partialk-trees) that can be constructed recursively using
a finite set of “gluing” operations. The notion of “recognizability” must be generalized
appropriately for such structures. The recognizability of partialk-trees by tree automata
is analogous to the recognizability of regular sets by conventional finite-state automata,
and it is well known that a set of finite strings is recognizable iff it can be defined by a
regular expression [17], [24]. However, for a long time it was an open question whether
CMS logic analogously characterizes the sets of partialk-trees that are recognizable
by tree automata. Although CMS-definability was known to imply recognizability, the
converse implication had not been established. The converse was known to hold only
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for partial 1-trees [12], partial 2-trees [13], and, with the results presented here, partial
3-trees andk-connected partialk-trees. Also, Kabanets [18] showed the converse holds
for partial k-paths(i.e., partialk-trees that can be composed by gluing together basic
graphs along the global shape of a path). Very recently, Lapoire [21] finally settled the
question, establishing the equivalence for all partialk-trees.

Courcelle [12] shows how CMS predicates encoding the structure of a tree decompo-
sition could be used to encode whether it is accepted by a given tree automaton. Hence, to
prove that recognizability implies CMS-definability, we need only show that CMS pred-
icates can indeed encode the structure of a fixed tree decomposition of any partialk-tree.
This is easy fork = 1 because a tree is (roughly speaking) its own tree decomposition.
In fact, MS logic is sufficient to encode a fixed tree decomposition of any partial 1-tree
[12]; the “counting” feature of CMS logic is needed only to simulate a tree automaton
on that encoded structure. Courcelle [13] also showed that MS logic can encode a fixed
tree decomposition of any partial 2-tree. In this paper we extend this result, showing
that MS logic can encode a fixed tree decomposition of any partial 3-tree ork-connected
partialk-tree. We then appeal to Courcelle’s result [12] to conclude that recognizability
implies CMS-definability over those classes of graphs.

The rest of this paper is organized as follows: In Section 2 we review graph-theoretic
notation and preliminaries. In Section 3 we discuss partialk-trees and tree decomposi-
tions. In Section 4 we describe a general approach for proving that MS logic can encode
a fixed tree decomposition of a partialk-tree, and in Section 5 we explain how this en-
ables CMS logic to encode the behavior of a tree automaton. In Section 6 we show that
any connected partialk-tree admits asimpletree decomposition—this can be used to
decompose a partialk-tree intotrunk-graphs(which are partial 3-paths). In Section 7 we
decompose a 2-connected partial 3-tree into a hierarchy of these trunk-graphs, and we
develop several important properties of the hierarchy. In Section 8 we show how those
properties enable MS predicates to encode the vertex set and edge set of each trunk-
graph, and in Section 9 we show how they enable MS predicates to encode the structure
of apyramidin each trunk-graph. These results are combined in Section 10 to show that
MS predicates can describe a fixed tree decomposition of any 2-connected partial 3-tree.
In Section 11 we draw the conclusion that recognizability implies CMS-definability of
partial 3-trees. In Section 12 we generalize the proof tok-connected partialk-trees.
Finally, in Section 13, we make concluding remarks and discuss open problems.

2. Preliminaries. The graphs in this paper are finite, simple, loop-free, and undirected.
The vertex set of a graphG is denoted byV(G), and its edge set is denoted byE(G).
We writeG′ v G to indicate thatG′ is a subgraph ofG. The subgraph ofG induced by
V ′ ⊆ V(G) is denoted byG[V ′] . If V ′ is a set (but not necessarily a subset ofV(G)),
thenG\V ′ is the subgraph ofG induced byV(G)− V ′. For a singleton set{v}, we may
write simply G\v for G\{v}. For a subgraphG′ of G, we may write simplyG\G′ for
G\V(G′).

A cut-setof a graphG is a subsetV ′ of V(G) such thatG has fewer components
thanG\V ′. The unique element of a singleton cut-set is called acut-vertex. A cut-set (or
cut-vertex)V ′ is said toseparateany pair of vertices that are in the same component of
G, but in different components ofG\V ′.
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If b is a vertex of a rooted treeT , thenTb is the subtree ofT that is rooted atb. In this
paper aleaf of a rooted tree is either a degree-1 vertex other than the root, or a degree-0
vertex (which is the root). This definition is for the convenience of having a unique leaf
in any path that is rooted at one of its endpoints.

DEFINITION 2.1. SupposeT is a rooted tree. Atrunk in T is a rooted pathP v T
between some vertexv of T and some leaf ofTv; v is then taken to be the root ofP.

SupposeP andP′ are paths in some graph: IfV(P)∩V(P′) = ∅, thenP andP′ are
calledvertex-disjointpaths. Ifv ∈ V(P) ∩ V(P′) implies thatv is an endpoint of both
P and P′, then they are calledinternally vertex-disjointpaths. We adopt the following
definition for the connectivity of a graph.

DEFINITION 2.2. An `-connectedgraph (for` ∈ N) is a graph for which there arè
internally vertex-disjoint paths between each pair of nonadjacent vertices.

It is more usual to define aǹ-connected graph, alternatively, as a graph from which at
least` vertices must be removed in order to obtain either a disconnected graph, or the
graph with a single vertex [8]. Lemma 2.3 (first given by Menger [23]) shows that these
two characterizations are equivalent for graphs with more than` vertices.

LEMMA 2.3. Let` ∈ N, and suppose G is a connected graph on`+1 or more vertices.
G contains̀ internally vertex-disjoint paths between each pair of vertices iff there is no
cut-set of G with cardinality less thaǹ.

By Definition 2.2, a graph oǹ or fewer vertices is̀ -connected iff it is a clique; by the
alternative definition, no such small graph would be`-connected.

DEFINITION 2.4. Ablockof a graphG is a 2-connected subgraph ofG that is induced
by a maximal subset ofV(G).

Under our notion of connectivity (Definition 2.2) a block may consist of a single vertex
or a pair of adjacent vertices.

3. Partial k-Trees and Tree Decompositions. A k-treeis either the clique onk ver-
tices, or a graph that can be obtained (recursively) from ak-treeG by adding a new
vertex and making it adjacent to anyk distinct vertices that induce a clique inG. A
partial k-tree is a subgraph of ak-tree. For example, a graph is a partial 0-tree iff its
edge set is empty; a graph is a partial 1-tree iff it is a forest. Series-parallel graphs and
outerplanar graphs are subclasses of the partial 2-trees; Halin graphs form a subclass of
the partial 3-trees. It is not hard to show (see, e.g., [28]) that a graph is a partialk-tree
iff it admits awidth-k tree decomposition:

DEFINITION 3.1. A tree decompositionof a graphG is a pair(T,X ) whereT is a tree
andX = {Xa}a∈V(T) is a collection of subsets ofV(G), indexed by the nodes ofT , for
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which the following three properties are satisfied:

• ⋃a∈V(T) Xa = V(G).
• Each edge ofG has both endpoints in some setXa ∈ X .
• If a,b, c ∈ V(T) such thatb lies on the path betweena andc, thenXa ∩ Xc ⊆ Xb.

We refer to elements ofV(T) asnodes, so as not to confuse them with vertices ofG.
The setXb is called thebag indexed byb ∈ V(T). If no bag inX contains more than
k+ 1 vertices, then(T, χ) is called awidth-k tree decomposition. IfT ′ is a subgraph of
T , thenXT ′ is the collection of bags indexed byV(T ′); andXT ′ is the the union of those
bags:

XT ′ = {Xa ∈ X | a ∈ V(T ′)}, XT ′ =
⋃

a∈V(T ′)

Xa.

We refer to the subgraph ofG that is induced byXT ′ as the subgraphunderlying T′. It
will be useful to designatek or fewer vertices of a partialk-tree asterminals:

DEFINITION 3.2. A terminal setof a partialk-treeG is a proper subsetV ′ of V(G)with
cardinality|V ′| ≤ k, such thatG admits a width-k tree decomposition in whichV ′ is a
subset of some bag.

We assume that any graphG has a specially designated (possibly empty) terminal set,
denoted byVterm(G). We can then construct a tree decomposition such that these terminals
all belong to the bag indexed by a designated root:

DEFINITION 3.3. A rootedtree decomposition of a graphG is a triple(T, r,X ) where
T is a rooted tree;r ∈ V(T) is the root;(T, χ) is a tree decomposition ofG; and
Vterm(G) ⊆ Xr .

If (T, r, χ) is a rooted tree decomposition, then we may refer toXr as theroot bag; and
we may refer to any bag indexed by a leaf ofT as aleaf bag. For ease of expression, if
a ∈ V(T) is the parent (or child, ancestor, descendant, etc.) ofb ∈ V(T), then we may
simply say thatXa is the parent (or child, ancestor, descendant, etc.) ofXb.

DEFINITION 3.4. Suppose(T, r, χ) is a rooted tree decomposition of a graphG; and
let b ∈ V(T). If b = r , then each vertex ofXb − Vterm(G) is called adrop vertex ofb;
otherwise, each vertex ofXb − Xp is called adrop vertex ofb, wherep ∈ V(T) is the
parent ofb. If v ∈ Xb is not a drop vertex ofb, thenv is called anondropvertex ofb.

We use the notion of a “drop” vertex to assign each bag of a width-k tree decomposition
to one of a constant number (dependent only onk) of equivalence classes:

DEFINITION 3.5. A basic k-graphis a graph onk+ 1 or fewer vertices—each labeled
with a distinct integer between 1 andk + 1, and each designated as either a “drop” or
a “nondrop” vertex. Two basic graphs,B and B′, areequivalentif there is an isomor-
phism betweenV(B) andV(B′) that respects the labels and designations of each vertex.
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The collection of these equivalence classes is called thek-derivation alphabet(denoted
by6k).

The next proposition follows easily from Definitions 3.1 and 3.5, providing us with a
labeled tree to encode any given tree decomposition. Such a tree will be input to a tree
automaton, as discussed in Section 5.

PROPOSITION3.6. Let 6k be the k-derivation alphabet; and suppose(T, r, χ) is a
width-k rooted tree decomposition of a graph G. There exists a functionσ : V(T)→ 6k,
such that

• each vertex of G can be labeled with an integer between1 and k+ 1, such that
• for each b∈ V(T), the subgraph G[Xb] is equivalent toσ(b), where a vertex of G[Xb]

is designated as a “drop” vertex iff it is a drop vertex of b.

Such a functionσ is called aderivation functionfor G on the tree T.

In order to modify tree decompositions, we use the following two operations to
contractedges andsplit nodes.

DEFINITION 3.7. Suppose(T, r, χ) is a rooted tree decomposition such thatb ∈ V(T)
is the parent ofc ∈ V(T). Let T ′ be the tree obtained fromT\{b, c} by adding a new
node (sayb′) and making it adjacent to each node that was adjacent tob or c. Letr ′ = b′,
if r ∈ {b, c}; otherwise, letr ′ = r . LetX ′ = X−{Xb, Xc}∪{Xb′ }, whereXb′ = Xb∪Xc.
We say that(T ′, r ′,X ′) is obtained from(T, r, χ) by contracting{b, c}.

DEFINITION 3.8. Suppose(T, r, χ) is a rooted tree decomposition such thatb ∈ V(T).
LetT ′ be a tree obtained fromT\bby adding two new nodes (sayb′ andb′′) with the edge
{b′,b′′}, and also adding one edge (either{a,b′} or {a,b′′}) whenever{a,b} ∈ E(T).
Let r ′ = b′, if r = b; otherwise, letr ′ = r . LetX ′ = X − {Xb} ∪ {Xb′ , Xb′′ } for some
Xb′ , Xb′′ ⊆ Xb. We say that(T ′, r ′,X ′) is obtained from(T, r, χ) by splitting b.

To use this operation, we must specify how to choose the edges incident tob′ andb′′,
and how to choose the bagsXb′ andXb′′ .

4. Counting Monadic Second-Order Logic. A graphG = (V, E) can be interpreted
as a logical structure over the universeV ∪ E, with a predicateEdge(e, v) that holds
wheneverv ∈ V is an endpoint ofe ∈ E. Many different graph properties can then be
expressed as logical sentences consisting of the following symbols: individual variables
(to represent vertices or edges); set variables (to represent sets of vertices or edges); the
equality (=) and membership (∈) symbols; existential (∃) and universal (∀) quantifiers;
the logical operators∧ (“and”),∨ (“or”), ¬ (“not”),⇒ (“implies”), and⇔ (“if and only
if”); the Edgepredicate; and unary predicatescard`,c for nonnegative integer constants
`, c (with ` < c). If S is a set, thencard`,c(S) is true iff S has cardinalitỳ (modc).
Courcelle [12] has shown that these “counting” predicates do give the logic additional
expressive power.
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By a CMS “formula,” we mean a string of the symbols described above, constructed
such that the usual syntactic rules of logic are observed; quantification is allowed over
both individual and set variables. If a CMS formula has no occurrence of an unquantified
variable, then it is called aCMS sentence. We write G |= 8 to indicate that a CMS
sentence8 is true on theevaluationgraphG. This sentence defines a certain class (say
5) of graphs: that is,G |= 8 iff G ∈ 5.

In a CMS formula8, some number (saỳ) of the unquantified variables may be
designated asarguments: This defines aCMS predicate—which we denote by the sym-
bol “8” followed by an `-tuple of its arguments. If every unquantified variable has
been designated as an argument, then8 encodesa certain relation (sayL): that is,
(v1, v2, . . . , v`) ∈ L iff 8(v1, v2, . . . , v`) is true on the evaluation graph. For example,
a CMS predicate encoding the (symmetric and irreflexive) edge relation can be encoded
as follows.

8adj(u, v) ≡ ¬(u = v) ∧ (∃e)(Edge(e,u) ∧ Edge(e, v)).(4.1)

The following lemma shows that the transitive closure of8adj can also be encoded:

LEMMA 4.2. If a CMS predicate can encode a binary relation on the vertex set of a
graph, then a CMS predicate can encode the transitive closure of that relation.

PROOF. See Lemma 3.7 of [12].

Using the transitive closure of8adj, it is easy to express (for example) the property
that a graph is connected. When writing CMS formulae in this paper, we often use high-
level expressions (such as “G is connected”) rather than providing a detailed translation
into the low-level logical symbols of CMS. Refer to [3], [9], [11], or [12] for a further
discussion of encoding such expressions.

We now generalize the notion of a CMS predicate, allowing it to be defined with
unquantified variables that are not arguments.

DEFINITION 4.3. Suppose8 is a CMS predicate defined with̀arguments and also
some other unquantified variables (calledparameters); the arguments and parameters
may denote individual vertices or edges, or sets of them. After letting each parameter
be substituted by some fixed value, letL be the relation such that(v1, v2, . . . , v`) ∈ L
iff 8(v1, v2, . . . , v`) is true on the evaluation graph. We say that8 is anexistentially
definedpredicate encodingL; or (more simply) that8 existentially encodesL.

If 8 is an existentially defined CMS predicate, then its parameters (sayx1, x2, . . . , xd)
can be existentially quantified at the outermost level of a CMS sentence as follows:

(∃x1, x2, . . . , xd)(8
′).(4.4)

Here,8′ is a CMS formula that does not contain any unquantified variable other than
x1, x2, . . . , xd; so the predicate8 can be used in writing the CMS sentence 4.4. Two
(or more) existentially defined predicates may be used together, in sentences of this
form, by quantifying all of their parameters at the outermost level. Thus these predicates
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can depend upon a common list of parameters, subject to a common set of conditions.
We use this approach to encode the structure of a rooted tree decomposition of the
evaluation graphG. To do this, some of the vertices ofG are designated aswitnesses—
each representing a node of the tree decomposition.

DEFINITION 4.5. SupposeBagandParentare binary CMS predicates. These predicates
are said todescribea rooted tree decomposition(T, r, χ) of a graphG if there exists a
one-to-one functionf : X → V(G), such that

• Bag(v, X) holds iff v = f (X), and
• Parent(p, c) holds iff f −1(p) and f −1(c) exist, andf −1(p) is the parent off −1(c).

For b ∈ V(T), we then refer to the vertexf (Xb) as thewitnessof b (or thewitness
of Xb).

We existentially define these CMS predicates (BagandParent) to describe a rooted
tree decomposition(T, r, χ) of any partial 3-tree ork-connected partialk-tree. These
predicates can then be used to encode a rooted tree (isomorphic toT) on the set of
witnesses: i.e., the following subset ofV(G):

V(T) = {v ∈ V(G) | (∃X)Bag(v, X)} .(4.6)

In Section 5 we show how theBag andParent predicates can be used to write a CMS
sentence 4.4, where8′ encodes whether the described tree decomposition is accepted by
a particular tree automaton. The validity of this CMS sentence is, of course, dependent
upon “correct” values having been chosen for the parameters. The following lemma
shows that8′ can be written to ensure that “correct” values are indeed chosen.

LEMMA 4.7. SupposeBag andParent are existentially defined CMS predicates with
parameters x1, x2, . . . , xd. There exists a CMS predicate8 with d arguments and zero
parameters such that8(c1, c2, . . . , cd) is true iff Bag and Parent describe a width-k
rooted tree decomposition of the evaluation graph when each parameter xi is substituted
by the value ci (1≤ i ≤ d).

PROOF. Let G = (V, E) be the evaluation graph. Within the scope of quantification of
x1, x2, . . . , xd, the predicate8 can identifyV(T) ⊆ V as in (4.6). Now,8 can easily
verify thatBagmaps one unique bag to eachv ∈ V(T). By Lemma 4.2, a CMS predicate
can encode the transitive closure ofParent, and this can be used to verify that a tree on
V(T) is encoded. Now, it is not difficult for CMS logic to encode the three properties
itemized in Definition 3.1. Thus, to verify that awidth-ktree decomposition is described,
8 need only check thatBag(v, X)⇒ “ |X| ≤ k+ 1.”

We will need the following lemmas later in this paper:

LEMMA 4.8. A CMS predicate can existentially encode edge directions over any subset
of the edges of an(undirected) partial k-tree.



356 D. Kaller

PROOF. SupposeG is a partialk-tree; and letE′ ⊆ E(G). We can encode edge direc-
tions overE′ using a binary CMS predicate8 with k + 2 parametersV1,V2, . . . ,Vk+1

andE′′.

8(u, v) ≡ (∃e∈ E′)

(
Edge(e,u) ∧ Edge(e, v) ∧ ¬(u = v)

∧
(
(e∈ E′′)⇔

k∨
i=1

k+1∨
j=i+1

(u ∈ Vi ∧ v ∈ Vj )

))
.

LetV1,V2, . . . ,Vk+1 be independent sets partitioningV(G). For any edgee∈ E′, assume
without loss of generality that its endpoints areu ∈ Vi andv ∈ Vj wherei < j . Thus,
if e belongs to the edge subsetE′′, then8(u, v) is true and8(v,u) is false. Otherwise,
8(u, v) is false and8(v,u) is true. The setE′′ consists of the edges directed from a
vertex in a lower-indexed setVi to a vertex in a higher-indexed setVj (i < j ). Therefore,
any choice of edge directions overE′ can be encoded by choosing an appropriate subset
E′′ of E′.

LEMMA 4.9. A CMS predicate can existentially encode a constant-length string of bits
for each vertex and each edge of a graph.

PROOF. We need only providè parametersX1, X2, . . . , X` to represent a string of̀
bits for each vertex or edge (sayx): The i th bit (1≤ i ≤ `) is turned on iffx ∈ Xi .

5. Tree Automata. A tree automaton is a finite-state machine that can be used to
decide whether a partialk-treeG belongs to a certain class of graphs. For this purpose,
the automaton’s input is the treeT of a width-k rooted tree decomposition ofG, with the
nodes ofT labeled by a derivation function forG (Proposition 3.6). By restricting the
input to be a labeled path (rather than any tree), we obtain a machine that is equivalent
to a conventional finite-state automaton.

DEFINITION 5.1. Atree automatonover an alphabet6 is a tripleA = (S,SA, f )where
S is a finite set of (saỳ) states S1, S2, . . . , S̀ ; SA ⊆ S is the set ofacceptingstates;
and f : 6 × N`→ S is thetransition function.

The input to A is a rooted treeT labeled byσ : V(T) → 6. Each nodeb of T is
then recursively assigned to the statef (σ (b), |S1 ∩ C|, |S2 ∩ C|, . . . , |S̀ ∩ C|), where
C ⊆ V(T) consists of the children ofb. The treeT is acceptedbyA iff its root is thus
assigned to a state inSA.

If we say that a tree automaton processes width-k tree decompositions, we mean
that its alphabet is thek-derivation alphabet6k (see Definition 3.5). If we say that it
accepts a tree decomposition(T, χ) of G, we mean that it accepts the treeT labeled by
σ : V(T)→ 6k wheneverσ is a derivation function forG.
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DEFINITION 5.2. Let5 be a class of partialk-trees; and supposeA is a tree automaton
that processes width-k tree decompositions. We say thatA recognizes5 if the following
statements are equivalent:

• (T, χ) is a width-k tree decomposition of some graph in5.
• A accepts(T, χ).

Since graphs do not have unique tree decompositions, this means that if a tree au-
tomaton recognizes a class of graphs, then it behaves consistently—either accepting or
rejecting all of the tree decompositions of any given graph. Courcelle [12] (see also [3]
and [9]) has shown that this type of tree automaton exists for any class of CMS-definable
partialk-trees. In fact, the specifications of the tree automaton are inherent in the CMS
sentence; a decision algorithm can be obtained automatically from the logical description
of the graph class.

THEOREM5.3. If 8 is a CMS sentence, then (for each k ∈ N) there exists a tree
automaton that recognizes the intersection of{G | G |= 8} with the class of partial
k-trees.

The reader may be more familiar with an alternative definition of a tree automaton
[27] with a ternary transition functionf ′: 6×S ×S → S and an initial stateS0: Here,
the input must be abinary tree, and each nodeb is assigned to the statef ′(σ (b), S, S′),
whereS, S′ ∈ S are the states of its children (for a nonleafb) or S = S′ = S0 (for
a leafb). However, if f ′ is commutative in its second and third arguments, then it can
be simulated by the transition functionf (of Definition 5.1) by restricting the sum of
the` numeric arguments to be zero or two. For our purposes, the commutativity is no
real restriction, because we are using tree automata to process tree decompositions, and
there is no notion of order among the children of a tree decomposition node. In fact,
for our purposes, the transition function of Definition 5.1 can (conversely) be simulated
by the alternative one. This is because a partialk-tree always admits a width-k tree
decomposition with a binary tree. Hence, a tree automaton is no weaker if we restrict its
input to binary tree decompositions. We prefer to work with general tree decompositions,
however, because we are unable to encode binary tree decompositions in CMS logic.
Courcelle [12, Proposition 5.4] has established that a tree automaton (in the sense of
Definition 5.1) can be simulated by CMS logic—provided a tree decomposition has
been encoded. Hence, to prove the converse of Theorem 5.3, we need only develop CMS
predicates to describe (Definition 4.5) a tree decomposition. In this paper, we show how
this can be done (under certain restrictions).

LEMMA 5.4. Suppose a subclass5 of the partial k-trees is recognized by some tree
automaton over6k.Suppose further that there exist CMS predicates describing a width-k
rooted tree decomposition of any evaluated partial k-tree. It follows that a CMS sentence
8 can be written such that G|= 8 iff G ∈ 5.

PROOF. LetA be the tree automaton that recognizes5. Let Bag andParent be CMS
predicates describing (Definition 4.5) a width-k rooted tree decomposition of the eval-
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uated partialk-tree, sayG; and let(T, r, χ) be the tree decomposition thus described.
Hence, the CMS sentence8 must be written such thatG |= 8 iff (T, r, χ) is accepted.
To do this, a setV(T) ⊆ V(G) of witnesses is identified, as in (4.6), and this set is
partitioned into setsS1, S2, . . . , S̀ representing the states ofA. The tree decomposition
is accepted iff the witness ofr is thus assigned to an accepting state. The CMS statement
8 need only verify that each nodeb ∈ V(T) is assigned to the “correct” set: i.e., the one
representing the statef (σ (b), |S1 ∩ C|, |S2 ∩ C|, . . . , |S̀ ∩ C|), where the following
CMS formula is satisfied:c ∈ C ⇔ c ∈ V(T) ∧ Parent(b, c). Because the transition
function is periodic in its last̀ arguments, this can be encoded using thecard predicates
of CMS logic—see Proposition 5.4 of [12] for details.

6. Simple Tree Decompositions. To construct a CMS-encodable tree decomposition,
we begin with asimpletree decomposition, and then modify it. In this section we discuss
how a trunk-graph is obtained by adding certain edges to the subgraph underlying a
trunk (Definition 2.1) in a simple tree decomposition; and we show that a trunk-graph
can be represented by apyramidstructure.

DEFINITION 6.1. Asimpletree decomposition is a rooted tree decomposition(T, r, χ)
for which each nodeb of T satisfies the following properties:

P1. There is exactly one drop vertex ofb.
P2. The subgraph underlyingTb is connected.
P3. If V ′ is a subset of the nondrop vertices ofb, thenV ′ is not a cut-set of the subgraph

underlyingTb.

We will need the following consequence of these properties:

FACT 6.2. Suppose(T, r, χ) is a simple tree decomposition. If b ∈ V(T) is the parent
of c∈ V(T), then Xc contains the drop vertex of b.

We now show that any connected partialk-treeG admits a simple tree decomposi-
tion, provided no cut-set ofG is comprised exclusively of designated terminals (Defi-
nition 3.2). For example,Vterm(G) = ∅ is suitable for this purpose; and providedG is
`-connected with|V(G)| ≥ `+1, it is easy to find a suitable terminal set of cardinality`.

LEMMA 6.3. If G is a connected partial k-tree for which no subset of Vterm(G) is a
cut-set, then G admits a width-k rooted tree decomposition(T, r, χ) such that r satisfies
propertiesP1, P2,andP3.

PROOF. SupposeG is a connected partialk-tree for which no subset ofVterm(G) is
a cut-set; and let(T, χ) be a width-k tree decomposition ofG. Without loss of gen-
erality, assumeVterm(G) is a subset of some bag inX ; and choose the rootr of T
such thatVterm(G) ⊆ Xr . For any childc of r , we can assume thatXc is not a sub-
set of Xr ; for otherwise we could contract the edge{r, c} (see Definition 3.7). Now, if
Vterm(G) = Xr , then we can augmentXr with some vertex ofXc − Xr . Furthermore, if
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Xr − Vterm(G) contains more than one vertex, then we can splitr into two nodes (see
Definition 3.8) such that the bag indexed by the new root isVterm(G) ∪ {v}, for some
vertexv ∈ V(G)−Vterm(G). So without loss of generality, assume|Xr −Vterm(G)| = 1.
Therefore,(T, r, χ) is a width-k rooted tree decomposition ofG such thatr satisfies
P1; r also satisfies P2 and P3 becauseG is connected and no subset ofVterm(G) is a
cut-set.

LEMMA 6.4. If G is a connected partial k-tree for which no subset of Vterm(G) is a
cut-set, then G admits a width-k simple tree decomposition.

PROOF. By Lemma 6.3,G admits a width-k rooted tree decomposition(T, r, χ) such
that r satisfies P1, P2, and P3. Assume, inductively, thatT ′ is a connected subgraph
of T for which r ∈ V(T ′) and each node ofT ′ satisfies P1, P2, and P3. Supposec
is a child of some nodeb ∈ V(T ′); and letGc be the subgraph underlyingTc. With-
out loss of generality, assumeGc\Xb is connected; for otherwise we could create a
copy of (Tc, c,XTc) for each component (sayH ) of Gc\Xb, restricting the bags in
this copy to contain only the vertices ofV(H) ∪ Xc. Assume also that each vertex in
Xc ∩ Xb is adjacent to one or more vertices ofGc\Xb; for otherwise we could delete
the violating vertices ofXb ∩ Xc from each bag inXTc. Thus Gc is connected, and
no subset of the nondrop vertices ofc is a cut-set ofGc. We can now assume,
without loss of generality (by Lemma 6.3), thatc satisfies P1, P2, and P3. It follows in-
ductively that there exists a tree decomposition ofG in which all nodes satisfy these
properties.

In Section 7 we decompose a partialk-tree by recursively choosing trunks (Defini-
tion 2.1) in the tree of a simple tree decomposition.

DEFINITION 6.5. Suppose(T, r, χ) is a rooted tree decomposition of a graphG; and
let P be a trunk inT . Thetrunk-graphof P is obtained fromG[XP ] as follows: Add an
edge between each pair of vertices contained in the intersectionXp ∩ Xc, for each child
c ∈ V(T\P) of each nodep ∈ V(P). The terminal set of this trunk-graph consists of
the nondrop vertices of the root ofP.

Definition 6.5 yields a trunk-graph with tree decomposition(P,XP). Any graph that
admits this type ofpath decompositionis called apartial k-path.

DEFINITION 6.6. Asimple path decompositionis a simple tree decomposition(P, r,X )
for which P is a path andr is an endpoint ofP. A simple partial k-pathis any graph
that admits a width-k simple path decomposition.

If (T, r, χ) is a simple tree decomposition, andP v T is a trunk rooted atr ′, then
it is not necessarily the case that(P, r ′,XP) is asimplepath decomposition ofG[XP ] ,
because the nodes ofP do not necessarily satisfy properties P2 and P3 relative to the
subgraphG[XP ] . However, each node ofP does satisfy these properties relative to the
trunk-graph ofP:
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LEMMA 6.7. Suppose(T, r, χ) is a simple tree decomposition; and let r′ ∈ V(T). If
P is a trunk in T that is rooted at r′, then(P, r ′,XP) is a simple path decomposition of
the trunk-graph of P.

PROOF. Let G be the graph underlyingT ; and let R be the trunk-graph of a trunk
P rooted atr ′. Since(P, r ′,XP) is a path decomposition ofG[XP ] , and R is obtained
from G[XP ] by adding edges only between pairs of vertices contained in a common
bag ofXP, it follows that (P, r ′,XP) is a path decomposition ofR. It is clear that
each node of this path decomposition satisfies property P1. To complete the proof, we
need only show that each node satisfies properties P2 and P3 relative to the trunk-
graphR.

For the leafb of P, the subgraph (ofR) underlyingPb is identical to the subgraph (of
G) underlyingTb; so P2 and P3 are satisfied by the leaf ofP. Assume inductively that
all three properties are satisfied byb ∈ V(P), and leta be the parent ofb. By Fact 6.2,
Xb contains the drop vertex (sayv) of a. Supposeu ∈ Xa− Xb such that{u, v} 6∈ E(G).
By property P3 (relative toG), there is a path betweenu andv with one or more internal
vertices inXTa − Xa. It follows thata has a childc ∈ V(T\P) for which u, v ∈ Xc.
So, by Definition 6.5,u andv are adjacent inR. Therefore,v is adjacent to each vertex
of Xa − Xb. The remaining vertices of the subgraph underlyingPa are the vertices in
XPb; andXPb induces (inductively) a connected subgraph that is not cut by any subset of
Xa∩ Xb. Therefore, the subgraph underlyingPa is connected (hence, P2); andv belongs
to every subset ofXa that is cut-set of the subgraph underlyingPa (hence, P3). It follows
inductively that(P, r ′,XP) is a simple path decomposition ofR.

We now show that any simple partialk-path (i.e., any trunk-graph) contains apyramid
consisting ofk vertex sequences. We use the pair(A,→) to denote such a sequence,
where “x → y” means thaty ∈ A immediate followsx ∈ A. We use “→+” to denote
the transitive closure of “→”; and we use “→∗” to denote its reflexive, transitive closure.

DEFINITION 6.8. SupposeR is a simple partialk-path. Apyramid in R consists of a
vertexv1 ∈ V(R) andk vertex sequences(Ai ,→i ), 1 ≤ i ≤ k, with the following
properties:

D1. {A1, A2, . . . , Ak} is a partition ofV(R)− {v1}.
D2. For 1≤ i ≤ k: v ∈ Ai is adjacent tov1 only if v is the first vertex of(Ai ,→i ).
D3. For 1≤ i ≤ k: v belongs toAi ∩ Vterm(R) only if v is the last vertex of(Ai ,→i ).
D4. For 1≤ i ≤ k: two verticesu, v ∈ Ai are adjacent (i.e.,{u, v} ∈ E(R)) only if

u→i v.
D5. For 2≤ ` ≤ k: if i1, i2, . . . , i` are distinct indices between 1 andk, and eachAi j

(1 ≤ j ≤ `) contains two distinct vertices (sayui j →+i j
u′i j

), then not all of the
following are edges ofR: {ui1,u

′
i2
}, {ui2,u

′
i3
}, . . . , {ui`−1,u

′
i`
}, {ui` ,u

′
i1
}.

The vertexv1 is called theapexof the pyramid; and each sequence(Ai ,→i ) is called
anaxisof the pyramid. An edgee∈ E(R) is anapicaledge if one of its endpoints is the
apex;e is anaxial edge if both endpoints belong to the same axis; otherwisee is across
edge.
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Fig. 1.A pyramid in a simple partial 3-path.

Figure 1 illustrates a pyramid in a simple partial 3-path with three terminals. If there
are fewer terminals, then not every axis ends with one. The apex may be adjacent only
to the first vertex of each axis. Axial edges exist only between consecutive vertices.
Property D5 says that pairs and triples of cross edges are forbidden to “criss-cross” as
illustrated. To construct a pyramid, we visit the bags of a simple path decomposition in
order from the leaf to the root: a vertex being seen for the last time is called adropvertex
(Definition 3.4); and a vertex being seen for the first time is called anaddvertex:

DEFINITION 6.9. Suppose(P, r,X ) is a simple path decomposition; and letb ∈ V(P).
If b is the leaf ofP, then each vertex ofXb is called anaddvertex ofb; otherwise, each
vertex of Xb − Xc is called anadd vertex ofb, wherec ∈ V(P) is the child ofb. If
v ∈ Xb is not an add vertex ofb, thenv is called anonaddvertex ofb.

LEMMA 6.10. There exists a pyramid in any simple partial k-path.

PROOF. SupposeR is a simple partialk-path; and let(P, r,X ) be a width-k simple
path decomposition ofR. Choose the apex of the pyramid to be the drop vertex of the
leaf of P; and let each nondrop vertex of the leaf become the first element of a distinct
axis. Now, assume inductively thatb ∈ V(P) is the parent ofc ∈ V(P) such that the
vertices ofXPc have already been assigned to axes; and leth be the number of nonadd
vertices ofb (so h = |Xc ∩ Xb| ≤ k). Inductively, each vertex inXc ∩ Xb is the last
element of a distinct axis, say(Ai ,→i ) for 1≤ i ≤ h; and Fact 6.2 allows us to assume
the last element of(Ah,→h) is the drop vertex ofb. There are at mostk + 1− h add
vertices ofb; so each can be placed at the end of a distinct axis(Ai ,→i ), for h ≤ i ≤ k.
It is easy to see that this approach will satisfy properties D1–D4.

Suppose property D5 is not satisfied. So there exist` ≥ 2 edges{ui1,u
′
i2
}, {ui2,u

′
i3
},

. . . , {ui`−1,u
′
i`
}, {ui` ,u

′
i1
} whereui j →+i j

u′i j
(1 ≤ j ≤ `). Let b be the closest node to

the leaf ofP such thatXPb contains all 2̀ of these endpoints. Without loss of generality,
assume thatu′i1 is an add vertex ofb; hence,ui` also belongs toXb, and so doesu′i` . Thus
(Ai` ,→i` ) is the unique axis containing more than one vertex ofXb. Therefore,u′i` is an
add vertex ofb, but it is adjacent to a vertexui`−1 6∈ Xb (a contradiction).

Each of the axes in a pyramid gives part of an elimination order for the vertices of the
corresponding partialk-path. In Section 10 we show how these orders can be interleaved
to obtain a fixed path decomposition.
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7. A Trunk Hierarchy. In this section we decompose a 2-connected partial 3-tree
G into a hierarchy of trunk-graphs (Definition 6.5). We begin with a width-3 simple
tree decomposition ofG, and recursively choose trunk-graphs satisfying three special
properties.

DEFINITION 7.1. Suppose(T, r, χ) is a rooted tree decomposition of a graphG. A trunk
hierarchyof G is a collectionR of trunk-graphs obtained by partitioningV(T) into a
collection of trunks—then taking the trunk-graph of each one. We say that this hierarchy
is admittedby (T, r, χ).

SupposeR is the trunk hierarchy obtained by partitioning the nodes ofT into trunks.
Let T ′ be the subgraph ofT obtained by contracting each such trunk into a single node.
The trunk-graphs inR have an obvious one-to-one correspondence withV(T ′). We use
the terms “root,” “child,” “parent,” etc., with implied reference toT ′, when speaking of
these trunk-graphs.

REMARK. The pair(T ′,R) is similar to a tree decomposition: A trunk-graphRb corre-
sponds to each nodebof T ′; each vertex ofG belongs to at least one of these trunk-graphs;
and each edge ofG has both endpoints in some trunk-graph. Furthermore, ifRp is the
parent ofRc, thenVterm(Rc) = V(Rp) ∩ V(Rc), andRp has an edge (possibly not an
edge ofG though) between each pair of vertices that are terminals ofRc.

Throughout this sectionG is a 2-connected partial 3-tree with either two or three
terminals. Without loss of generality, assume that no subset ofVterm(G) is a cut-set ofG;
hence, by Lemma 6.4,G admits a width-3 simple tree decomposition. We will show how
this tree decomposition can be perturbed so that it admits a hierarchyR of trunk-graphs,
each satisfying Properties 7.2, 7.4, and 7.6. Our discussion describes how to obtain
a simple tree decomposition(T, r, χ) with a trunk P rooted atr ; the corresponding
trunk-graph then becomes the root ofR. Following this, a trunk-graph can be chosen
recursively from the subgraph underlyingTc, for each childc ∈ V(T\P) of each node
p ∈ V(P).

The first property gives an order on the vertex set of each trunk-graph. In Section 8
we define a CMS predicate to identify these vertices inductively, in this order:

PROPERTY7.2. The vertices of each trunk-graphR ∈ R can be orderedv1, v2, . . . ,

v|V(R)| such that, for eachi = 2,3, . . . , |V(R)|, there is a nonterminal vertexvj of R
(where 1≤ j ≤ i − 1) for which at least one of the following conditions is satisfied:

C1. vi andvj are adjacent (inG).
C2. R has a childR′ ∈ R for which Vterm(R′) = {vi , vj }.
C3. R has a childR′ ∈ R for which Vterm(R′) = {vi , vj , vj ′ }, where j ′ ≤ i − 1; and

there is a path inG\{vj , vj ′ } betweenvi and some terminal inVterm(G).

We will show that Property 7.2 is enforced if each trunk-graph corresponds to acentered
trunk of a simple tree decomposition(T, r, χ). This is a trunkP, rooted atr , for which
each node satisfies two properties in addition to P1, P2, and P3 (Definition 6.1). When
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we refer to a vertexv as anaddvertex ofp ∈ V(P), we mean that Definition 6.9 is to be
interpreted relative to the path decomposition(P, r,XP): that is,v ∈ Xp − Xc, for the
child c ∈ V(P) of p; butv may belong to the bagXc′ , for any other childc′ ∈ V(T\P).

PROPOSITION7.3. G admits a width-3 simple tree decomposition(T, r, χ) such that T
contains acenteredtrunk—this is a trunk P, rooted at r, in which each node b∈ V(P)
satisfies the following properties:

P4. If b has children c∈ V(P) and c′ ∈ V(T\P), then Xc′ contains at most one vertex
of Xb − Xc.

P5. If v is an add vertex of b, then eitherv ∈ Vterm(G), or v is adjacent to some vertex
of G\XTb.

PROOF. Suppose(T, r, χ) is a simple tree decomposition ofG; and letb ∈ V(T). It
follows from property P1 (Definition 6.1) and Fact 6.2 that a trunkP v T whose nodes
all satisfy P4 can be found with a greedy search from the root ofT . We now show how to
perturb the tree decomposition so that P5 is also satisfied by each node of the perturbed
trunk. This process is illustrated in Figure 2.

Supposeb ∈ V(P) fails to satisfy P5; sob has an add vertex (sayv) that is not a
terminal; and ifu ∈ V(G) is adjacent tov, then bothu andv belong to a common bag
in XTb. Let a ∈ V(P) be the ancestor ofb such thatv is the drop vertex ofa; and let
a′ ∈ V(P)be the child ofa (possiblya′ = b). It follows from property P3 (Definition 6.1)
that Xa ⊆ Xa′ ; so we can contract (Definition 3.7) the edge{a,a′} without violating
P2 or P3. The contracted node has two drop vertices (includingv); so we deletev from
each bag indexed byT\Tb. Now,b is the only node with two drop vertices; so we splitb
(Definition 3.8) intob′ andb′′, with b′ the parent ofb′′. Let Xb′ = Xb−{v}; let Xb′′ = Xb;
and for each childc of b, let its parent becomeb′′ if v ∈ Xc, andb′ otherwise. It is not
difficult to verify that each node ofT continues to satisfy P1, P2, and P3. Furthermore,
P4 is satisfied by each node of the trunk (sayP′) obtained fromP by contracting{a,a′}
and replacingb with b′. SinceXP′ contains fewer vertices thanXP, this operation can
be applied repeatedly until each node of the trunk also satisfies P5.

Fig. 2.Enforcing P5 (“∗” indicates there may be multiple similar subtrees).
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After choosing a centered trunkP, we modify the simple tree decomposition so that
the trunk-graph of the (modified) centered trunk satisfies two additional properties:

PROPERTY7.4. If y andz are vertices of a trunk-graphR ∈ R, then there is a path
H v R betweeny andz that satisfies the following conditions:

H1. No internal vertex ofH is a terminal ofR.
H2. If {u, v} ∈ E(H) − E(G), thenG contains two internally vertex-disjoint paths

betweenu andv for which no internal vertex belongs toR, nor to any ancestor ofR.

Since the trunk-graphR admits a simple path decomposition(P, r,XP), it follows
from Definition 6.1 that there is a pathH satisfying H1 between any pair of vertices ofR.
If this path does not satisfy H2, then we can use the following proposition to “promote”
vertices belonging to bags indexed by descendants ofP:

PROPOSITION7.5. Suppose P is a centered trunk of a width-3simple tree decomposition
(T, r, χ) of G; and let b∈ V(P). Suppose further thatv is an add vertex of b; and let u
be the drop vertex of b. Let G′ be the subgraph of G induced by V(G)− XP ∪ {u, v}. If
x is a cut-vertex of G′ that separates u fromv, then there exists a centered trunk P′ of
some width-3 simple tree decomposition of G, such that XP′ = XP ∪ {x}.

PROOF. By property P3 (Definition 6.1),b has a childc ∈ V(T\P) such thatu, v ∈ Xc,
as shown on the left of Figure 3. If there is a cut-vertexx of G′ that separatesu from v,
then this childc is unique, andx belongs toXTc − Xb. Let the (saỳ ) components of the
subgraph induced byXTc − Xb − {x} be enumeratedG′1,G

′
2, . . . ,G

′
`. For 1≤ i ≤ `,

let Vi be the largest subset ofXb ∪ {x} in which each vertex is adjacent to at least one
vertex ofG′i ; and letGi be the subgraph ofG induced byV(G′i ) ∪ Vi . A width-3 tree
decomposition ofGi is obtained from(Tc,XTc) by deleting from each bag all vertices not
in V(Gi ), and then addingx to the bag indexed by each node on the path betweenc and
some node whose bag originally containedx. It now follows from Lemma 6.4 that there
exists a width-3 simple tree decomposition(Ti , ri ,Xi ) of Gi , whereVterm(Gi ) = V ′i .

Fig. 3.Promoting a vertex (“*” indicates there may be multiple similar subtrees).
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To construct(T ′, r ′,X ′), we splitb (Definition 3.8) into two nodesb′,b′′ with b′ the
parent ofb′′. Let P′ be the trunk (inT ′) thus derived fromP. Let Xb′ beXb∪ {x}− {u};
let Xb′′ be Xb ∪ {x} − {v}; and let each childc′ ∈ V(T\Tc) of b become a child ofb′′.
To complete the construction, let eachri (1 ≤ i ≤ `) become a child of eitherb′ or b′′,
depending upon whetherv or u is contained inXri . It is not difficult to verify that each
node ofT ′ satisfies properties P1, P2, and P3; and that each node ofP′ also satisfies P4
and P5.

The next property will be used for encoding the axes of a pyramid in each trunk-
graphR ∈ R. For each axis(A,→), the induced subgraphR[ A] consists of a collection
of paths (by condition D4 of Definition 6.8). This property ensures there are enough
cross-edges so that a CMS formula can determine the order of these paths within each
axis.

PROPERTY7.6. Each trunk-graphR ∈ Radmits a simple path decomposition(P, r,XP)

for which the following statement is satisfied whenevera ∈ V(P) is an ancestor of
b ∈ V(P): if there are two internally vertex-disjoint pathsH, H ′ v R between the drop
vertex ofb and some vertex inXa, then there is an internal vertex (sayx) of eitherH or
H ′ such thatx is either a nondrop vertex ofa or nonadd vertex ofb, or x is adjacent to
some vertex inV(R)− V(H)− V(H ′).

We can enforce this property by “demoting” vertices from a centered trunkP of a simple
tree decomposition(T, r, χ), as described below:

PROPOSITION7.7. Suppose that P is a centered trunk of a width-3 simple tree decom-
position(T, r, χ), and that Proposition7.5 cannot be applied to P. If (P, r,XP) does
not satisfy the statement of Property7.6, then there exists a centered trunk P′ of some
width-3 simple tree decomposition of G, such that Proposition7.5cannot be applied to
P′, and|XP′ | < |XP|.

PROOF. Let R be the trunk-graph ofP; and suppose(P, r,XP) does not satisfy the
statement of Property 7.6. So leta ∈ V(P) be an ancestor ofb ∈ V(P) such that
there are two internally vertex-disjoint pathsH andH ′ between the drop vertex (sayu)
of b and some vertex (sayw) in Xa; no internal vertex is adjacent to any vertex in
V(R)− V(H)− V(H ′); no internal vertex belongs toVterm(R); and no internal vertex
belongs to a bag indexed by a descendant ofb or an ancestor ofa. Figure 4 shows the
pathsH andH ′ with vertex sequences(u, x · · · y, w) and(u, x′ · · · y′, w).

Let G′ be the subgraph consisting of those components ofG\{u, w} containing one
or more vertices ofV(H) ∪ V(H ′). Let the (saỳ ) components ofG′ be enumerated
G′1,G

′
2, . . . ,G

′
`. Using an argument similar to that used in the proof of Proposition 7.5,

we obtain a width-3 simple tree decomposition(Ti , ri ,Xi ) of the subgraph ofG induced
by V(G′i ) ∪ {u, w}, with {u, w} as the terminal set.

We can construct the tree decomposition(T ′, r ′,X ′) from (T, r, χ) as follows: We
delete those subtreesTc v T whose bags contain only vertices ofV(G′) ∪ {u, w}; each
such subtree is rooted at a childc of a node on the path (inT) betweena andb. We
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Fig. 4.Demoting vertices.

delete any vertices ofG′ from each bag of that path, and then addu to each of them.
Now, let eachri (1 ≤ i ≤ `) become a child ofa. To complete the construction, we
contract (Definition 3.7) each edge between a nodep ∈ V(P) and its parent wheneverp
no longer has a drop vertex. It is not difficult to verify that each resulting node satisfies
properties P1–P5. Furthermore, this operation does not create any new instances where
Proposition 7.5 can be applied—since there are two internally vertex-disjoint paths
betweenu andw whose internal vertices now belong to bags indexed by descendants of
the trunkP′.

LEMMA 7.8. G admits a width-3 simple tree decomposition for which the trunk-graph
corresponding to some centered trunk satisfies Properties7.4and7.6.

PROOF. Let (T, r, χ) be a simple tree decomposition ofG such thatP v T is a
centered trunk. Without loss of generality, assume neither Proposition 7.5 nor 7.7 can
be applied toP. It follows immediately that the trunk-graph (sayR) of P satisfies
Property 7.6.

CLAIM . Letv1 be the drop vertex of the leaf of P. For v ∈ V(R), there is a path Hv R
betweenv1 andv that satisfies conditionsH1 andH2 (of Property7.4).

Sincev1 is not a terminal, it follows that there is a path satisfying H1 and H2 between
any pair of vertices inR. To prove the lemma, then, we need only prove the above
claim.

Since each vertex of the leaf bag is adjacent tov1, the claim is satisfied for all those
vertices. Suppose the claim is false, and letb be the closest node to the leaf such that a
vertexv ∈ Xb violates the claim. By Fact 6.2, the drop vertex (sayu) of b satisfies the
claim. Nowv would also satisfy the claim if there were an edge ofG betweenu andv. It
follows from property P3 (Definition 6.1) thatbhas a unique childc ∈ V(T\P) for which
u, v ∈ Xc. Since Proposition 7.5 cannot be applied, there is no cut-vertex separatingu
from v in the subgraph induced byXTc − Xb ∪ {u, v}. Therefore, by Lemma 2.3, there
are two internally vertex-disjoint paths betweenu andv for which each internal vertex
belongs toXTc − Xb (contradicting the supposition thatv violates the claim).
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THEOREM7.9. If G is a 2-connected partial3-tree, then some width-3 simple tree
decomposition of G admits a trunk hierarchyR such that each trunk-graph R∈ R
satisfies Properties7.2, 7.4,and7.6.

PROOF. Let (T, r, χ) be a width-3 simple tree decomposition ofG. Without loss of
generality (by Lemma 7.8), assume thatT contains a centered trunk whose trunk-graph
satisfies Properties 7.4 and 7.6. Assume recursively, for each childc of each node of
this centered trunk, that(Tc, c,XTc) also contains a centered trunk whose trunk-graph
satisfies Properties 7.4 and 7.6. LetRbe the collection of these trunk-graphs. To complete
the proof, we need only show that the vertices of each trunk-graph can be placed in a
sequence to satisfy Property 7.2. So supposeR ∈ R is the trunk-graph ofP v T . Let
the first vertexv1 of the sequence be the drop vertex of the leaf ofP. Let the remaining
vertices of the leaf bag come next in the sequence; each such vertex is adjacent tov1,
so it satisfies condition C1 (of Property 7.2). We complete the sequence by induction on
nodes ofP.

Supposeb, c ∈ V(P) such thatb is the parent ofc; and assume we have already
placed the vertices ofXc in the sequence. SinceG is 2-connected, there are at most two
vertices inXb − Xc; let these add vertices come next in the sequence (in either order).
We need only show that each such vertex (sayvi ) satisfies condition C1, C2, or C3.
If vi is adjacent to the drop vertex (sayvj ), thenvi satisfies C1. Otherwise, it follows
from property P3 thatb has a childc′ for whichvj , vi ∈ Xb ∩ Xc′ ; andXb ∩ Xc′ yields
the terminal set of some child ofR. If Xb ∩ Xc′ contains only the verticesvi andvj ,
then condition C2 is satisfied. Otherwise, by property P1,Xb∩ Xc′ contains at most one
other vertex (sayvj ′ ). By property P4,vj ′ ∈ Xc; so j ′ ≤ i − 1. By property P5, either
vi ∈ Vterm(R), or vi is adjacent (inR) to some vertex (sayv) of R\XPb. Such a vertex
v is an add vertex of some ancestor ofb; thus P5 can be applied recursively to show
that there is a path inG\{vj , vj ′ } betweenvi and some terminal inVterm(G). Therefore,
condition C3 is satisfied.

8. Encoding a Trunk Hierarchy. In this section we develop CMS predicates to encode
the vertex and edge sets for each trunk-graph in a trunk hierarchy of a 2-connected partial
3-treeG. In Section 9 we show that a pyramid can be encoded in each trunk-graph; and
in Section 10 we combine these results to obtain CMS predicates describing a tree
decomposition ofG.

Throughout this sectionG = (V, E) is a 2-connected partial 3-tree with either two
or three terminals, andR is a trunk hierarchy admitted by a simple tree decomposition
of G. Without loss of generality (by Theorem 7.9), we assume each trunk-graphR ∈ R
satisfies Properties 7.2 and 7.4. Note that each vertex inV(G)−Vterm(G) is a nonterminal
vertex of exactly one trunk-graph inR.

DEFINITION 8.1. If v is a nonterminal vertex ofG, thenR(v) denotes the unique trunk-
graph inR such thatv is a nonterminal vertex ofR(v).

By Lemma 4.9, a CMS predicate can encode any constant amount of information
pertaining to the role of each vertexv in the trunk-graphR(v). This allows a nonterminal
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vertex (sayv1) to be designated for each trunk-graph. In order to identify the other vertices
of R(v1) inductively, we use a (nonproper) vertex coloring:

PROPOSITION8.2. V(G) can be partitioned into13 color classessuch that the nonter-
minal vertices of each trunk-graph R∈ R belong to a common color class(say C);
no terminal of R belongs to C; and if t ∈ Vterm(R) − Vterm(G), then no vertex of R(t)
belongs to C.

PROOF. First, we arbitrarily color each terminal ofG. Then we repeatedly take some
trunk-graphR ∈ Rwhose terminals are all colored, and we color its nonterminal vertices.
For eacht ∈ Vterm(R), there are at most four color classes that cannot be used for
this.

We identify the vertices of a trunk-graphR in an orderv1, v2, . . . , v|V(R)| given by
Property 7.2. Each vertexvi (2 ≤ i ≤ |V(R)|) is identified with the help of a unique
edge incident to an already identified nonterminal vertexvj (where j ≤ i − 1). Prop-
erty 7.2 gives three different conditions wherebyvi may be identified: For condition C1,
{vi , vj } is an edge ofG; so Lemma 4.9 allows us to encode that these endpoints be-
long to the same trunk-graph. Otherwise, bothvi andvj are terminals of some child
(say R′) of R(v1); in this case,vi will be identified with the help of a vertex (say
v) that is adjacent tovj (as illustrated in Figure 5). We need the following lemma to
show thatvi is the “first” correctly colored vertex that separatesv from the terminals
of G.

LEMMA 8.3. Suppose a trunk-graph R∈ R has a child R′ ∈ R; and letvi ∈ Vterm(R′),
vj ∈ Vterm(R′) − Vterm(R). Let U be the union of the nonterminal vertices over R′ and
all descendants of R′; and let G′ be the subgraph of G induced by U∪ {vi }. If u, v ∈ U
such that{vj , v} ∈ E(G) and u belongs to the same color class asvi , then G′\u contains
a path betweenv andvi .

Fig. 5. G′ is not cut by any other vertex with the color ofvi .
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PROOF. Suppose{vj , v} ∈ E(G), for some vertexv ∈ U . Let R0 = RandR1 = R′; and
letd ≥ 1 such thatRd = R(v)andR`−1 is the parent ofR` (1≤ ` ≤ d). Choose terminals
t` ∈ Vterm(R`) such thatt1 = vi , and, for 2≤ ` ≤ d, t` ∈ Vterm(R`)− Vterm(R`−1).

Since{vj , v} ∈ E(G), it follows thatvj is a terminal of eachR` (1 ≤ ` ≤ d). By
Proposition 8.2, the color ofvi is distinct from the color of the nonterminal vertices of
eachR` (1≤ ` ≤ d). Suppose thatu ∈ U has the same color asvi ; sou is not a vertex of
anyR` (0≤ ` ≤ d). By Property 7.4, then, there is a path with endpointsv, td ∈ V(Rd),
such that each internal vertex is inU − {u}; and, for 1≤ ` ≤ d− 1, there is a path with
endpointst`+1, t` ∈ V(R`), such that each internal vertex is inU−{u}. By concatenating
these paths, we obtain the required path betweenv andvi .

We now show how CMS predicates can determine the structure ofR(v1), for a desig-
nated nonterminal vertexv1. The vertex set ofR(v1) is the minimal set (sayV ′) containing
v1 such that ifvj ∈ V ′ has the same color asv1, and there is an edge (saye) incident to
vj , then certain other vertices are also inV ′. The opposite endpoint of such an edgee is
either another vertex ofR(v1), or some nonterminal vertexv of a descendant ofR(v1).
In the latter case, another vertexvi of R(v1) is found using Lemma 8.3.

LEMMA 8.4. Binary CMS predicatestrunk , trunk-edge, and term j (1 ≤ j ≤ 3) can
be existentially defined such that there is a subset A of V(G) − Vterm(G) containing
exactly one nonterminal vertex of each trunk-graph inR; and

• trunk (v1,V ′) holds iffv1 ∈ A, and V′ is the vertex set of R(v1); and
• trunk-edge(u, v) holds iff{u, v} is an edge of some trunk-graph inR; and
• for v1 ∈ A: if t is a terminal of R(v1), thenterm j (v1, t) holds for a unique index j;

andterm1(v1, t)∨ term2(v1, t)∨ term3(v1, t) holds only if t is a terminal of R(v1).

PROOF. Let A be comprised of the first vertex of each trunk-graph in an order given
by Property 7.2. SupposeV ′ is the vertex set ofR(v1), for somev1 ∈ A. To encode
trunk (v1,V ′), we first identify a supersetV ′′ of V ′, such thatV ′′ does not contain
any nonterminal vertex of any descendant ofR(v1). Each vertex ofV ′′ is identified
inductively, using one of the three conditions of Property 7.2. Throughout this proof,
vj ∈ V ′′ is either a nonterminal vertex ofR(v1), or an extra vertex inV ′′ − V ′ that can
be weeded out later. In either case, our CMS formula forces any vertexvi to belong to
V ′′ if it interacts withvj according to one of the conditions of Property 7.2.

For each edge incident tovj , we encode (by Lemma 4.8) whether its opposite endpoint
also belongs toR(vj ). Thus a vertex is identified for membership inV ′′ whenever
condition C1 is satisfied. To identify a vertexvi satisfying condition C2 or C3, we use
any edge{v, vj } such that bothvi andvj are terminals ofR(v). Let R1 ∈ R be the child
of R(vj ) such that eitherR1 = R(v), or R1 is an ancestor ofR(v). By Lemma 4.9, we
can encode (for the edge{v, vj }) whetherR1 has two or three terminals in total. If there
are two, then condition C2 may be applied to identify a vertexvi for membership inV ′′.
If there are three, then condition C3 may be applied to identifyvi .

ConditionC2: Vterm(R1) = {vi , vj }. If vi happens to be a terminal ofG, then the CMS
formula can easily identify the correct terminal. Otherwise, sinceG is 2-connected,vi

is a cut-vertex ofG\vj that separatesv from Vterm(G). By Lemma 8.3, ifu is another
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cut-vertex ofG\vj that separatesv from Vterm(G), then the component ofG\{vj , vi } that
containsv is a proper subgraph of the component ofG\{vj ,u} that containsv. Hence, a
CMS formula can identifyvi as the cut-vertex that placesv into a minimal component.

ConditionC3: Vterm(R1) = {vi , vj , vj ′ } where j′ ≤ i − 1. A CMS formula can encode
the following: Ifvj ′ ∈ V ′′, andvi is a cut-vertex ofG\{vj , vj ′ } separatingv fromVterm(G),
placingv into a minimal component ofG\{vi , vj , vj ′ } (over all choices ofvi ), thenvi

also belongs toV ′′. Extra vertices (ofV ′′ −V ′) may be identified in this way if the vertex
vj ′ is not chosen “correctly.”

The vertex order of Property 7.2 provides an inductive argument thatV ′′ contains each
vertex of R(v1). The CMS formula can state thatV ′′ is a minimal set satisfying the
requirements described above. Hence, ifvi ∈ V ′′ − V ′ was chosen by condition C2 or
C3, then (by Property 7.4)vi cannot be a nonterminal vertex of any descendant ofR(v1),
unless eithervj or vj ′ also is. The minimality ofV ′′, then, prevents this from happening.

Now, to identify the setV ′ ⊆ V ′′, we ensure that if condition C3 is used to identify a
vertexvi , then it cutsG\{vj , vj ′ } such thatv is placed in a minimal component over all
choices ofvj ′ ∈ V ′′. It follows from Lemma 8.3 that exactly the vertices ofR(v1) will
be identified in this way.

To encode the predicatesterm i (v1, t), 1≤ i ≤ 3, we note that each vertex ofR(v1)

is identified with a unique edge. Hence, that edge can encode (by Lemma 4.9) the index
of any terminal it is used to identify. Then we encode thattrunk-edge(u, v) holds iff
either{u, v} is an edge ofG, or bothu andv are terminals of a common trunk-graph.

9. Encoding a Pyramid. In this section we restrict our attention to any trunk-graph
R in a trunk hierarchy of a 2-connected partial 3-treeG. We develop CMS predicates
encoding the axes of some pyramid (Definition 6.8) inR. These predicates shall be
defined over the universeV(R)∪E(R); and in Section 10 we use them to encode a fixed
path decomposition ofRover the universeV(G)∪E(G). AlthoughRmay contain edges
that are not edges ofG, we show (in Section 10) how such edges can be represented
within a CMS formula.

Throughout this sectionR is a trunk-graph belonging to a trunk hierarchy of a 2-
connected partial 3-tree. Assume thatR satisfies Property 7.6, and let(P, r,XP) be a
width-3 simple path decomposition ofRgiven by that property. Let(Ai ,→i ), 1≤ i ≤ 3,
be the axes of a pyramid inR. Without loss of generality, we assume the apex of the
pyramid is the drop vertex of the leaf ofP.

CLAIM 9.1. For each b∈ V(P), either b has no add vertex, or some add vertex of b
belongs the the same axis as the drop vertex of b.

PROOF. This can easily be enforced within the proof of Lemma 6.10.

By Lemma 8.4, a CMS predicate can determine the vertex setV(R), and can associate
each terminalt ∈ Vterm(R) with a distinct indexj (1≤ j ≤ 3). If v ∈ V(R)−Vterm(R),
thenR is the only trunk-graph havingv as a nonterminal vertex. So by Lemma 4.9, we
can encode which setAi (1≤ i ≤ 3) contains each nonterminal vertex ofR. Similarly, it
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Fig. 6. The bags of a simple path decomposition (u1 is the drop vertex;u′1 andu′3, when shown, are add
vertices).

can be encoded which axis contains the terminal associated with each index. Therefore,
we can use the setsVterm(R), A1, A2, and A3 to encode the orders “→i ” (1 ≤ i ≤ 3)
existentially.

Each nonleaf node ofP has at most two add vertices. By property P3 (Definition 6.1),
if u1 is the drop vertex ofb ∈ V(P), then there is an edge ofR betweenu1 and each
add vertex ofb. By Claim 9.1, some such edge is axial (unlessb has no add vertex).
Figure 6 illustrates the three possible situations, depending on how many add verticesb
has:

0. Hence,b has exactly two nonadd, nondrop vertices.
1. Hence,b has at least one nonadd, nondrop vertex (and possibly a second).
2. Hence,b has exactly one nonadd, nondrop vertex.

Each vertex in Figure 6 is namedui or u′i (1 ≤ i ≤ 3); the subscript indicates that
the vertex belongs toAi . We assume without loss of generality that the drop vertexu1

belongs toA1. The figure shows edges directed fromu1 to each add vertex.
By property D4 (Definition 6.8), each setAi (1≤ i ≤ 3) induces a collection of paths

in R:

DEFINITION 9.2. For 1≤ i ≤ 3, achain in Ai is a component (sayH ) in the subgraph
R[ Ai ] . If H does not contain a terminal ofR, and no vertex ofH is adjacent to the apex,
thenH is said to be aninternal chainin Ai .

By Lemma 4.8, a CMS predicate can encode the vertex order within each chain. If a
chain is adjacent to the apex, then it precedes all other chains; if a chain contains a
terminal, then it follows all other chains. It remains to be shown how a CMS predicate
can determine the order of the internal chains in each axis.

DEFINITION 9.3. For any vertexu of R, Add(u) denotes the unique bag inXP such that
u is an add vertex ofAdd(u). If u is a nonterminal vertex ofR, thenDrop(u) denotes the
unique bag inXP such thatu is the drop vertex ofDrop(u).

For the rest of this section, we may refer to bags (sayXa, Xb for a,b ∈ V(P)) using
the notation of Definition 9.3: We then say that a vertexv ∈ V(R) is an add (drop) vertex
of Xa to mean thatv is an add (drop) vertex ofa. We write Xb ≺ Xa to mean thata is
an ancestor ofb; and we writeXb ¹ Xa to mean that eithera = b or a is an ancestor
of b.
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DEFINITION 9.4. Let 1≤ i ≤ 3; and supposeH is a chain inAi . The first vertex ofH
(with respect to “→i ”) is called theheadof H ; and the last vertex ofH is called thetail
of H . If u is the head ofH , then the drop vertex ofAdd(u) is called thesourceof H .

In the leftmost panel of Figure 6,u1 is the tail of some chain; in the rightmost panel,
u′3 is the head of some chain, andu1 is its source.

PROPOSITION9.5. A binary CMS predicateβ can be existentially defined such that

• if β(h, v), then h is the head of some chain, and Add(h) ¹ Add(v); and
• if h and t are the head and tail(respectively) of some internal chain, thenβ(h, v) is

true for some nondrop vertexv of Drop(t).

PROOF. Using Lemma 4.8, letα, λ, µ be binary CMS predicates encoding edge direc-
tions:

α(u, v) ≡ “{u, v} is an axial edge withu→i v” (for i = 1,2 or 3);

λ(u, v) ≡ “u is the source of some chain whose head isv”;

µ(u, v) ≡ “{u, v} is a cross edge andAdd(h) ¹ Add(v), whereh is the head

of the chain containingu.”

By Lemma 4.2, the transitive closure (denotedα+) and the reflexive-transitive closure
(denotedα∗) of α are also encodable. We now defineβ as follows:

β(h, v) ≡ (∃s) (λ(s, h) ∧ (α+(s, v)(9.6)

∨ (∃x, y)(α∗(h, x) ∧ µ(x, y) ∧ α∗(y, v)))) .
It is clear thatβ(h, v) is true only if Add(h) ¹ Add(v), whereh is the head of some
chain. To complete the proof, we need only show that ifh1 andu1 are the head and tail
(respectively) of some internal chain (sayH1), thenβ(h1, v) is true for some nondrop
vertexv of Drop(u1). So supposeβ(h1, v) is false for each nondrop vertexv of Drop(u1).
By Claim 9.1,Drop(u1) has no add vertex. Without loss of generality, assumeu1 ∈ A1;
let u2 ∈ A2 and u3 ∈ A3 be the nondrop vertices ofDrop(u1). For 2 ≤ j ≤ 3,
let Hj be the maximal axial path containinguj , and lethj be the head ofHj (see
Figure 7).

Sinceβ(h1,u2) is false andβ(h1,u3) is false (by supposition), the source (says) of
H1 cannot belong toH2 or H3. Hence, eitherAdd(h1) ≺ Add(h2) orAdd(h1) ≺ Add(h3).
Without loss of generality, we assumeAdd(h1) ≺ Add(h2) andAdd(h3) ≺ Add(h2). It
follows that the source (says3) of H2 is a vertex ofH3. Now,Drop(s3) contains exactly
two nonadd vertices: i.e.,s3 and some vertex (sayx1) of H1. Because the underlying
graph is 2-connected, there are two vertex-disjoint paths between{s3, x1} and{u2,u3}.
Hence, there is a cross edge between a vertex (sayx) of H1 and a vertex (sayy) of
eitherH2 or H3, wherex1→∗1 x and eitherh2→∗2 y or s3→+3 y. Thusµ(x, y) is true.
Therefore, eitherβ(h1,u2) or β(h1,u3) is true (a contradiction).
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Fig. 7.Proof of Proposition 9.5.

PROPOSITION9.7. For 1 ≤ i ≤ 3, a binary CMS predicateγ can be existentially
defined such that

• if γ (h, v), then h is the head of some chain in Ai , and h→∗i v; and
• if H and H′ are internal chains in Ai such that H′ immediately follows H, thenγ (h, v)

is true for some vertexv of H′, where h is the head of H.

PROOF. Without loss of generality, we restrict our attention to the case ofi = 1. We
begin by using the predicateβ (of Proposition 9.5) to encode a subsetγ ′ of γ :

γ ′(h, v) ≡ (∃u)(β(h,u) ∧ “{u, v} ∈ E” ∧ (h, v ∈ A1)).

It follows easily from Proposition 9.5 that the predicateγ ′ is consistent with the first
statement itemized above. To complete the proof, it may be necessary to define additional
ordered pairs inγ , so that the second itemized statement is also satisfied.

SupposeH1 andH ′1 are internal chains inA1 such thatH ′1 immediately followsH1.
Let h1,u1, h′1, t

′
1 be the head ofH1, tail of H1, head ofH ′1, tail of H ′1, respectively (see

Figure 8). SayDrop(u1) = {u1,u2,u3}, whereu2 ∈ A2 andu3 ∈ A3; and letH2 and

Fig. 8.Proof of Proposition 9.7.
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H3 be the chains containingu2 andu3 (respectively). Since the underlying graph is 2-
connected,Add(h′1) contains two nonadd vertices, sayx2 ∈ V(H2) andx3 ∈ V(H3).
Without loss of generality (by Proposition 9.5), we assumeβ(h1,u3) is true. By (9.6),
if u3 →∗3 x, thenβ(h1, x) is also true. If any such vertexx is adjacent to a vertex (say
v) of H1, thenγ ′(h1, v) is true, and the proof is complete.

CLAIM . If γ ′(h1, v) is false for eachv ∈ V(H ′1), then there exist vertices y2 ∈ V(H2)

and y3 ∈ V(H3) such that

α+(x2, y2); α∗(x3, y3); {y2, y3} ∈ E(R); and Add(h′1) ¹ Add(y2) ¹ Drop(t ′1).

Wheneverγ ′ is insufficient to satisfy the second itemized statement of the proposition,
we choose some such edge{y2, y3}. Using Lemma 4.8, we encode a binary predicateδ to
direct these edgesδ(y3, y2). Now, we encode the following subsetγ ′′ of theγ relation:

γ ′′(h1, h
′
1) ≡ (∃y3, y2, x2)

(
β(h1, y3) ∧ δ(y3, y2) ∧ α+(x2, y2) ∧ λ(x2, h

′
1)

∧¬(∃s)(“s is betweenx2 andy2” ∧ λ(s, v) ∧ v ∈ A1)
)
.

The required predicateγ (h, v) can be defined asγ ′(h, v) ∨ γ ′′(h, v). To complete the
proof, we need only prove the above claim. So suppose it is false, and yetβ(h1,u3) is
true. Thus, there is no cross edge betweenH3 andH ′1; andx2 is the source ofH ′1.

Case1:Drop(t ′1) contains a vertex of H2 and a vertex of H3. Since the underlying graph
is 2-connected, it follows thatt ′1 is adjacent to some vertexx of H2 such thatx2→+2 x.
Without loss of generality, assume thatt ′1 is not adjacent to any vertex that followsx
(in the order “→2”). Therefore, by Property 7.6, there is an edge betweenH3 and some
internal vertex of one of either [x2→+2 x, t ′1] or [x2, h′1→∗1 t ′1] (a contradiction).

Case2: The tail (say t2) of H2 is not a terminal, and Drop(t2) contains a vertex of H′1
and a vertex of H3. Since the claim is false, there is no edge betweent2 and H3. It
follows thatt2 is adjacent to some vertex (sayv′1) of H ′1. Hence, by Property 7.6, there
is an edge betweenH3 and some internal vertex of [x2→+2 t2] or [x2, h′1→∗1 v′1, t2] (a
contradiction).

Case3: The tail (say t3) of H3 is not a terminal, and Drop(t3) contains a vertex of H′1
and a vertex of H2. Since the claim is false, there is no edge betweent3 and any vertex
y2 such thatx2→+2 y2. Hence,t3 is adjacent to some vertex ofH ′1 (a contradiction).

We have now established the following:

LEMMA 9.8. There is a pyramid in each trunk-graph inR for which each axis(Ai ,→i ),
1≤ i ≤ 3, is existentially encodable by a CMS predicate.

10. 2-Connected Partial 3-Trees. In this section we develop CMS predicates to de-
scribe (Definition 4.5) a fixed tree decomposition of a 2-connected partial 3-treeG. To do
this, we use the trunk hierarchyR constructed in Section 7. We have shown in Section 8
that CMS predicates can encode the structure of each trunk-graph inR; and in Section 9
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we showed how to encode a pyramid in each one. In this section we show how such a
pyramid enables CMS predicates to describe a path decomposition of the corresponding
trunk-graph. The collection of these path decompositions can then easily be assembled
into a tree decomposition ofG

Throughout this sectionG = (V, E) is a 2-connected partial 3-tree with either two or
three terminals; andR is a trunk hierarchy admitted by a width-3 simple tree decompo-
sition of G. Without loss of generality (by Theorem 7.9), we assume each trunk-graph
in R ∈ R has Properties 7.2, 7.4, and 7.6. In Section 9 we used Property 7.6 to show that
the axes of a pyramid inRcan be encoded in CMS logic over the universeV(R)∪E(R):

LEMMA 10.1. Any CMS-encodable predicate over the universe V(R) ∪ E(R) can be
expressed over the universe V∪ E.

PROOF. SinceV(R) ⊆ V , we need only show how to represent edges ofE(R)−E(G),
and how to represent sets of edges. Then, any predicate overV(R) ∪ E(R) can be
expressed as a disjunction of predicates overV ∪ E.

A CMS predicate can encode thatv is the apex of a child ofR iff V(R) contains each
vertext for term j (v, t), 1 ≤ j ≤ 3 (see Lemma 8.4). Each pair of these terminals are
the endpoints of an edge inE(R) − E(G). The apexv can be used to represent the (at
most three) edges between its terminals; and each such edge can be distinguished by its
index j .

To represent a setE′ ⊆ E(R), we use a subset ofE(G) and three vertex subsets:
The edge subset contains the edges ofE′ ∩ E(G); and the vertex subsets contain apices
representing the edges ofE′ − E(G). Each such vertex subset corresponds to a distinct
pair of indicesj, j ′ (1 ≤ j < j ′ ≤ 3). A vertexv belongs to this set iffv is the apex of
some child ofR, andterm j (v, t) ∧ term j ′(v, t ′) for some edge{t, t ′} ∈ E′ − E(G).

Each axis of a pyramid inRgives part of an elimination order onV(R). By interleaving
these orders in a fixed manner, we obtain a path decomposition ofR for which the leaf
bag contains the apex and the first vertex of each axis; each nonleaf bag contains thek
maximal vertices of its child’s bag, as well as the immediate successor of one of them.
Property D5 (Definition 6.8) guarantees that the orders can be interleaved in this way.
The bags are well-defined if we impose an order on the axes, and adopt the convention
that we inductively advance along the first axis whenever possible, otherwise the second
axis if possible, and otherwise the third.

LEMMA 10.2. Each trunk-graph inR admits a width-3 path decomposition that can
be described by existentially defined CMS predicatesBagandParent.

PROOF. By Lemma 9.8, the axes(Ai ,→i ), 1 ≤ i ≤ 3, can be encoded for some
pyramid inR ∈ R. By Lemma 4.2, the transitive closures “→+i ” can also be encoded.
We assume that eachAi is nonempty—for otherwise, a simplification of the argument
carries through. We explain how to define theBag predicate for a path decomposi-
tion in which each bag has cardinality four, and adjacent bags intersect in exactly
three vertices. So each nonroot bag contains a unique drop vertex—which becomes
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Fig. 9.Choosing a bag of the CMS-encoded path decomposition.

its witness. The witness of the root bag can be chosen arbitrarily from its (one or two)
drop vertices.

To identify the leaf bag, we encode the fact thatBag(v1, X) holds whenX contains
the designated apexv1 as well as the first vertex in each axis. Each other bagX contains
a unique pair of verticesui ,u′i ∈ Ai (1 ≤ i ≤ 3) such thatui →i u′i . The other two
verticesuj ∈ Aj (1 ≤ j ≤ 3; j 6= i ) in X can be identified as follows: Letu′j ∈ Aj

be the last vertex (in the order “→j ”) thatis adjacent toui or any vertex that precedes
ui in the i th axis; if there is no such adjacency, then we letu′j be the first vertex of the
j th axis by default. Letu′′j ∈ Aj be the first vertex that is adjacent tou′i or any vertex
that followsu′i (or, by default, letu′′j be the last vertex of thej th axis). It follows from
property D5 (Definition 6.8) thatu′j →∗j u′′j ; and we refer to the vertices betweenu′j and
u′′j as thevalid subsequence(see Figure 9). It is clear that the vertexuj ∈ X must belong
to the valid subsequence: otherwise, there would be a cross edge incident to eitheru′j or
u′′j without both endpoints in a common bag.

In the case that no vertex of the valid subsequence is incident to a cross edge, then
anyvertex in that subsequence can be chosen asuj . To effect the precedence convention
among the axes, we chooseuj as close as possible tou′′j , if j < i , and chooseuj as
close as possible tou′j , if j > i . It is not hard to formalize this approach in CMS
logic.

Now, it is easy to encode theParent predicate: if Bag(c, X) and Bag(p, X′)
hold, whereX 6= X′, thenParent(p, c) holds iff X′ contains all three maximal ver-
tices ofX.

The right-hand panel of Figure 9 illustrates the axes of a pyramid in a given partial
3-path. In this example, we haveu2→2 u′2. As explained in the proof of Lemma 10.2, the
cross edges between the second andj th axis (for j = 1,3) are used to identify the valid
subsequence [u′j , . . . ,u

′′
j ]. To identify the verticesu1,u3 for the bag{u1,u2,u′2,u3},

a CMS formula need only consider the cross edges between the first and third axes.
>From the valid subsequence of the first axis,u1 is selected as close as possible to
u′′1, under the constraint that there be no cross edge between a vertex precedingu1

and a vertex followingu′3. From the valid subsequence of the third axis,u3 is selected
as close as possible tou′3, under the constraint that there be no cross edge between
a vertex precedingu′1 and a vertex followingu3. By property D5 of a pyramid (Def-
inition 6.8), there exists no cross edge between a vertex precedingu′1 and a vertex
following u′′3.
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LEMMA 10.3. Any2-connected partial3-tree admits a width-3 tree decomposition that
can be described by existentially defined CMS predicatesBagandParent.

PROOF. SupposeG is a 2-connected partial 3-tree; and letR be a trunk hierarchy given
by Theorem 7.9. We use Lemma 10.2 to encode a path decomposition for each trunk-
graph. To extend this to a tree decomposition ofG, we need only encode parents for the
roots of all but one of those path decompositions. By Lemma 8.4, a CMS predicate can
determine the terminal set of eachR ∈ R. If Vterm(R) = Vterm(G), thenR is the root
of the trunk hierarchy. Otherwise, the parent ofR is the unique trunk-graphR′ ∈ R for
which Vterm(R) ⊆ V(R′) andVterm(R) 6⊆ Vterm(R′). ThusParent(p, c) can be encoded
for c the witness of the root of the path decomposition ofR, and p the witness of the
closest node to the root of the path decomposition ofR′ such thatVterm(R) ⊆ X where
Bag(p, X) is true.

11. Partial 3-Trees. In Section 10 we established that CMS predicates can describe
(Definition 4.5) a width-3 tree decomposition of any 2-connected partial 3-tree. Thus
each block (Definition 2.4) of a partial 3-tree has a CMS-definable width-3 tree decom-
position. In this section we use that result to draw the conclusion that definability equals
recognizability of partial 3-trees.

LEMMA 11.1. If each block of a graph has a CMS-definable width-k tree decomposition,
then the graph itself has a CMS-definable width-k tree decomposition.

PROOF. First, supposeG is aconnectedgraph with` distinct blocks,G1,G2, . . . ,G`,
each of which has a CMS-definable width-k tree decomposition. No pair of these blocks
may intersect in more than one vertex—otherwise their union would also be 2-connected.
Hence, the blocks can be arranged in a tree such thatGi is the parent ofGj only if
|V(Gi ) ∩ V(Gj )| = 1. The root block of this tree can be existentially encoded in CMS
logic (Definition 4.3) by providing a parameter to contain the vertex set of that block.
Furthermore, it is easy for a CMS predicate to encode whether any vertex subset induces
a block ofG; hence, the CMS-definable width-k tree decomposition of each block can
be determined independently. Without loss of generality, assume that if a blockGi is
the parent of a blockGj , then the vertex inV(Gi ) ∩ V(Gj ) is a designated terminal
in Vterm(Gj ); this terminal will be contained in the root bag of the CMS-definable tree
decomposition ofGj . Therefore, to encode a width-k tree decomposition ofG, we need
only encode a parent for the root of the tree decomposition of each nonroot blockGj .
This parent can be encoded as the closest node to the root of the tree decomposition of
Gi (i.e., the parent ofGj ) such that the vertex ofV(Gi ) ∩ V(Gj ) is contained in the
corresponding bag.

Now, supposeG is a (possibly disconnected) graph for which each block has a CMS-
definable width-k tree decomposition. A width-k tree decomposition can be encoded for
each component (as above). We then choose the root (sayr ) of any one of these tree
decompositions to be the root of a tree decomposition ofG. CMS predicates can easily
encode that each other root becomes a child ofr .
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Lemmas 10.3 and 11.1 provide the following:

COROLLARY 11.2. Any partial3-tree admits a width-3 rooted tree decomposition that
can be described by existentially defined CMS predicates.

Combining the above corollary with Lemmas 4.7 and 5.4 and Theorem 5.3, we can now
conclude the following:

THEOREM11.3. Definability equals recognizability of partial3-trees.

12. k-Connected Partialk-Trees. We now generalize the results of this paper to show
that definability equals recognizability ofk-connected partialk-trees. To do this, we need
only show that CMS predicates can describe a width-k rooted tree decomposition of any
such graph. The results of Section 6 show that any partialk-tree can be decomposed into
a trunk hierarchy (Definition 7.1). Some of the results of Sections 7, 8, and 10 need to
be generalized.

Throughout this sectionG is ak-connected partialk-tree; andR is a trunk hierarchy
admitted by a simple width-k tree decomposition ofG. Since each trunk-graph hask
terminals, Property 7.2 can be simplified to the following:

PROPERTY12.1. The vertices of each trunk-graphR ∈ R can be orderedv1, v2, . . . ,

v|V(R)| such that, for eachi = 2,3, . . . , |V(R)|, there is a nonterminal vertexvj of
R (where 1≤ j ≤ i − 1) for which at least one of the following two conditions is
satisfied:

C1. vi andvj are adjacent (inG).
C3. R has a childR′ ∈ R for which vi , vj ∈ Vterm(R′), and j ′ ≤ i for eachvj ′ ∈

Vterm(R′).

In Section 7 we enforced this property by choosing acenteredtrunk (Proposition 7.3)
in a simple width-k tree decomposition(T, r, χ) of G. However, now, sinceG is k-
connected, we have|Xa ∩ Xb| ≥ k whenevera andb are adjacent nodes ofT . It follows
that every trunk inT is a centered trunk.

Property 7.4 can be enforced by a straightforward generalization of Proposition 7.5.
Property 7.6 is not needed in the case of 3-connectedpartial 3-trees. Hence, a simplifi-
cation of the proof of Theorem 7.9 provides the following:

THEOREM12.2. If G is a k-connected partial k-tree, then some width-k simple tree
decomposition of G admits a trunk hierarchyR such that each trunk-graph R∈ R
satisfies Properties12.1and7.4.

The vertex set and edge set of each trunk-graph inR can now be encoded
by CMS predicates (as in Section 8). Proposition 8.2 can easily be generalized as
follows:
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PROPOSITION12.3. V(G) can be partitioned into4k + 1 color classessuch that the
nonterminal vertices of each trunk-graph R∈ R belong to a common color class(say
C); no terminal of R belongs to C; and if t ∈ Vterm(R) − Vterm(G), then no vertex of
R(t) belongs to C.

The proof of Lemma 8.3 remains valid in the case ofk-connected partialk-trees
(providedk ≥ 2). The proof of Lemma 8.4 can be easily generalized, to give the
following:

LEMMA 12.4. Binary CMS predicatestrunk , trunk-edge, andterm j (1≤ j ≤ k) can
be existentially defined such that there is a subset A of V(G) − Vterm(G) containing
exactly one nonterminal vertex of each trunk-graph inR; and

• trunk (v1,V ′) holds iffv1 ∈ A, and V′ is the vertex set of R(v1); and
• trunk-edge(u, v) holds iff{u, v} is an edge of some trunk-graph inR; and
• for v1 ∈ A: if t is a terminal of R(v1), thenterm j (v1, t) holds for a unique index j;

andterm1(v1, t) ∨ · · · ∨ termk(v1, t) holds only if t is a terminal of R(v1).

We do not need the results of Section 9 to encode the axes of a pyramid inR, because
each axis consists of a path between the apex and a distinct terminal: Lemma 9.8 becomes
a trivial consequence of property D4 (Definition 6.8). Now, the proof of Lemma 10.2
can be easily generalized to prove the following:

LEMMA 12.5. Any k-connected partial k-tree admits a width-k tree decomposition that
can be described by existentially defined CMS predicatesBagandParent.

Using Lemmas 4.7 and 5.4 and Theorem 5.3, we can draw the following con-
clusion:

THEOREM12.6. Definability equals recognizability of k-connected partial k-trees.

13. Conclusion. This paper has established that CMS-definability is a necessary and
sufficient condition for a subclass of the partial 3-trees (ork-connected partialk-trees)
to be recognized by a finite-state tree automaton. It was known that CMS-definability
is sufficient for a subclass of the partialk-trees (for anyk) to be recognized in this
way, but it was an open question whether CMS-definability is necessary (fork ≥ 4).
Very recently, this question was resolved by Lapoire [21] who showed the equivalence
of definability and recognizability forany subclass of the partialk-trees. In this pa-
per we used a general strategy which may independently provide another proof of
necessity—by showing CMS logic can encode a tree decomposition of any partialk-tree
G. We showed how this can be done in the case ofk = 3, and in the case thatG is
k-connected.

The general strategy to encode a tree decomposition is first to decompose the partial
k-treeG into a collection ofsimplepartialk-paths. These partialk-paths cover the vertex
set ofG; and the union over their edge sets is a superset of the edge set ofG. Moreover,
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we may assume without loss of generality (by Lemma 11.1) thatG is 2-connected.
Encoding a tree decomposition ofG is thus reduced to the following two tasks:

1. Determine which vertices belong to each of the (2-connected) simple partialk-paths.
2. Encode a path decomposition for each of the simple partialk-paths. (These path

decompositions can then be easily assembled into a tree decomposition ofG.)

We have shown how the first task can be implemented (ifk ≤ 3 orG is k-connected)
by inductively identifying the vertices of each partialk-path (sayR). In these cases,
V(R) can be orderedv1, v2, . . . , v|V(R)| such that eachvi (2 ≤ i ≤ |V(R)|) satisfies
some logical condition relative to the set{v1, v2, . . . , vi−1}: For somevj (1≤ j ≤ i −1)
in this set,vi can be uniquely identified by a CMS predicate8(vj , vi ). Furthermore,
the first vertexv1 of the order does not belong to any other partialk-path in the de-
composition. ThusV(R) is encoded as the minimal set containingv1 and any vertex
vi such that8∗(v1, vi ), where8∗ is the transitive closure8. If this approach is gener-
alized in a straightforward way, then instead of identifying the vertices one at a time,
we would need to identify up to min{bkc/2, k − ` + 1} vertices at a time—for aǹ-
connected partialk-tree. Fork ≥ 4 and` ≤ k − 1, this quantity is greater than 1; so
it becomes much more difficult for a CMS formula to determine the vertices of such a
group.

We have shown how the second task can be implemented for 2-connected partial
3-trees (this could be generalized to(k − 1)-connected partialk-trees). This completes
the proof that recognizability implies CMS-definability for partial 3-trees, because the
2-connected blocks of an arbitrary partial 3-treeG can be handled separately in this
way, and then the resulting collection of tree decompositions can be assembled together.
Recently, Kabanets [18] showed that CMS logic can encode a fixed path decompo-
sition of any partial k-path: i.e., the second task enumerated above can be done for
anyk.
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