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Evaluating Network Reliability and 2-Edge-Connected
Reliability in Linear Time for Bounded

Pathwidth Graphs

C. Lucet,1 J.-F. Manouvrier,1 and J. Carlier1

Abstract. This paper presents a decomposition method for computing the 2-edge-connected reliability of
undirected networks. This reliability is defined as the probability that all the vertices of a given graphG are
2-edge-connected, when edges fail independently with known probabilities. The principle of this method was
introduced by Rosenthal in 1977 [1]. For the all terminal reliability problem it consists in enumerating specific
state classes of some subnetworks. These classes are represented by the partitions of the boundary sets. For
the 2-edge-connected reliability problem these classes are represented by labeled forests whose nodes are
the partition blocks and some “unidentified” blocks. Our implementation uses a vertex linear ordering. The
computational complexity depends on the number of classes, which depends on the vertex separation number
of a given vertex linear ordering. Our computational results show the efficiency of this method when the vertex
separation number is smaller than 7.
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1. Introduction. There is much literature devoted to the problem of all terminal relia-
bility [2]–[5]. When considering this problem, it is supposed that the network is modeled
by an undirected graphG = (V, E). Vertices are perfect, but edges can fail with known
probabilities. Computing the all terminal reliability means computing the probability that
the network remains connected when failures are statistically independent. The aim of
this paper is to revisit a decomposition method for the problem of all terminal reliability
and to adapt it to 2-edge-connected reliability.

For general networks, all terminal reliability computation is NP-hard [6]. Satya-
narayana and Chang [7] and Wood [8] have shown that the factoring algorithm using
reductions is more efficient than the classical path or cut enumeration methods for solv-
ing it. This is confirmed by the experimental works of Theologou and Carlier [9], but
its running time remains prohibitive for large networks. In 1977 Rosenthal presented a
decomposition method which is a generalized reduction [1]. It consists in splitting up the
network according to a boundary set of vertices and evaluating the probabilities of some
subnetwork classes such that the reliability can be achieved by combining some of them.
Carlier and Lucet have worked out and tested this method forK -terminal reliability
computation with imperfect edges and vertices [10]. Their results show that it is more
efficient than factoring using reductions and that it can be applied to real-world-size net-
works. In this paper we are concerned with another fundamental measure on networks:
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2-edge-connected reliability. This is defined as the probability that any two vertices are
connected by at least two edge-disjoint paths. Implementation of the decomposition
method [11] has shown that it is very efficient for computing standardK -terminal relia-
bility, even when the vertices ofG are subject to failures. We therefore propose that this
decomposition method be used for 2-edge-connected reliability evaluation.

This paper is organized as follows. First, in Section 2, we describe the problem and
give some definitions. Then, in Section 3, we present the decomposition method for
all terminal reliability. Next, in Section 4, we show that it can be used to compute 2-
edge-connected reliability by defining some appropriate subnetwork classes. Finally, in
Section 5, we examine the computational complexity of the algorithm using enumeration
of these classes and show that it can compute all terminal reliability and 2-edge-connected
reliability in linear time for graphs with bounded pathwidth.

2. Definitions and Notation

2.1. Notation. G = (V, E) is an undirected graph, withV its set of vertices, and
E ⊂ V × V its set of edges.(u, v) denotes an edge ofE, a nonordered pair withu ∈ V
andv ∈ V . Consequently,(u, v) and(v,u) denote the same edge.pe is the reliability
of the edgee, andqe = 1− pe. H andL are subgraphs ofG. H ∪ L is a graph, i.e., its
vertices are the vertices ofH and the vertices ofL, and its edges are the edges ofH and
the edges ofL. H ∩ L is a graph, i.e., its vertices are the vertices belonging to bothH
andL and its edges are the edges belonging to bothH andL. F is the boundary set of
H . [· · ·][ · · ·] · · · [· · ·] denotes a partition ofF .R(G) is the all terminal reliability ofG
andR2ec(G) is the all terminal 2-edge-connected reliability ofG. Gi is a state ofG and
G(Gi ) its associated partial graph.|S| is the cardinal of any setS.

2.2. Definitions. A given graphG is connected if there exists at least one path between
any two vertices. It is 2-edge-connected if there exist at least two paths without common
edges between any two vertices. Our network model is an undirected stochastic graph
G = (V, E). Each edge ofE can fail, statistically independently with known probability,
but vertices ofV are perfectly reliable. The failure probability of the edgee ∈ E is qe

(qe ∈ [0,1]) and its reliability ispe = 1− qe. A subgraph of a given graphG = (V, E)
is a graphG′ = (V ′, E′) such thatV ′ ⊂ V andE′ = (V ′ × V ′) ∩ E. A partial graph of
a given graphG = (V, E) is a graphG′′ = (V, E′′) such thatE′′ ⊂ E.

Each edge of the stochastic graph is subject to failure. So, as there are two states for
an edge (each edge functions or fails), there are 2|E| possible states for the graph. One
stateGi of the stochastic graphG = (V, E) is denoted〈s1, s2, . . . , s|E|〉 wherese stands
for the state of edgee, i.e.,se = 0 when edgee fails andse = 1 when it functions. The
associated probability ofGi is

Prob(Gi ) =
∏
e∈E

[se · pe+ (1− se) · qe].(1)

With each stateGi of G = (V, E) is associated a partial graphG(Gi ) = (V, E′′), such
thate∈ E′′ if and only if e∈ E andse = 1. In the following we also consider states and
partial graphs of subgraphsH andL of G.Hi = 〈s′1, s′2, . . . , s′|E′|〉 denotes one state of
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H = (V ′, E′) andH(Hi ) its associated partial graph. The reliability ofG = (V, E) is
the probability thatG supports a given operation. For the all terminal reliability problem,
this operation requires that any two vertices are able to communicate via at least one
operational path:

R(G) =
∑

G(Gi ) is connected

Prob(Gi ).(2)

For the all terminal 2-edge-connected reliability problem, it is necessary that any two
vertices ofV are able to communicate via at least two operational paths with no edges
in common. So the 2-edge-connected reliability problem consists in evaluating the prob-
ability that a given graph is 2-edge-connected when its edges fail independently. This
probability can be obtained by summing all the associated probabilities of statesGi , such
thatG(Gi ) is 2-edge-connected:

R2ec(G) =
∑

G(Gi ) is 2-edge-connected

Prob(Gi ).(3)

3. Decomposition Principle for All Terminal Reliability

3.1. Introduction. Let v ∈ V such that its removal leavesG disconnected, i.e.,v is an
articulation point ofG. Therefore,G can be decomposed into two subgraphsH andL,
such that the vertex set ofH∩L is{v}, H∪L = G (Figure 1), andR(G) = R(H)·R(L).

This technique was extended by Rosenthal in 1977 [1] for the all terminal reliability
problem, when the vertex set ofH ∩ L is F , a separator set of the graph, with|F | ≥ 2.
F is the boundary set ofH andL, and its vertices are called the boundary vertices. It is
also supposed thatH andL have no edges in common.

Rosenthal proposed to associate withH andL some state classes depending onF .
One class ofH regroups some of its states according to an equivalence relation. For the
all terminal problem, these classes can be modeled by the partitions ofF . Hence, the
total information aboutH is reduced to these boundary vertex connections.

3.2. Operating and Failure States of a Subgraph. Let Hi be a state ofH and let
H(Hi ) be the partial subgraph ofH composed of the surviving edges. LetF-clique be

Fig. 1.Decomposition principle.|F | = 1 (articulation point) and|F | = 3.
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Fig. 2.State examples for all terminal reliability. Only the operating edges of a state are represented.

the completely connected subgraph(F, F × F). By definition, a stateHi of H is an
operating state ifH(Hi ) ∪ (F-clique) is a connected graph; that is to say that a stateLj

of L could exist such thatH(Hi ) ∪ L(Lj ) is connected, i.e.,Hi ∪ Lj is an operating
stateGk of G. Otherwise, ifH(Hi ) ∪ (F-clique) is not a connected graph, some of the
vertices ofH(Hi ) are permanently disconnected, whatever the topology ofL. In this
caseHi is called a failure state.

In Figure 2Hi is an operating state ofH , whereasHj is a failure state. In this example,
the boundary set betweenH andL is F = {u, v, w}:
— H(Hj ) consists of three connected components denoted asOHj ,1,OHj ,2, andOHj ,3.

One of these connected components is disconnected from the boundary set:OHj ,1∩
F = {u}, OHj ,2 ∩ F = {v,w}, OHj ,3 ∩ F = ∅. Therefore there is no state ofL
that allows the vertices ofOHj ,3 to be connected to the others, not even the stateLm,
which is the state such that all edges ofL function, i.e.,Hj ∪Lm is a failure state of
G. SoHj is a failure state ofH .

— H(Hi ) contains two connected components,OHi ,1 andOHi ,2, connected withF :
OHi ,1∩ F = {u, v},OHi ,2∩ F = {w}. For an operating state such asHi , the network
has a possibility of being connected and this possibility depends on the state of the
subgraphL. If the state of the subgraphL is a failure state, the network cannot be
connected. We now consider one operating state ofL. L(Ln) is composed of two
connected componentsOLn,1 andOLn,2: OLn,1 ∩ F = {u}, OLn,2 ∩ F = {v,w}.
H(Hi ) ∪ L(Ln) is connected and thereforeHi ∪ Ln is an operating state ofG.
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The formula for the reliability (2) of our graph can be written:

R(G) =
∑

Hi ,Lj /H(Hi )∪L(Lj ) is connected

Prob(Hi ) · Prob(Lj ).(4)

PROPOSITION3.1. The two following statements are equivalent:

Statement1. H(Hi ) ∪ L(Lj ) is connected.
Statement2. Hi andLj are both operating states

and
(F ∩OHi ,1)-clique∪ · · ·∪ (F ∩OHi ,s)-clique∪ (F ∩OL j ,1)-clique∪ · · ·∪
(F ∩OL j ,t )-clique is connected.

Proposition 3.1 entails that the information required for providing the functioning state
of G is, for two operating states, the manner of connection of the boundary vertices, i.e.,
their connections viaH and viaL.

3.3. Class Definition and Equivalence Relation. We have seen above that the func-
tioning of G depends on the manner of connection of the boundary vertices, viaH and
via L. Now, certain operating states of a subgraph give the same connectivity for the
boundary vertices viaH . Such states are called equivalent states and are grouped in
the same class. In Figure 3 the two operating statesHi andHk are equivalent states of
the subgraphH , because they provide an identical connectivity of the boundary ver-
tices.

Rosenthal has grouped all the failure states ofH into a failure class, denoted DEF(H),
and all the operating statesHi of H into operating classes, according to the manner of
connection of the boundary vertices, via the partial subgraphH(Hi ). In the case of
all terminal reliability, these operating classes are the partitions ofF . One partition is
made of several blocks. Each block stands for the intersection between one connected
component ofH(Hi ) and F , i.e., one block contains vertices ofF that belong to the
same connected component.

Fig. 3. Two equivalent states for all terminal reliability.Hi andHk are two operating states ofH that belong
to the same class: [uv][w].
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We denoteCH,k as thekth class ofH . For instance, the classes ofH for a boundary
set of three verticesu, v, andw can be the following:

CH,1 = [uvw], u, v, andw are connected viaH .
CH,2 = [uv][w], u andv are both connected viaH , andw is disconnected.
CH,3 = [uw][v], u andw are both connected viaH , andv is disconnected.
CH,4 = [u][vw], v andw are both connected viaH , andu is disconnected.
CH,5 = [u][v][w], u, v, andw are disconnected viaH .

The example in Figure 3 shows two equivalent states that belong to the class [uv][w].
The classCH,2 is a factorization of all statesHi composed of two connected components
OHi ,1 andOHi ,2 with OHi ,1 ∩ F = {u, v} andOHi ,2 ∩ F = {w}.

3.4. The Decomposition Principle. The decomposition algorithm consists in enumer-
ating the operating classes ofH and L (omitting the failure classes DEF(H) and
DEF(L)), and in computing their associated probabilities. The associated probability
of the classCH,k is

Prob(CH,k) =
∑

Hi /Hi∈CH,k

Prob(Hi ).(5)

The reliability ofG is computed by combining the compatible classes ofH andL. Two
classesCH,x andCL ,y are compatible if the connectivity of the boundary set given by
CH,x and the connectivity of the boundary set given byCL ,y provide the connectivity of
the whole graphG.

We report here some of the possible combinations between the classes of two sub-
graphsH and L, separated by a boundary set of three vertices, and we specify the
compatible classes. The set of possible classes is the set of partitions, that is
{[uvw], [uv][w], [uw][v], [u][vw], [u][v][w]}.

CH,1 = [uvw] and CL ,5 = [u][v][w] are compatible classes.
CH,2 = [uv][w] and CL ,5 = [u][v][w] are not compatible classes.
CH,3 = [uw][v] and CL ,3 = [uw][v] are not compatible classes.
CH,3 = [uw][v] and CL ,4 = [u][vw] are compatible classes.

So there is a factorization of (4) that becomes

R(G) =
∑

CH,x,CL ,y/CH,x andCL ,y are compatible

Prob(CH,x) · Prob(CL ,y),(6)

which is in fact

R(G) =
∑

CH,x,CL ,y, compatible

 ∑
Hi∈CH,x

Prob(Hi ) ·
∑
Lj∈CL ,y

Prob(Lj )

 .
Formula (6) is more efficient than (4), because it reduces the number of multiplications.
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Table 1.The total number of partitions according to the size ofF .

|F | 1 2 3 4 5 6 7 8 9 10

Nb classes 1 2 5 15 52 203 877 4140 21,147 115,975

Rosenthal’s algorithm [1] uses the recurrence formula:

Prob(CH3,z) =
∑

CH1,x,CH2,y/CH1,x andCH2,y

provide the connectivity ofCH3,z

Prob(CH1,x) · Prob(CH2,y)(7)

with H3= H1∪ H2

Algorithm [1]

By definition, a subgraph is resolved if the probabilities of all its classes
have been computed. Repeat 1 and 2 untilH3= G.

1. Choose two resolved subgraphs denoted asH1 andH2 such thatH3=
H1∪ H2.

2. Use (7) to resolve the subgraphH3.

3.5. Number of Classes. The subgraphsH and L have an equal number of classes,
which is the number of partitions ofF . We denote the Stirling number of the second
kind by Ai, j , which is the number of partitions withj blocks for a set ofi elements.
This number grows exponentially withi , consequently the number of classes grows
exponentially with the size of the boundary setF (see Table 1). We have the recurrent
formulae:

Ai, j = 1 if j = 1, Ai, j = 0 if 0 < i < j,

Ai, j = j · Ai−1, j + Ai−1, j−1 if 1 < j ≤ i .

Nb classes=
|F |∑
j=1

A|F |, j .

The 2-edge-connected reliability can be computed in a similar way, but in this case
the classes are not simply partitions of the boundary setF . We describe these classes in
the following section.

4. Classes for All Terminal 2-Edge-Connected Reliability

4.1. Introduction. Our aim now is to use the same decomposition principle for 2-edge-
connected (2ec) reliability. Decomposition with an articulation point gives a similar
formula to that in Section 3.1:R2ec(G) = R2ec(H) ·R2ec(L). In this section we extend
this principle for a setF of boundary vertices between two subgraphsH andL (H ∪L =
G) with |F | ≥ 2. H andL are assumed to have no edges in common (Figure 1).
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The main difficulty here is to define appropriate classes to stand for the sets of equiv-
alent states of a subgraph. Previously, the information contained in a class for reliability
computation was the connectivity of the boundary vertices viaH . Now the information
required to specify a class for 2ec reliability computation will be the connectivity and
the 2-edge-connectivity of the boundary vertices viaH .

4.2. Operating and Failure States of a Subgraph. To define operating and failure
states, we introduce the notion of a 2-edge-connected-clique. By definition, a sub-
graphG′ = (V ′, E′) of a graphG = (V, E) is a 2-edge-connected-clique (2ec-clique)
if and only if |V ′| 6= 2 and G′ is a clique, or|V ′| = 2 and G′ is the multigraph
G′ = ({u, v}, {(u, v), (u, v)}). If a subgraphG′ = (V ′, E′) of a graphG = (V, E) is a
2ec-clique, then there exist two edge-disjoint paths between any two vertices ofV ′.

With regard to 2ec reliability, a stateHi is by definition an operating state ifH(Hi )∪
(F-2ec-clique) is 2-edge-connected. So a failure stateHj is a state which does not
permit the whole graph to be 2-edge-connected, whatever the state ofL. Figure 4 sum-
marizes the conditions for operating and nonoperating states for the two problems under
discussion.

We again consider the examples of Figure 2. The stateLn is a failure state for 2-edge-
connectivity although it is an operating state for the connectivity. As we have shown
in Section 3.2, a stateGk of G is composed of two states in the two subgraphsH and

Fig. 4.Operating and failure states.
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Fig. 5.State examples for 2ec reliability.

L: Hi ∪ Lj = Gk. So the formula for the 2ec reliability of our graph can be written:

R2ec(G) =
∑

Hi ,Lj /H(Hi )∪L(Lj ) is 2-edge-connected

Prob(Hi ) · Prob(Lj )(8)

The subgraphH(Hi ) is composed of the set of the 2ec components8(Hi ) and the set
of the cut-edges1(Hi ) that join these 2ec components,1(Hi ) ⊂ 8(Hi )×8(Hi ), i.e.,
there exists an edge between two 2ec componentsT1 andT2 in1(Hi ) if and only if there
exists a cut-edge betweenu ∈ T1 andv ∈ T2 in H(Hi ). (8(Hi ),1(Hi )) is a forest.
We distinguish two kinds of 2ec components in8(Hi ) = 81(Hi ) ∪82(Hi ): 81(Hi )

denotes the set of 2ec components ofH(Hi ) that contain at least one vertex ofF (i.e., the
boundary 2ec components), and82(Hi ) denotes the set of 2ec components ofH(Hi )

that have no intersection withF .
To know if the result ofH(Hi ) ∪ L(Lj ) is 2-edge-connected, we have to consider

8(Hi ),8(Lj ),1(Hi ), and1(Lj ).
We illustrate using the examples shown in Figure 5. The boundary set betweenH and

L is F = {u, v, w}.
— H(Hj ) contains two 2ec components:8(Hj ) = 81(Hj ) = {THj ,1, THj ,2}(THj ,1 ∩

F = {u}, THj ,2∩ F = {v,w}), and the set1(Hj ) contains a single cut-edge between
these two components. All the vertices ofH are connected toF by at least two paths,
which is the condition for the stateHj to be operating.

— H(Hi ) contains four 2ec components:81(Hi ) = {THi ,1, THi ,2, THi ,3}, 82(Hi ) =
{THi ,4}(THi ,1 ∩ F = {u}, THi ,2 ∩ F = {v}, THi ,3 ∩ F = {w}, THi ,4 ∩ F = ∅), and
two cut-edges in1(Hi ) (betweenTHi ,1 andTHi ,4, and betweenTHi ,2 andTHi ,4). All
of the 2ec components are connected toF by at least two paths (so it is an operating
state), nevertheless, the intersection betweenF and a component could be empty
(THi ,4).

PROPOSITION4.1. The two following statements are equivalent:

Statement1. H(Hi ) ∪ L(Lj ) is 2-edge-connected.
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Statement2. Hi andLj are both operating states
and
the partial graph⋃

THi ,x∈81(Hi )

{(F ∩ THi ,x)-2ec-clique}

∪
⋃

TL j ,y∈81(Lj )

{(F ∩ TL j ,y)-2ec-clique} ∪1′(Hi ) ∪1′(Lj )

is 2-edge-connected, where1′(Hi ) is a transformation of1(Hi ) to make
possible this union, i.e., if an endpointTHi ,x of an edge of1(Hi ) belongs
to81(Hi ), then this endpoint is replaced by a vertex of F∩ THi ,x, hence
1′(Hi ) ⊂ (F ∪82(Hi ))× (F ∪82(Hi )).

Proposition 4.1 leads to the following remark. As in the case of reliability, it is not
necessary to know the identity of a vertex ofH(Hi ) out of the boundary set in order
to deduce thatH(Hi ) ∪ L(Lj ) is 2-edge-connected, because these vertices cannot be
linked directly to a vertex ofL. Hence, the information required for an operating state
Hi (to calculate (8)) is first the connection of the boundary vertices in 2ec components,
and secondly the connections between these 2ec components. These paths, which can
go through 2ec components of82(Hi ), are represented by the set of cut-edges1(Hi ).
This information must be used to represent a class, but we reduce it below.

4.3. Class Definition and Equivalence Relation

4.3.1. Introduction. As in the case of reliability, the function of the 2ec reliability
classes is to group all equivalent operating states, in order to factorize (8) with (5):

R2ec(G) =
∑

CH,x,CL ,y/CH,x andCL ,y are compatible

Prob(CH,x) · Prob(CL ,y).(9)

We also have here the failure classes DEF(H) and DEF(L)which group all failure states.
The information provided by a class must be just the information required to combine

and find the compatible classes. Indeed, the more restricted the information standing for
a class, the greater the number of equivalent states in this same class, and consequently
the greater the efficiency of (9). We study in this section the information provided by a
state to obtain the required information to define a class.

4.3.2. State Representation. The stateHi can be represented as a forest of 2ec com-
ponents:F(Hi ) = (81(Hi ) ∪ 82(Hi ),1(Hi )) where81(Hi ) and82(Hi ) are the
sets of 2ec components defined in Section 4.2. We now reduce the knowledge provided
by the forestF(Hi ) to obtain a state representation denoted asζ(Hi ). We saw with
Proposition 4.1, that knowing the identities of the vertices outside of the boundary set is
superflous. So the state representation is a forest:ζ(Hi ) = (21(Hi )∪22(Hi ),9(Hi ))

where21(Hi ),22(Hi ), and9(Hi )correspond respectively to the reductions of81(Hi ),
82(Hi ), and1(Hi ). 21(Hi ) is a set of blocks of the boundary setF , that is to say a
partition of F . 22(Hi ) is a set of empty blocks that we call unidentified blocks and
9(Hi ) is the set of edges joining these blocks (see Figure 6).
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Fig. 6.State representation for 2ec reliability.H(Hi ) is a forest (here a tree) of nine 2ec components.

We use this representation for the examples of Figure 5:

ζ(Hi ) = (21(Hi ) ∪22(Hi ),9(Hi ))

with 21(Hi ) = {B1, B2, B3}, 22(Hi ) = {B−1},
9(Hi ) = {(B1, B−1), (B2, B−1)},

and B1 = [u], B2 = [v], B3 = [w], B−1 = [ ] ;
ζ(Hj ) = (21(Hj ) ∪22(Hj ),9(Hj ))

with 21(Hj ) = {B1, B2}, 22(Hj ) = { }, 9(Hj ) = {(B1, B2)},
and B1 = [u], B2 = [vw].

With such a state representation(ζ(Hi )), the composition of the 2ec components of
82(Hi ), represented by the unidentified blocks of22(Hi ), is totally unknown (whereas
the composition of a boundary 2ec component is partially known with21(Hi )). This
notion of unidentified blocks allows us to represent all the required connection manners
of the boundary blocks of the partition21(Hi ). The single condition for an unidentified
block to exist is the presence of edges in9(Hj ) incident to this unidentified block,
which represents useful block path information. In the following, we eliminate some
unidentified blocks without deleting this essential information.

4.3.3. From State Representation to Minimal State Representation. We now remove
the useless information ofζ(Hi ) and obtain the minimal state representation denoted as
ζ ′(Hi ), i.e., the bare necessities. A simplification can be made for22(Hi ). Indeed, if
there is an unidentified blockh ∈ 22(Hi ) which is adjacent to only two other blocks,
(h, k1) ∈ 9(Hi ), (h, k2) ∈ 9(Hi ), then we need retain no information other than the
path betweenk1 andk2, i.e.,(k1, k2) can replace(h, k1) and(h, k2) in 9(Hi ) enabling
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Fig. 7.From state representation to minimal state representation.h is an unidentified block of degree two.

the unidentified blockh to be removed from22(Hi ) (Figure 7). This is a reduction of
22(Hi ) to22′(Hi ), and a transformation from9(Hi ) to9 ′(Hi ).

After the deletion of all the unidentified blocks of degree two in9(Hi ) and22(Hi ),
we obtain9 ′(Hi ) and22′(Hi ), and no further simplification of the information for
a state is possible (see Figure 8). The minimal representation of a state is composed
of a forest whose nodes are blocks of a partition and unidentified blocks:ζ ′(Hi ) =
(21(Hi ) ∪ 22′(Hi ),9

′(Hi )), such that the unidentified blocks have a degree strictly
larger than two. Indeed it must be at least two in order to have an operating state, and it
cannot be two because of the reduction from9(Hi ) to9 ′(Hi ).

PROPERTY4.2. For any unidentified blockb of 22′(Hi ), the degree ofb in the forest
ζ ′(Hi ) = (21(Hi ) ∪22′(Hi ),9 ′(Hi )) is strictly larger than two.

Consequently, we have 0≤ |22′(Hi )| ≤ max(0, |21(Hi )| − 2).

Fig. 8.From state representation to minimal state representation (example). Removal of the unidentified blocks
of degree two.
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Fig. 9. Equivalent states for 2ec reliability.ζ(Hi ) = (21(Hi ) ∪ 22(Hi ),9(Hi )) = ({B1, B2, B3,

B−1}, {(B1, B−1), (B3, B−1)}) with B1 = [u], B2 = [v], B3 = [w], B−1 = []. ζ(Hj ) = (21(Hj )∪22(Hj ),
9(Hj )) = ζ(Hi )⇒ Hi andHj are equivalent states.

4.3.4. Class Representation. Several states have the same minimal representation.
These states are equivalent and belong to the same class (see Figure 9). The model-
ing of a classCH,k is therefore a forestCH,k = (21(CH,k) ∪ 22′(CH,k), 9 ′(CH,k)),
where:

— 21(CH,k) is a partition of the boundary setF of |21(CH,k)| blocks.
— 22′(CH,k) is a set of unidentified blocks which satisfy Property 4.2.
— 9 ′(CH,k) is a set of edges whose endpoints belong to21(CH,k) ∪22′(CH,k).

All the states whose minimal representation isCH,k belong to this class.

4.4. The Decomposition Principle. The principle of decomposition for 2ec reliability
is similar to that for all terminal reliability:

— consider two subgraphsH andL and their boundary setF ,
— enumerate the operating classes ofH andL (omitting the failure classes DEF(H)

and DEF(L)),
— compute the associated probabilities of these classes (with (5)),
— search for all compatible classes and compute the 2ec reliability with (9).

2ec reliability of G is computed by combining the compatible classes ofH and
L (9). Two classesCH,x andCL ,y are compatible if their union provides the 2-edge-
connectivity of the boundary setF , and can ensure the 2-edge-connectivity of the
whole graphG.

Figure 10 presents the set of possible classes for a boundary set of three vertices. Note:
the blocks of the partitions are denotedBi with i > 0 and the unidentified blocks are
denotedBj with j < 0. We list here some combinations between the classes of the two
subgraphsH andL, separated by a boundary set of three vertices, that are compatible
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Fig. 10.The 15 possible classes for a boundary set of three vertices.

for 2ec reliability:

CH,1 = ([uvw], {}) and CL ,i , ∀i,1≤ i ≤ 15.
CH,3 = ([uv][w], {(1,2)}) and CL ,3 = ([uv][w], {(1,2)}).
CH,5 = ([uw][v], {(1,2)}) and CL ,3 = ([uv][w], {(1,2)}).
CH,5 = ([uw][v], {(1,2)}) and CL ,6 = ([u][vw], {}).
CH,6 = ([u][vw], {}) and CL ,1 = ([uvw], {}).
CH,8 = ([u][v][w], {}) and CL ,1 = ([uvw], {}).
CH,12= ([u][v][w], {(1,2), (1,3}) and CL ,14= ([u][v][w], {(1,3), (2,3}).
CH,12= ([u][v][w], {(1,2), (1,3}) and CL ,15= ([u][v][w][] , {(−1,1), (−1,2), (−1,3)}).
CH,15= ([u][v][w][] {(−1,1), (−1,2), (−1,3)}), andCL ,15= ([u][v][w][] , {(−1,1), (−1,2), (−1,3)}).

Rosenthal’s algorithm described in Section 3.4 for all terminal reliability can be applied
for 2ec reliability without any change.

4.5. Number of Classes. The number of classes depends on the number of vertices in
the boundary set:|F | (e.g., the class enumeration for|F | = 3 is shown in Figure 10). A
class is composed of a partition ofF with k blocks and of a forest on these blocks, and
possibly of unidentified blocks of degree strictly greater than two (see Property 4.2). So
the number of classes for a given boundary setF is

Nb classes2ec=
|F |∑
j=1

(A|F |, j · NFU( j )),

where A|F |, j is the Stirling number of the second kind (see Section 3.5) and NFU( j )
stands for the number of these particular labeled forests ofj nodes with unidentified
nodes (these unidentified nodes are not labeled and have a degree strictly greater than
two). These numbers are given in Tables 2 and 3.
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Table 2. Number of labeled forests with unidentified nodes against the
number of nodesN.

N 1 2 3 4 5 6 7

NFU(N) 1 2 8 58 662 10,584 219,004

5. Linear Time Algorithms. We have seen above the decomposition principle which
consists in considering two subgraphsH and L of G and combining their classes
to compute reliability (see Sections 3 and 4). Now we look at the implementation
of this principle with an algorithm belonging to the table-based reduction algo-
rithm family [12], more effective than Rosenthal’s algorithm which we presented in
Section 3.4.

5.1. Preliminary Definitions. We first define the notions of linear ordering and vertex
separation number used in our algorithm, and the notions of pathwidth and treewidth
introduced by Robertson and Seymour [13], [14] and Bodlaender [15].

By definition, alinear ordering (denotedN ) of G = (V, E) is a bijection:N : V →
{1, . . . , |V |}.

In the following, the vertexN−1(i ), i ∈ {1, . . . , |V |}, will be denoted asvi .
We denoteFi = {vj ∈ V/∃(vj , vk) ∈ E such thatj ≤ i ≤ k}, ∀i ∈ {1, . . . , |V |}.
The vertex separation number(denotedFmax) of a linear ordering isFmax(N ) =

max1≤i≤|V |(|Fi |).
The vertex separation number of a graph isFmax(G) = minN (Fmax(N )).
A path-decomposition(denoted asDp) of G = (V, E) is a sequence of subsets of

V : Dp = (X1, . . . , Xr ), such that:

— ∪1≤i≤r Xi = V ,
— for every edge(v,w) ∈ E, there is a subsetXi , 1≤ i ≤ r , with v ∈ Xi andw ∈ Xi ,
— for all i, j, k ∈ {1, . . . , r }, if i ≤ j ≤ k, thenXi ∩ Xk ⊆ Xj .

By definition, the pathwidth of a path-decomposition is pathwidth(Dp) =
max1≤i≤r (|Xi | − 1), and the pathwidth of a graph is pathwidth(G) =
minDp(pathwidth(Dp)).

A tree-decomposition(denoted asDt) of G = (V, E) is a couple composed of a
family of subsets ofV and a tree:Dt = ({Xi/ i ∈ I }, T = (I , F)), such that:

—
⋃

i∈I Xi = V ,
— for every edge(v,w) ∈ E, there is a subsetXi , i ∈ I , with v ∈ Xi andw ∈ Xi ,
— for all i, j, k ∈ I , if j is on the path fromi to k in T , thenXi ∩ Xk ⊆ Xj .

Table 3.Total number of classes (2ec reliability) against the size ofF .

|F | 1 2 3 4 5 6 7

Nb classes2ec 1 3 15 121 1473 25,067 556,783
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By definition, thetreewidth of a tree-decomposition is treewidth(Dt)=maxi∈I (|Xi |−1),
and the treewidth of a graph is treewidth(G) = minDt(treewidth(Dt)).

The following propositions have been demonstrated: LetG = (V, E) be a given
graph. The pathwidth of a graphG is at least its treewidth. In fact, a path-decomposition
of G can be written as a tree-decomposition ofG, with the same width. The pathwidth
of a graphG is equal to its vertex separation number [16]. Moreover, finding a lin-
ear ordering ofG with a minimum vertex separation number is equivalent to finding a
path-decomposition with the smallest pathwidth.

The pathwidth and treewidth problems (given a graph, find a tree-decomposition or
a path-decomposition with the smallest width) are NP-hard [17]. Nevertheless, for fixed
parametersk, the problems of finding a path-decomposition or tree-decomposition of
width at mostk can be solved in linear time, but using algorithms with a rather high
constant factor [18], [19].

5.2. The Dynamic Programming Algorithm for Reliability and2ec Reliability Com-
putations. We now present our algorithm based on the decomposition principle (see
Sections 3 and 4). We consider a resolved subgraphH whose classes are known, and
we enlarge this resolved subgraph by vertex insertion until we have resolved the whole
graph.

0. A linear ordering of the vertices is required.
1. H0 = {}, L0 = G.
2. For each vertexvi (in the order given by the linear ordering, fromv1 to v|V |):

2.1. Removevi from the subgraphLi−1 and addvi to the subgraphHi−1 to obtain
Li andHi .

2.2. Find the boundary setFi betweenHi andLi .
2.3. Compute the classes of the boundary setFi in the subgraphHi and their proba-

bilities.
3. The reliability (or 2ec reliability) ofG is the probability of the single class of the last

boundary set.

The vertex separation number,Fmax, is the size of the boundary setFi that contains the
maximal number of vertices during the algorithm.

Figure 11 shows the boundary set evolution and the growth of the resolved subgraph
(Hi ) during the algorithm. At each step of the algorithm, the classes and their probabilities
are stored in a table. The table of each step is computed using the table of the previous one.
For each class we need to enumerate the possible states of the new elements introduced
in the resolved graphHi , i.e., the new vertex and the new edges added to the new resolved
subgraphHi (see Figure 12).

5.3. Complexity and Vertex Separation Number

5.3.1. Complexity of All Terminal Reliability Computation. The results of this algo-
rithm [11] prove that the decomposition method is extremely powerful. In practice, for
the all terminal reliability problem, it can handle any network withFmax ≤ 12. Indeed,
the resolution time and required memory grow exponentially in function ofFmax. The
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Fig. 11. Evolution of the resolved subgraph during the algorithm. The vertices belonging toFi are shaded.
Fmax= 4.

Fig. 12.Construction of the new step classes.
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Table 4.Reliability computation times (in seconds) with the decomposition algorithm.

|V |
10 20 30 40 50 60 70 80 90 100

Fmax= 6 0.18 0.66 1.16 1.66 2.16 2.64 3.12 3.66 4.12 4.62
Fmax= 7 0.87 4.23 7.61 10.98 14.39 17.90 21.20 24.79 27.94 31.40
Fmax= 8 3.36 28.57 53.45 79.08 103.94 128.77 154.09 179.12 204.30 230.21
Fmax= 9 5.75 202.53 399.74 597.73 793.49 991.21 1186.84 1384.47 1585.97 1775.92

complexity is

O

(
(|V |) ·

Fmax∑
j=1

(AFmax, j · 2 j ) · (Fmax)
2

)
,

whereAi, j is the Stirling number of the second kind, andFmax is the vertex separation
number. We now give a brief explanation of this complexity:|V | stands for the number
of main iterations, i.e., the insertion of a new vertexvi in Hi .

∑
AFmax, j is the number

of possible classes for a boundary set of sizeFmax. 2j represents the number of possible
states to consider for the edges added toHi . (Fmax)

2 stands for the class construction
and identification in the new resolved subgraphHi+1.

The exponential factor of this method isFmax, whereas this factor is the size of
the graph for the factoring-reduction method [9], i.e., this algorithm can compute the
reliability of large networks whereas the factoring-reduction algorithm is limited to small
networks.

Table 4 presents the results of the decomposition algorithm in CPU time, running on
a 167 megahertz machine (UltraSparc), for large density graphs with 10–100 vertices,
for Fmax from 6 to 9. These graphs areFmax-paths, which means that the addition of an
edge in such a graph increases itsFmax.

5.3.2. Complexity of2ec Reliability Computation. As in the case of reliability, for
all terminal 2ec reliability we use a table-based reduction algorithm. The 2ec reliabil-
ity algorithm requires more classes than the reliability algorithm, which explains why
Fmax≤ 7 in practice. Moreover, these classes are more costly to compute and handle in
memory.

The complexity of this algorithm is

O

(
(|V |) ·

Fmax∑
j=1

(AFmax, j · NFU( j )) · 3 j ) · (Fmax) · NFU(Fmax)

)
,

whereAi, j is the Stirling number of the second kind,Fmax the vertex separation number,
and NFU( j ) is the number of labeled forests withj nodes andk unidentified nodes with
0 ≤ k ≤ max(0, j − 2) (see Property 4.2). We now give a brief explanation for this
complexity: |V | stands for the number of main iterations, i.e., the insertion of a new
vertexvi in Hi .

∑
(AFmax, j · NFU( j )) is the number of possible classes for a boundary

set of sizeFmax. 3j represents the number of possible states to consider for the edges
added toHi . Fmax ·NFU(Fmax) stands for the class construction and identification in the
new resolved subgraphHi+1.
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Table 5.2ec reliability computation times (in seconds) with the decomposition algorithm.

|V |
10 20 30 40 50 60 70 80 90 100

Fmax= 5 7.60 30.31 53.18 76.09 97.54 158.29 141.41 164.54 197.85 209.47
Fmax= 6 182.16 1306.62 2336.50 3491.10 4560.01 5711.74 6634.53 7703.86 8769.99 9857.80

Table 5 presents the results of the decomposition algorithm in CPU time, running on
a 167 megahertz machine (UltraSparc), for large density graphs with 10–100 vertices,
for Fmax= 5 and 6. These graphs areFmax-paths (see Section 5.3.1).

Table 6 presents our results in CPU time, running on a 100 megahertz machine, for
small density graphs (grid networks) with 3× 2 to 3× 9 vertices, forFmax = 3, and
compares them with an algorithm using a classical state enumeration.

5.3.3. Linear Time and Vertex Separation Number. We have seen in Sections 5.3.1
and 5.3.2 that the main factor of the complexity for the all terminal reliability and 2ec
reliability algorithms isFmax, the size of the maximum boundary set. Moreover, for a
given boundedFmax, the complexity is linear inO(|V |) (all other factors of the complexity
are constant). The linearity of our results can be verified in Tables 4 and 5.

The largest size of the boundary set during our algorithms,Fmax, depends on the
initial vertex linear ordering and so does the complexity. Figure 13 shows another linear
ordering for the graph of Figure 11, withFmax= 3 instead ofFmax= 4.

A basic problem is therefore to find a linear ordering for a given graph such thatFmax

is minimal. This problem is equivalent to the problem of the pathwidth (see Section 5.1).
To solve it, we use a heuristic method described in [11].

5.4. Dynamic Programming Algorithms to SolveNP-Hard Problems. Our algorithm
can solve the network reliability problem, which is NP-hard, in linear time for a bounded
Fmax. It has been proved that some classes of graph problems can be solved in polynomial
(or linear time) with such dynamic programming algorithms using a tree-decomposition
with a bounded width [20]–[23]. The principle of these algorithms is to use the graph
tree topology in order to expand a resolved subgraph, until the whole graph is resolved,
and to store in memory all partial solutions standing for the resolved elements, i.e., the
information required to compute the final solution.

The algorithm presented in this article (Section 5.2) uses a path-decomposition (which
is a particular tree-decomposition) produced by the linear ordering of the vertices. The

Table 6.2ec reliability computation times (in seconds) with the decomposition method (DEC)
and with an enumeration method (ENU).

|V |
6 9 12 15 18 21 24 27

DEC 0.84 0.80 0.76 0.95 0.65 0.67 0.67 0.66
ENU 0.01 0.03 0.14 1.12 9.24 77.59 651.87 5452.46
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Fig. 13.Another vertex linear ordering. The vertices belonging toFi are shaded.Fmax= 3.

vertex separation number (Fmax) of the linear ordering corresponds to the pathwidth of
the path-decomposition [16].

6. Conclusion. We have presented algorithms to compute all terminal reliability and
2ec reliability in linear time for graphs with bounded pathwidths. These algorithms
belong to the family of dynamic programming algorithms which solve some NP-hard
problems in polynomial (or linear time) with a given small width tree-decomposition. The
implementation of our algorithms uses a vertex linear ordering of the graph with a vertex
separation number equivalent to the correspondent pathwidth. For greater efficiency, a
similar algorithm could be implemented using a tree-decomposition instead of a path-
decomposition.

The main difficulty of such dynamic programming algorithms for a given problem is
to find and handle the classes. Here we have described the definition of these classes for
all terminal reliability and all terminal 2ec reliability with perfect vertices. The classes
for K -terminal reliability with imperfect vertices are defined in [11]. With regard to
2-connected reliability, the huge number of classes given in [24] does not allow the
decomposition method to be as effective as with reliability and 2ec reliability.
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