Algorithmica (2000) 27: 316-336

DOI: 10.10075004530010022 Al go rithmica

© 2000 Springer-Verlag New York Inc.

Evaluating Network Reliability and 2-Edge-Connected
Reliability in Linear Time for Bounded
Pathwidth Graphs

C. Lucet! J.-F. Manouvriet, and J. Carlier

Abstract.  This paper presents a decomposition method for computing the 2-edge-connected reliability of
undirected networks. This reliability is defined as the probability that all the vertices of a given@raph
2-edge-connected, when edges fail independently with known probabilities. The principle of this method was
introduced by Rosenthal in 1977 [1]. For the all terminal reliability problem it consists in enumerating specific
state classes of some subnetworks. These classes are represented by the partitions of the boundary sets. For
the 2-edge-connected reliability problem these classes are represented by labeled forests whose nodes are
the partition blocks and some “unidentified” blocks. Our implementation uses a vertex linear ordering. The
computational complexity depends on the number of classes, which depends on the vertex separation number
of a given vertex linear ordering. Our computational results show the efficiency of this method when the vertex
separation number is smaller than 7.
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1. Introduction. There is much literature devoted to the problem of all terminal relia-
bility [2]-[5]. When considering this problem, it is supposed that the network is modeled
by an undirected grapB = (V, E). Vertices are perfect, but edges can fail with known
probabilities. Computing the all terminal reliability means computing the probability that
the network remains connected when failures are statistically independent. The aim of
this paper is to revisit a decomposition method for the problem of all terminal reliability
and to adapt it to 2-edge-connected reliability.

For general networks, all terminal reliability computation is NP-hard [6]. Satya-
narayana and Chang [7] and Wood [8] have shown that the factoring algorithm using
reductions is more efficient than the classical path or cut enumeration methods for solv-
ing it. This is confirmed by the experimental works of Theologou and Carlier [9], but
its running time remains prohibitive for large networks. In 1977 Rosenthal presented a
decomposition method which is a generalized reduction [1]. It consists in splitting up the
network according to a boundary set of vertices and evaluating the probabilities of some
subnetwork classes such that the reliability can be achieved by combining some of them.
Carlier and Lucet have worked out and tested this methoKfderminal reliability
computation with imperfect edges and vertices [10]. Their results show that it is more
efficient than factoring using reductions and that it can be applied to real-world-size net-
works. In this paper we are concerned with another fundamental measure on networks:
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2-edge-connected reliability. This is defined as the probability that any two vertices are
connected by at least two edge-disjoint paths. Implementation of the decomposition
method [11] has shown that it is very efficient for computing stan#atérminal relia-

bility, even when the vertices @ are subject to failures. We therefore propose that this
decomposition method be used for 2-edge-connected reliability evaluation.

This paper is organized as follows. First, in Section 2, we describe the problem and
give some definitions. Then, in Section 3, we present the decomposition method for
all terminal reliability. Next, in Section 4, we show that it can be used to compute 2-
edge-connected reliability by defining some appropriate subnetwork classes. Finally, in
Section 5, we examine the computational complexity of the algorithm using enumeration
ofthese classes and show that it can compute all terminal reliability and 2-edge-connected
reliability in linear time for graphs with bounded pathwidth.

2. Definitions and Notation

2.1. Notation G = (V, E) is an undirected graph, witkl its set of vertices, and
E c V x V its set of edgequ, v) denotes an edge &, a nonordered pair with € V
andv € V. Consequentlyu, v) and (v, u) denote the same edge. is the reliability
of the edgee, andge = 1 — pe. H andL are subgraphs db. H U L is a graph, i.e., its
vertices are the vertices &f and the vertices df, and its edges are the edgedband
the edges of.. H N L is a graph, i.e., its vertices are the vertices belonging to bbth
andL and its edges are the edges belonging to bbtand L. F is the boundary set of
H.[---][---]---[- -] denotes a partition ofF . R(G) is the all terminal reliability ofG
andR.(G) is the all terminal 2-edge-connected reliability®f G; is a state ofs and
G(Gi) its associated partial graplg is the cardinal of any se.

2.2. Definitions A given graphG is connected if there exists at least one path between
any two vertices. Itis 2-edge-connected if there exist at least two paths without common
edges between any two vertices. Our network model is an undirected stochastic graph
G = (V, E). Each edge of can fail, statistically independently with known probability,

but vertices oV are perfectly reliable. The failure probability of the edge E is ge

(ge € [0, 1]) and its reliability isps = 1 — ge. A subgraph of a given grapé = (V, E)
isagraphG’ = (V’, E’) such thav’ c V andE’ = (V' x V) N E. A partial graph of
agiven graplG = (V, E) isa graphG” = (V, E”) such thatt” c E.

Each edge of the stochastic graph is subject to failure. So, as there are two states for
an edge (each edge functions or fails), there #dre@ssible states for the graph. One
stateG; of the stochastic grapB = (V, E) is denoteds,, s, . . ., Sg|) wheres; stands
for the state of edge, i.e.,s = 0 when edge fails ands. = 1 when it functions. The
associated probability d@; is

(1) ProbGi) = [ [lse- pe+ (1 — o) - Cel-

ecE
With each statej; of G = (V, E) is associated a partial gra@(G;) = (V, E”), such
thate € E” ifand only ife € E ands. = 1. In the following we also consider states and
partial graphs of subgrapht$ andL of G. H; = (s}, S,, .. ., ﬁlE’\) denotes one state of
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H = (V’, E") andH (H;) its associated partial graph. The reliability®f= (V, E) is

the probability thaG supports a given operation. For the all terminal reliability problem,
this operation requires that any two vertices are able to communicate via at least one
operational path:

2 R@G)= ) Prokg.

G(Gj) is connected
For the all terminal 2-edge-connected reliability problem, it is necessary that any two
vertices ofV are able to communicate via at least two operational paths with no edges
in common. So the 2-edge-connected reliability problem consists in evaluating the prob-
ability that a given graph is 2-edge-connected when its edges fail independently. This
probability can be obtained by summing all the associated probabilities of Stasesh
thatG(G) is 2-edge-connected:

€) Roed G) = > Prol(G;).
G(Gi) is 2-edgeconnected

3. Decomposition Principle for All Terminal Reliability

3.1. Introduction Letwv € V such that its removal leavé&s disconnected, i.ey is an
articulation point ofG. ThereforeG can be decomposed into two subgraphandL,
suchthatthe vertexsetbfNL is{v}, HUL = G (Figure 1), andR(G) = R(H)-R(L).

This technique was extended by Rosenthal in 1977 [1] for the all terminal reliability
problem, when the vertex set off N L is F, a separator set of the graph, wjth| > 2.

F is the boundary set dfi andL, and its vertices are called the boundary vertices. It is
also supposed that andL have no edges in common.

Rosenthal proposed to associate withrand L some state classes dependingFan
One class oH regroups some of its states according to an equivalence relation. For the
all terminal problem, these classes can be modeled by the partitidastéénce, the
total information abouH is reduced to these boundary vertex connections.

3.2. Operating and Failure States of a Subgraph_et H; be a state oH and let
H (H;) be the partial subgraph &f composed of the surviving edges. Lfetclique be

Fig. 1. Decomposition principleF| = 1 (articulation point) andF| = 3.
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H(H,)

Fig. 2. State examples for all terminal reliability. Only the operating edges of a state are represented.

the completely connected subgra@® F x F). By definition, a staté+; of H is an
operating state i (+;) U (F-clique) is a connected graph; that is to say that a sfate
of L could exist such that (%;) U L(£;) is connected, i.eZ; U £; is an operating
stateGy of G. Otherwise, ifH (H;) U (F-clique) is not a connected graph, some of the
vertices ofH (;) are permanently disconnected, whatever the topolody. dh this
casef; is called a failure state.

In Figure 2H; is an operating state &f, whereagy; is a failure state. In this example,
the boundary set betweéth andL is F = {u, v, w}:

— H(H;) consists of three connected components denotédlas, Oy, 2, andOy, 3.
One of these connected components is disconnected from the bound&?y; set
F ={u},On2nF = {v,w}, Oy 3N F = @. Therefore there is no state bf
that allows the vertices @y, 3 to be connected to the others, not even the siate
which is the state such that all edged.ofunction, i.e.,;H; U L, is a failure state of
G. So¥; is afailure state oH.

— H(H;) contains two connected component, 1 and Oy, 2, connected withF:
Oun 1NF ={u, v}, Oy 2N F = {w}. For an operating state such’dgs the network
has a possibility of being connected and this possibility depends on the state of the
subgraphL. If the state of the subgraphis a failure state, the network cannot be
connected. We now consider one operating state.df (L) is composed of two
connected component8, 1 andO,, > O, 1NF ={u}, O, 2NF = {v, w}.
H(H;) U L(Ly) is connected and therefotg U L, is an operating state 6.
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The formula for the reliability (2) of our graph can be written:

4) R(G) = > Prob(H;) - Prob(L)).
Hi,Lj/H(Hi)UL(L)) is connected

ProPOSITION3.1. The two following statements are equivalent

Statement. H(H;) U L(£;) is connected

Statemen®. H; and£; are both operating states
and
(FN Oy 1)-cliquey---U (F N Oy s)-cliqueu (F N Oy, 1)-cliqueu - - - U
(F N Oy, v)-clique is connected

Proposition 3.1 entails that the information required for providing the functioning state
of G is, for two operating states, the manner of connection of the boundary vertices, i.e.,
their connections vidd and vial.

3.3. Class Definition and Equivalence RelationWe have seen above that the func-
tioning of G depends on the manner of connection of the boundary vertices| giad
via L. Now, certain operating states of a subgraph give the same connectivity for the
boundary vertices vidl. Such states are called equivalent states and are grouped in
the same class. In Figure 3 the two operating stateandy are equivalent states of
the subgrapiH, because they provide an identical connectivity of the boundary ver-
tices.

Rosenthal has grouped all the failure stateld @fito a failure class, denoted DER),
and all the operating statég of H into operating classes, according to the manner of
connection of the boundary vertices, via the partial subgtdgh;). In the case of
all terminal reliability, these operating classes are the partitiors. @ne partition is
made of several blocks. Each block stands for the intersection between one connected
component ofH (H;) and F, i.e., one block contains vertices Bf that belong to the
same connected component.

Fig. 3. Two equivalent states for all terminal reliabilitit; andHy are two operating states &f that belong
to the same classup][w].
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We denoteCy  as thekth class ofH. For instance, the classesidffor a boundary
set of three vertices, v, andw can be the following:

Ch.a = [uvw], u, v, andw are connected vial.

Ch.2 = [uv][w], u andv are both connected vid, andw is disconnected.
Ch.3 = [uw][v], u andw are both connected vid, andv is disconnected.
Cu.a = [u][vw], v andw are both connected vid, andu is disconnected.
Ch.s = [U][v][w], u, v, andw are disconnected vidl.

The example in Figure 3 shows two equivalent states that belong to the widks]|
The clas<Cy  is a factorization of all statel; composed of two connected components
OHi,l and(’)Hiqz with OHi,l NF ={u, v} andOHi,z NF = {w}.

3.4. The Decomposition Principle The decomposition algorithm consists in enumer-
ating the operating classes &f and L (omitting the failure classes DEHR) and
DEF(L)), and in computing their associated probabilities. The associated probability
of the clasCy k is

(5) ProbChi) = > Prob).

Hi/Hi€Ch ik

The reliability of G is computed by combining the compatible classesl@&ndL. Two
classey x andC, y are compatible if the connectivity of the boundary set given by
Ch,x and the connectivity of the boundary set givenQyyy provide the connectivity of
the whole graplG.

We report here some of the possible combinations between the classes of two sub-
graphsH and L, separated by a boundary set of three vertices, and we specify the
compatible classes. The set of possible classes is the set of partitions, that is

{luvw], [uv][w], [uw][v], [ullvw], [u][v][w]}.
Chi1i=[uvw] and C_s=[u][v][w] are compatible classes.
Cho2=[w][w] and C_s5=[u][v][w] are not compatible classes.

Chs=[uw][v] and C_ 3= [uw][v] are not compatible classes.
Chia=[uw][v] and C_4=[ullvw] are compatible classes.

So there is a factorization of (4) that becomes

6) R(G) = > Prol(Cy ) - Prol(C y).

Chx.CLy/Chx andCy y are compatible
which is in fact
R(G) = > > ProMi) - Y ProlLy)
Ch.x.CL.y, compatible| H;eCh x LijeCpLy

Formula (6) is more efficient than (4), because it reduces the number of multiplications.
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Table 1. The total number of partitions according to the sizé-of

[F| 1 2 3 4 5 6 7 8 9 10

Nb_classe 1 2 5 15 52 203 877 4140 21,147 115,975

Rosenthal’s algorithm [1] uses the recurrence formula:

(7) ProbCusz) = > Prob(Chz.x) - Prol(Chz,y)
CH1,x, CH2,y/CH1x andChay
provide the connectivity o€H3 2

with - H3=H1UH2
Algorithm [1]

By definition, a subgraph is resolved if the probabilities of all its classes
have been computed. Repeat 1 and 2 u#8l= G.

1. Choose two resolved subgraphs denoted asandH 2 such thatH 3 =
H1UH2.
2. Use (7) to resolve the subgrapt8.

3.5. Number of Classes The subgraph#l andL have an equal number of classes,
which is the number of partitions df. We denote the Stirling number of the second
kind by A j, which is the number of partitions with blocks for a set of elements.
This number grows exponentially wiil) consequently the number of classes grows
exponentially with the size of the boundary $e{see Table 1). We have the recurrent
formulae:

Aj=1if j=1 Aj=0 if 0<i<]j,
Ai,j=j-Ai,1,j+Ai,1,j,1 if 1<j<i.

[FI
Nb_classes= » A j.
j=1
The 2-edge-connected reliability can be computed in a similar way, but in this case

the classes are not simply partitions of the boundarys&te describe these classes in
the following section.

4. Classes for All Terminal 2-Edge-Connected Reliability

4.1. Introduction  Our aim now is to use the same decomposition principle for 2-edge-
connected (2ec) reliability. Decomposition with an articulation point gives a similar
formula to that in Section 3.1Red(G) = Roed(H) - Roed(L). In this section we extend
this principle for a seF of boundary vertices between two subgraphandL (HUL =

G) with |F| > 2. H andL are assumed to have no edges in common (Figure 1).
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The main difficulty here is to define appropriate classes to stand for the sets of equiv-
alent states of a subgraph. Previously, the information contained in a class for reliability
computation was the connectivity of the boundary verticesH/idNow the information
required to specify a class for 2ec reliability computation will be the connectivity and
the 2-edge-connectivity of the boundary verticesMia

4.2. Operating and Failure States of a Subgraphlo define operating and failure
states, we introduce the notion of a 2-edge-connected-clique. By definition, a sub-
graphG’ = (V/, E’) of a graphG = (V, E) is a 2-edge-connected-clique (2ec-clique)
if and only if [V'| # 2 andG’ is a clique, or|V’| = 2 andG’ is the multigraph
G’ = ({u, v}, {(u, v), (u, v)}). If a subgraphz’ = (V’, E’) ofa graphG = (V, E) isa
2ec-clique, then there exist two edge-disjoint paths between any two vertigés of

With regard to 2ec reliability, a staf€; is by definition an operating statehf (H;) U
(F-2ec-cliqug is 2-edge-connected. So a failure statg is a state which does not
permit the whole graph to be 2-edge-connected, whatever the statd~afure 4 sum-
marizes the conditions for operating and nonoperating states for the two problems under
discussion.

We again consider the examples of Figure 2. The gigis a failure state for 2-edge-
connectivity although it is an operating state for the connectivity. As we have shown
in Section 3.2, a statéx of G is composed of two states in the two subgraphand

Reliability :
Operating states Failure states
H(H ) w (F-clique) is connected H(H ) v (F-clique) is disconnected
Vve(H(H)-F). Japath fromvtoF. Ive(HH)-F),

B apath from v to F.

2-edge-connected reliability :

Operating states Failure states
H(H ) U (F-2ec-clique) is H(H:) v (F-2¢c-clique) is not 2-edge-connected
2-edge-connected =
= Ive(HH)-F).
Vv e (H(H)-F). 3 two edge- A two edge-disjoint paths from v to F.
disjoint paths from v to F.
H a H b H c
F F i F
O

Fig. 4. Operating and failure states.
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Fig. 5. State examples for 2ec reliability.

L: H; U Lj = Gk. So the formula for the 2ec reliability of our graph can be written:

8 R2ed G) = Z Prob(H;) - Prok(£;)
Hi,Lj/H(Hi)UL(L)) is 2-edgeconnected

The subgraptH (H;) is composed of the set of the 2ec compona@n({;) and the set
of the cut-edge4 () that join these 2ec components(H;) C ®(H;) x ®(H,), i.e.,
there exists an edge between two 2ec comporigraad7; in A(H;) if and only if there
exists a cut-edge betweene 7; andv € 7, in H(H;). (®(H;), A(H;)) is a forest.
We distinguish two kinds of 2ec componentsiiiH;) = ®1(H;) U ®2(H;): L(H;)
denotes the set of 2ec componentsigf; ) that contain at least one vertexf(i.e., the
boundary 2ec components), a®@(;) denotes the set of 2ec componentdHafH; )
that have no intersection with.

To know if the result ofH () U L(Lj) is 2-edge-connected, we have to consider
O(H), D(L)), A(H;), andA(L)).

We illustrate using the examples shown in Figure 5. The boundary set bekveerd
LisF ={u, v, w}.

— H(H;) contains two 2ec componen®(H;) = ®1(Hj) = {Ty,.1, Tn 2} (Th 1 N
F = {u}, 7y, 2N F = {v, w}), and the seA (H;) contains a single cut-edge between
these two components. All the verticestbfare connected tb by at least two paths,
which is the condition for the stat; to be operating.

— H(H,) contains four 2ec componen®1(H;) = {7y, 1, Tv .2, T 3}, P2(H;) =
{THi,4}(THi.,1 N F = {u}, THi,Z N F = {v}, THi,B NF = {w}, THi,4 NF =), and
two cut-edges i\ (H;) (betweerZy, 1 and7y, 4, and betweedy, » and7y, 4). All
of the 2ec components are connecteé tby at least two paths (so it is an operating
state), nevertheless, the intersection betwEesind a component could be empty
(Thy.4).

PrOPOSITION4.1. The two following statements are equivalent

Statement. H(H;) U L(L;) is 2-edge-connected
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Statemen®. ; and£; are both operating states
and
the partial graph

{(F N 7y, x)-2ec-clique
Ty x€P1(H;)

u |J ((FN1T)-2ec-cliqug U A'(Hi) U A'(L)
Ti; yedL(L))

is 2-edge-connectedvhere A’ (H;) is a transformation ofA (H;) to make
possible this union.e., if an endpointZy, x of an edge ofA (#;) belongs
to ®1(H,), then this endpoint is replaced by a vertex ohF, x, hence
N (Hy) € (FU®2(H;)) x (F U DP2(H,))).

Proposition 4.1 leads to the following remark. As in the case of reliability, it is not
necessary to know the identity of a vertexldf{?;) out of the boundary set in order

to deduce thaH (H;) U L(£j) is 2-edge-connected, because these vertices cannot be
linked directly to a vertex of.. Hence, the information required for an operating state

‘H; (to calculate (8)) is first the connection of the boundary vertices in 2ec components,
and secondly the connections between these 2ec components. These paths, which can
go through 2ec components ®2(H;), are represented by the set of cut-edg€s(; ).

This information must be used to represent a class, but we reduce it below.

4.3. Class Definition and Equivalence Relation

4.3.1. Introduction As in the case of reliability, the function of the 2ec reliability
classes is to group all equivalent operating states, in order to factorize (8) with (5):

9 R2edG) = Z Prol(Ch,x) - Prob(C. y).

Chx.CL,y/Ch,x andCy y are compatible

We also have here the failure classes DiHFand DEFL) which group all failure states.

The information provided by a class must be just the information required to combine
and find the compatible classes. Indeed, the more restricted the information standing for
a class, the greater the number of equivalent states in this same class, and consequently
the greater the efficiency of (9). We study in this section the information provided by a
state to obtain the required information to define a class.

4.3.2. State Representation The state{; can be represented as a forest of 2ec com-
ponents:F(H;) = (P1(H;) U ®2(H;), A(H;)) where ®1(H;) and ®2(H;) are the

sets of 2ec components defined in Section 4.2. We now reduce the knowledge provided
by the forestZ(H;) to obtain a state representation denoted @s;). We saw with
Proposition 4.1, that knowing the identities of the vertices outside of the boundary set is
superflous. So the state representation is a forésf;) = (O1(H;) U @2(H;), V(H;))
where®1(H;), ®2(H;), and¥ (H;) correspond respectively to the reduction®d{#; ),
®2(H;), andA(H;). ®1(H,) is a set of blocks of the boundary gef that is to say a
partition of F. ®2(H;) is a set of empty blocks that we call unidentified blocks and

W (H;) is the set of edges joining these blocks (see Figure 6).
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H(H ) F F
O o]0 (i ok
0 0—{0[0) Lt ——[o)
0] o] o ) —of
ol [0] |fo] M e
o—o—o)| = L—iHlo)
O}—o] |0 Ci—L] |[0).
oo oS

Fig. 6. State representation for 2ec reliability.(7; ) is a forest (here a tree) of nine 2ec components.

We use this representation for the examples of Figure 5:

((Hi) = (O1(Hi) U ®2(H;), ¥ (Hi))
with  ®1(Hi) = {B1, B2, B3}, ©2(H;) = {B_1},
Y (Hi) = {(B1, B_1), (B2, B_1)},
and Bi=[u], Bx=[v], Bs=[w], B.i=[];
¢(Hj) = (O1(H)) U O2(H)), ¥(Hj))
with  ©1(Hj) = {By1, B2}, ©2(Hj) ={}, W(H;) = {(B1, B2)},
and By =[u], B;=[vw].

With such a state representation(#;)), the composition of the 2ec components of
®2(H;), represented by the unidentified blocksa#(7; ), is totally unknown (whereas

the composition of a boundary 2ec component is partially known @itl;)). This

notion of unidentified blocks allows us to represent all the required connection manners
of the boundary blocks of the partitiéd1(;). The single condition for an unidentified
block to exist is the presence of edgesini?;) incident to this unidentified block,
which represents useful block path information. In the following, we eliminate some
unidentified blocks without deleting this essential information.

4.3.3. From State Representation to Minimal State Representati¥ve now remove

the useless information gf(+;) and obtain the minimal state representation denoted as
¢'(H,), i.e., the bare necessities. A simplification can be mad®®if;). Indeed, if
there is an unidentified blodk € ®2(H;) which is adjacent to only two other blocks,
(h, ky) € W(H,), (h,ky) € ¥ (H;), then we need retain no information other than the
path betweetk; andk,, i.e., (ki, ko) can replacéh, k;) and(h, ky) in W (H;) enabling
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Fig. 7. From state representation to minimal state representdtisran unidentified block of degree two.

the unidentified block to be removed fron®2(H;) (Figure 7). This is a reduction of
®2(H;) to ®2'(H;), and a transformation fronl () to W' (H;).

After the deletion of all the unidentified blocks of degree twai(#;) and®2(*;),
we obtain¥’(H;) and ®2 (H;), and no further simplification of the information for
a state is possible (see Figure 8). The minimal representation of a state is composed
of a forest whose nodes are blocks of a partition and unidentified blgéis;) =
(®1(H;) U ®2'(H,), ¥ (Hi)), such that the unidentified blocks have a degree strictly
larger than two. Indeed it must be at least two in order to have an operating state, and it
cannot be two because of the reduction frént;) to ¥/ (H;).

PROPERTY4.2. For any unidentified bloclk of ®2'(H;), the degree ob in the forest
'(H) = (O1(H;)) U ®2 (H;), ¥/ (H;)) is strictly larger than two.

Consequently, we have® |02 (H;)| < max0, |®1(H;)| — 2).

3
§(HY S(H
) — T — 2
: O} OJs
g 2 z z
o g S
3
K‘E, — "
-
@
g Oz Oz
— z g
Ol ol
[}
za, — SENEER )
S o
=B O w O CU
(= - = = 5
5 a
o - 2 oA = 2 <
85 v g & w
= 2 = 2
J s &2
| — o p— =N —
5 O O
T B = 2]
Y z oy
B — S S
Ll =] = s EN
2 S O O
a wn
e —

Fig. 8.From state representation to minimal state representation (example). Removal of the unidentified blocks
of degree two.
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Fig. 9. Equivalent states for 2ec reliability,(Hj) = (O1(Hj) U O2(H;), ¥(Hi)) = ({B1, Bz, Bs,
B-1}, {(B1, B-1), (Bs, B_1)}) with By = [u], Bz = [v], B = [w], B_1 = []. {(Hj) = (OL(H)) U O2(H)),
V(H)) = ¢(H;) = Hi and’H; are equivalent states.

4.3.4. Class Representation Several states have the same minimal representation.
These states are equivalent and belong to the same class (see Figure 9). The model-
ing of a classCy  is therefore a fores€h x = (OL(CHk) U ©2(Ch k), Y (Chk)),

where:

— ®1(Cy k) is a partition of the boundary sét of |©1(Cy k)| blocks.
— ®2(Chk) is a set of unidentified blocks which satisfy Property 4.2.
— W/(Chk) is a set of edges whose endpoints belon@16Cy k) U ©2'(C k).

All the states whose minimal representatioisx belong to this class.

4.4, The Decomposition Principle The principle of decomposition for 2ec reliability
is similar to that for all terminal reliability:

— consider two subgraphd andL and their boundary sét,

— enumerate the operating classedband L (omitting the failure classes DER)
and DEKL)),

— compute the associated probabilities of these classes (with (5)),

— search for all compatible classes and compute the 2ec reliability with (9).

2ec reliability of G is computed by combining the compatible classesHofand

L (9). Two classe€ x andC_ y are compatible if their union provides the 2-edge-
connectivity of the boundary sd¥, and can ensure the 2-edge-connectivity of the
whole graphG.

Figure 10 presents the set of possible classes for a boundary set of three vertices. Note:
the blocks of the partitions are denotBdwith i > 0 and the unidentified blocks are
denotedB; with j < 0. We list here some combinations between the classes of the two
subgraphdH andL, separated by a boundary set of three vertices, that are compatible
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CulivIiwl . {(B;.By) . (BB 1) ( [ul[vl[w] . { (B1.By) . (By.By) 1) ( [ul[vl[w]. { (BB .(B;.By )
® ® ®
C[u][vIlw]. { (BB 1) ([u](vlw] . £ BBy }) C[IivIiwl, £ (B2,By) })
® © ® '—=—‘ £ gl
et CLulvIWIL) - O 10
vl 6 (B BBy BBy B ) (luwl, )
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Cluv)[w]. {3 C[uwliv]. {3) C[ullvw]. {})
(Juv](w] . { (BB } ) (luw]lv], { (BB }) (lujlvw], { (B.B2) })

Fig. 10.The 15 possible classes for a boundary set of three vertices.

for 2ec reliability:

Ch.1 = ([uvw], {}) andCp;,Vi,1<i <15.

Ch,3 = ((u][w], {(1, 2} andCr 3 = ([uv][w], {(L, 2)}).

Chs = ([uw][v], {1, 2} andC 3 = ([uw][w], {(1,2}).

Ch,s = ([uw][v], {(1, 2} andCr = ([ullvw], {}).

Che = ([u][vw], () andCp 1 = ([uvw], {}).

Ch,s = ([u][v][w], () andC 1 = (uvw], {)).

Ch,12= ([u][v][w], {(1,2), (1, 3}) andCy 14= ([u][v][w], {(1, 3), (2, 3}).

Ch,12= ([u][v][w], {(1,2), (1,3} andCy 15 = ([u][v][w]l, {(~1, 1), (=1, 2), (=1, )}.

Ch.15= ([U[V][w]0{(=1, 1), (=1, 2), (=1, 3}, and Cy 15 = ([ul[v][w]]. {(=1, 1), (=1, 2), (-1, 3)}).

Rosenthal’s algorithm described in Section 3.4 for all terminal reliability can be applied
for 2ec reliability without any change.

4.5. Number of Classes The number of classes depends on the number of vertices in
the boundary setF| (e.qg., the class enumeration fét| = 3 is shown in Figure 10). A
class is composed of a partition Bfwith k blocks and of a forest on these blocks, and
possibly of unidentified blocks of degree strictly greater than two (see Property 4.2). So
the number of classes for a given boundaryfsét

IF|
Nb_classess. = Z(A\FI,J -NFU(j)),
j=1
where Ajr ; is the Stirling number of the second kind (see Section 3.5) and(NFU
stands for the number of these particular labeled foresismaides with unidentified
nodes (these unidentified nodes are not labeled and have a degree strictly greater than
two). These numbers are given in Tables 2 and 3.
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Table 2. Number of labeled forests with unidentified nodes against the
number of nodeN.

N 1 2 3 4 5 6 7

NFU(N) 1 2 8 58 662 10,584 219,004

5. Linear Time Algorithms. We have seen above the decomposition principle which
consists in considering two subgraphs and L of G and combining their classes

to compute reliability (see Sections 3 and 4). Now we look at the implementation
of this principle with an algorithm belonging to the table-based reduction algo-
rithm family [12], more effective than Rosenthal’s algorithm which we presented in
Section 3.4.

5.1. Preliminary Definitions We first define the notions of linear ordering and vertex
separation number used in our algorithm, and the notions of pathwidth and treewidth
introduced by Robertson and Seymour [13], [14] and Bodlaender [15].

By definition, alinear ordering (denotedV) of G = (V, E) is a bijection'N: V —
(1,...,|V].

In the following, the vertexXV' (i), i € {1,...,|V|}, will be denoted as;.

We denoteF; = {v; € V/3(vj, w) € Esuchthatj <i <k},Vvi e {1,...,|V]}.

The vertex separation number (denotedFn,o) of a linear ordering iFmax(N) =
max<i <;v|(|Fil).

The vertex separation number of a graplfigx(G) = miny (Fmax(N)).

A path-decomposition(denoted agp) of G = (V, E) is a sequence of subsets of
V: Dp=(Xy,..., X¢), such that:

- Ulfifrxi =V,
— for every edg€v, w) € E, thereisasubsefj, 1 <i <r,withv € X; andw € X;,
— foralli, j,ke{l,...,r},ifi <j <k, thenX; N Xk € X;.

By definition, the pathwidth of a path-decomposition is pathwid®, =
max<i<r (|Xj| — 1), and the pathwidth of a graph is pathwid8) =
minp, (pathwidt(Dy)).

A tree-decomposition(denoted ag) of G = (V, E) is a couple composed of a
family of subsets oV and atreeD; = ({Xi/i € I}, T = (I, F)), such that:

— Uia Xi =V,

— for every edgdv, w) € E, there is a subseX;, i € |, withv € X; andw € X;,
— foralli, j,k e I,if j is on the path fromi tok in T, thenX; N X € X;.

Table 3. Total number of classes (2ec reliability) against the sizE .of

[FI 1 2 3 4 5 6 7

Nb_classesec 1 3 15 121 1473 25,067 556,783
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By definition, thetreewidth of a tree-decomposition is treewidf,) = max¢, (| Xj|— 1),
and the treewidth of a graph is treewid®) = minp, (treewidth(Dy)).

The following propositions have been demonstrated: Get= (V, E) be a given
graph. The pathwidth of a grajghis at least its treewidth. In fact, a path-decomposition
of G can be written as a tree-decomposition®fwith the same width. The pathwidth
of a graphG is equal to its vertex separation number [16]. Moreover, finding a lin-
ear ordering ofG with a minimum vertex separation number is equivalent to finding a
path-decomposition with the smallest pathwidth.

The pathwidth and treewidth problems (given a graph, find a tree-decomposition or
a path-decomposition with the smallest width) are NP-hard [17]. Nevertheless, for fixed
parameter, the problems of finding a path-decomposition or tree-decomposition of
width at mostk can be solved in linear time, but using algorithms with a rather high
constant factor [18], [19].

5.2. The Dynamic Programming Algorithm for Reliability agc Reliability Com-
putations We now present our algorithm based on the decomposition principle (see
Sections 3 and 4). We consider a resolved subgtdphihose classes are known, and
we enlarge this resolved subgraph by vertex insertion until we have resolved the whole
graph.

0. Alinear ordering of the vertices is required.
1. Ho={}, Lo =G.
2. For each vertey; (in the order given by the linear ordering, framto v}y):
2.1. Removey; from the subgrapli;_; and addv; to the subgraph;_; to obtain
L; and Hi.
2.2. Find the boundary s& betweenH; andL;.
2.3. Compute the classes of the boundarysén the subgraph; and their proba-
bilities.
3. The reliability (or 2ec reliability) o6 is the probability of the single class of the last
boundary set.

The vertex separation numbé&i,ay, is the size of the boundary sEt that contains the
maximal number of vertices during the algorithm.

Figure 11 shows the boundary set evolution and the growth of the resolved subgraph
(Hi) during the algorithm. At each step of the algorithm, the classes and their probabilities
are stored in atable. The table of each step is computed using the table of the previous one.
For each class we need to enumerate the possible states of the new elements introduced
inthe resolved grapHi;, i.e., the new vertex and the new edges added to the new resolved
subgraphH; (see Figure 12).

5.3. Complexity and Vertex Separation Number

5.3.1. Complexity of All Terminal Reliability Computation The results of this algo-
rithm [11] prove that the decomposition method is extremely powerful. In practice, for
the all terminal reliability problem, it can handle any network withax < 12. Indeed,

the resolution time and required memory grow exponentially in functioR.gf The
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H,

Fig. 11. Evolution of the resolved subgraph during the algorithm. The vertices belongifigare shaded.
Frmax = 4.

Consider the previous step class [uv][w] with F_={uv,w)}
) The new boundary setis | F={u,v,x}.

E
g The new elements of H, are the vertex x and the edges (xu) . (xw).

o ©
© ©
®

E

reliability
Consider the previous step class [uv]---[w] with T, ={wv,w}.
~
© ;/\ The new boundary setis : F={iv.x}.
@ - The new elements of H, are the vertex x and the edges (xu) , (xw).

@

® 0] ©
® o" © ©
@]

2ec reliability

Fig. 12.Construction of the new step classes.
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Table 4. Reliability computation times (in seconds) with the decomposition algorithm.

VI
10 20 30 40 50 60 70 80 90 100
Frax=6 018 0.66 116 166 216 2.64 3.12 3.66 412 4.62
Fmax=7 0.87 423 761 1098 1439 17.90 2120 2479 27.94 3140
Frax=8 3.36 2857 5345 79.08 103.94 128.77 154.09 179.12 204.30 230.21
Fmax=9 5.75 202.53 399.74 597.73 793.49 991.21 1186.84 1384.47 1585.97 1775.92
complexity is

Fmax .
o <(|V|) Y (AR -2 (Fmax)z) :
j=1

J

whereA, ; is the Stirling number of the second kind, aRgax is the vertex separation
number. We now give a brief explanation of this complexjty} stands for the number
of main iterations, i.e., the insertion of a new verigxn H;. ) Ag,. ; is the number
of possible classes for a boundary set of $izg,. 2/ represents the number of possible
states to consider for the edges addedHio(Fmay? stands for the class construction
and identification in the new resolved subgrathh ;.

The exponential factor of this method Bhax Whereas this factor is the size of
the graph for the factoring-reduction method [9], i.e., this algorithm can compute the
reliability of large networks whereas the factoring-reduction algorithm is limited to small
networks.

Table 4 presents the results of the decomposition algorithm in CPU time, running on
a 167 megahertz machine (UltraSparc), for large density graphs with 10-100 vertices,
for Fmax from 6 to 9. These graphs aFg,a-paths, which means that the addition of an
edge in such a graph increaseshtg.

5.3.2. Complexity of2ec Reliability Computation As in the case of reliability, for
all terminal 2ec reliability we use a table-based reduction algorithm. The 2ec reliabil-
ity algorithm requires more classes than the reliability algorithm, which explains why
Fmax < 7 in practice. Moreover, these classes are more costly to compute and handle in
memory.

The complexity of this algorithm is

Fmax )
o ((IVI) Y (A - NFU()) - 3) - (Frnan) - NFU(Fmax)> ,

j=1

whereA; j is the Stirling number of the second kirfélax the vertex separation number,
and NFU j) is the number of labeled forests wifmodes andt unidentified nodes with

0 < k < maxQ0, | — 2) (see Property 4.2). We now give a brief explanation for this
complexity: |V| stands for the number of main iterations, i.e., the insertion of a new
vertexv; in Hi. > "(Ag,,.; - NFU(])) is the number of possible classes for a boundary
set of sizeFnax. 3! represents the number of possible states to consider for the edges
added toH;. Fnax- NFU(Fnay) stands for the class construction and identification in the
new resolved subgrapt; ;.
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Table 5. 2ec reliability computation times (in seconds) with the decomposition algorithm.

VI

10 20 30 40 50 60 70 80 90 100

Fmax=5 7.60 30.31 53.18 76.09 97.54 158.29 141.41 164.54 197.85 209.47
Fmax=6 182.16 1306.62 2336.50 3491.10 4560.01 5711.74 6634.53 7703.86 8769.99 9857.80

Table 5 presents the results of the decomposition algorithm in CPU time, running on
a 167 megahertz machine (UltraSparc), for large density graphs with 10-100 vertices,
for Fmax = 5 and 6. These graphs dfgax-paths (see Section 5.3.1).

Table 6 presents our results in CPU time, running on a 100 megahertz machine, for
small density graphs (grid networks) with>32 to 3 x 9 vertices, forFnx = 3, and
compares them with an algorithm using a classical state enumeration.

5.3.3. Linear Time and Vertex Separation Numbewe have seen in Sections 5.3.1
and 5.3.2 that the main factor of the complexity for the all terminal reliability and 2ec
reliability algorithms isFnax, the size of the maximum boundary set. Moreover, for a
given boundedr,x, the complexityis lineari® (| V) (all other factors of the complexity
are constant). The linearity of our results can be verified in Tables 4 and 5.

The largest size of the boundary set during our algorithRigy, depends on the
initial vertex linear ordering and so does the complexity. Figure 13 shows another linear
ordering for the graph of Figure 11, with,ax = 3 instead ofFyax = 4.

A basic problem is therefore to find a linear ordering for a given graph suclrthat
is minimal. This problem is equivalent to the problem of the pathwidth (see Section 5.1).
To solve it, we use a heuristic method described in [11].

5.4. Dynamic Programming Algorithms to Sol#>-Hard Problems Our algorithm
can solve the network reliability problem, which is NP-hard, in linear time for a bounded
Fmax It has been proved that some classes of graph problems can be solved in polynomial
(or linear time) with such dynamic programming algorithms using a tree-decomposition
with a bounded width [20]-[23]. The principle of these algorithms is to use the graph
tree topology in order to expand a resolved subgraph, until the whole graph is resolved,
and to store in memory all partial solutions standing for the resolved elements, i.e., the
information required to compute the final solution.

The algorithm presented in this article (Section 5.2) uses a path-decomposition (which
is a particular tree-decomposition) produced by the linear ordering of the vertices. The

Table 6.2ec reliability computation times (in seconds) with the decomposition method (DEC)
and with an enumeration method (ENU).

VI

6 9 12 15 18 21 24 27

DEC 0.84 0.80 0.76 0.95 0.65 0.67 0.67 0.66
ENU 0.01 0.03 0.14 112 9.24 77.59 651.87 5452.46
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Fig. 13. Another vertex linear ordering. The vertices belongingrt@re shadedrmax = 3.

vertex separation numbeF{,,) of the linear ordering corresponds to the pathwidth of
the path-decomposition [16].

6. Conclusion. We have presented algorithms to compute all terminal reliability and
2ec reliability in linear time for graphs with bounded pathwidths. These algorithms
belong to the family of dynamic programming algorithms which solve some NP-hard
problemsin polynomial (or linear time) with a given small width tree-decomposition. The
implementation of our algorithms uses a vertex linear ordering of the graph with a vertex
separation number equivalent to the correspondent pathwidth. For greater efficiency, a
similar algorithm could be implemented using a tree-decomposition instead of a path-
decomposition.

The main difficulty of such dynamic programming algorithms for a given problem is
to find and handle the classes. Here we have described the definition of these classes for
all terminal reliability and all terminal 2ec reliability with perfect vertices. The classes
for K-terminal reliability with imperfect vertices are defined in [11]. With regard to
2-connected reliability, the huge number of classes given in [24] does not allow the
decomposition method to be as effective as with reliability and 2ec reliability.
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