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Diameter and Treewidth in Minor-Closed
Graph Families1

D. Eppstein2

Abstract. It is known that any planar graph with diameterD has treewidthO(D), and this fact has been
used as the basis for several planar graph algorithms. We investigate the extent to which similar relations hold
in other graph families. We show that treewidth is bounded by a function of the diameter in a minor-closed
family, if and only if some apex graph does not belong to the family. In particular, theO(D) bound above can
be extended to bounded-genus graphs. As a consequence, we extend several approximation algorithms and
exact subgraph isomorphism algorithms from planar graphs to other graph families.
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1. Introduction. Baker [2] implicitly based several planar graph approximation algo-
rithms on the following result, which can be found more explicitly in [4]:

DEFINITION 1. A tree decompositionof a graphG is a representation ofG as a subgraph
of a chordal graphG′. Thewidthof the tree decomposition is one less than the size of the
largest clique inG′. Thetreewidthof G is the minimum width of any tree decomposition
of G.

LEMMA 1. Let D denote the diameter of a planar graph G. Then a tree decomposition
of G with width O(D) can be found in time O(Dn).

The lemma can be proven by defining a chordal graph having cliques for certain three-
leaf subtrees in a breadth first search tree ofG. Such a subtree has at most 3D−2= O(D)
vertices.

Baker used this method to find approximation schemes for the maximum independent
set and many other covering and packing problems in planar graphs, improving previous
results on planar graph approximation algorithms based on separator decomposition [9],
[15]. Baker’s basic idea was to remove the vertices in everykth level of the breadth
first search tree of an arbitrary planar graphG; there arek ways of choosing which
set of levels to remove, at least one of which only decreases the size of the maximum
independent set by a factor of(k− 1)/k. Then each remaining set of contiguous levels
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forms a graph with treewidthO(k) (it is a subgraph of the graph with diameterk formed
by removing vertices in outer levels and contracting edges in inner levels), and the
maximum independent set in each such component can be found by standard dynamic
programming techniques [3], [19].

Other workers have developed parallel variants of these approximation schemes [6],
[8], [10], applied Baker’s method to exact subgraph isomorphism, connectivity, and
shortest path algorithms [12], extended similar ideas to approximation algorithms in
other classes of graphs [7], [20] or graphs equipped with a geometric embedding [13],
and defined structural complexity classes based on these methods [14].

These results naturally raise the question, how much further can these algorithms be
extended? To what other graph families do these techniques apply? Since the argument
above about contiguous levels of the breadth first search tree being contained in a low-
diameter graph is implicitly based on the concept ofgraph minors, we restrict our
attention tominor-closedfamilies; that is, graph families closed under the operations of
edge deletion and edge contraction. Minor-closed families have been studied extensively
by Robertson, Seymour, and others, and include such familiar graph families as the planar
graphs, outerplanar graphs, graphs of bounded genus, graphs of bounded treewidth, and
graphs embeddable inR3 without any linked or knotted cycles.

DEFINITION 2. Define a familyF of graphs to have thediameter-treewidth propertyif
there is some functionf (D) such that every graph inF with diameter at mostD has
treewidth f (D).

Lemma 1 can be rephrased as showing that the planar graphs have the diameter-
treewidth property withf (D) = O(D). In this paper we exactly characterize the minor-
closed families of graphs having the diameter-treewidth property, in a manner similar to
Robertson and Seymour’s characterization of the minor-closed families with bounded
treewidth as being those families that do not include all planar graphs [16].

DEFINITION 3. An apex graphis a graphG such that for some vertexv (the apex),
G− v is planar (Figure 1).

Fig. 1. The graph on the left is an apex graph; the topmost vertex is one of the possible choices for its apex.
The graph on the right is not an apex graph.
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Apex graphs have also been known as nearly planar graphs, and have been introduced
to study linkless and knotless three-dimensional embeddings of graphs [17], [21].

The significance of apex graphs for us is that they provide examples of graphs without
the diameter-treewidth property: letG be ann × n planar grid, and letG′ be the apex
graph formed by connecting some vertexv to all vertices ofG; thenG′ has treewidth
n+1 and diameter two. Therefore, the family of apex graphs does not have the diameter-
treewidth property, nor does any other family containing all apex graphs. Our main result
is a converse to this: any minor-closed familyF has the diameter-treewidth property, if
and only ifF does not contain all apex graphs.

2. Walls. Recall that the Euclidean plane can be exactly covered by translates of a
regular hexagon, with three hexagons meeting at a vertex.

DEFINITION 4. We say that a set of hexagons isconnectedif its union is a connected
subset of the Euclidean plane. Ifh1 andh2 are two hexagons from a tiling of the plane
by infinitely many regular hexagons, define thedistancebetween the two hexagons to
be the smallest integerd for which there exists a connected subset of the infinite tiling,
containing bothh1 andh2, with cardinalityd + 1.

Thus, any hexagon is at distance zero from itself; two hexagons meeting edge-to-edge
are at distance one, and in general ifh1 6= h2 andh1 is at distanced from h2, thenh1

meets edge-to-edge with some other hexagon at distanced − 1 from h2.

DEFINITION 5. Let S be a finite connected subset of the hexagons in a tiling of the
Euclidean plane by regular hexagons. Then we define thegraph of Sto be formed by
creating a vertex at each point of the plane covered by the corner of at least one tile ofS,
and creating an edge along each line segment of the plane forming one of the six edges
of at least one hexagon inS.

Observe that the graph ofS is planar and each of its vertices has degree at most three.
Figure 2 shows an example of a set of hexagonal tiles and its graph.

Fig. 2.A set of hexagons and its graph.
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Fig. 3.Walls of size one, two, and three.

DEFINITION 6. A subdivisionof a graphG is a graphG′ formed by replacing some or
all edges ofG by paths of two or more edges. Awall of size sis a subdivision of the
graph ofS, whereS is the set of all hexagons within distances− 1 from some given
central tile in a tiling of the Euclidean plane by regular hexagons.

Note that since the definition of a wall depends only on the combinatorial structure
of S, it is independent of the particular tiling or central tile chosen in the definition.
Examples of walls are shown in Figure 3. Walls are very similar to (subdivisions of)
grid graphs but have a slight advantage of having degree three. Thus we can hope to find
them as subgraphs rather than as minors in other graphs.

LEMMA 2 [16]. For any s there is a numberw = W(s) such that any graph of treewidth
w or larger contains as a subgraph a wall of size s.

In a recent improvement to this lemma, Robertson et al. [18] showed that ifH is a pla-
nar graph, the family of graphs with noH -minor has treewidth at most 202(2|V(H)|+4|E(H)|)5.
Since a wall of sizes is a planar graph withO(s2) edges and vertices, this implies that
W(s) ≤ exp(O(s10)).

LEMMA 3 [16]. For any planar graph G there is some s= s(G) such that any wall of
size s has G as a minor.

We will subsequently need to identify certain components of walls. To do this we
need to use not just the graph-theoretic structure of a wall but its geometric structure as
a subdivision of the graph of a set of hexagons. (This geometric structure is essentially
unique for large walls, but not for walls of size two, and in any case we do not prove
uniqueness here.)

DEFINITION 7. An embeddingof a wall G is the identification ofG as a subdivision
of a graph of a set of hexagons meeting the requirements for the definition of a wall.
A t-inner vertex of an embedded wall is a vertex incident to a hexagon within distance
t − 1 of the wall’s central hexagon (so all vertices in a wall of sizes ares-inner). An
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outer vertex or edge of an embedded wall is a vertex or edge incident to the boundary
of the union of the set of hexagons forming the embedding.

3. Routing Across Walls

DEFINITION 8. An (s, t) routing problemconsists of an embedded wallG of sizes+ t ,
an(s− 1)-inner vertexv, and a setSof pairs ofterminals(certain vertices of the wall),
satisfying the following conditions:

1. Each terminal is eitherv or a degree-three outer vertex of the wall.
2. Each outer vertex occurs at most once as a terminal inS; v occurs at most three times

as a terminal.
3. The graph formed by the pairs of terminals inS has a planar embedding as a set

of noncrossing curves within the interior ofU , whereU denotes the union of the
hexagons forming the embedding of the wall.

4. At mostt pairs of terminals do not involvev.

DEFINITION 9. A solutionto an(s, t) routing problem consists of a vertexv′ and a set
of |S| + 1 edge-disjoint paths inG, satisfying the following conditions:

1. Each pair inSmust correspond to one of the paths of the solution.
2. Each outer terminal of a pair inSmust be an endpoint of the corresponding path.
3. Each pair inS involving vertexv must correspond to a path havingv′ as one of its

endpoints.
4. The remaining path in the set, not corresponding to a pair inS, must have as its two

endpointsv and one of the vertices on a path involvingv′.
5. All paths are disjoint from the outer edges of the wall.

A (2,2) routing problem (with five paths, three involving the inner vertex) and its
six-path solution is depicted in Figure 4.

DEFINITION 10. A pair(x, y) of terminals in an(s, t) routing problem issplittableif
the curve corresponding to(x, y) in the planar embedding ofS partitionsU into two
regionsA andB such that all terminals are incident toA and only terminalsx andy are
incident toB.

In Figure 4 both pairs of outer terminals are splittable.

LEMMA 4. If an (s, t) routing problem includes a pair of outer terminals, it includes a
splittable pair.

PROOF. The planar embedding of the pairs of outer terminals inS, together with the
boundary of the wall, forms an outerplanar graph (a planar graph in which all vertices
are incident to the outer face). Because the weak dual of an outerplanar graph (the graph
formed from the planar dual by removing the vertex corresponding to the outer face)
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Fig. 4.A (2,2) routing problem and one of its solutions.

is a tree, it has at least two leaves. Each leaf of this tree corresponds to a region ofU
bounded by a curve in the planar embedding ofS and not containing any other outer
terminals ofS. At most one leaf contains the inner terminalv, so there is at least one
leaf not containing any terminals.

LEMMA 5. Every(s, t) routing problem has a solution.

PROOF. We use induction ont . If there are fewer thant pairs of terminals involvingv,
the given problem is also an(s+ 1, t − 1) routing problem and the result follows from
induction.

If t > 0, let(x, y) be a splittable pair. Then we can extend an edge from each terminal
of S to an(s+ t − 1)-inner vertex, on the boundary of a wall of size(s+ t − 1) within
the original wall. We connectx andy by a path around the boundary of this smaller wall.

Next we connect each other outer terminal to a degree-three outer vertex of the smaller
wall, one terminal at a time, starting from the terminal immediately counterclockwise
of the pair(x, y), and continuing counterclockwise from there. For each terminalt ,
we first attempt to extend a path clockwise around the inner wall’s boundary to
the next degree-three vertex. There are four possible situations that can arise in this
extension:

1. We reach an unused degree-three vertex. This vertex will become the terminal of a
smaller problem in the inner wall.

2. We reach a vertex that is part of a path extended from the other endpointu of a pair
(t,u) in S. In this case we have found a path connecting(t,u) and will not continue
using this pair in the smaller problem we form.

3. We reach a vertex that is part of a path extended from another terminalu, and both
(t, v) and(u, v) are pairs inS. In this case we will form a smaller problem in which
these two pairs have been replaced by a single pair(w, v)wherew is the degree-three
vertex reached from botht andu.
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(a) (b)

Fig. 5. Cases for solution of routing problems: (a) reduction from an(s, t) problem to an(s, t − 1) problem;
(b) solution of an(s,0) problem by routing around the boundary of the inner wall.

4. The degree-three vertex we reach is already part of a path but cannot be connected
to t . In this final case we instead extend a path counterclockwise fromt to the next
degree-three vertex.

Note that the first time the counterclockwise extension of case 4 happens it can only be
at one of the six points where two degree-two outer vertices of the wall are adjacent.
Case 4 may then continue to happen as long as each successive degree-three vertex on
the boundary of the wall is a terminal that cannot be connected to the previous terminal.
However, by planarity, this can only happen if no two terminals in this sequence form
pairs with each other or withv, for if they did we would have one of cases 2 or 3 instead.
Therefore there are at mostt terminals in such a sequence, and we will escape from this
counterclockwise case before we reach the next pair of two adjacent outer degree-two
vertices of the wall. As a consequence, this case always succeeds in extending the path
to an unused degree-three vertex.

The result of this path extension process is an(s, t − 1) routing problem on the
smaller wall (Figure 5(a)). By induction, this smaller problem has a solution which can
be combined with the path extensions to solve the original(s, t) routing problem.

Finally, if t = 0, we have at most three outer terminals on the boundary of a wall of
sizes and one nonboundary vertexv. Again, we extend an edge from each terminal to
a vertex on the boundary of a smaller wall of size(s+ t − 1). We connect these three
vertices by paths. Ifv is not already on one of these paths we add a path connecting it to
the solution (Figure 5(b)).

4. Macrocells. The strategy for our proof that graphs without the diameter-treewidth
property contain all apex graphs as minors will be first to place a given apex graph’s
vertices on a wall, and then solve many routing problems in order to show that the
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Fig. 6.Subdivision of a large wall into many smaller walls.

wall contains the appropriate connections between these vertices. To do this, we need
to partition the one large wall into many smaller walls. As shown in Figure 6, the union
of the hexagons of a wall forms a shape that can itself tile the plane, with a pattern of
connectivity equivalent to that of the original hexagonal tiling. If the hexagons of a large
wall are partitioned into smaller walls according to such a tiling, we call the smaller
wallsmacrocells.

Note that while the macrocells are a partition of the hexagons of a wall, they are not
a partition of the edges and vertices of the wall. We say that two macrocells areadjacent
if they share some edges and vertices; if the macrocells are walls of sizes the shared
vertices form a path ofO(s) corner vertices (and possibly many more path vertices).
Define asideof a macrocell to be one of these shared paths.

LEMMA 6. Let S be a set of(s− t/2)-inner corners of a wall of size s. Then one can
partition the wall into macrocells of size t so that|S|/4 members of s are t/2-inner.

PROOF. The partition into macrocells is determined by the choice of one central hexagon
for one macrocell. If one chooses this hexagon uniformly at random, the probability that
any given corner inSis t/2-inner is propertional to the area of the inner size-t/2 wall of a
macrocell relative to the overall macrocell’s area; this probability is therefore 1/4. Thus
choosing a random macrocell center gives an expected number oft/2-inner members of
Sequal to|S|/4. The best macrocell center must give at least as manyt/2-inner members
of Sas this expectation.
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Fig. 7.Curve formed by doubling the spanning tree of a set of macrocells.

LEMMA 7. Let M be a set of macrocells of an embedded wall, such that one can connect
any two macrocells in M by a chain of adjacent pairs of macrocells. Then there exists a
non-self-intersecting curve in the plane that is contained in the union of M, that passes
through all macrocells in M, such that the intersection of the curve with any macrocell
has at most three connected components.

PROOF. Form a planar graph by placing a point at the center of each macrocell, and
connecting pairs of points at the centers of adjacent macrocells. Then by assumption this
graph is connected, so we can choose a spanning tree. A curveC formed by thickening
the edges of this tree and passing around the boundary of the thickened tree has two of
the three properties we want: it is contained in the union ofM and passes through all
macrocells inM (Figure 7).

Now, suppose that some pathx in C passes consecutively through three pairwise
adjacent macrocellsmi , mj , andmk (e.g., at points where the spanning tree edges form
a 60◦ angle), and the intersection ofC with the middle macrocellmj has more than
one component. Then we can simplifyC by replacingx with a curve that passes di-
rectly from mi to mk (Figure 8). This simplification step maintains the two properties
thatC is in the union ofM and passes through each macrocell. It is possible for such
a simplification step to introduce a crossing, but only in the case that more than one
path passes through the same triple of macrocells; to avoid this problem we always
choose the innermost path when more than one path passes through the same triple
of macrocells. Each simplification step reduces the total number of connected com-
ponents formed by intersectingC with macrocells, so the simplification process must
terminate.

Once this simplification process has terminated, the components of an intersection
of C with a macrocell (if that intersection has multiple components) must connect
nonadjacent pairs of macrocells, so there can be at most three components per
macrocell.
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Fig. 8.Curve simplification by removal of a 60◦ angle.

5. Monotone Embedding. We now show how to partition a graph into smaller pieces
that can be mapped onto a wall using(s, t) routing problems. Specifically, we are con-
cerned with performing this sort of partition to walls, since any other planar graph can
be found as a minor of a wall (Lemma 3).

DEFINITION 11. A planar graphG is monotone embeddedin the plane if no vertical
line crosses any edge more than once, and no vertical line contains more than one vertex.
Themonotone bandwidthof G is the maximum number of edges crossed by any vertical
line, minimized over all such embeddings.

LEMMA 8. A wall of size s has monotone bandwidth O(s).

PROOF. Draw the wall using regular hexagons, tilted slightly so that no edge is vertical;
this gives a monotone embedding. Any vertical line crossesO(s) hexagons, and hence
O(s) edges.

LEMMA 9. Let W be a graph formed by connecting a sequence of macrocells of size s,
such that one can connect any two macrocells by a chain of adjacent pairs of macrocells,
and let k of the macrocells in W have a marked degree-three s/2-inner corner. Then W
contains as a minor any k-vertex trivalent graph G with monotone bandwidth s/6, such
that each subset of vertices of W that is collapsed to form each vertex of G contains one
of the marked vertices.

PROOF. According to Lemma 7, we can find a curveC contained in an embedding of
W, and passing through each macrocell between one and three times. Find a monotone
embedding ofG, and form a correspondence with the marked corners ofW (ordered
by the positions alongC whereC first intersects each macrocell) and the vertices ofG
(ordered according to the monotone embedding).
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Then we form an(2, (s−2)/3) routing problem for each component of an intersection
of C with a macrocell. If the macrocell does not contain a marked vertex, or if the
component is not the first intersection ofC with the macrocell, the routing problem just
consists of pairs of boundary vertices of the macrocell, with each pair placed on the two
sides of the macrocell crossed byC; the number of pairs is chosen to match the number of
edges cut by a vertical slice through the corresponding part of the monotone embedding.
However, for the first intersection ofC with a marked macrocell, we instead form a
routing problem in which the pattern of connections between the boundary vertices and
the marked inner corner matches the pattern of connections in a vertical slice through
the corresponding vertex of the monotone embedding.

This set of routing problems involves the placement of at most 3+ s/3 terminals on
any side of any macrocell. These vertices can be placed arbitrarily on that side, as long
as they can be connected by disjoint paths along the side to the corresponding terminals
of the adjacent macrocell.

The union of the at most three routing problems within each macrocell is an(s/2, s/2)
routing problem and therefore has a solution. Combining these solutions, and contracting
the solution paths in each macrocell, forms the desired minor.

Figure 9 depicts a set of routing problems on four macrocells, the solutions to which
could be combined to form a complete graph on four vertices. For simplicity we have
drawn the figure using macrocells of size eight, but (sinceK4 has monotone bandwidth
four) the lemma above only guarantees the existence of such a routing for macrocells of
size 24.

We note that Lemma 3 follows as an easy consequence of Lemma 9: given any
n-vertex planar graphG, expand its vertices into trees of degree-three vertices. The
resultingO(n)-node graph has monotone bandwidthO(n), so it can be found as a minor
of a wall of sizeO(n3/2), partitioned into a path ofO(n) smaller walls of sizeO(n) as
depicted in Figure 6.

6. The Main Result

THEOREM1. Let F be a minor-closed family of graphs. ThenF has the diameter-
treewidth property iffF does not contain all apex graphs.

PROOF. One direction is easy: we have seen that the apex graphs do not have the
diameter-treewidth property, so no family containing all apex graphs can have the
property.

In the other direction, we wish to show that ifF does not have the diameter-treewidth
property, then it contains all apex graphs. By Lemma 3 it will suffice to find a graph in
F formed by connecting some vertexv to all the vertices of a wall of sizen, for any
givenn. If F does not have the diameter-treewidth property, there is someD such that
F contains graphs with diameterD and with arbitrarily large treewidth.

Let G be a graph inF with diameterD and treewidthW(N1) for some largeN1 and
for the functionW(N) shown to exist in Lemma 2. ThenG contains a wall of sizeN1.
We choose appropriate valuesN2 andN3 = 2(N1/N2) and partition the wall intoN2

3
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Fig. 9.The solutions to four routing problems on marked macrocells can be combined to form aK4 minor.

macrocells of sizeN2. Say a macrocell isgood if it is not adjacent to the boundary of
the wall.

Choose any vertexv ∈ G and find a tree of shortest paths fromv to each vertex. We
say that a macrocell is reached at leveli of the tree if some vertex of the macrocell is
included in that level. SinceG has diameterD, the tree will have heightD. Since all
macrocells are reached at levelD, and the number of macrocells reached at level zero
is just one, there must be some intermediate levelλ of the tree for which the number
N4 of good macrocells reached is larger by a factor ofN2/D

3 than the number of good
macrocells reached in all previous tree levels combined.

Let setS be a set of corners of the wall formed by taking, in each good macrocell
reached at levelλ, a corner nearest to one of the vertices in that level of the tree. By
Lemma 6, we can find a new partition into macrocells, and a set of|S|/4 corners that
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areN2/2-central for this partition. Each macrocell in this new partition containsO(1) of
these corners, so by removing corners that appear in the same macrocell we can mark a
setS′ ofÄ(N4) inner corners of macrocells, at most one corner per macrocell. Note that
the number of new macrocells reached at levelλ − 1 is still O(N4/N2/D

3 ), since each
old macrocell reached at that level can only contribute vertices toO(1) new macrocells.

We then contract levels 1 throughλ− 1 of the tree to a single vertexv. This gives a
minor G′ of G in which v is connected to inner corners ofÄ(N4) distinct macrocells,
and in whichO(N4/N2/D

3 ) other macrocells are “damaged” by having a vertex included
in the contracted portion of the tree. The adjacencies between damaged regions of the
wall form a planar graph withO(N4/N2/D

3 ) vertices and soO(N4/N2/D
3 ) faces, and

there must therefore be a face of this graph containingÄ(N2/D
3 ) members ofS′. Let S′′

denote this subset ofS′.
Now S′′ is part of a connected set of undamaged macrocells of sizeN2, so by Lemma 9

we can find a wall of sizeO(min(N1/D
3 , N2) as a minor of this set of undamaged macro-

cells. If N2 = Ä(n) andN2/D
3 = Ä(n2), we can find a wall of sizen. These conditions

can both be assured by lettingN1 = Ä(n)D+1. Combining this wall with the contracted
vertexv forms the apex graph minor we were seeking.

We can carry out this construction for anyn, and since by Lemma 3 every apex graph
can be found as a minor of graphs of the form ofM , all apex graphs are minors of graphs
in F and are therefore themselves graphs ofF .

Alternatively, instead of finding apex-grid graph minors, and using those to find all
other apex graphs as minors, we can find any apex graph directly by following the proof
of Lemma 3 sketched above after Lemma 9.

7. Bounded Genus Graphs. The results above show that any minor-closed family
excluding an apex graph has the diameter-treewidth property. For example, consider
bounded genus graphs. It is not hard to show that, for anyg, there is an apex graph
with genus more thang: genusg graphs have at most 3n+ O(g) edges, while maximal
apex graphs have 4n − 10 edges, so choosingn large gives an apex graph with too
many edges to have genusg. Therefore, genusg graphs have the diameter-treewidth
property. However, this proof does not give us a very tight relation between diameter,
genus, and treewidth. We can achieve a much better treewidth bound by proving the
diameter-treewidth property more directly.

LEMMA 10. Let G be embedded on a surface S of genus g, with all faces of the embed-
ding topologically equivalent to disks. Then there exists a subgraph X of G, isomorphic
to a subdivision of a graph Y with O(g) edges and vertices, such that the removal of the
points of X from S leaves a set topologically equivalent to a disk.

PROOF. Let X be a minimal connected subgraph ofG such that all components of
S− X are topological disks. Then there must be at most one such component, for
multiple components could be merged by removing fromX an edge along which two
adjacent components are connected; any such merger preserves the disk topology of the
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Fig. 10.Torus graph with subgraphX highlighted, and planar graph formed by contractingX.

components and the connectivity ofX (since any path through the removed edge can be
replaced by a path around the boundary of a component).

ThusX is a graph bounding a single disk face. By Euler’s formula, ifX hasn vertices,
it hasn+O(g) edges. LetT be a spanning tree ofX; thenX− T hasO(g) edges. Note
also thatX has no degree-one vertices, so each leaf ofT must be an endpoint of an edge
in X − T and there areO(g) leaves. Any graph formed by addingO(g) edges to a tree
with O(g) leaves must be a subdivision of a graph withO(g) edges and vertices.

Figure 10 depicts a graphX for an example in whichG is embedded on a torus.

THEOREM2. Let G have genus g and diameter D. Then G has treewidth O(gD).

PROOF. EmbedG on a minimal-genus surfaceS, so that all its faces are topological
disks. Choose a subgraphX as in Lemma 10, having the minimum number of edges
possible among all subgraphs satisfying the conditions of the lemma, and letY be a
graph withO(g) vertices and edges of whichX is a subdivision (as described in the
lemma). Then each path inX corresponding to an edge inY hasO(D) edges. For, if not,
one could find a smallerX by replacing part of a long path by the shortest path from its
midpoint to the rest ofX. Therefore,X hasO(gD) edges and vertices.

Now contractX forming a minorG′ of G. The result is a planar graph, sinceG− X
can remain embedded in its disk, with the vertex contracted fromX being connected to
G− X by edges that cross the boundary of this disk. The contraction can only reduce the
diameter ofG. Therefore,G′ has treewidthO(D), and a tree decomposition ofG with
treewidthO(gD) can be formed by adjoiningX to each clique in a tree decomposition
of G′.

8. Algorithmic Consequences

THEOREM3. For any minor-closed family of graphs with the diameter-treewidth prop-
erty, there exists a linear time approximation scheme for maximimum independent set,
minimum vertex cover, maximum H-matching, minimum dominating set, and the other
approximation problems solved by Baker[2].
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The method is the same as in [2]: we remove everykth level in a breadth first search
tree, with one ofk different choices of the starting level, forming a collection of subgraphs
each of which is induced by somek−1 contiguous levels of the tree. (For the minimum
dominating set and vertex cover problems, we instead duplicate the vertices on every
kth level, and form subgraphs induced byk+ 1 contiguous levels of the tree.) As Baker
shows, one of these choices leads to a graph that approximates the optimum within a
1+ O(1/k) factor. We then use the diameter-treewidth property to show that each of
these subgraphs has bounded treewidth. A tree decomposition of each subgraph can be
found in linear time [5], after which the appropriate optimization problem can be solved
in linear time in each subgraph by using dynamic programming techniques [3], [19].

We note that maximum independent set can also be approximated for all minor-
closed families, using the results of Alon et al. [1] on separator theorems for such
families, however, the separator algorithm of [1] takes superlinear timeO(k1/2n3/2)

(wherek is the number of vertices of the largest clique belonging to the family) and this
approximation technique does not seem to apply to the other problems on the list above.

THEOREM4. Subgraph isomorphism or induced subgraph isomorphism for a fixed
pattern H in any minor-closed family of graphs with the diameter-treewidth property
can be tested in time O(n).

The algorithm closely follows that of [12]. We again remove everykth level of the
tree with one ofk different choices of the starting level, forming subgraphs ofk − 1
contiguous levels, wherek−1 is the diameter ofH . If H occurs inG, it must occur in one
of these subgraphs, which can be tested by finding a tree decompostion and performing
dynamic programming.

9. Conclusions and Open Problems. We have characterized the minor-closed fami-
lies with the diameter-treewidth property. However, some further work remains. Notably,
the relation we showed between diameter and treewidth was not as strong as for pla-
nar graphs: for planar graphs (and bounded-genus graphs)w = O(D) while for other
minor-closed families our proof only shows thatw = W(cD+1)), wherec is a constant
that depends on the family andW(x) represents the rapidly growing function used by
Robertson and Seymour to prove Lemma 2. Can we prove tighter bounds on treewidth
for general minor-closed families?

Specifically, what relation between diameter and treewidth holds for the graphs having
no K3,a minor for some fixeda? Note thatK3,a is an apex graph, so these graphs have
the diameter-treewidth property.K3,a-free graphs are a generalization of planar graphs
(which have noK3,3 or K5 minor) and have other interesting properties; notably, in
connection with the subgraph isomorphism algorithms described above, a subgraphH
has anO(n) bound on the number of times it can occur inK3,a-free graphs, if and only
if H is 3-connected [11]. Any improved treewidth bounds would improve the running
time and practicality of the subgraph isomorphism and approximation algorithms we
described.

Also, are there natural families of graphs that are not minor-closed and that have the
diameter-treewidth property (other than the bounded-degree graphs or other classes in
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which a diameter bound imposes a limit on total graph size)? Although one could not
then apply Baker’s approximation technique [2], this would still lead to quadratic-time
subgraph isomorphism algorithms based on testing bounded-radius neighborhoods of
each vertex [12].

Finally, can we extend some of the same efficient subgraph isomorphism and ap-
proximation algorithms to graph families without the diameter-treewidth property? For
instance, it is trivial to do so for apex graphs, by treating the apex specially and applying
a modified algorithm in the remaining graph. What about other graph families containing
the apex graphs, such as linkless and knotless embeddable graphs, orK4,4-free graphs?
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