
DOI: 10.1007/s004530010011

Algorithmica (2000) 27: 170–186 Algorithmica
© 2000 Springer-Verlag New York Inc.

Smallest Enclosing Cylinders1

E. Schömer,2 J. Sellen,2 M. Teichmann,3 and Chee Yap4

Abstract. This paper addresses the complexity of computing the smallest-radius infinite cylinder that en-
closes an input set ofn points in 3-space. We show that the problem can be solved in timeO(n4 logO(1) n) in
an algebraic complexity model. We also achieve a time ofO(n4L · µ(L)) in a bit complexity model whereL
is the maximum bit size of input numbers andµ(L) is the complexity of multiplying twoL bit integers.

These and several other results highlight a generallinearization techniquewhich transforms nonlinear
problems into some higher-dimensional but linear problems. The technique is reminiscent of the use of Pl¨ucker
coordinates, and is used here in conjunction with Megiddo’s parametric searching.

We further report on experimental work comparing the practicality of an exact with that of a numerical
strategy.

Key Words. Geometric optimization, Parametric search,ε-Approximation algorithms, Smallest enclosing
cylinder, Best-fit line.

1. Introduction

1.1. Motivation. A major topic of geometric optimization is to approximate point
sets by simple geometric figures. This includes extensively studied planar problems
such as smallest enclosing circles, the minimum width annulus, and the minimum
width slab. In higher dimensions, there are few nontrivial complexity results for ge-
ometric figures beyond hyperplanes or spheres. In this paper we consider the
following:

SMALLEST CYLINDER PROBLEM (P1). LetI be a given set ofn points in 3-space. Find
a line` which minimizes max{d(`, c): c ∈ I }.

Here,d(`, c) denotes the minimum Euclidean distance betweenc and a point of
`. Since cylinders constitute an important primitive shape in computer-aided design
and manufacturing, this problem has many applications. We merely give two
examples:

The first example is fromassembly planning. Assume we want to “fit” a given polyhe-
dral object into a cylindrical hole. Obviously, this problem can be solved by computing
the smallest enclosing cylinder of the polyhedron. In practical situations, the number
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n of points defining the polyhedron may be large, but the computation of a suboptimal
solution can usually be tolerated.

The second example is from an area of importance to modern high precision engi-
neering,dimensional tolerancing and metrology(see [SV] and [Ya]). Here the task is,
given a physical object, to verify its conformance to tolerance specifications by taking
probes of its surface. The cylinder is one of the basic objects addressed by the ASME tol-
erancing standards [Asme]. In industry, highly specialized, expensive equipment (called
Coordinate Measurement Machine or CMM) is used to perform these probes automat-
ically. In contrast to the previous application,n is small but high numerical accuracy is
important [Ya].

1.2. Contributions. We summarize four areas of contribution.
(I) We design efficient algorithms for the smallest cylinder problem:

THEOREM1. The problem(P1)can be solved in time:

(i) O(n4 logO(1) n) in an algebraic model; and
(ii) O(Lµ(L)n4) in a bit model.

Here,µ(L) = O(L log L log logL) denotes the complexity of multiplying twoL-bit
integers. The algebraic and bit complexity models are described below.

(II) We design approximation algorithms for the smallest cylinder problem. Such
results may be more useful for certain applications. A cylinder whose radius is withinε of
the minimum radius is called anε-approximate smallest cylinder. We obtain complexity
tradeoffs betweenn andε:

THEOREM2. In an algebraic model of computing, an ε-approximate solution of(P1)
can be found in times(respectively):

O(nε−2 logε−1), O(n3ε−1 logε−1), O(n4 logε−1).

(III) We highlight alinearization techniquefor geometric optimization problems. The
above result uses Megiddo’s parametric search and a new parallel convex hull algorithm
in [AGR]. However, it also requires an application of the linearization technique, which
we believe has wider applicability.

The heart of both approximation and parametric search algorithms is adecision scheme
for a fixed optimization parameter. To obtain efficient decision algorithms, it is often
possible to exploit geometric duality transformations, including inversion (as in [FSS])
and Plücker coordinates (as in [ST]). In this paper we extend these principles to a more
general framework, here calledlinearization. We give this an abstract formulation. Let
P(x, y) be a polynomial in the real variablesx = (x1, . . . , x`) andy = (y1, . . . , ym).

ABSTRACTDECISIONPROBLEM (D). Given a setI ⊆ Rm of n points, decide if there
exists a pointp ∈ R` such that for allc ∈ I , P(p, c) ≤ 0.
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We sayP(x, y) has anorder k linearizationif there exist 2k+ 1 polynomials,Xi =
Xi (x) (i = 1, . . . , k) andYi = Yi (y) (for i = 0, . . . , k), such that

P(x, y) = Y0+
k∑

i=1

Xi Yi .

THEOREM3.

(i) If P(x, y) has an order k linearization, the decision problem(D) can be solved in
time O(nbk/2c) in the algebraic model.

(ii) In the bit model, if each input coordinate has L bits, the problem(D) can be solved
in time O(µ(L)nbk/2c).

In our application, we need to transform our original problem into some suitable
versions of Problem (D) and give efficient linearizations.

(IV) Finally, in view of considerable interest in implementation of these algorithms
[Ya], we report on some experimental work using a heuristic approach—a “local” numer-
ical optimization technique, implemented inC. Our heuristic seems to be quite effective,
as verified against exact answers. The exact answers come from aMAPLE implementation
of a simple algorithm to enumerate all cylinders with fixed radius through four of the
given points. It should be noted that the size of our input data (see Section 4) lies on the
edge of what could reasonably be handled byMAPLE.

1.3. Subproblems. In order to get approximation algorithms, we may considerre-
strictedversions of (P1) with fewer degrees of freedom, and discretize the remaining
parameters by a grid, with step-size depending onε. Suppose we eliminate therotational
degrees of freedomand ask for a cylinder with fixed axis direction. This problem reduces
to the well-knownsmallest enclosing circleproblem in the plane—which is solvable in
linear time. An intrinsically different situation arises when we eliminate thetranslational
degrees of freedom:

SMALLEST ANCHOREDCYLINDER PROBLEM (P2). Let I be a given set ofn points in
3-space. Find a linè through the origin which minimizes max{d(`, c): c ∈ I }.

As this problem is nonconvex (Section 2.3), usual approaches to obtain subquadratic
solutions fail, but it is noteworthy that two interesting subcases can be solved in sub-
quadratic time: when the input points are relatively far from the origin, and when we ask
for an optimal location of a ray instead of a line.

1.4. Related Work. Problem (P1) belongs to a class of problems that have been consid-
ered from a complexity–theoretic viewpoint in [GK]. Although problem (P1) is routinely
solved in engineering applications using numerical optimization techniques, few com-
plexity theoretic results have been published. A more general version of this problem has
been shown to be polynomial time solvable by Faigle, et al. [FKS], and studied from the
viewpoint of nonlinear optimization theory by Streng [S]. Concrete geometrical proper-
ties have first been investigated in [P], with focus on thedecision problemto determine if
there exists a cylinder with radiusr = 1 (aunit cylinder) which encloses the input points.
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PROPOSITION1 [P].

(a) If there exists a unit cylinder that encloses all input points, then there also exists
a unit enclosing cylinder which touches four of the input points, or whose axis is
parallel to an edge of the convex hull of I.

(b) There is only a finite number of cylinders with radius1 that touch four noncollinear
points in3-space.

With these (geometrically nontrivial) results, the decision problem for fixed radius can
be solved by enumerating all cylinders through choices of four points, and by checking
if one of these encloses the input points. This algorithm has complexityO(n5). It is not
hard to see that the optimization problem can be solved in timeO(n5 logn) by binary
search. (It is also possible to use a straightforward application of parametric search.)

The linearization technique appears to have been used first by Yao and Yao [YY].
More recently, Agarwal and Matouˇsek [AM] use linearization in the context of range
searching with semialgebraic sets. They also gave a simple procedure for finding the
optimal linearization for a given polynomial.

The maximin counterpart of (P2) has nice applications in robotics. It has been
solved by parametric search in timeO(n log4 n) [F]. The variant of (P2) where we
ask for an enclosing silo instead of a cylinder was solved in the same paper in time
O(n log3 n log logn).

Recently, by posing the problem as a problem of finding line transversals of balls,
Agarwal et al. [AAS] have established a bound ofO(n3+ε) on the combinatorial com-
plexity of the set of cylinders of a given radius enclosing a set ofn points, as well as an
Ä(n3) lower bound. Hereε is any positive constant. They give anO(n3+ε) time algo-
rithm for solving (P1) and a slight generalization thereof, as well as an approximation
algorithm for finding a cylinder whose radius is at most 1+ δ times the optimum in time
O(n/δ2). These algorithms operate in an algebraic model of computation, and the first
algorithm requires the use of parametric search.

1.5. Parametric Search versus Exact Approximation. Parametric search is an inge-
nious technique to design optimization algorithms in the algebraic model of computing.
Introduced in [M], it has been applied to numerous optimization problems.

However, while low-dimensional problems like (P2) often possess simple algebraic
characterizations, the algebraic structure of problem (P1) is much more involved. Its
solution requires the calculation of roots of polynomials with high degree. In the algebraic
model, this calculation is regarded as a constant time operation. Even worse, the results
of such a computation may be used in a parametric search strategy as coefficients of a
polynomial in a subsequent step, potentially increasing substancially the bit complexity
of the numbers involved. This is a major reason to consider bit-complexity.

On the other hand, the decision scheme that underlies a parametric search solution
immediately provides an approximation algorithm that guarantees an error ofε (with
our assumptions, absolute error) by adding just a factor of logε−1 to the running time.
Finally, in a bit model, this approximation can be madeexact(in the sense of providing
a combinatorial solution) by exploiting techniques (esp., root bounds) from the theory
of exact computation.
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While parametric search provides a clean dependency of running time on the number
n of input points, the exact approach is more suitable if accuracy is the main goal to
achieve. This gets increasingly important as the algebraic source of complexity comes
into play.

1.6. Algebraic and Bit Complexity Models. Most geometric algorithms are developed
within one of two distinct computational frameworks. In thealgebraic framework, the
complexity of an algorithm is measured by the number of algebraic operations on real-
valued variables, assuming exact computations. The input size corresponds to the number
n of input values. In thebit framework, the complexity is measured by the number of
bitwise boolean operations on binary strings. The input generally consists of integers, and
the parametern is supplemented by an additional parameterL that bounds the maximal
bit-size of any input value.

While the size of the input is measured differently in the algebraic and in the bit
model, the output can often be treated in a uniform way by asking for acombinatorial
solutionto the problem. In the case of (P1), we may assume the required output to be a
list of those input points that specify the optimal cylinder(s).

Another way to define the output of optimization algorithms is to consider theap-
proximation problem, in our case to find an enclosing cylinder with radiusr such that
|r − r ∗| ≤ ε, wherer ∗ denotes the sought optimum andε the requiredabsolute error.
Traditionally, approximation algorithms are treated in an algebraic model of computing.
However, we note that the bit model is also a reasonable choice, especially since the size
of input numbers can have influence on the approximation errorε.

One of our basic assumptions is that—in the algebraic model—each input pointc ∈ I
is enclosed in the unit sphere (i.e.,‖c‖ < 1), and that—in the bit model—the coordinates
of eachc ∈ I are given as homogeneous rational numbers of bit-sizeL.

1.7. Overview. Section 2 contains mathematical preliminaries, and serves to clarify
basic properties of the problem. In particular, Section 2.1 describes the technical frame-
work that underlies ourMAPLE implementation, and Section 2.2 treats major aspects
of the bit-complexity analysis which is necessary to makeε-approximation algorithms
exact.

Section 3 is devoted to our optimization technique, and to the proofs of Theorems 2,
1, and 3. We also present results for the restricted problem (P2) in this section.

Experimental results and a discussion conclude the paper in Sections 4 and 5.

2. Preliminaries

2.1. Algebraic Formulation. A cylinderC in 3-space is specified by five real parame-
ters, its axis linè and its radiusr . We follow the approach suggested by Proposition 1, and
first specify the setC(c1, . . . , c4) of cylinders that touch four given pointsc1, . . . , c4 ∈ I .

By translation of the coordinate system, we can assumec1 = (0,0,0). Letu ∈ R3 be
any direction vector of̀ . Let E be the plane passing through the origin and orthogonal
to u, and letc∗1, . . . , c

∗
4 be the orthogonal projection of the input pointsc1, . . . , c4 onto

E. Then the cylinderC passes throughc1, . . . , c4 if and only if c∗1, . . . , c
∗
4 are cocircular.
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The first problem that we face in the algebraic computation of solutions is to find a
suitable parametrization for the direction vectoru. We will treat the case whenu is not
parallel to the plane containingc2, c3, c4. (Otherwise, we have a simpler subproblem.)
We may likewise assume thatc1, . . . , c4 do not lie in a plane. Let

u = xc2+ yc3+ zc4.

Note that we may chooseu to lie in the plane ofc2, c3, c4, by settingz = 1− x − y.
The parametersx, y, z are also called thebarycentric coordinatesof u with respect to
c2, c3, c4.

Now, let R1(x, y, z) be the squared radius of the circumcircle ofc∗1, c
∗
2, c
∗
3 in E, and

R2(x, y, z) the squared radius of the circumcircle ofc∗1, c
∗
3, c
∗
4. Then the setC(c1, . . . , c4)

can be interpreted as a two-dimensional surface in 3-space, defined byR1(x, y, z) =
R2(x, y, z).

LEMMA 1. The condition R1(x, y, z) = R2(x, y, z) is equivalent to P(x, y, z) = 0,
with

P(x, y, z) = 11,2,4(xz2+ x2z)

+11,3,4(yz2+ y2z)

+11,2,3(xy2+ x2y)

+ (11,2,4+11,3,4+11,2,3−12,3,4)(xyz),

where1i, j,k is equal(resp.,proportional) to the squared area of the triangle with vertices
ci , cj , ck.

PROOF. Letu = xc2+ yc3+zc4 be the direction of projection andv andw two vectors
which supplementu/|u| to an orthonormal system. The four projected pointsc∗i are
cocircular iff

det


1 vTc1 wTc1 (vTc1)

2+ (wTc1)
2

1 vTc2 wTc2 (vTc2)
2+ (wTc2)

2

1 vTc3 wTc3 (vTc3)
2+ (wTc3)

2

1 vTc4 wTc4 (vTc4)
2+ (wTc4)

2

 = 0.

SincecT
1 = (0,0,0) this is equivalent to

det

vTc2 wTc2 c∗2
2

vTc3 wTc3 c∗3
2

vTc4 wTc4 c∗4
2

 = 0,

wherec∗i
2 = (vTci )

2+ (wTci )
2 = c2

i − (uTci )
2/u2. Usingv×w = u/|u| the expansion

of this determinant yields

c∗2
2uT (c3× c4)+ c∗3

2uT (c4× c2)+ c∗4
2uT (c2× c3) = 0.

Substitutingu = xc2+ yc3+ zc4 we get (provided that det(c2, c3, c4) 6= 0):

xc∗2
2+ yc∗3

2+ zc∗4
2 = 0.
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Multiplying this equation withu2 yields

(c2× c3)
2(xy2+ yx2)+ (c3× c4)

2(yz2+ zy2)+ (c4× c2)
2(zx2+ xz2)

− 2((c2× c3)
T (c4× c2)+ (c2× c3)

T (c3× c4)+ (c3× c4)
T (c4× c2))(xyz) = 0,

sinceu2c∗i
2 = (ci × u)2.

If we set1i, j,k = (ci × cj + cj × ck + ck × ci )
2 we get the desired result.

With z = 1− x − y, P can also be interpreted as a polynomial in the two variables
x andy, or as a one-dimensional curve in thex–y-plane. We note that the total degree
of P is 3, and the degree in each variable is 2.

In order to compute the cylinders with fixed radiusr in the setC(c1, . . . , c4), the
additional conditionR1(x, y, z) = r has to be satisfied. Unfortunately, this leads to a
significantly more complicated polynomial equationQ(x, y) = 0, with total degree 6.

Let Cf (c1, . . . , c4, r ) be the set of all cylinders with radiusr that pass through
c1, . . . , c4 and whose axis line is not parallel to the plane throughc2, c3, c4. ThenCf

is given by the set of solutions of the system{Q(x, y) = 0, P(x, y) = 0}, and can be
obtained algebraically by computing the roots of the resultantsFx = Res(P, Q, y) and
Fy = Res(P, Q, x). These resultants have degree 12.

LEMMA 2. If c1, . . . , c4 are not collinear, the set Cf (c1, . . . , c4, r ) contains at most12
cylinders. Assuming that the ci are rational points, each cylinder is specified uniquely
by algebraic numbers of degree at most12.

In this lemma, we assume a cylinder is specified by the direction vectoru introduced
above.

2.2. Bit Complexity. Proposition 1 provides the framework for an approximation algo-
rithm for (P1). By exploiting ideas from the theory of exact computation, we can make
such an approximation algorithm “exact” in the sense that—given rational input points
with coordinates of bit-size≤ L—it is possible to find the input points that define the
smallest enclosing cylinder(s) in time depending polynomially onn andL.

In the following, it is useful to consider the optimization function (the radiusr of a
smallest enclosing cylinder) as a function of the axis direction, and thus as a surface in
R3. This surface is given by two-dimensional surface patches (corresponding to cylinders
that touch three points), one-dimensional ridges (corresponding to cylinders that touch
four points), and vertices (defined by tuples of five points).

Now assume thatr ◦i , i = 1,2, denotes a local minimum of a surface patch, a local
minimum of a ridge, or the “height” of a vertex. Further, letδ be aseparation gapbetween
any two valuesr ◦1 andr ◦2 that are not equal, i.e.,|r ◦1 − r ◦2 | ≥ δ for all r ◦1 6= r ◦2. Then
the combinatorial solution of (P1) can easily be derived from aδ-approximate solution
of (P1).

The computation of the gapδ is nontrivial, requiring an algebraic characterization of
the local minima above, and the application of multivariate root bounds. In the sequel,
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we shall focus on the computation ofδ for the most complicated case, whenr ◦1 andr ◦2
are the local minima of ridges.

Let c1, . . . , c4 be an arbitrary choice of input points. Our goal is to compute a discrete
set of values which containsr ◦1, a local minimum value with respect toc1, . . . , c4.
Following Section 2.1, letR1(x, y) be the squared radius of the circumcircle ofc∗1, c

∗
2, c
∗
3,

andP1(x, y) the polynomial which defines the cylinder with direction parameters(x, y)
passing throughc1, . . . , c4. Then the candidates forr ◦1 are the local minimum values of
R1(x, y) under the side conditionP1(x, y) = 0. By the rule of Lagrange, there exists a
parameterλ such that the following two conditions hold at the minima:

(1)
∂R1

∂x
+ λ∂P1

∂x
= 0, (2)

∂R1

∂y
+ λ∂P1

∂y
= 0.

Eliminatingλ in these equations, letQ1(x, y) be the numerator of the expression

∂R1

∂x
− ∂R1

∂y

∂P1

∂x

(
∂P1

∂y

)−1

.

Then r ◦1 =
√

R1(x◦1, y◦1), where (x◦1, y◦1) is a solution of the system{P1(x, y) =
0, Q1(x, y) = 0}.

Analogously, letr ◦2 be a minimum candidate for a different choice of input points,
and P2, Q2, R2 the corresponding defining formulas. Then the needed separation gap
can be obtained as a lower bound for|δ| in the system of equations

(1) P1(x1, y1) = 0,
(2) Q1(x1, y1) = 0,
(3) P2(x2, y2) = 0,
(4) Q2(x2, y2) = 0,
(5)
√

R1(x1, y1)−
√

R2(x2, y2) = δ.
By repeated squaring, formula (5) can be transformed into a polynomial equation
R(x1, y1, x2, y2, δ) = 0 such that the set of solutions is only increased by a finite num-
ber of new candidates. Now, a bound forδ can be obtained from the gap-theorem of
Canny [Ca].

PROPOSITION2 [Ca]. Let f1, . . . , fn be n polynomials in n variables, with degree≤ d
and coefficient magnitude≤ c. Assume that the system{ f1 = 0, . . . , fn = 0} has only a
finite number of solutions when homogenized. If (α1, . . . , αn) is a solution withαi 6= 0,
then|αi | > (3dc)−ndn

.

With c = 2L , d = const andn = 5, we get|δ| = 2−O(L). This gives us:

PROPOSITION3. Let C be a smallest enclosing cylinder for input set I, with radius r∗.
Then any cylinder C′ 6= C that touches a different set of points than C has radius r= r ∗

or r ≥ r ∗ + 2−cL, for a suitable constant c.

To conclude,O(L) iterations of the decision algorithm are sufficient to determine the
combinatorial solution.
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REMARK 1. The use of the general gap-theorem 2 gives constants that are far beyond
from being practical. It would be desirable to derive sharper bounds for special cases of
this theorem.

2.3. Combinatorial Complexity. The goal of this subsection is to provide some intu-
ition on the combinatorial complexity of the considered problems—with focus on lower
bounds. In particular, our constructions show that the problems are far from being convex
or LP-type.

We start with an example that provides a lower bound on the number ofglobal op-
tima in both (P1) and (P2). Consider an even numbern of points in a plane, arranged
as a regularn-gon. In this setting, there are exactlyn/2 smallest enclosing cylinders,
corresponding to the smallest enclosing slabs in the plane. Each of these cylinders is
a locally smallest enclosing cylinder of four of the input points. Note that, with a sim-
ilar example, it is also possible to have two global minima which lie arbitrarily close
together, i.e., whose axis lines can be brought to coincidence by an arbitrarily small
rotation.

To give a lower bound on the possible number oflocal optima is slightly more
complicated, and we first turn our attention to the restricted problem (P2). Consider an
even numbern of points that are arranged on the unit sphereS2, n/2 on the circleC1

(C2) of intersection with the planez = 0 (y = 0). Further, we assume that the points
on each circle are uniformly stepped and diametrically opposed. Let each line through
the origin be parameterized by its intersection with the sphereS2. Now let us ask for
the set of cylinders with distance≥ 1− ε to one input pointc. This set corresponds to
a thin stripe onS2, and describes the forbidden cylinders with respect toc. The set of
enclosing cylinders with radius≤ 1− ε is the complement of the union of the stripes for
all c ∈ I . Forε sufficiently small, this set has quadratic complexity, and any connected
component must correspond to a local minimum.

Finally, let us consider the general setting (P1) for the same input setI above. In this
case, it is easy to see that—due to symmetry—a necessary condition for a line` to be the
axis of a locally smallest enclosing cylinder is that the line` passes through the origin.
Hence, theÄ(n2) local minima in (P2) stay local minima even if we add the remaining
translational degrees of freedom.

PROPOSITION4. For n given input points, there can beÄ(n) globally smallest and
Ä(n2) locally smallest enclosing cylinders.

REMARK 2. Agarwal et al. [AAS] have a similar result. They show that the set of
cylinders of a given radius enclosing a set ofn points can consist ofÄ(n2) connected
components. It remains open if there exist examples for (P1) with more than a quadratic
number of local or of global minima.

3. Optimization Algorithms

3.1. Linearization. In order to illustrate the basic idea of our optimization technique,
we first consider the anchored problem (P2). Our focus is the fixed-parameter problem
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to decide whether there exists an anchored cylinder of given radiusr that encloses all
input points.

Let `ab be the line through the pointsa,b ∈ R3. We fix a at the origin and without
loss of generality requireb to lie on the planez= 1:

a = (0,0,0), b = (bx,by,1).

Further, letc = (cx, cy, cz) be an arbitrary input point. We call̀ab admissiblewith
respect toc if

d(`ab, c)
2 ≤ r 2,(1)

with

d(`ab, c)
2 = ((c2

y + c2
z)b

2
x + (c2

x + c2
z)b

2
y − 2cxcybxby − 2cxczbx − 2cyczby

+ (c2
x + c2

y))/(b
2
x + b2

y + 1).

Weembedour problem into a higher-dimensional space by setting

X1 = bx, X2 = by, X3 = b2
x, X4 = b2

y, X5 = bxby.(2)

Now, (1) is true if and only if

Pc(X1, . . . , X5) ≤ 0,(3)

wherePc is the linear equation

Pc(X1, . . . , X5) = (−2cxcz)X1+ (−2cycz)X2+ (c2
y + c2

z − r 2)X3

+ (c2
x + c2

z − r 2)X4+ (−2cxcy)X5+ (c2
x + c2

y − r 2).

According to this equation,Pc defines a hyperplane inR5, and inequality (3) a halfspace
Hc. The set of (2) defines a two-dimensional manifold which can be written as

M = {(X1, . . . , X5): Q(X1, . . . , X5) = 0}
with

Q(X1, . . . , X5) = (X2
1 − X3)

2+ (X2
2 − X4)

2+ (X5− X1X2)
2.

For the setI of input points, the fixed-parameter problem has a solution if and only if
there exists a linèab which is admissible with respect to eachc ∈ I . This is equivalent
to the existence of a common intersection of the halfspacesHc and the manifoldM . The
intersection

H =
⋂
c∈I

Hc

is a convex polytope of complexityO(n2), and can be constructed in the same time
bound by Chazelle’s result [Ch]. In order to intersectH with M , we triangulateH into
O(n2) simplices. Each of these simplices can be tested for intersection withM separately
in constant time if we assume an algebraic model of computing, and in timeO(µ(L))
if we assume a bit model [R]. (Note here thatM is a semialgebraic set and the above
test corresponds to deciding the satisfiability for a system of polynomial equations and
inequalities.) We have shown:
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LEMMA 3. The fixed radius version of problem(P2)can be solved in time O(n2) in the
algebraic model, and in time O(n2µ(L)) in the bit model.

This argument generalizes in a straightforward way to proving the general Theorem 3.

REMARK 3. Due to the possible quadratic number of local minima, this result may be
optimal. It is an open question whether problem (P2) belongs to the class ofn2-hard
problems introduced in [GO].

The above technique extends to problem (P1). In this case, we consider—without
loss of generality—axis lines that are not parallel to the planez= 0. Let`ab be the line
through the pointsa,b ∈ R3, with

a = (ax,ay,0), b = (ax + bx,ay + by,1).

Then`ab is admissible with respect toc = (cx, cy, cz) and given radiusr iff

Pc(ax,ay,bx,by) ≤ 0,

with

Pc(ax,ay,bx,by) = c2
x(b

2
y + 1)+ c2

y(b
2
x + 1)+ c2

z(b
2
x + b2

y)

+ cxcy(−2bxby)+ cxcz(−2bx)+ cycz(−2by)

+ cz(2byay + 2bxax)+ cx(−2ax − 2axb2
y + 2bxbyay)

+ cy(−2ay − 2ayb2
x + 2bxaxby)

+ (a2
xb2

y + a2
yb2

x + a2
x + a2

y − r 2(b2
x + b2

y)− 2bxaxbyay)− r 2.

At first glance,Pc has an order 10 linearization. However, we can save one variable by
grouping the terms with factorsc2

x, c2
y, andc2

z differently:

c2
x(b

2
y + 1)+ c2

y(b
2
x + 1)+ c2

z(b
2
x + b2

y) = (c2
y + c2

z)b
2
x + (c2

x + c2
z)b

2
y + (c2

x + c2
y),

and setting

X1 = bx, X2 = by, X3 = b2
x, X4 = b2

y, X5 = bxby,

X6 = byay + bxax,

X7 = −ax − axb2
y + bxbyay,

X8 = −ay − ayb2
x + bxaxby,

X9 = a2
x(b

2
y + 1)+ a2

y(b
2
x + 1)− r 2(b2

x + b2
y)− 2bxaxbyay.

Applying Theorem 3, we conclude:

LEMMA 4. The fixed radius version of problem(P1)can be solved in time O(n4) in the
algebraic model, and in time O(n4µ(L)) in the bit model.

REMARK 4. If Pc has an order 8 linearization, this fact would not improve the asymptotic
complexity of the problem, but it means we could use some of theO(ndk/2e) convex hull
algorithms to achieve the same complexity bounds.
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3.2. Parametric Search and Exact Approximation. In this subsection we shall apply
parametric search and exact approximation to problem (P1), based on the decision algo-
rithm from the previous subsection. Note that the presented techniques apply as well to
the restricted setting (P2).

We shall use the parametric search paradigm in its general form (see, e.g., [AST]
for a detailed description). LetTs denote the running time of a sequential decision
algorithm for the fixed-parameter problem, andTp (resp.,P) the time (resp., number
of processors) of a parallel decision algorithm, then the optimal value (here,r ∗) can
be computed in sequential timeO(PTp + TsTp log P). It remains to give a parallel
version of the decision algorithm. Here we exploit the new parallel algorithm for convex
hulls of [AGR]. For dimensiond ≥ 4, there is an algorithm with timeO(logn) and
work O(nbd/2c logc(dd/2e−bd/2c) n), for some constantc > 0. Further, withO(nbd/2c)
processors, the test for intersection ofH with M can be done in constant time in an
algebraic model (resp., a real RAM, see [R]). Plugging this into the parametric search
paradigm, and observing that—in an algebraic model—the combinatorial solution of
(P1) can easily be constructed from the computed optimum valuer ∗, we obtain:

LEMMA 5. A combinatorial solution of(P1)can be computed by parametric search in
time O(n4 logk n), for a fixed constant k> 0.

Turning our attention to the bit model, as shown in Section 2.2, the combinatorial
solution of (P1) can be obtained from anε-approximate solution forr ∗ if ε = 2−O(L).
To compute this approximate solution, it suffices to run the decision algorithm for the
fixed-parameter problemO(L) times, with radii of bit-sizeO(L) as input. This yields:

LEMMA 6. A combinatorial solution of(P1)can be computed in the bit model in time
O(Lµ(L)n4).

3.3. ε-Approximation and Tradeoff. Section 3.1 describes a decision algorithm for
the fixed-parameter problem for (P1). In an algebraic model of computing, and with
our assumption‖c‖ = O(1) for c ∈ I , this algorithm turns into anε-approximation
algorithm by using binary search forr ∈ [0,1]:

LEMMA 7. An ε-approximate solution of problem(P1) can be computed in time
O(n4 logε−1).

As a trivial application ofdiscretization, we may also exploit that elimination of the
“rotational freedom” reduces (P1) to the problem of finding a smallest enclosing circle
for a set of points in a plane—which can be solved in time linear inn.

Any change of the axis direction by an angleα ≤ ε can change the location of an arbi-
trary, projected pointc∗ (see Section 2) by at mostO(ε). Thus, we get anε-approximation
if we discretize the directions of the axis by a uniform grid onS2. Finally, this yields a
quadratic dependency of running time on 1/ε, but only a linear dependency onn:

LEMMA 8. An ε-approximate solution of problem(P1) can be computed in time
O(nε−2 logε−1).



182 E. Sch¨omer, J. Sellen, M. Teichmann, and Chee Yap

The rest of this subsection is devoted to the interesting problem of how to fill the gap
between Lemmas 7 and 8. Again, we shall use the linearization technique.

Let us consider the linèab through the points

a = (ax,ay,0), b = (ax + bx,ay + sbx,1).

The pointb lies on a line in the planez = 1, with origin (ax,ay) and “slope”s. Again,
for givens andr , `ab is admissible with respect toc = (cx, cy, cz) ∈ I iff

Pc(ax,ay,bx) ≤ 0,

with Pc the numerator of

d(`ab, c)
2− r 2.

Following the same strategy to group variables inPc as above, we can writePc as

Pc(ax,ay,bx) = b2
x(s

2c2
x + c2

y + (1+ s2)c2
z − 2scxcy)

+ bx(−2scycz− 2cxcz)+ (−2ax + 2sb2
xay − 2s2axb2

x)cx

+ (−2ay − 2ayb2
x + 2saxb2

x)cy + (2axbx + 2saybx)cz

+ (a2
yb2

x − r 2b2
x + a2

x + a2
y − 2saxayb2

x + s2a2
xb2

x − r 2s2b2
x)− r 2.

Hence, we obtain a linearization ofPc with six variablesX1, . . . , X6. Proceeding as in
3.1, we get—for any fixeds—an algebraic decision algorithm with running timeO(n3).

We now discretize (P1) by choosing lines with uniformly steppedslope anglefor
the position ofb. Further, we consider choices ofa andb in planes parallel tox = 0,
y = 0, andz= 0. It is again easy to see that independent optimization for each of these
instances will yield anε-approximate solution of (P1).

LEMMA 9. An ε-approximate solution of problem(P1) can be computed in time
O(n3ε−1 logε−1).

REMARK 5. The presented discretizations rely on the assumption that all input points
are enclosed in the unit sphere, and that we are only interested in absolute errors. In a
bit model where input numbers are bounded by 2L , it would be interesting to remove
these assumptions. As mentioned earlier, in the algebraic model, Agarwalet al. [AAS],
recently gave an approximation algorithm for finding a cylinder whose radius is at most
1+ δ times the optimum in timeO(n/δ2). This is accomplished by first computing a
crude estimate of the direction for the optimum cylinder axis, and applying a procedure
similar to that of Lemma 8.

4. Experimental Results. In this section we describe a simple optimization method
and evaluate this method by comparing its results with “exact” results that we obtained
with MAPLE.

To implement a fast optimization technique, we use our usual representation of a
smallest enclosing cylinder by specifying only its axial direction. By this reduction, the
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Fig. 1. Polar plot of the radius of the smallest enclosing cylinder as a function of its axis orientation. The set
of points is the vertices of a cube.

optimization problem can be viewed as a search for the minimum on a two-dimensional
surface in 3-space. Each point of this surface can be obtained as the result of a convex
optimization problem. (An example of this surface can be seen in Figure 1.) Thus, we seek
the minimum of a composed functionf ◦g. We choose an optimization technique which
only requires functionevaluationsbut not to compute derivatives. This technique—
the standard downhill simplex algorithm as described in [PTVF]—tries to follow the
direction of steepest descent. It is applied in two layers, to compute the minimum off
and (recursively) that ofg.

For a given start axis, the optimization method converges to some local minimum.
To locate a global minimum, one can choose a two-dimensional grid of start values.
However, our experiments indicate that there may be a better choice for optimization
start values: the set of directions of edges in the convex hull ofI (note the special meaning
of these directions in Proposition 1).

In what follows, we shall report on some experimental results with this special set
of start values. We first computed smallest enclosing cylinders for randomly generated
tetrahedra. In a sequence of 100 tests, at least one of the six considered start values (the
edge directions of the tetrahedron) led to the optimum. The number of tests in whichk
start values succeeded is listed below:

k 6 5 4 3 2 1 0
Successes 46 16 15 13 9 1 0
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In two additional test sequences, we tested 50 sets of five random points, and ten sets
of eight random points (the coordinates have been chosen in a way to guarantee convex
position). Again, in each test the downhill simplex algorithm converged to the minimum
for at least one starting value, and generally for many.

The most complex examples which we tried consisted of 12 points. TheMAPLE

implementation did run several days on these sets to find the optimum. The numerical
optimization converged within seconds for each starting value. To stimulate further
research, we include the data as benchmarks:

EXAMPLE 1. The 12 input points are arranged near to two circles of radius 10 in the
two parallel planesz= −10 andz= 20:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

x 5 −5 −11 −5 5 10 4 −6 −11 −5 5 9
y 8 9 0 −8 −9 0 9 9 1 −9 −8 −1
z −10 −9 −10 −11 −10 −9 21 20 19 20 21 18

According toMAPLE, the smallest enclosing cylinder passes through the five points
c3, c5, c6, c9, c10, and has radius 10.5003±10−4. The second-smallest enclosing cylinder
through five points touchesc3, c5, c6, c8, c10, and has radius≈ 10.5009.

The downhill simplex algorithm converged to the minimum radius≈ 10.5003 for the
starting values(c7, c4), (c9, c3), (c10, c4), (c12, c5), and(c12, c1).

EXAMPLE 2. The 12 input points are arranged near the 12 vertices of an icosahedron
with center at the origin:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

x −12 −12 9 10 23 10 −10 −24 12 12 −10 −8
y −19 1 −13 12 −1 −21 21 1 19 −1 −12 12
z −6 −20 −18 −17 −2 5 −6 2 6 20 17 18

The optimal solution has been computed byMAPLE as the cylinder through the five points
c1, c3, c7, c9, c11, with radius≈ 21.0309. All but two points lie close to the surface of
this cylinder. (For an exact model of the icosahedron, the optimal cylinders would pass
through ten points.) The downhill simplex algorithm obtained this solution for the starting
values(c3, c1), (c3, c2), (c4, c2), (c5, c1), (c8, c5), and(c9, c8).

To conclude this section, we observe that the proposed downhill algorithm behaves
amazingly well, and did not fail for the examples we tried.
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5. Final Remarks. As the field of geometric optimization matures, it treats problems
of increasingly nontrivial algebraic complexity. The traditional neglect of bit complexity
is no longer justified. The smallest cylinder problem is one of these problems. By com-
bining the general linearization technique with parametric search, we developed efficient
algorithms in both models. These results, as well as the exact results of Agarwal et al.,
seem mainly of theoretical interest.

Theε-approximation schemes have possibly greater practical applicability. But even
here, our numerical experiments suggest that these may not be competitive with some
heuristic numerical approaches. For specific applications, like metrology, the extra
effort of using an exact approach can be justified. Here, the model of computing has
to be chosen carefully, and the bit model offers advantages when compared to highly
involved algorithms that operate in the algebraic model. For other applications, like
assembly planning, computational geometry will probably fail in an attempt to substitute
numerical approaches by exact and “efficient” but highly complex algorithms. Here,
theoretical contributions can increase the understanding of numerical techniques.
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