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Smallest Enclosing Cylinders
E. Sclomer? J. Seller?, M. Teichmanr?® and Chee Yab

Abstract. This paper addresses the complexity of computing the smallest-radius infinite cylinder that en-
closes an input set of points in 3-space. We show that the problem can be solved inGitné log®® n) in

an algebraic complexity model. We also achieve a tim@@f*L - 1£(L)) in a bit complexity model where

is the maximum bit size of input numbers andL) is the complexity of multiplying twd_ bit integers.

These and several other results highlight a gerlerahrization techniquevhich transforms nonlinear
problems into some higher-dimensional but linear problems. The technique is reminiscent of the uskef PI”
coordinates, and is used here in conjunction with Megiddo’s parametric searching.

We further report on experimental work comparing the practicality of an exact with that of a numerical
strategy.

Key Words. Geometric optimization, Parametric searehpproximation algorithms, Smallest enclosing
cylinder, Best-fit line.

1. Introduction

1.1. Motivation A major topic of geometric optimization is to approximate point
sets by simple geometric figures. This includes extensively studied planar problems
such as smallest enclosing circles, the minimum width annulus, and the minimum
width slab. In higher dimensions, there are few nontrivial complexity results for ge-
ometric figures beyond hyperplanes or spheres. In this paper we consider the
following:

SMALLEST CYLINDER PROBLEM (P1). Letl be a given set afi points in 3-space. Find
a line ¢ which minimizes magd(¢, c): c e | }.

Here,d(¢, ¢) denotes the minimum Euclidean distance betweemd a point of
£. Since cylinders constitute an important primitive shape in computer-aided design
and manufacturing, this problem has many applications. We merely give two
examples:

The first example is frormssembly planningAssume we want to “fit” a given polyhe-
dral object into a cylindrical hole. Obviously, this problem can be solved by computing
the smallest enclosing cylinder of the polyhedron. In practical situations, the number
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n of points defining the polyhedron may be large, but the computation of a suboptimal
solution can usually be tolerated.

The second example is from an area of importance to modern high precision engi-
neering,dimensional tolerancing and metrologsee [SV] and [Ya]). Here the task is,
given a physical object, to verify its conformance to tolerance specifications by taking
probes of its surface. The cylinder is one of the basic objects addressed by the ASME tol-
erancing standards [Asme]. In industry, highly specialized, expensive equipment (called
Coordinate Measurement Machine or CMM) is used to perform these probes automat-
ically. In contrast to the previous applicatianis small but high numerical accuracy is
important [Ya].

1.2. Contributions We summarize four areas of contribution.
(1) We design efficient algorithms for the smallest cylinder problem:

THEOREM1. The problem(P1)can be solved in time

(i) O(n*1og®® n) in an algebraic modeland
(i) O(Lu(L)n* in a bit model

Here,u(L) = O(L logL loglogL) denotes the complexity of multiplying two-bit
integers. The algebraic and bit complexity models are described below.

(I1) We design approximation algorithms for the smallest cylinder problem. Such
results may be more useful for certain applications. A cylinder whose radius is within
the minimum radius is called anapproximate smallest cylindeWe obtain complexity
tradeoffs between ande:

THEOREMZ2. In an algebraic model of computingn e-approximate solution ofP1)
can be found in time§espectively.

O(ne?loge™), OM3%tloge™), O(*loge™).

(111 We highlight alinearization techniquéor geometric optimization problems. The
above result uses Megiddo’s parametric search and a new parallel convex hull algorithm
in [AGR]. However, it also requires an application of the linearization technique, which
we believe has wider applicability.

The heart of both approximation and parametric search algorithrdg@sion scheme
for afixed optimization parameteifo obtain efficient decision algorithms, it is often
possible to exploit geometric duality transformations, including inversion (as in [FSS])
and Plicker coordinates (as in [ST]). In this paper we extend these principles to a more
general framework, here calléidearization We give this an abstract formulation. Let
P(x,y) be a polynomial in the real variabl@s= (xq, ..., X;) andy = (y1, ..., ¥Ym)-

ABSTRACT DECISIONPROBLEM (D). Given a set € R™ of n points, decide if there
exists a pointp € R* such that foralt e 1, P(p, c) < 0.
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We sayP(x, y) has arorder k linearizationif there exist X + 1 polynomials X; =
Xix) (i =1,...,k)andY; = Yi(y) (fori =0, ..., k), such that

k
POCY) =Yo+ ) XiYi.
i=1

THEOREM 3.

() If P(x,y) has an order k linearizatiarthe decision problenD) can be solved in
time O(n*/2)) in the algebraic model

(ii) Inthe bit modelif each input coordinate has L bitthe problem(D) can be solved
in time O(u(L)ntk/2)y,

In our application, we need to transform our original problem into some suitable
versions of Problem (D) and give efficient linearizations.

(IV) Finally, in view of considerable interest in implementation of these algorithms
[Ya], we report on some experimental work using a heuristic approach—a “local” numer-
ical optimization technique, implementedd@nOur heuristic seems to be quite effective,
as verified against exact answers. The exact answers come frappaimplementation
of a simple algorithm to enumerate all cylinders with fixed radius through four of the
given points. It should be noted that the size of our input data (see Section 4) lies on the
edge of what could reasonably be handled/yLE.

1.3. Subproblems In order to get approximation algorithms, we may consiger
stricted versions of (P1) with fewer degrees of freedom, and discretize the remaining
parameters by a grid, with step-size depending.@uppose we eliminate thetational
degrees of freedoand ask for a cylinder with fixed axis direction. This problem reduces
to the well-knownsmallest enclosing circlproblem in the plane—which is solvable in
linear time. Anintrinsically different situation arises when we eliminaterdues|ational
degrees of freedom

SMALLEST ANCHOREDCYLINDER PROBLEM (P2). Letl be a given set of points in
3-space. Find a liné through the origin which minimizes méx(¢, ¢): c € 1}.

As this problem is nonconvex (Section 2.3), usual approaches to obtain subquadratic
solutions fail, but it is noteworthy that two interesting subcases can be solved in sub-
guadratic time: when the input points are relatively far from the origin, and when we ask
for an optimal location of a ray instead of a line.

1.4. Related Work Problem (P1) belongs to a class of problems that have been consid-
ered from a complexity—theoretic viewpoint in [GK]. Although problem (P1) is routinely
solved in engineering applications using numerical optimization techniques, few com-
plexity theoretic results have been published. A more general version of this problem has
been shown to be polynomial time solvable by Faigle, et al. [FKS], and studied from the
viewpoint of nonlinear optimization theory by Streng [S]. Concrete geometrical proper-
ties have first been investigated in [P], with focus ondbeision problento determine if

there exists a cylinder with radius= 1 (aunit cylinder which encloses the input points.
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ProOPOSITIONI [P].

(a) If there exists a unit cylinder that encloses all input pajrtiteen there also exists
a unit enclosing cylinder which touches four of the input pgintsvhose axis is
parallel to an edge of the convex hull of |

(b) There is only a finite number of cylinders with radilighat touch four noncollinear
points in3-space

With these (geometrically nontrivial) results, the decision problem for fixed radius can
be solved by enumerating all cylinders through choices of four points, and by checking
if one of these encloses the input points. This algorithm has compléxity). It is not
hard to see that the optimization problem can be solved in @o# logn) by binary
search. (It is also possible to use a straightforward application of parametric search.)

The linearization technique appears to have been used first by Yao and Yao [YY].
More recently, Agarwal and Matsek [AM] use linearization in the context of range
searching with semialgebraic sets. They also gave a simple procedure for finding the
optimal linearization for a given polynomial.

The maximin counterpart of (P2) has nice applications in robotics. It has been
solved by parametric search in tin@(nlog*n) [F]. The variant of (P2) where we
ask for an enclosing silo instead of a cylinder was solved in the same paper in time
O(nlog®nloglogn).

Recently, by posing the problem as a problem of finding line transversals of balls,
Agarwal et al. [AAS] have established a bound®n®¢) on the combinatorial com-
plexity of the set of cylinders of a given radius enclosing a setpdints, as well as an
Q(n®) lower bound. Here is any positive constant. They give &(n®t€) time algo-
rithm for solving (P1) and a slight generalization thereof, as well as an approximation
algorithm for finding a cylinder whose radius is at most 4 times the optimum in time
0(n/8?). These algorithms operate in an algebraic model of computation, and the first
algorithm requires the use of parametric search.

1.5. Parametric Search versus Exact ApproximatiofParametric search is an inge-
nious technique to design optimization algorithms in the algebraic model of computing.
Introduced in [M], it has been applied to numerous optimization problems.

However, while low-dimensional problems like (P2) often possess simple algebraic
characterizations, the algebraic structure of problem (P1) is much more involved. Its
solution requires the calculation of roots of polynomials with high degree. In the algebraic
model, this calculation is regarded as a constant time operation. Even worse, the results
of such a computation may be used in a parametric search strategy as coefficients of a
polynomial in a subsequent step, potentially increasing substancially the bit complexity
of the numbers involved. This is a major reason to consider bit-complexity.

On the other hand, the decision scheme that underlies a parametric search solution
immediately provides an approximation algorithm that guarantees an ereofwoth
our assumptions, absolute error) by adding just a factor aftddo the running time.
Finally, in a bit model, this approximation can be maaact(in the sense of providing
a combinatorial solution) by exploiting techniques (esp., root bounds) from the theory
of exact computation.
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While parametric search provides a clean dependency of running time on the number
n of input points, the exact approach is more suitable if accuracy is the main goal to
achieve. This gets increasingly important as the algebraic source of complexity comes
into play.

1.6. Algebraic and Bit Complexity Models Most geometric algorithms are developed
within one of two distinct computational frameworks. In thigebraic frameworkthe
complexity of an algorithm is measured by the number of algebraic operations on real-
valued variables, assuming exact computations. The input size corresponds to the number
n of input values. In theit framework the complexity is measured by the number of
bitwise boolean operations on binary strings. The input generally consists of integers, and
the parameten is supplemented by an additional paramétéhat bounds the maximal
bit-size of any input value.

While the size of the input is measured differently in the algebraic and in the bit
model, the output can often be treated in a uniform way by asking éongbinatorial
solutionto the problem. In the case of (P1), we may assume the required output to be a
list of those input points that specify the optimal cylinder(s).

Another way to define the output of optimization algorithms is to consideafhe
proximation problemin our case to find an enclosing cylinder with radiusuch that
Ir —r*| < &, wherer* denotes the sought optimum andhe requirecabsolute error
Traditionally, approximation algorithms are treated in an algebraic model of computing.
However, we note that the bit model is also a reasonable choice, especially since the size
of input numbers can have influence on the approximation error

One of our basic assumptions is that—in the algebraic model—each inputpoint
is enclosed in the unit sphere (i.gc|| < 1), and that—in the bit model—the coordinates
of eachc € | are given as homogeneous rational numbers of bitisize

1.7. Overview Section 2 contains mathematical preliminaries, and serves to clarify
basic properties of the problem. In particular, Section 2.1 describes the technical frame-
work that underlies oumAPLE implementation, and Section 2.2 treats major aspects
of the bit-complexity analysis which is necessary to maiaproximation algorithms
exact.

Section 3 is devoted to our optimization technique, and to the proofs of Theorems 2,
1, and 3. We also present results for the restricted problem (P2) in this section.

Experimental results and a discussion conclude the paper in Sections 4 and 5.

2. Preliminaries

2.1. Algebraic Formulation A cylinderC in 3-space is specified by five real parame-
ters, its axis liné and its radius.. We follow the approach suggested by Proposition 1, and
first specify the se€ (cy, . . ., ¢4) of cylinders that touch four given points, ..., c, € .

By translation of the coordinate system, we can asstiee (0, 0, 0). Letu € R® be
any direction vector of. Let E be the plane passing through the origin and orthogonal
tou, and letcj, ..., c; be the orthogonal projection of the input poiats. . ., ¢, onto
E. Then the cylinde€ passes through, . . ., csifand onlyifc;, ..., c; are cocircular.



Smallest Enclosing Cylinders 175

The first problem that we face in the algebraic computation of solutions is to find a
suitable parametrization for the direction veatioiWe will treat the case whemis not
parallel to the plane containirg, cs, ¢4. (Otherwise, we have a simpler subproblem.)
We may likewise assume thet, . .., ¢4 do not lie in a plane. Let

U=XC + YC + ZGs.

Note that we may chooseto lie in the plane ofy, cs, ¢4, by settingz =1 — x — .
The parameters, y, z are also called thbarycentric coordinatesf u with respect to
Cp, C3, C4.

Now, let Ri(X, y, 2) be the squared radius of the circumcirclechfcs, ¢ in E, and
Ro(x, y, ) the squared radius of the circumcircleshf c3, c;. Thenthe seC(cy, . .., Cs)
can be interpreted as a two-dimensional surface in 3-space, definRdOoyy, z2) =
Rx(X, Y, 2).

LEMMA 1. The condition R(X, Yy, 2) = Rx(X, Y, 2) is equivalent to PX, y, z) = 0,
with
P(X.Y,2) = A124(XZ + X%2)
+ A134(yZ + ¥?2)
+ A123(XY* + X%y)
+(A124+ A13a+ A123— A234)(XY2),

whereA; j « is equakresp, proportional to the squared area of the triangle with vertices
G, Cj, Ck.

PROOF Letu = x¢,+ yG3+ z¢ be the direction of projection andandw two vectors
which supplementi/|u| to an orthonormal system. The four projected poujtsre
cocircular iff

1 UTC]_ u}TC]_ (UTC]_)2 + (U)TC1)2
det 1 UTC2 wT02 (UT02)2 + (wTC2)2 -0
1 UTC3 wTC3 (UTC3)2 + (wTC3)2 -

1 vTC4 wTC4 (UTC4)2 + (wTC4)2
Sincec] = (0, 0, 0) this is equivalent to

v, wle, ¢

detf vecs wles ¢°| =0,

vle, w'es ¢

wherec'? = (v76)? + (w'¢)? = ¢ — (u' ¢)%/u?. Usingv x w = u/|u| the expansion
of this determinant yields

cs2uT (ca x €4) + c52uT (Ca x €2) + c;2uT(cp x c3) = 0.
Substitutingu = x¢, + y¢3 + z¢ we get (provided that dét,, c3, ¢4) # 0):

xG? + y¢? + 267 = 0.
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Multiplying this equation withu? yields

(C2 x C3)2(XY? + YXO) + (C3 X C)*(YZ + 2¥) + (Ca X C)*(2X¢ + XZ)
— 2((C2 x €3)T(Ca X C2) + (C2 X C3)T(C3 X C4) + (C3 X C4) " (Cs X C2))(XyD) = O,

sinceu?c*? = (¢ x u)2.
If we setAj jk = (G x G +Cj X Ck + C¢ X ci)? we get the desired result. O

Withz=1— x — vy, P can also be interpreted as a polynomial in the two variables
x andy, or as a one-dimensional curve in tkey-plane. We note that the total degree
of P is 3, and the degree in each variable is 2.

In order to compute the cylinders with fixed radiugn the setC(cy, ..., ¢s), the
additional conditionR; (X, y, 2) = r has to be satisfied. Unfortunately, this leads to a
significantly more complicated polynomial equati@x, y) = 0, with total degree 6.

Let C¢(Cy, ..., Cq, 1) be the set of all cylinders with radius that pass through
1, ..., C4 and whose axis line is not parallel to the plane throagtcs, c4. ThenCq
is given by the set of solutions of the syst¢@(x, y) = 0, P(x, y) = 0}, and can be
obtained algebraically by computing the roots of the resultepts RegP, Q, y) and
Fy = RegP, Q, x). These resultants have degree 12.

LEMMA 2. Ifcy, ..., cqare notcollinearthe set G(cy, ..., Cq, ) contains at most 2
cylinders Assuming that the; are rational points each cylinder is specified uniquely
by algebraic numbers of degree at magt

In this lemma, we assume a cylinder is specified by the direction vadiroduced
above.

2.2. Bit Complexity Proposition 1 provides the framework for an approximation algo-
rithm for (P1). By exploiting ideas from the theory of exact computation, we can make
such an approximation algorithm “exact” in the sense that—given rational input points
with coordinates of bit-sizec L—it is possible to find the input points that define the
smallest enclosing cylinder(s) in time depending polynomiallyn@mdL.

In the following, it is useful to consider the optimization function (the radiag a
smallest enclosing cylinder) as a function of the axis direction, and thus as a surface in
R3. This surface is given by two-dimensional surface patches (corresponding to cylinders
that touch three points), one-dimensional ridges (corresponding to cylinders that touch
four points), and vertices (defined by tuples of five points).

Now assume that’, i = 1, 2, denotes a local minimum of a surface patch, a local
minimum of aridge, or the “height” of a vertex. Further,ddte aseparation gafpetween
any two values; andr; that are not equal, i.e[r; —r3| > & for all ry 5 r3. Then
the combinatorial solution of (P1) can easily be derived frofragproximate solution
of (P1).

The computation of the gajis nontrivial, requiring an algebraic characterization of
the local minima above, and the application of multivariate root bounds. In the sequel,
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we shall focus on the computation &for the most complicated case, whenhandr;
are the local minima of ridges.

Letcy, ..., cq be an arbitrary choice of input points. Our goal is to compute a discrete
set of values which containg’, a local minimum value with respect @, ..., Ca.
Following Section 2.1, leR; (X, y) be the squared radius of the circumcirclepfcs, c3,
andPy(x, y) the polynomial which defines the cylinder with direction parametery)
passing througl, . . ., cs. Then the candidates fof are the local minimum values of
Ri(X, y) under the side conditioRy (X, y) = 0. By the rule of Lagrange, there exists a
parametei such that the following two conditions hold at the minima:

Ry Py IRy Py

1) —+1—=0 2) —+X1r—=0.
()ax+ X ’ ()8y+ ay

Eliminating » in these equations, 1€ (X, y) be the numerator of the expression

AR, AR 9P, [oP\ !
ay ’

X ay ox
Thenry = /Ru(X],y;), where(x7, y7) is a solution of the systeniPi(x,y) =
Os Ql(xs y) = O}
Analogously, letr; be a minimum candidate for a different choice of input points,
and P,, Q2, R, the corresponding defining formulas. Then the needed separation gap
can be obtained as a lower bound f&rin the system of equations

(1) Pi(x1, y1) =0,
(2) Qi(x1,y1) =0,
(3) Px(x2,¥2) =0,
(4 Qa(x2,¥2) =0,
(5 VRui(X1, y1) — v/ Ra(X2, y2) = 6.

By repeated squaring, formula (5) can be transformed into a polynomial equation
R(X1, Y1, X2, ¥2, §) = 0 such that the set of solutions is only increased by a finite num-
ber of new candidates. Now, a bound focan be obtained from the gap-theorem of
Canny [Ca].

PropPosITION2 [Ca]. Let fi, ..., f, be n polynomials in n variablewith degree< d
and coefficient magnitude c. Assume that the systgrfy =0, ..., f, = 0} hasonly a
finite number of solutions when homogenidéde;, . . ., ay) is a solution withy; # 0,
then|ei| > (3dc)—"9".

With ¢ = 24, d = const anch = 5, we get|§| = 2-°W). This gives us:
ProPOSITION3. Let C be a smallest enclosing cylinder for input sgivith radius r.
Then any cylinder C# C that touches a different set of points than C has radigsi*

orr >r*+ 2-CL for a suitable constant.c

To concludeO(L) iterations of the decision algorithm are sufficient to determine the
combinatorial solution.
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REMARK 1. The use of the general gap-theorem 2 gives constants that are far beyond
from being practical. It would be desirable to derive sharper bounds for special cases of
this theorem.

2.3. Combinatorial Complexity The goal of this subsection is to provide some intu-
ition on the combinatorial complexity of the considered problems—uwith focus on lower
bounds. In particular, our constructions show that the problems are far from being convex
or LP-type.

We start with an example that provides a lower bound on the numtzgpbél op-
timain both (P1) and (P2). Consider an even numbef points in a plane, arranged
as a regulan-gon. In this setting, there are exactly2 smallest enclosing cylinders,
corresponding to the smallest enclosing slabs in the plane. Each of these cylinders is
a locally smallest enclosing cylinder of four of the input points. Note that, with a sim-
ilar example, it is also possible to have two global minima which lie arbitrarily close
together, i.e., whose axis lines can be brought to coincidence by an arbitrarily small
rotation.

To give a lower bound on the possible numberlafal optimais slightly more
complicated, and we first turn our attention to the restricted problem (P2). Consider an
even numben of points that are arranged on the unit sphgten/2 on the circleCy
(Cy) of intersection with the plane = 0 (y = 0). Further, we assume that the points
on each circle are uniformly stepped and diametrically opposed. Let each line through
the origin be parameterized by its intersection with the spiS8rélow let us ask for
the set of cylinders with distange 1 — ¢ to one input point. This set corresponds to
a thin stripe onS?, and describes the forbidden cylinders with respect fbhe set of
enclosing cylinders with radius 1 — ¢ is the complement of the union of the stripes for
all c € |. Fore sufficiently small, this set has quadratic complexity, and any connected
component must correspond to a local minimum.

Finally, let us consider the general setting (P1) for the same inpuitadgve. In this
case, itis easy to see that—due to symmetry—a necessary condition fof &dibe the
axis of a locally smallest enclosing cylinder is that the lingasses through the origin.
Hence, the (n?) local minima in (P2) stay local minima even if we add the remaining
translational degrees of freedom.

PrROPOSITION4. For n given input pointsthere can be(n) globally smallest and
Q(n?) locally smallest enclosing cylinders

REMARK 2. Agarwal et al. [AAS] have a similar result. They show that the set of
cylinders of a given radius enclosing a setgfoints can consist af (n?) connected
components. It remains open if there exist examples for (P1) with more than a quadratic
number of local or of global minima.

3. Optimization Algorithms

3.1. Linearization In order to illustrate the basic idea of our optimization technique,
we first consider the anchored problem (P2). Our focus is the fixed-parameter problem
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to decide whether there exists an anchored cylinder of given radhat encloses all
input points.

Let €45 be the line through the points b € R3. We fix a at the origin and without
loss of generality requirk to lie on the plang = 1:

a= (Oa 0, 0)1 b: (bX7 by, 1)

Further, letc = (cy, ¢y, ;) be an arbitrary input point. We cafk, admissiblewith
respect ta if

(1) d(€ap. ©)* <2,
with
d(£ap, ©% = (5 + cHbZ + (¢ + )b — 26,y byby — 2c,c,by — 2¢yc.by
+ (G +¢5)/(bF + b5 + 1).
We embedour problem into a higher-dimensional space by setting
(2  Xi=by,  Xg=by,  Xg=bi,  Xs=bl,  Xs=byb,.
Now, (1) is true if and only if
3 Pe(X1, ..., X5) <0,
whereP; is the linear equation
Po(X1, ... Xs) = (=26xC2) X1 + (=20yC;) Xz + (Cj + C; — %) X3
+ (Cf + €5 — r?)Xg + (—26xCy) X5 + (€ + 5 — 1),

According to this equatior®; defines a hyperplane R®, and inequality (3) a halfspace
Hc. The set of (2) defines a two-dimensional manifold which can be written as

M= {(Xl,...,X5): Q(Xl,..., X5) =0}
with
Q(Xq, ..., X5) = (X2 — X3)2 + (X3 — Xg)2 + (X5 — X1 X2)%.

For the set of input points, the fixed-parameter problem has a solution if and only if
there exists a liné,y, which is admissible with respect to eacle | . This is equivalent
to the existence of a common intersection of the halfspaigesd the manifoldM. The

intersection
H=[)H

cel

is a convex polytope of complexit®(n?), and can be constructed in the same time
bound by Chazelle’s result [Ch]. In order to intersectvith M, we triangulateH into

0O(n?) simplices. Each of these simplices can be tested for intersectioMstparately

in constant time if we assume an algebraic model of computing, and in@i(&L))

if we assume a bit model [R]. (Note here thdtis a semialgebraic set and the above
test corresponds to deciding the satisfiability for a system of polynomial equations and
inequalities.) We have shown:
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LEMMA 3. The fixed radius version of problefa2)can be solved in time @?) in the
algebraic modeland in time Qn?u(L)) in the bit model

This argument generalizes in a straightforward way to proving the general Theorem 3.

REMARK 3. Due to the possible quadratic number of local minima, this result may be
optimal. It is an open question whether problem (P2) belongs to the classhafrd
problems introduced in [GO].

The above technique extends to problem (P1). In this case, we consider—without
loss of generality—axis lines that are not parallel to the plarae0. Leté,y, be the line
through the points, b € R3, with

a= (ay, ay, 0), b= (ax + bx,ay + by, 1).
Thent,y, is admissible with respect = (cy, ¢y, ¢,) and given radius iff
Pe(ax, ay, by, by) <0,
with
Pe(@y. ay, by, by) = cZ(bf + 1) + (b + 1) + cZ(b + b))
+ cxCy(—2byby) + cxC,(—2by) + CyCy(—2by)
+ C2(2byay + 2byay) + Cx(—2ax — 2acbl + 2bshyay)
+ ¢y(—2ay — 2aybZ + 2bsacby)
+ (afbl + albi + af + a2 — r(bf + b)) — 2babyay) —r?.

At first glance,P. has an order 10 linearization. However, we can save one variable by
grouping the terms with factorg, c2, andc? differently:

cz(b5 + 1) + c5(bZ + 1) + c5 (b + bf) = (c5 + cHbg + (c5 + c)bF + (¢ + ),

and setting
Xp =by, Xo=by, Xg=bi, Xs=bl, Xs=byh,
Xe = byay + byay,
X7 = —a, —ah] + bbya,,
Xg = —ay — ayb? + byaxby,

Xo = aZ(bj+ 1) +aj(b + 1) — r’(bZ + b)) — 2b,abya,.
Applying Theorem 3, we conclude:

LEMMA 4. The fixed radius version of problegfl)can be solved in time @*) in the
algebraic modeland in time Qn*..(L)) in the bit model

ReEMARK 4. If P;hasanorder 8linearization, this fact would notimprove the asymptotic
complexity of the problem, but it means we could use some oftfré“/21) convex hull
algorithms to achieve the same complexity bounds.
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3.2. Parametric Search and Exact Approximationin this subsection we shall apply
parametric search and exact approximation to problem (P1), based on the decision algo-
rithm from the previous subsection. Note that the presented techniques apply as well to
the restricted setting (P2).

We shall use the parametric search paradigm in its general form (see, e.g., [AST]
for a detailed description). Lel; denote the running time of a sequential decision
algorithm for the fixed-parameter problem, afgl(resp.,P) the time (resp., number
of processors) of a parallel decision algorithm, then the optimal value (hgrean
be computed in sequential tim@(P T, + TsTplog P). It remains to give a parallel
version of the decision algorithm. Here we exploit the new parallel algorithm for convex
hulls of [AGR]. For dimensiord > 4, there is an algorithm with tim®(logn) and
work O(nl4/2) |og®ld/21-19/2) 0y - for some constant > 0. Further, withO(n'9/2l)
processors, the test for intersectiontéfwith M can be done in constant time in an
algebraic model (resp., a real RAM, see [R]). Plugging this into the parametric search
paradigm, and observing that—in an algebraic model—the combinatorial solution of
(P1) can easily be constructed from the computed optimum valuge obtain:

LEMMA 5. A combinatorial solution ofP1)can be computed by parametric search in
time O(n*logk n), for a fixed constant k- O.

Turning our attention to the bit model, as shown in Section 2.2, the combinatorial
solution of (P1) can be obtained from arapproximate solution for* if ¢ = 2-°®),
To compute this approximate solution, it suffices to run the decision algorithm for the
fixed-parameter proble® (L) times, with radii of bit-sizeéD(L) as input. This yields:

LEMMA 6. A combinatorial solution ofP1)can be computed in the bit model in time
O(Lu(L)n%.

3.3. e-Approximation and Tradeoff Section 3.1 describes a decision algorithm for
the fixed-parameter problem for (P1). In an algebraic model of computing, and with
our assumptiorjc|| = O(1) for c € 1, this algorithm turns into aa-approximation
algorithm by using binary search fore [0, 1]:

LEMMA 7. An g-approximate solution of problenP1) can be computed in time
O(n*loge1).

As a trivial application ofliscretization we may also exploit that elimination of the
“rotational freedom” reduces (P1) to the problem of finding a smallest enclosing circle
for a set of points in a plane—which can be solved in time lineax. in

Any change of the axis direction by an angle< ¢ can change the location of an arbi-
trary, projected point* (see Section 2) by at mo8k(¢). Thus, we get ap-approximation
if we discretize the directions of the axis by a uniform grid$n Finally, this yields a
guadratic dependency of running time ofz 1but only a linear dependency on

LEMMA 8. An e-approximate solution of problenfP1l) can be computed in time
O(ne~?loge1).
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The rest of this subsection is devoted to the interesting problem of how to fill the gap
between Lemmas 7 and 8. Again, we shall use the linearization technique.
Let us consider the ling,, through the points

a= (aXaay70)7 b= (aX+bX7ay+Sb(al)'

The pointb lies on a line in the plane = 1, with origin (ay, ay) and “slope”s. Again,
for givens andr, £y, is admissible with respect = (cy, ¢y, ¢;) € | iff

PC(aXa ay, bX) S 05

with P. the numerator of
d(€ap, €)% —r2.

Following the same strategy to group variable®iras above, we can writé. as

Pe(ax, ay, b) = b3(s’c; + ¢ + (14 57)c — 25GCy)
+ by (—25G,C, — 2¢4C,) + (—2ay + 2skPay — 2s%acb?)cy
+ (—2ay — 2a,b? + 2sab?)cy + (2aby + 2saby)c,
+ (afbf — r?bf + aZ + aj — 2saa,bf + s?azbl — r’s°bf) —r?.

Hence, we obtain a linearization & with six variablesXy, ..., Xg. Proceeding as in
3.1, we get—for any fixed—an algebraic decision algorithm with running tir@gn).
We now discretize (P1) by choosing lines with uniformly steppkape anglefor
the position ofb. Further, we consider choices afandb in planes parallel tx = 0,
y = 0, andz = 0. It is again easy to see that independent optimization for each of these
instances will yield ar-approximate solution of (P1).

LEMMA 9. An e-approximate solution of problentP1l) can be computed in time
O(ns~tloge1).

REMARK 5. The presented discretizations rely on the assumption that all input points
are enclosed in the unit sphere, and that we are only interested in absolute errors. In a
bit model where input numbers are bounded by i2would be interesting to remove
these assumptions. As mentioned earlier, in the algebraic model, AgatraldlAAS],
recently gave an approximation algorithm for finding a cylinder whose radius is at most
1+ & times the optimum in timeé(n/82). This is accomplished by first computing a
crude estimate of the direction for the optimum cylinder axis, and applying a procedure
similar to that of Lemma 8.

4. Experimental Results. In this section we describe a simple optimization method
and evaluate this method by comparing its results with “exact” results that we obtained
with MAPLE.

To implement a fast optimization technique, we use our usual representation of a
smallest enclosing cylinder by specifying only its axial direction. By this reduction, the
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Fig. 1. Polar plot of the radius of the smallest enclosing cylinder as a function of its axis orientation. The set
of points is the vertices of a cube.

optimization problem can be viewed as a search for the minimum on a two-dimensional
surface in 3-space. Each point of this surface can be obtained as the result of a convex
optimization problem. (An example of this surface can be seenin Figure 1.) Thus, we seek
the minimum of a composed functidro g. We choose an optimization technique which
only requires functiorevaluationsbut not to compute derivatives. This technique—
the standard downhill simplex algorithm as described in [PTVF]—tries to follow the
direction of steepest descent. It is applied in two layers, to compute the minimdim of
and (recursively) that of.
For a given start axis, the optimization method converges to some local minimum.
To locate a global minimum, one can choose a two-dimensional grid of start values.
However, our experiments indicate that there may be a better choice for optimization
start values: the set of directions of edges in the convex hul{vdte the special meaning
of these directions in Proposition 1).
In what follows, we shall report on some experimental results with this special set
of start values. We first computed smallest enclosing cylinders for randomly generated
tetrahedra. In a sequence of 100 tests, at least one of the six considered start values (the

edge directions of the tetrahedron) led to the optimum. The number of tests in kvhich
start values succeeded is listed below:

k 6 5 4 3 2

Successes 46 16 15 31 9 1 0
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In two additional test sequences, we tested 50 sets of five random points, and ten sets
of eight random points (the coordinates have been chosen in a way to guarantee convex
position). Again, in each test the downhill simplex algorithm converged to the minimum
for at least one starting value, and generally for many.

The most complex examples which we tried consisted of 12 points.MEreE
implementation did run several days on these sets to find the optimum. The numerical

optimization converged within seconds for each starting value. To stimulate further
research, we include the data as benchmarks:

ExampPLE 1. The 12 input points are arranged near to two circles of radius 10 in the
two parallel planeg = —10 andz = 20:

(S Cs Ca Cc C Cr GCg Co Cip Ci1 Ci2
X 5 -5 -11 -5 5 10 4 -6 -11 -5 5 9
y 8 9 0O -8 -9 0 9 9 1 -9 -8 -1
z -10 -9 -10 -11 -10 -9 21 20 19 20 21 18

According tomMAPLE, the smallest enclosing cylinder passes through the five points
Ca, Cs, Cs, Cg, C10, and has radius 18003+ 10~*. The second-smallest enclosing cylinder
through five points touches, cs, Cs, Cg, C10, and has radius: 10.5009.

The downhill simplex algorithm converged to the minimum radiu$0.5003 for the
starting valuescy, ¢4), (Co, C3), (C10, Cs), (C12, C5), and(Ciz, C1).

ExAmMPLE 2. The 12 input points are arranged near the 12 vertices of an icosahedron
with center at the origin:

C1 C2 C3 Cs GCs Ce C7 Cg C Cip Ci1 Ci2

x =12 -12 9 10 23 10 -10 —-24 12 12 -10 -8
y -—19 1 -13 12 -1 -21 21 1 19 -1 -12 12
z -6 -20 -18 -—-17 -2 5 -6 2 6 20 17 18

The optimal solution has been computediayprLE as the cylinder through the five points

Ci1, Cs, C7, Cg, C11, With radius~ 21.0309. All but two points lie close to the surface of
this cylinder. (For an exact model of the icosahedron, the optimal cylinders would pass
through ten points.) The downhill simplex algorithm obtained this solution for the starting
values(Cs, C1), (C3, C2), (Ca, C2), (Cs, C1), (Cg, Cs), and(Cy, Cg).

To conclude this section, we observe that the proposed downhill algorithm behaves
amazingly well, and did not fail for the examples we tried.
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5. Final Remarks. As the field of geometric optimization matures, it treats problems
of increasingly nontrivial algebraic complexity. The traditional neglect of bit complexity

is no longer justified. The smallest cylinder problem is one of these problems. By com-
bining the general linearization technique with parametric search, we developed efficient
algorithms in both models. These results, as well as the exact results of Agarwal et al.,
seem mainly of theoretical interest.

Thee-approximation schemes have possibly greater practical applicability. But even
here, our numerical experiments suggest that these may not be competitive with some
heuristic numerical approaches. For specific applications, like metrology, the extra
effort of using an exact approach can be justified. Here, the model of computing has
to be chosen carefully, and the bit model offers advantages when compared to highly
involved algorithms that operate in the algebraic model. For other applications, like
assembly planning, computational geometry will probably fail in an attempt to substitute
numerical approaches by exact and “efficient” but highly complex algorithms. Here,
theoretical contributions can increase the understanding of numerical techniques.
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