
Algorithmica
https://doi.org/10.1007/s00453-024-01264-x

Romeo and Juliet Meeting in Forest Like Regions

Neeldhara Misra1 ·Manas Mulpuri1 · Prafullkumar Tale2 ·
Gaurav Viramgami1

Received: 23 April 2023 / Accepted: 14 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
The game of rendezvous with adversaries is a game on a graph played by two players:
Facilitator and Divider. Facilitator has two agents and Divider has a team of k ≥ 1
agents.While the initial positions of Facilitator’s agents are fixed, Divider gets to select
the initial positions of his agents. Then, they take turns to move their agents to adjacent
vertices (or stay put) with Facilitator’s goal to bring both her agents at same vertex and
Divider’s goal to prevent it. The computational question of interest is to determine if
Facilitator has a winning strategy against Divider with k agents. Fomin, Golovach, and
Thilikos [WG, 2021] introduced this game and proved that it is PSPACE-hard and co-
W[2]-hard parameterized by the number of agents. This hardness naturally motivates
the structural parameterization of the problem. The authors proved that it admits an
FPT algorithm when parameterized by the modular width and the number of allowed
rounds. However, they left open the complexity of the problem from the perspective
of other structural parameters. In particular, they explicitly asked whether the problem
admits an FPT or XP-algorithm with respect to the treewidth of the input graph. We
answer this question in the negative and show that Rendezvous is co-NP-hard even
for graphs of constant treewidth. Further, we show that the problem is co-W[1]-hard

Related Version: A shorter version of this work has been accepted for presentation at the 42nd IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), 2022.

B Prafullkumar Tale
prafullkumar@iiserpune.ac.in
https://pptale.github.io/

Neeldhara Misra
neeldhara.m@iitgn.ac.in
https://www.neeldhara.com

Manas Mulpuri
mulpuri.m@iitgn.ac.in

Gaurav Viramgami
viramgami.g@iitgn.ac.in

1 Indian Institute of Technology, Gandhinagar, India

2 Indian Institute of Science Education and Research, Bhopal, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01264-x&domain=pdf
http://orcid.org/0000-0003-1727-5388


Algorithmica

when parameterized by the feedback vertex set number and the number of agents,
and is unlikely to admit a polynomial kernel when parameterized by the vertex cover
number and the number of agents. Complementing these hardness results, we show
that the Rendezvous is FPT when parameterized by both the vertex cover number
and the solution size. Finally, for graphs of treewidth at most two and girds, we show
that the problem can be solved in polynomial time.

Keywords Games on graphs · Dynamic separators · W[1]-hardness · Structural
parametersization · Treewidth

1 Introduction

The game of rendezvous with adversaries on a graph—Rendezvous—is a natural
dynamic version of the problem of finding a vertex cut between two vertices s and
t introduced by Fomin, Golovach, and Thilikos [4]. The game is played on a finite
undirected connected graph G by two players: Facilitator andDivider. Facilitator has
two agents Romeo and Juliet that are initially placed in designated vertices s and t of
G. Divider, on the other hand, has a team of k ≥ 1 agents D1, . . . , Dk that are initially
placed in some vertices of V (G)\{s, t} chosen by him. We note that a single vertex
can accommodate multiple agents of Divider.

Then the players make their moves in turn, starting with Facilitator. At every move,
each playermoves some of his/her agents to adjacent vertices or keeps them in their old
positions. No agent can be moved to a vertex that is currently occupied by adversary’s
agents. Both players have complete information about G and the positions of all the
agents. Facilitator aims to ensure that Romeo and Juliet meet; that is, they are in the
same vertex. The task of Divider is to prevent the rendezvous of Romeo and Juliet by
maintaining D1, . . . , Dk in positions that block the possibility tomeet. Facilitator wins
if Romeo and Juliet meet, and Divider wins if they succeed in preventing the meeting
of Romeo and Juliet forever. This setup naturally leads to the following computational
question.

Rendezvous

Input: A graph G with two given vertices s and t , and a positive integer k.
Question: Can Facilitator win on G starting from s and t against Divider with
k agents?

We will often refer to k, the number of agents employed by Divider to keep Romeo
and Juliet separated, as the “solution size” for this problem.
Known Results

Fomin, Golovach, and Thilikos [4] initiated an extensive study of the computa-
tional complexity of Rendezvous. They concluded that the problem is PSPACE-hard
and co-W[2]-hardwhen parameterized by the number of Divider’s agents, while also
demonstrating an |V (G)|O(k) algorithm based on backtracking stages over the game

123



Algorithmica

arena. They also show that the problem admits polynomial time algorithms on chordal
graphs and P5-free graphs. A related problem considered is Rendezvous in Time,
which asks if Facilitator can force a win in at most τ steps. It turns out that Ren-
dezvous in Time is co-NP-complete even for τ = 2 and is FPT when parameterized
by τ and the neighborhood diversity of the graph. The latter is an ILP-based approach
and uses the fact that Integer Linear Programming Feasibility is FPT in the
number of variables. We refer readers to [4], and references within, for more related
problems.

The smallest number of agents that Divider needs to use to win on a graph G is
called the “dynamic” separation number of G. We denote this number by dG(s, t).
Note that if s and t are adjacent or s = t , then dG(s, t) := +∞. The “static” separation
number between s and t , the original positions of Facilitator’s agents, is simply the
smallest size of a (s, t)-vertex cut, i.e, a subset of vertices whose removal disconnects
s and t . We use λG(s, t) to denote the minimum size of a vertex (s, t)-separator in
G. It is clear that dG(s, t) ≤ λG(s, t), since positioning λG(s, t) many guards on
the vertices of a (s, t)-vertex allows Divider to win the game right away. It turns out
that dG(s, t) = 1 if and only if λG(s, t) = 1. However, there are examples of graphs
where dG(s, t) is arbitrarily smaller than λG(s, t) [4]. The results in [4] for chordal
graphs and P5-free graphs are based on the fact that in these graphs, it turns out that
dG(s, t) = λG(s, t).
Our Contributions

Given that the problem is hard when parameterized the solution size, often regarded
the “standard” parameter, a natural approach is to turn to structural parameters of the
input graph. One of the most popular structural parameters in the context of graphs is
treewidth, which is a measure of how “tree-like” a graph is. XP and FPT algorithms
parameterized by treewidth are natural generalizations of tractability on trees. Indeed,
Rendezvous is easy to solve on trees because λG(s, t) = 1 for any distinct s and t
when G is a tree and st /∈ E(G). The complexity of Rendezvous parameterized by
treewidth, however, is wide open—in particular it is not even known if the problem is
in XP parameterized by treewidth.

Interestingly, it was pointed out in [4] that if the initial positions s and t are not
is the same bag of a tree decomposition of width w, then the upper bound for the
dynamic separation number byλG(s, t) togetherwith theXPalgorithm for the standard
parameter can be employed to solve the problem in nO(w) time. Thus, the question
that was left open by Fomin, Golovach, and Thilikos was if the problem can be solved
in the same time if s and t are in the same bag. Our first contribution is to answer this
question in the negative by showing that Rendezvous is in fact co-NP-hard even for
graphs of constant treewidth. In fact, we show more:

Theorem 1 Rendezvous is co-NP-hard even when restricted to:

• graphs whose feedback vertex set number is at most 14, or
• graphs whose pathwidth is at most 16.

In particular, Rendezvous is para-co-NP-hard parameterized by treewidth.

We obtain this hardness by a non-trivial reduction from the 3- Dimensional

Matching problem. In the backdrop of this somewhat surprising result, we are moti-
vated to pursue the question of the complexity of Rendezvous for larger parameters.

123



Algorithmica

It turns out that even augmenting the feedback vertex set number or the pathwidth with
the solution size is not enough. Specifically, we show that the problem is unlikely to
admit an FPT-algorithm even when parameterized by these combined parameters.

Theorem 2 Rendezvous is co-W[1]-hard when parameterized by:

• the feedback vertex set number and the solution size, or
• the pathwidth and the solution size.

This result is shown by a parameter preserving reduction from the (Monotone)

NAE- Integer- 3- Sat problem, which was shown to beW[1]-hardwhen parameter-
ized by the number of variables by Bringmann et al. [1]. Note that with this, we have
a reasonably complete understanding of Rendezvous in the combined parameter.
Indeed, recall that the problem is co-W[1]-hard and XP parameterized by the solution
size alone, and para-co-NP-hard parameterized by the feedback vertex set number
alone as shown above (Fig. 6).

Given the above hardness, we consider Rendezvous parameterized by the vertex
cover number, a larger parameter compared to both the feedback vertex set number
and pathwidth. The status of Rendevous with respect to the vertex cover number
parameterization was also left open in [4]. We see that the problem admits a natural
exponential kernel in this parameter when combined with the solution size, and is
hence FPT in the combined parameter; however this kernel cannot be improved to a
polynomial kernel under standard complexity-theoretic assumptions.

Theorem 3 Rendezvous is FPTwhen parameterized by the vertex cover number of the
input graph and the solution size. Moreover, the problem does not admit a polynomial
kernel when parameterized by the vertex cover number and the solution size unless
NP ⊆ co-NP/poly.

Webriefly describe the intuition for the exponential kernel with respect to the vertex
cover number. Suppose the graphG has a vertex cover X , where |X | ≤ �, and, onemay
assume, without loss of generality, that s, t ∈ X . Further, for any Y ⊆ X , let IY denote
the set of all vertices in G\X whose neighborhood in X is exactly Y . It is not hard to
see that if |IY | > k, then one might as well “curtail” the set to k + 1 vertices without
changing the instance. This leads to an exponential kernel in the combined parameter.
It is also true that k is bounded, without loss of generality, by � and the size of the
common neighbhorhood of s and t to begin with; however, it is unclear if k can always
be bounded by some function of the vertex cover size alone. The kernelization lower
bound follows from observing the structure of the reduced instance in the reduction
used in [4] to prove that the problem is co-W[2]-hard when parameterized by the
solution size.

Finally, we present polynomial time algorithms on two restricted cases.

Theorem 4 Rendezvous admits a polynomial-time algorithm when input graph is a
grid or has treewidth at most two.

Recall that the polynomial time algorithm on the classes of trees, chordal graphs,
and P5-free graphs is obtained by proving that the size of a dynamic separator is same

123



Algorithmica

as that of a separator. In case of grids, we present a winning strategy for Divider for
any non-trivial instances. This makes the class of grid graphs a unique graph class in
which the problem admits polynomial time algorithm even when dynamic separators
can be smaller than separators.

Organization of the Paper After presenting technical preliminaries in Sect. 2, we
first describe the proof ofTheorem1 inSect. 3, alongwith a separate discussion focused
on the intuition for the proof.We present Theorem 2 in Sect. 4. The proof of Theorem 3
can be found in Sect. 5. The polynomial time results are presented in Sect. 6.

2 Preliminaries

For a positive integer q, we denote the set {1, 2, . . . , q} by [q]. We use N to denote
the collection of all non-negative integers.

Graph Theory
We use standard graph-theoretic notation, and we refer the reader to [3] for any unde-
fined notation. For an undirected graph G, sets V (G) and E(G) denote its set of
vertices and edges, respectively. We denote an edge with two endpoints u, v as uv.
Unless otherwise specified, we use n to denote the number of vertices in the input
graph G of the problem under consideration. Two vertices u, v in V (G) are adjacent
if there is an edge uv in G. The open neighborhood of a vertex v, denoted by NG(v),
is the set of vertices adjacent to v. The closed neighborhood of a vertex v, denoted by
NG [v], is the set NG(v)∪{v}.We say that a vertex u is a pendant vertex if |NG(v)| = 1.
The degree of a vertex v, denoted by degG(v), is equal to the number of vertices in
the open neighbourhood of v, i.e., degG(v) = |NG(v)|. We omit the subscript in the
notation for neighborhood if the graph under consideration is clear.

For a subset S of V (G), we define N [S] = ⋃
v∈S N [v] and N (S) = N [S]\S. For

a subset F of edges, we denote by V (F) the collection of endpoints of edges in F .
For a subset S of V (G) (resp. a subset F of E(G)), we denote the graph obtained
by deleting S (resp. deleting F) from G by G − S (resp. by G − F). We denote the
subgraph of G induced on the set S by G[S].

A graph is connected if there is a path between every pair of distinct vertices. A
subset S ⊆ V (G) is said to be a connected set if G[S] is connected.

A simple path, denoted by P[u, v, d], is a non-empty graph G of the form V (G) =
{u, x1, . . . , xd , v}, and E(G) = {ux1, x1x2, . . . , xd−1xd , xdv}, where u, v, and all
xi ’s are distinct. The vertices {x1, x2, . . . , xd} are the internal vertices of P[u, v, d],
and the vertices {xi : deg(xi ) > 2, i ∈ [d]}, i.e., internal vertices whose degree
in the graph is strictly greater than 2 are the branching points of P[u, v, d]. Let
P[u, v, d1] be the path on the vertices {u, x1, . . . , xd1 , v} and let P[v,w, d2] be the
path on the vertices {v, y1, . . . , yd2 , w} (with edges as described above). We then
use P[u, v, d1]◦ P[v,w, d2] to denote the path on {u, x1, . . . , xd1 , v, y1, . . . , yd2 , w},
which has d1+d2+1 internal vertices. While this notation for paths would be slightly
non-standard, it turns out to be a convenient choice for describing the structure of the
graphs in our proofs.

123



Algorithmica

A set of vertices Y is said to be an independent set if no two vertices in Y are
adjacent. For a graph G, a set X ⊆ V (G) is said to be a vertex cover if V (G)\X is an
independent set. A set of vertices Y is said to be a clique if any two vertices in Y are
adjacent. A vertex cover X is a minimum vertex cover if for any other vertex cover Y
of G, we have |X | ≤ |Y |. We denote by vc(G) the size of a minimum vertex cover
of a graph G. For a graph G, a set X ⊆ V (G) is said to be a feedback vertex set if
V (G) \ X is does not contain a cycle. We denote by fvs(G) the size of a minimum
feedback vertex set of a graph G.

A tree decomposition of a graph G is a pair T = (T , {Xt }t∈V (T )), where T is a tree
whose every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that
the following conditions hold:

• ⋃
t∈V (T ) Xt = V (G). In other words, every vertex of G is in at least one bag.

• For every uv ∈ E(G), there exists a node t of T such that bag Xt contains both u
and v.

• For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt }, i.e., the set of nodes
whose corresponding bags contains u, induces a connected subtree of T .

The width of a tree decomposition T = (T , {Xt }t∈V (T )) is maxt∈V (T )|Xt | − 1. The
treewidth of a graph G, denoted by tw(G), is the minimum possible width of a tree
decomposition of G.

A path decomposition of a graph G is a sequence P = (X1, X2, . . . , Xr ) of bags,
where Xi ⊆ V (G) for each i ∈ [r ], such that the following conditions hold:

• ⋃r
i=1 Xi = V (G). In other words, every vertex of G is in at least one bag.

• For every uv ∈ E(G), there exists � ∈ [r ] such that the bag X� contains both u
and v.

• For every u ∈ V (G), if u ∈ Xi ∩ Xk for some i ≤ k, then u ∈ X j also for each j
such that i ≤ j ≤ k. In other words, the indices of the bags containing u form an
interval in [r ].

The width of a path decomposition (X1, X2, . . . , Xr ) is max1≤i≤r |Xi | − 1. The path-
width of a graph G, denoted by pw(G), is the minimum possible width of a path
decomposition of G.

A M × N grid is the graph G of the form V (G) = {(i, j) : i ∈ [M], j ∈ [N ]},
and E(G) = {(i, j)(i ′, j ′) : |i − i ′| + | j − j ′| = 1, i, i ′ ∈ [M], j, j ′ ∈ [N ]}.

Let X and Y be multisets of vertices of a graph G (i.e., X and Y can contain several
copies of the same vertex). We say that X and Y of the same size are adjacent if there
is a bijective mapping α : X → Y such that for x ∈ X , either x = α(x) or x and α(x)
are adjacent in G.

Parameterized Complexity
An instance of a parameterized problem � consists of an input I , which is an input

of the non-parameterized version of the problem, and an integer k, which is called
the parameter. A problem � is said to be fixed-parameter tractable, or FPT, if given
an instance (I , k) of �, we can decide whether (I , k) is a Yes-instance of � in time
f (k) · |I |O(1). Here, f : N �→ N is some computable function depending only on
k. Parameterized complexity theory provides tools to rule out the existence of FPT
algorithms under plausible complexity-theoretic assumptions. For this, a hierarchy of

123



Algorithmica

parameterized complexity classes FPT ⊆ W[1] ⊆ W[2] · · · ⊆ XP was introduced,
and it was conjectured that the inclusions are proper. A parameterized problem is in
co-W[i], i ∈ N, if its complement is in W[i], where the complement of a parame-
terized problem is the parameterized problem resulting from reversing the YES and
NO answers. If any co-W[i]-complete problem is fixed-parameter tractable, then co-
W[i]=FPT=co-FPT=W[i] follows, which causes the Exponential Time Hypothesis to
fail. Hence co-W[i]-completeness provides strong theoretical evidence that a problem
is not fixed-parameter tractable. The most common way to show that it is unlikely
that a parameterized problem admits an FPT algorithm is to show that it is W[1] or
W[2]-hard. It is possible to use reductions analogous to the polynomial-time reduc-
tions employed in classical complexity. Here, the concept of W[1]-hardness replaces
the one of NP-hardness, and we need not only to construct an equivalent instance
FPT-time, but also to ensure that the size of the parameter in the new instance depends
only on the size of the parameter in the original instance. These types of reductions are
called parameter preserving reductions. For a detailed introduction to parameterized
complexity and related terminologies, we refer the reader to the book by Cygan et
al. [2].

A reduction rule is a polynomial-time algorithm that takes as input an instance of
a problem and outputs another, usually reduced, instance. A reduction rule said to be
applicable on an instance if the output instance and input instance are different. A
reduction rule is safe if the input instance is a Yes-instance if and only if the output
instance is a Yes-instance.

A kernelization of a parameterized problem�1 is a polynomial algorithm that maps
each instance (I1, k1) of �1 to an instance (I2, k2) of �2 such that (1) (I1, k1) is a
Yes-instance of �1 if and only if (I2, k2) is a Yes-instance of �2, and (2) the size of
I2 is bounded by g(k) for a computable function g(·). If g(·) is a polynomial function,
then we call it a polynomial kernel. It is known that a decidable problem is FPT if and
only if it admits a kernel (See, for example, [2, Lemma 2.2]).

Rendezvous Games with Adversaries
Recall that the game is played on a connected graph G, and s and t are initial

positions of the agents of Facilitator. Let also k be the number of agents of Divider.
Notice that a placement of the agents of Facilitator is defined by a multiset of two

vertices, as R and J can occupy the same vertex. We denote by FG the family of all
multisets of two vertices. Similarly, a placement of k agents of Divider is defined by a
multiset of k vertices, because several agents (of the same player) can occupy the same
vertex. Let Dk

G be the family of all multisets of k vertices. We say that F ∈ FG and
D ∈ Dk

G are compatible if F ∩ D = φ. Notice that the number of pairs of compatible

F ∈ FG and D ∈ Dk
G is n

(n+k−2
k

) + (n
2

)(n+k−3
k

)
. We denote by

Pk
G = {(F, D)|F ∈ FG, D ∈ Dk

G s.t. F and D are compatible}

the set of positions in the game.
Formally, a strategy of Facilitator for Rendezvous is a function f : Pk

G → FG

that maps (F, D) ∈ Pk
G to F ′ ∈ FG such that F and F ′ are adjacent and F ′ is

compatible with D. In words, given a position (F, D), Facilitator moves R and J

123



Algorithmica

from F to F ′ if this is her turn to move. Similarly, a strategy of Divider is a function
d : Pk

G → Dk
G that maps (F, D) ∈ Pk

G to D′ ∈ Fk
G such that D and D′ are adjacent

and D′ is compatible with F , that is, Divider moves his agents from D to D′ if this is
his turn to move. To accommodate the initial placement, we extend the definition of
d for the pair ({s, t}, φ) and let d({s, t}, φ) = D′, where D′ ∈ Dk

G is compatible with
{s, t}.

Another variant of the game is when the number of moves of the players is at most
some parameter τ . Then Facilitator wins if R and J meet within the first τ moves, and
Divider wins otherwise. Thus the problem is:

Rendezvous in Time

Input: A graph G with two given vertices s and t , and positive integers k and
τ .
Question: Can Facilitator win on G starting from s and t in at most τ steps
against Divider with k agents?

Notice that, in the above problem, τ is part of the input. When τ is a fixed constant,
this generates a family of problems, one for each different value of τ referred to as
τ -Rendezvous in Time problem. The definitions of strategies for Rendezvous in

Time are more complicated, because the decisions of the players also depend on the
number of the current step. A strategy of Facilitator for Rendezvous is a family of
functions fi : Pk

G → FG for i ∈ {1, . . . , τ } such that fi maps (F, D) ∈ Pk
G to

F ′ ∈ FG , where F and F ′ are adjacent and F ′ is compatible with D. Facilitator uses
fi for the move in the i-th step of the game. A strategy of Divider is a family of
functions di : Pk

G → Dk
G for i ∈ {0, . . . , τ − 1} such that for i ∈ {1, . . . , τ − 1}, di

maps (F, D) ∈ Pk
G to D′ ∈ Fk

G , where D and D′ are adjacent and D′ is compatible
with F , and d0 maps ({s, t}, φ) to D′ ∈ Dk

G compatible with {s, t} (slightly abusing
notation we do not define d0 for the elements of Pk

G).

3 para-co-NP-Hardness Parameterized by FVS and Pathwidth

In this section, we prove that Rendezvous is para-co-NP-hard when parameterized
by the feedback vertex set number and the pathwidth of the input graph. To do that,
we present a parameter preserving reduction from the 3- Dimensional Matching

problem, which is known to be NP-hard [6, SP 1]. For notational convenience, we
work with the following definition of the problem. An input consists of a universe
U = {α, β, γ } × [n], a family F = {A1, A2, . . . , Am} of subsets of U such that for
every j ∈ [m], set A j = {(α, a1), (β, b1), (γ, c1)} for some a1, b1, c1 ∈ [n]. The goal
is to find a subset F ′ ⊆ F that covers U (and contains exactly n sets).

Reduction
The reduction takes as input an instance (U ,F) of 3- Dimensional Matching

and returns an instance (G, s, t, k) of Rendezvous. It defines M = n2 + m2 where

123



Algorithmica

Fig. 1 (Left) The base gadget except the guard vertices g1 and g2 (which are not shown for clarity). Each
red and blue path has m internal vertices. (Right) Schematic representation (Color figure online)

n = |U |/3 and m = |F |. We construct the graph G as follows: (c.f. Figs. 1, 2, 3 and
4).

The Base Gadget It starts by adding special vertices s and t and two more vertices g1
and g2, and makes them common neighbours of s and t . Recall that we use P[u, v, d]
to denote a simple path from u to v that contains d many internal vertices.

• For every i ∈ [n], it adds the following simple paths1:

– P[u0i , um+1
i ,m],

– P[s, u0i ,m], P[s, um+1
i ,m], P[t, u0i ,m], and P[t, um+1

i ,m].
See Fig. 1 for an illustration.

Encoding Elements The reduction constructs a symmetric graph to encode elements
in U and has ‘left-side’ and ‘right-side.’ It starts by adding vertices {α�, β�, γ �} and
{αr , βr , γ r }.
• For every i ∈ [n], it adds six vertices in {α�

i , β
�
i , γ

�
i } ∪ {αr

i , β
r
i , γ

r
i }, and the

following simple paths:

– P[α�, α�
i , M

2 − M · i], P[β�, β�
i , M

2 − M · i], P[γ �, γ �
i , M2 − M · i],

– P[αr , αr
i , M

2 + M · i], P[βr , βr
i , M

2 + M · i], and P[γ r , γ r
i , M2 + M · i].

Note that the number of internal vertices in paths from α� to α�
i and from αr to

αr
i , and similar such pairs, are different and depend on i .

• For every i ∈ [n], it adds six vertices {x�
i , y

�
i , z

�
i } ∪ {xri , yri , zri }, and the following

simple paths:

1 We use i as well as a1, b1, c1 as running variables in set [n]. We reserve later types of variables for the
integer part of elements in sets F .

123



Algorithmica

Fig. 2 (Left) The left side of the gadget is added to encode elements in U . The number of internal vertices
in each red, blue, and green path depends on i . The number of internal vertices in each yellow shaded path
is 2M2 − 1. (Right) Schematic representation of the gadget (Color figure online)

– P[x�
i , α

�
i , 2M

2 − 1], P[y�
i , β

�
i , 2M

2 − 1], P[z�i , γ �
i , 2M2 − 1],

– P[xri , αr
i , 2M

2 − 1], P[yri , βr
i , 2M

2 − 1], and P[zri , γ r
i , 2M2 − 1].

See Fig. 2 for an illustration.

Encoding Sets The reduction adds simple paths to encode sets. Consider set A j for

some j ∈ [m]. Suppose the internal vertices of P[u0i , um+1
i ,m] are denoted by u j

i

for every j ∈ [m], and u0i is adjacent with u1i and um+1
i is adjacent with umi . All the

vertices in the j th ’column’ corresponds to set A j . This, however, is not an encoding
of set A j as it does not provide any information about its elements. By the definition
of the problem, set A j has an element of the form (α, a1). To encode this element, it
adds 2n many paths connecting j th column to α� and to αr . The number of internal
vertices in these paths depends on a1. We encode the remaining two elements in A j

similarly. We formalise this construction as follows:

• For every j ∈ [m], suppose A j = {(α, a1), (β, b1), (γ, c1)}. Then, for every
i ∈ [n], the reduction adds the following six simple paths:

– P[α�, u j
i , M

2 + M · a1], P[β�, u j
i , M

2 + M · b1], P[γ �, u j
i , M

2 + M · c1],
– P[αr , u j

i , M
2−M ·a1], P[βr , u j

i , M
2−M ·b1], and P[γ r , u j

i , M
2−M ·c1].

See Fig. 3 for an illustration.

Critical Vertices andConnecting Paths In the last phase of the reduction, it adds critical
vertices and connect them to {s, t}, and also to x-type, y-type, and z-type ends of paths
added while encoding elements in U .
• For the special vertex s, it adds critical vertices, say s�

α , s
�
β and s�

γ , on the left side.

– It adds P[s, s�
α, 2M2 + 1], P[s, s�

β, 2M2 + 1], and P[s, s�
γ , 2M2 + 1].

123



Algorithmica

Fig. 3 (Top) Vertices added to encode sets in F . The number of internal vertices in the paths depend
on elements in A j and are denoted next to it. (Bottom) Schematic representation of the gadget used in
subsequent figures (Color figure online)

– For every i ∈ [n], it adds P[s�
α, x�

i , 2M
2], P[s�

β, y�
i , 2M

2], and P[s�
γ , z�i , 2M

2].
It adds the other critical vertices and paths symmetrically. We present them for the
sake of completeness.
For the special vertex s, it adds critical vertices, say srα , s

r
β , and srγ , on the right

side.

– It adds P[s, srα, 2M2 + 1], P[s, srβ, 2M2 + 1], and P[s, srγ , 2M2 + 1].
– For every i ∈ [n], it adds P[srα, xri , 2M

2], P[srβ, yri , 2M
2], and P[srγ , zri , 2M

2].
For the special vertex t , it adds critical vertices, say t�α , t

�
β , t

�
γ , on the left side.

– It adds P[t, t�α, 2M2 + 1], P[t, t�β, 2M2 + 1], and P[t + t�γ , 2M2 + 1].
– For every i ∈ [n], it adds P[t�α, x�

i , 2M
2], P[t�β, y�

i , 2M
2], P[t�γ , z�i , 2M

2],
For the special vertex t , it adds critical vertices, say trα , t

r
β , and t

r
γ , on the right side.

– It adds P[t, trα, 2M2 + 1], P[t, trβ, 2M2 + 1], and P[t, trγ , 2M2 + 1].
– For every i ∈ [n], it adds P[trα, xri , 2M

2], P[trβ, yri , 2M
2], and P[trγ , zri , 2M

2].
This completes the construction of the graph G. See Fig. 6 for the overview of the

constructed graph. The reduction sets k = n+2 and returns (G, s, t, k) as the reduced
instance of Rendezvous.

123



Algorithmica

Fig. 4 (Left) Critical vertices added by the reduction. The number of internal vertices in the paths are fixed
(2M2 + 1 or 2M2). (Right) Schematic representation of the gadget (Color figure online)

Intuition for theCorrectnessWepresent an intuition for the correctness of the reduction
in the reverse direction. In other words, we state how the initial positions of the
Divider’s agent correspond to sets and the elements they can cover. We start with
determining the possible initial positions.

As g1, g2 are common neighbors of s and t , Divider needs to put two agents on g1
and g2. For the remaining n agents, consider the paths P[s, u0i ,m] and P[u0i , t,m] or
P[s, um+1

i ,m] and P[um+1
i , t,m] for every i ∈ [n]. Facilitator can move both Romeo

and Juliet to u0i or u
m+1
i in m steps. Hence, Divider needs to place remaining n agents

at the positions that are at distance at most m simultaneously from u0i and um+1
i . We

ensure that he needs to place an agent on an internal vertex of P[u0i , um+1
i ,m] for

every i ∈ [n]. This will correspond to selecting a set in F in a solution. Formally, an
agent at u j

i for some j ∈ [m] corresponds to selecting A j in the cover of U . As there
are n ’rows’, this will correspond to selecting n (different) sets from F . Hence, the
initial position of the Divider’s agent will correspond to a collection of sets in F .

Suppose for every i ∈ [n], vertices in {x�
i , x

r
i } correspond to element (α, i) ∈ U .

Similarly, vertices in {y�
i , y

r
i } correspond to (β, i), and vertices in {z�i , zri } correspond

to (γ, i). We say (α, i) is covered if Divider can prevent Facilitator from moving both
Romeo and Juliet at x�

i as well as at xri .
From the Facilitator’s preservative, she has 6n possible meeting points of the above

form. She can make these choices in two phases. In the first phase, she can decide to
move Romeo towards one of the six vertices in {s�

α, s�
β, s�

γ } ∪ {srα, srβ, srγ }. To win, she

123



Algorithmica

Fig. 5 Vertices mentioned while presenting the intuition. The vertices near the paths indicate the number
of internal vertices. Set A j contains (α, a1)

will have to move Juliet towards the corresponding vertices with respect to t . Suppose
she moves Romeo towards s�

α and Juliet towards t�α , i.e., Romeo along P[s, s�
α, 2M2+

1] and Juliet along P[t, t�α, 2M2 + 1]. She can move Romeo at s�
α and Juliet at t�α in

2M2 + 2 steps. At this point, she can make one of the n choices and decide to move
both Romeo and Juliet towards x�

i for some i ∈ [n], i.e., Romeo along P[s�
α, x�

i , 2M
2]

and Juliet along P[t�α, x�
i , 2M

2] for some i ∈ [n]. See Fig. 5 for relevant vertices.
From the Divider’s perspective, he can see the first choice made by Facilitator.

However, he has no information about her second choice until next 2M + 2 steps, i.e.,
until she moves Romeo at s�

α and Juliet at t�α . Note that Facilitator can move Romeo
from s�

α to x�
i and Juliet from t�α to x�

i in 2M2 + 1 steps. Divider can move an agent
from α�

i to x�
i in 2M2 steps. Considering the initial positions of agents, he needs to

ensure that one of his agents is present on α�
i for every i ∈ [n] in 2M2 + 2 steps. For

every i ∈ [n], he needs to place an agent at u j
i ′ for some j ∈ [m] and i ′ ∈ [n] that he

can move it to α�
i in 2M

2 + 2 steps. We remark that i may not be equal to i ′.
The only feasible way to do so is by moving the agent from u j

i ′ to α� and then move
it from α� to α�

i . Suppose (α, a1) ∈ A j for some a1 ∈ [n]. Recall that the number

of internal vertices of path from u j
i ′ to α� is M2 + M · a1 where as that of the path

from α� to α�
i is M2 − M · i . Formally, the number of internal vertices in the path

P[u j
i ′ , α

�, M2+M ·a1]◦ P[α�, α�
i , M

2−M · i] is (M2+M ·a1)+1+(M2−M · i) =
2M2 + 1 + M2 · (a1 − i). This implies that Divider can move an agent from u j

i ′ to
α�
i in 2M

2 + 2 + M2 · (a1 − i) steps. Hence, for every i ∈ [n], Divider should place
an agent at u j

i ′ for some j ∈ [m] and i ′ ∈ [n] such that for (α, a1) ∈ A j , we have
a1 ≤ i . Using identical arguments and considering the number of internal vertices on

123



Algorithmica

Fig. 6 Overview of the reduction in Sect. 3

the right side, we prove that for every i ∈ [n], he needs to place an agent at u j ′
i ′′ for

some j ′ ∈ [m] and i ′′ ∈ [n] such that for (α, a2) ∈ A j , we have a2 ≥ i . Combining

these two arguments, Divider needs to place an agent at u j
i ′ such that for (α, a1) ∈ A j ,

we have a1 = i . Moving the agent from this position will prevent Facilitator from
moving both Romeo and Juliet at x�

i and xri . This corresponds to selecting a set from
F to cover the element (α, i) ∈ U . This concludes the intuition for the correctness of
the reduction.

We now present arguments formalizing the ideas described above.

Lemma 5 If (U ,F) is aYes-instanceof3- Dimensional Matching, then (G, s, t, n+
2) is a No-instance of Rendezvous.

Proof We show that if (U ,F) is a Yes-instance of 3- Dimensional Matching,
then Divider with n + 2 agents can win in Rendezvous Game with Adversaries.
Recall that U = {α, β, γ } × [n], and F = {A1, A2, . . . , Am} such that A j =
{(α, a1), (β, b1), (γ, c1)} for some a1, b1, c1 ∈ [n]. Let F ′ = {A j1, A j2 , . . . , A jn } ⊆
F be the solution for 3- Dimensional Matching such that j1 < j2 < · · · < jn .

Since F ′ covers every element of U , each element of U appears in exactly one of
the set in F ′.

We describe a winning strategy for Divider with the agents D1, D2, . . . , Dn+2.
Initially, he puts Di in the vertex u ji

i , for every i ∈ [n], and Dn+1 and Dn+2 in g1
and g2 respectively. He does not move agents D1, . . . , Dn+2, until Facilitator moves
Romeoor Juliet from s or t , respectively. Suppose FacilitatormovesRomeo from s (she
may or may not move Juliet from t). By the construction, she can move Romeo either
on the paths P[s, u0i ,m], P[s, um+1

i ,m] for some i ∈ [n] or on one of the following

123



Algorithmica

paths: P[s, s�
α, 2M2+1], P[s, s�

β, 2M2+1], P[s, s�
γ , 2M2+1], P[s, srα, 2M2+1],

P[s, srβ, 2M2 + 1], or P[s, srγ , 2M2 + 1].
Suppose Facilitator moves Romeo from s to a vertex on the path P[s, u0i ,m]

for some i ∈ [n]. Divider moves Dn+1 from g1 to s and then towards u0i as she
moves Romeo towards u0i . He also moves Di to u0i in at most ji steps along the path
P[u0i , um+1

i ,m]. Facilitator needs at least m + 1 steps to move both Romeo and Juliet
in u0i starting from s and t respectively. As ji ≤ m, Divider can move Di to u0i before
Facilitator can move both Romeo and Juliet to u0i . Hence, he can block Romeo by Di

and Dn+1 on the path P[s, u0i ,m].
Divider keeps moving Di and Dn+1 towards Romeo’s position and in at most

ji + m − 1 steps Facilitator can not move Romeo. This implies Divider wins by
keeping Romeo in its current position with its neighbors occupied by Di and Dn+1.
The argument also follows when Facilitator moves Romeo from s to a vertex on the
path P[s, um+1

i ,m] for some i ∈ [n] since Divider can move Di to um+1
i in at most

m − ji + 1 (≤ m) steps.
Suppose Facilitator moves Romeo from s to a vertex on the path P[s, s�

α, 2M2+1].
In this case, the remaining strategy for Divider is guided by the α-type elements in
the universe and in sets. Recall that each element of U appears in exactly one of the
set in F ′. This implies that for every a1 ∈ [n], there is a unique set in F ′ that contains
element (α, a1). We define function ψα : [n] �→ [n] with respect to α. More formally,
ψα(a1) = i if (α, a1) is contained in A ji inF ′. By the construction, Divider can move

agent Di from u ji
i to α�

a1 in at most (M2 − M · a1) + 1 + (M2 + M · a1) + 1 steps

through the path P[u ji
i , α�, M2 − M · a1] ◦ P[α�, α�

a1 , M
2 + M · a1]. Hence, Divider

can move Di to α�
a1 in at most 2M2 + 2 steps. Hence, for every a1 ∈ [n], Divider

can move the agent at u ji
i to α�

a1 in 2M2 + 2 steps where i = ψα(a1). For notational
convenience, we re-write the previous statement while changing the running variable
from a1 to i . Divider can move agents D1, D2, . . . , Dn in 2M2 + 2 steps such that
for every i ∈ [n], one of its agent is present in α�

i . As in the previous case, he can
move Dn+1 from g1 to s and then keepmoving towards s�

α as Facilitator moves Romeo
towards s�

α . He can move Dn+2 in a similar manner with respect to Juliet.
After the first move, Facilitator can not move back Romeo and Juliet towards s, t

respectively, because of the agents Dn+1 and Dn+2. However, she will need at least
2M2 +2 steps to move Romeo to s�

α and Juliet to t�α starting from s and t . If she moves
Romeo to s�

α and Juliet to t�α , then she can only move Romeo and Juliet towards x�
i for

some i ∈ [n]. However, she will need at least 2M2 + 1 steps to move them along the
path P[s�

α, x�
i , 2M

2] and P[t�α, x�
i , 2M

2], respectively.
Divider can move his agent from α�

r to x�
i in at most 2M2 (< 2M2 + 1) steps

along the path P[α�
i , x

�
i , 2M

2 − 1] for every i ∈ [n]. Hence, he can place his agent at
x�
i before Facilitator can move Romeo and Juliet to that place. He can keep moving
Dn+1 towards the position of Romeo and similarly Dn+2 towards the position of Juliet.
Hence, he can block Romeo by the agents at x�

i for every i ∈ [n] and Dn+1 either on
the path P[s, s�

α, 2M2 +1] if Facilitator never moves Romeo at s�
α or otherwise on the

path P[s�
α, x�

i , 2M
2] for some i ∈ [n].

123



Algorithmica

This implies if Facilitator moves Romeo from s to a vertex on the path
P[s, s�

α, 2M2 + 1], then Divider has a winning strategy. It is easy to see that the
similar arguments follows if Facilitator moves Romeo from s to a vertex on the path
P[s, s�

β, 2M2 + 1], P[s, s�
γ , 2M2 + 1], P[s, srα, 2M2 + 1], P[s, srβ, 2M2 + 1], or

P[s, srγ , 2M2 + 1]. Hence, if (U ,F) is a Yes-instance of 3- Dimensional Match-

ing, then Divider with n + 2 agents can win in Rendezvous Game with Adversaries,
i.e., (G, s, t, n + 2) is a No-instance of Rendezvous. 
�
Lemma 6 If (U ,F) is aNo-instanceof 3- Dimensional Matching, then (G, s, t, n+
2) is a Yes-instance of Rendezvous.

Proof We show that if (U ,F) is a No-instance of 3- Dimensional Matching, then
Facilitator has a winning strategy in at most 4M2 + 3 steps against Divider with n+ 2
agents.

We first consider two simple cases where Facilitator has an easy winning strategy.
First, consider the case when Divider does not place his agents at g1 or g2. Then, she
can move Romeo and Juliet there and win in one step. Second, consider the case when
there is i ∈ [n] such that none of Divider’s agents is within distance m from u0i or
from um+1

i . In the first sub-case, she can move Romeo and Juliet to u0i in m + 1 steps
through the paths P[s, u0i ,m] and P[t, u0i ,m], respectively, and win. Similarly, in the
second sub-case she can move Romeo and Juliet to um+1

i in m + 1 steps through the
paths P[s, um+1

i ,m] and P[t, um+1
i ,m], respectively, and win.

In what follows, we suppose that Divider places Dn+1 at g1 and Dn+2 at g2. More-
over, for every i ∈ [n], there is a Divider’s agent within distancem from u0i and within
distance m from um+1

i . By the construction, the choice of M , and the fact that Divider
can not place an agent at s or t , a single Divider’s agent cannot be within distance m
from both u0i and u

0
j , or from um+1

i and um+1
j , or from u0i and u

m+1
j , for i �= j ∈ [n].

As Divider has n remaining agents, for every i ∈ [n], there must be an agent, say
Di , within distance m from both u0i and um+1

i . This is possible only when for every
i ∈ [n], Di is on one of the internal vertices of the path P[u0i , um+1

i ,m] or on one of the
paths joining u j

i to vertex in {α�, β�, γ �} ∪ {αr , βr , γ r }, for some j ∈ [m]. Suppose
φ : [n] �→ [m] is the mapping corresponding to the initial position of the Divider’s
agents. Formally, for every i ∈ [n], Divider places agent Di either on the internal
vertex uφ(i)

i or on the path joining uφ(i)
i to vertex in {α�, β�, γ �}∪ {αr , βr , γ r }. While

defining the mapping, the first condition is prioritized.
We now define the Facilitator’s strategy. Considering U = {α, β, γ } × [n] as the

universe, she constructs a collection F of subsets of U such that for every j ∈ [m],
set A j = {(α, a1), (β, b1), (γ, c1)} for some a1, b1, c1 ∈ [n]. Alternately, she reverse-
engineers the process used by the reductions to encode sets. She also constructs a subset
F ′ of F by considering the initial positions of agents D1, D2, . . . , Dn . Formally, she
includes Aφ(i) in F ′ for every i ∈ [n], i.e. F ′ = {Aφ(1), Aφ(2), . . . , Aφ(n)}. Note that
F ′ contains exactly n elements.2

2 It is tempting to imagine that if (α, a1) is not covered by F ′ than Facilitator can move Romeo and Juliet
at x�

a1 or at xra1 . However, we argue that Facilitator can move Romeo and Juliet at x�
a2 for some a2 ≤ a1 or

at xra3 for some a3 ≥ a1.

123



Algorithmica

For every i ∈ [n], define N (α,≤ i) as the number of sets Aφ(i ′) in F ′ such that
the α-element (α, a1) ∈ Aφ(i ′), a1 ≤ i . Also, define N (α,≥ i) as the number of sets
Aφ(i ′) in F ′ such that for the α-element (α, a1) ∈ Aφ(i ′), a1 ≥ i . It similarly defines
and computes N (β,≤ i), N (β,≥ i), N (γ,≤ i), and N (γ,≥ i). It then determines
whether the following statements are True.

1. For all i ∈ [n], N (α,≤ i) ≤ i and N (α,≥ i) ≤ n + 1 − i .
2. For all i ∈ [n], N (β,≤ i) ≤ i and N (β,≥ i) ≤ n + 1 − i .
3. For all i ∈ [n], N (γ,≤ i) ≤ i and N (γ,≥ i) ≤ n + 1 − i .

Facilitator has tomake two critical choices. Her first critical choice is at the first step
where she has to decide about moving Romeo towards {s�

α, srα}, {s�
β, srβ}, or {s�

γ , srγ }.
This choice depends on which of the above statement is false. If the first statement is
false, she narrows down her choice of moving Romeo either to s�

α or s�
β . Suppose the

first statement is false because of the first inequality for some i . In that case, she moves
Romeo towards the right side, i.e., towards srα; otherwise, she moves Romeo towards
the left side, i.e., towards s�

α . She moves Juliet towards the corresponding vertex with
respect to t , i.e., towards trα and t�α in the first and the second case, respectively.

To explain her second choice, suppose, without loss of generality, that the first
statement is false because of its first inequality. She then moves Romeo from s to srα
and Juliet from t to trα in 2M2 + 2 steps. For her second choice, she finds i ∈ [n] such
that Divider’s agent has not been across α�

i since the game started. She then moves
Romeo and Juliet at x�

i in 2M2 + 1 additional moves and wins the game. She uses a
similar strategy in other cases. We remark that the initial positions of Divider’s agents
are ‘close’ to the base gadget. For Divider to move his agent from their initial positions
to say vertices like α�

i or αr
i , he needs to move them via α� or αr , respectively.

To argue that this is indeed a winning strategy for Facilitator, we first argue that for
any initial positions of the Divider’s agents, at least one of the three statements above
is false. Suppose a1 ∈ [n] is the integer such that (α, a1) does not appear in any sets in
F ′. This implies for every a′

1 ∈ [a1], element (α, a′
1) appears in at least one set in F ′.

Suppose every (α, a′
1) appears in exactly one set in F ′. As F ′ contains n sets, each

set contains an α-element, and there (a1 − 1) sets that contains α-element (α, i) such
that i < a1, we can conclude the following. There are n − (a1 − 1) sets that contains
α-element (α, i) such that i ≥ a1 + 1. This implies that the second inequality in the
first statement is false for i = a1 + 1. Consider the case when there is a′

1 ∈ [a1] such
that (α, a′

1) appears in at least two sets in F ′. Suppose a′
1 is the smallest such integer.

As a′
1 < a1, there are at least a′

1+1many sets inF ′ that contains α-element (α, i) such
that i ≤ a′

1. Hence, in either case, the first statement is false. Conversely, if the first
statement is True, then (α, a1) is present in at least one set in F ′ for every a1 ∈ [n].
This implies if none of the three statements is false, every element inU appears in some
set in F ′. This, however, contradicts the fact that (U ,F ′) is a No-instance. Hence, for
any initial positions of Divider’s agents, at least one of the three sentences is false.

This allows Facilitator to make her first choice. It remains to argue that there exists
i ∈ [n] with desired properties for her second choice. Towards that, we first identify
the conditions in which Divider can move the agent Di ′ to α�

i in 2M
2+2 steps for two

indices i, i ′ ∈ [n]. Suppose Divider initially places the agent Di ′ at distance pi ′ from

the vertex uφ(i ′)
i ′ . As Di ′ must be within distance m from both u0i ′ and um+1

i ′ , we can

123



Algorithmica

conclude that pi ′ is at most m/2. Note that pi ′ can be zero. Suppose (α, a1) ∈ Aφ(i ′)
for some a1 ∈ [n]. Recall that the number of internal vertices of path from uφ(i ′)

i ′ to α�

is M2 + M · a1 where as that of the path from α� to α�
i is M

2 − M · i . Hence, Divider
can move the agent Di ′ to α�

i in 2M
2+2+M · (a1− i)− pi ′ steps if Di ′ is on the path

P[uφ(i ′)
i ′ , α�, M2+M ·a1], and in 2M2+2+M ·(a1−i)+ pi ′ steps otherwise. Hence,

Di ′ can only reach toα�
i within 2M

2+2 steps if a1 ≤ i , for any i ∈ [n], since pi ′ � M .
Using similar arguments, Di ′ can only reach to αr

i within 2M
2 + 2 steps if a1 ≥ i , for

any i ∈ [n]. Note that if a1 ≤ i then Divider can not move Di ′ to αr
i+1 within 2M

2 +2
steps as 2M2+2+M ·(i+1−a1)± pi ′ ≥ 2M2+2+M−m/2 > 2M2+2.Moreover,
as the number of internal points between the paths from αr to αr

i is M2 + M · i , if
Divider can not move Di ′ to αr

i+1 within 2M
2 + 2 then it can not move it to αr

i◦+1 for
any i◦ ≥ i .

We now argue about the second critical choice of Facilitator. Suppose the facilitator
moves Romeo from s to srα and moves Juliet from t to trα according to the strategy.
This implies that the first inequality in the first statement is false for some i ∈ [n],
i.e. N (α,≤ i) = q > i . By the definition of N (α,≤ i), there are q sets in F ′ that
contains α-element (α, a1) such that a1 ≤ i . As discussed in the previous paragraphs,
if (α, a1) ∈ Aφ(i ′) for some i ′ ∈ [n], then Divider can not move Di ′ from its initial
position to αr

i+1 in 2M2 + 2 steps. This statement is True for q > i many agents.
Consider the set {αr

i+1, α
r
i+2, . . . , α

r
n} of n − i vertices. Divider can move at most

n − q (< n − i) agents to these vertices in 2M2 + 2 steps. Hence, there exists
i◦ ∈ [n] \ [i] such that none of the Divider’s agent has reached αr

i◦ .
Suppose for some i ∈ [n], none of the Divider’s agents can reach αr

i or any vertex
on path P[xri , αr

i , 2M
2 − 1] after 2M2 + 2 steps from the start. Then, every Divider’s

agent will be at distance at least 2M2 + 1 from xri after 2M2 + 2 steps from start.
Note that Facilitator can move Romeo from s to srα and Juliet from t to trα in 2M2 + 2
steps. She can then move Romeo and Juliet to xri in 2M2 + 1 steps along the path
P[srα, xri , 2M

2] and P[trα, xri , 2M
2], respectively. Since Facilitator takes the first turn,

she can move Romeo and Juliet to xri before the Divider’s agents and win in 4M
2 + 3

steps.
A similar argument follows when the second inequality of the first statement is

false, then Romeo and Juliet can meet at x�
i for some i ∈ [n]. Similarly, when second

or third statement is false, then also Romeo and Juliet will be able to meet at {y�
i , y

r
i }

or {z�i , zri } for some i ∈ [n], respectively. As mentioned earlier, Facilitator will decide
the ‘left’ or ‘right’ vertex based on which inequality of the statement is false.

This implies that if (U ,F) is a No-instance of 3- Dimensional Matching, then
Facilitator wins in at most 4M2 + 3 steps against Divider with n + 2 agents, i.e.,
(G, s, t, n + 2) is a Yes-instance of Rendezvous. 
�

We now argue that the pathwidth of the reduced instance is at most 16. Consider
set S := {s, t}∪ {s�

α, s�
β, s�

γ }∪ {t�α, t�β, t�γ }∪ {α�, β�, γ �}∪ {αr , βr , γ r } in G. It is easy
to verify that G − S is a forest, i.e., the feedback vertex set number of G is at most
14. Moreover, every connected component of G − S is either a path or a subdivided
caterpillar. The paths correspond to the paths added while encoding elements in U

123



Algorithmica

or while adding the critical paths. The subdivided caterpillars correspond to the base
gadgets, and the path added while encoding sets in F ′. Note that the spine of the
caterpillar is the path P[u0i , um+1

i ,m] for some i ∈ [n] added as a part of base gadget.
This implies that the pathwidth of the resulting graph is at most 16.

To summarize, Lemmas 5, 6, and the fact that the reduction can be completed in
time polynomial in the size of the input imply Theorem 1 which we restate here.

Theorem 1 Rendezvous is co-NP-hard even when restricted to:

• graphs whose feedback vertex set number is at most 14, or
• graphs whose pathwidth is at most 16.

In particular, Rendezvous is para-co-NP-hard parameterized by treewidth.

4 co-W[1]-Hardness Parameterized by FVS, Pathwidth, and the
Solution Size

In this section, we prove Theorem 2 that states Rendezvous is co-W[1]-hard when
parameterized by the feedback vertex set number or pathwidth and the solution size.
To do that, we present a parameter preserving reduction from the (Monotone) NAE-

Integer- 3- Sat problem. For notational convenience, we work with the following
definition of the problem. An input consists of variables X = {x1, . . . , xn} that each
take a value in the domain D = {1, . . . , d�} and clauses C = {C1, . . . ,Cm} of the
form

NAE
(
xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3

)
,

where d1, d2, d3 ∈ [d�]. Such a clause is satisfied if not all three inequalities are
True and not all are False (i.e., they are “not all equal”). The goal is to find an
assignment of the variables that satisfies all given clauses. Bringmann et. al. [1] proved
that (Monotone) NAE- Integer- 3- Sat is W[1]-hard when parameterized by the
number of variables.

Reduction
The reduction takes as input an instance (X ,D, C) of (Monotone) NAE-

Integer- 3- Sat and returns an instance (G, s, t, k) of Rendezvous. We construct
the graph G as follows: (See Fig. 7 for the overview of the constructed graph.)

The Variable Gadget Recall that we use P[u, v, d] to denote a simple path from u
to v that contains d many internal vertices. For every i ∈ [n], it adds a simple path
P[u0i , ud

�+1
i , d�]. Suppose the internal vertices of P[u0i , ud

�+1
i , d�] are denoted by udi

for every d ∈ [d�], and u0i is adjacent with u
1
i and ud

�+1
i is adjacent with ud

�

i .

The Clause Gadget For every j ∈ [m], the reduction adds two vertices c�
j and crj .

Suppose C j = NAE
(
xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3

)
for some j ∈ [m]. To encode

the inequality xi1 ≤ d1, the reduction adds simple paths P[c�
j , u

0
i1
, 2d� − d1] and

P[crj , ud
�+1

i1
, d� + d1]. It encodes the other two inequalities similarly. We highlight

123



Algorithmica

Fig. 7 The reduction adds a yellow shaded path for each variable. Each yellow, purple, or blue shaded path
has d� many internal vertices. The green and red shaded paths have 2d� + 1 many internal vertices. The
number of internal vertices in the remaining path in the figure depends on constants in the clause they are

encoding. Note that vertices g1, g2 and paths P[s, ud�+1
n , d�], P[t, u01, d�] are not shown in the figure for

clarity. The red vertices denote the positions of the agents (Color figure online)

that the number of internal vertices in these simple paths depends on the constant in
the inequalities they encode.

Critical Vertices and Connecting Paths The reduction adds special vertices s and t and
two more vertices g1 and g2, and makes them common neighbours of s and t .

• For every i ∈ [n], it adds the following simple paths:

– P[s, u0i , d�], P[s, ud�+1
i , d�],

– P[t, u0i , d�], P[t, ud�+1
i , d�].

• For every j ∈ [m], it adds the following simple paths:

– P[s, c�
j , 2d

� + 1], P[s, crj , 2d� + 1],
– P[t, c�

j , 2d
� + 1], P[t, crj , 2d� + 1].

This completes the construction of the graph G. The reduction sets k = n + 2 and
returns (G, s, t, k) as the reduced instance of Rendezvous.

Intuition for the Correctness
We present an intuition for the correctness of the reduction. Recall that we use

P[u, v, d1] ◦ P[v,w, d2] to denote the unique path from u to w that contains v.
Consider the paths P[s, u0i , d�] ◦ P[u0i , t, d�] and P[s, ud�+1

i , d�] ◦ P[ud�+1
i , t, d�]

123



Algorithmica

for every i ∈ [n] and paths P[s, c�
j , 2d

�+1]◦P[c�
j , t, 2d

�+1] and P[s, crj , 2d�+1]◦
P[crj , t, 2d� +1] for every j ∈ [m]. As we will see, the only way Facilitator can win in
Rendezvous Games with Adversaries is by moving Romeo and Juliet along with one
of these 2n + 2m paths. As g1, g2 are common neighbors of s and t , Divider needs to
put two of the k = n+ 2 agents on g1 and g2. Suppose he puts the remaining n agents
at some internal vertices of the paths added while encoding variables. He places the
agents such that each path contains one of them. For example, the red vertices in Fig. 7
corresponds to the positions of the agents on the paths added while encoding variables
x1, x2, and x3.

Suppose Divider places an agent at an internal vertex, say ud1 , of P[u01, ud
�+1

1 , d�].
Facilitator can move Romeo and Juliet to either u01 or u

d�+1
1 in d� +1 steps. The length

of the path from u01 to u
d
1 is d and the length of the path from ud

�+1
1 to ud1 is d

� −d+1.

– Divider can move the agent from ud1 to u01 in at most d� steps as d ≤ d�, and

– Divider canmove the agent from ud1 to u
d�+1
1 in at most d� steps as d�−d+1 ≤ d�.

Recall that the simple path P[c�
j , u

0
1, 2d

�−d1], as the notation suggests, has 2d�−d1
internal vertices. Hence, the path P[c�

j , u
0
1, 2d

� − d1] ◦ P[u01, ud1 , d − 1] has (2d� −
d1) + 1 + (d − 1) many internal vertices. Hence, the length of path from c�

j to ud1 is
2d� + 1 + d − d1.

– Divider can move the agent from ud1 to c
�
j in at most 2d� + 1 steps only if d ≤ d1.

Consider symmetric arguments for crj . The simple path P[crj , ud
�+1

1 , d�+d1] has d�+
d1 many internal vertices. Hence, the path P[crj , ud

�+1
1 , d�+d1]◦P[ud�+1

1 , ud1 , d
�−d]

has (d� + d1) + 1 + (d� − d) many internal vertices. Hence, the length of the path
from ud1 to crj is 2d

� + 2 + d1 − d.

– Divider can move the agent from ud1 to c
�
j in at most 2d� + 1 steps only if d > d1.

Suppose there is a clauseC j ∈ C such thatC j = NAE(x1 ≤ d1, x2 ≤ d2, x3 ≤ d3).
Consider the two vertices c�

j and crj added while encoding C j . Note that Facilitator

can move Romeo and Juliet to either c�
j or c

r
j in 2d� + 2 steps. Moreover, apart from

s and t , the only branching points in paths P[s, c�
J , 2d

� + 1] ◦ P[c�
j , t, 2d

� + 1] and
P[s, crj , 2d� +1] ◦ P[crj , t, 2d� +1] are c�

j and c
r
j , respectively. Hence, Divider needs

to place an agent that he can move to c�
j in at most 2d� + 1 steps. Similarly, he needs

to place an agent that he can move to crj in at most 2d� + 1 steps. As we will see,
Divider can only move the agents stationed at the paths corresponding to variables
x1, x2, or x3 to c�

j or c
r
j in at most 2d� + 1 steps. Hence, he needs to place agents

at the interior vertices, say uc11 , uc22 , uc33 , of P[u01, ud
�+1

1 , d�], P[u02, ud
�+1

2 , d�] and
P[u03, ud

�+1
3 , d�], respectively, such that

– at least one of the inequalities in {c1 ≤ d1; c2 ≤ d2; c3 ≤ d3} is True, and
– simultaneously at least one of the inequalities in {c1 > d1; c2 > d2; c3 > d3} is
True.

123



Algorithmica

This position of agents corresponds to the value of variables x1, x2, x3 in [d�] that
satisfy the clause C j = NAE(x1 ≤ d1, x2 ≤ d2, x3 ≤ d3). In the following two
lemmas, we formalize these intuitions.

Lemma 7 If (X ,D, C) is a Yes-instance of (Monotone) NAE- Integer- 3- Sat,
then (G, s, t, n + 2) is a No-instance of Rendezvous.

Proof We show that if (X ,D, C) is a Yes-instance of (Monotone) NAE- Integer-

3- Sat, then Divider with n+2 agents can win in Rendezvous Gamewith Adversaries.
Recall that n = |X |, andm = |C|. Suppose ψ : X → [d�] be a satisfying assignment,
and ψ(xi ) = di for every i ∈ [n].

We describe a winning strategy for Dividers with the agents D1, D2, . . . , Dn+2.
Initially, he puts Di in the vertex u

di
i , for every i ∈ [n], and Dn+1 and Dn+2 in g1 and g2

respectively. He does not move agents D1, . . . , Dn+2, until Facilitator moves Romeo
or Juliet from s or t , respectively. Suppose without loss of generality Facilitator first
moves Romeo from s (she may or may not move Juliet from t). By the construction,
she canmove Romeo either on the paths P[s, u0i , d�], P[s, ud�+1

i , d�] for some i ∈ [n]
or on the paths P[s, c�

j , 2d
� + 1], P[s, crj , 2d� + 1] for some j ∈ [m].

Suppose Facilitator moves Romeo from s to a vertex on the path P[s, u0i , d�] for
some i ∈ [n]. Divider moves Dn+1 from g1 to s and then towards u0i as she moves
Romeo towards u0i . He also moves Di to u0i in at most ψ(xi ) steps along the path

P[u0i , ud
�+1

i , d�]. Facilitator needs at least d� + 1 steps to move both Romeo and
Juliet in u0i starting from s and t respectively. As ψ(xi ) ≤ d�, Divider can move Di

to u0i before Facilitator can move both Romeo and Juliet to u0i . Hence, he can block
Romeo by Di and Dn+1 on the path P[s, u0i , d�]. Divider keeps moving Di and Dn+1
towards Romeo’s position and in at mostψ(xi )+d� −1 steps Facilitator can not move
Romeo. This implies Divider wins by keeping Romeo in its current position with its
neighbors occupied by Di and Dn+1. The argument also follows when Facilitator
moves Romeo from s to a vertex on the path P[s, ud�+1

i , d�] for some i ∈ [n] since
Divider can move Di to u

d�+1
i in at most d� − ψ(xi ) + 1 (≤ d�) steps.

Suppose FacilitatormovesRomeo from s to a vertex on the path P[s, c�
j , 2d

�+1] for
some j ∈ [m]. Let C j = NAE(xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3). Since ψ is a satisfying
assignment, it sets the values of variables such that at least one of the inequalities will
be True and at least one of the inequalities will be False. We assume without loss
of generality that ψ(xi1) ≤ d1 and ψ(xi2) > d2. Divider moves Di1 to c�

j in at most

2d� −d1 +1+ψ(xi1) steps through the path P[c�
j , u

0
i1
, 2d� −d1] ◦ P[u0i1 , ud

�+1
i1

, d�].
As in the previous case, he can move Dn+1 from g1 to s and then keep moving towards
c�
j as Facilitator moves Romeo towards c�

j . He can move Dn+2 in a similar manner
with respect to Juliet.

Facilitator can move both Romeo and Juliet to c�
j in at least 2d� + 2 steps starting

from s and t respectively. Divider can move Di1 to c�
j before Romeo and Juliet as

2d� − d1 + 1+ ψ(xi1) ≤ 2d� + 1. Hence, Romeo is blocked by Di1 and Dn+1 on the
path P[s, c�

j , 2d
� + 1] and Juliet cannot reach Romeo. Divider keeps moving Di1 and

Dn+1 towards Romeo and in at most 4d� −d1+1+ψ(xi1) steps Romeo cannot move.

123



Algorithmica

This implies Divider wins. The argument also follows when Facilitator moves Romeo
from s to a vertex on the path P[s, crj , 2d� + 1] for some j ∈ [m] since Divider can
move Di2 to c

r
j in at most 2d� + 2 + d2 − ψ(xi2) (< 2d� + 2) steps.

This implies that if (X ,D, C) is a Yes-instance of (Monotone) NAE- Integer-

3- Sat, then Divider with n+2 agents can win in Rendezvous Gamewith Adversaries,
i.e., (G, s, t, n + 2) is a No-instance of Rendezvous. 
�
Lemma 8 If (X ,D, C) is aNo-instance of (Monotone) NAE- Integer- 3- Sat, then
(G, s, t, n + 2) is a Yes-instance of Rendezvous.

Proof We show that if (X ,D, C) is a No-instance of (Monotone) NAE- Integer-

3- Sat, then Facilitator wins in at most 2d� + 2 steps against Divider with n + 2
agents.

We first consider two simple cases where Facilitator has an easy winning strategy.
First, consider the case when Divider does not place his agents at g1 or g2. Then, she
can move Romeo and Juliet there and win in one step. Second, consider the case when
there is i ∈ [n] such that none of Divider’s agents is within distance d� from u0i or

from ud
�+1

i . In the first sub-case, she can move Romeo and Juliet to u0i in d
� + 1 steps

through the paths P[s, u0i , d�] and P[t, u0i , d�], respectively, and win. Similarly, in

the second sub-case she can move Romeo and Juliet to ud
�+1

i in d� + 1 steps through

the paths P[s, ud�+1
i , d�] and P[t, ud�+1

i , d�], respectively, and win.
In the remaining proof, we suppose that Divider places Dn+1 at g1 and Dn+2 at g2.

Moreover, for every i ∈ [n], there is a Divider’s agent within distance d� from u0i and

within distance d� from ud
�+1

i . Suppose from now that for every i ∈ [n], there exists a
Divider’s agent within distance d� from u0i and within distance d

� from ud
�+1

i . By the
construction and the fact that Divider can not place an agent at s or t , a single Divider’s
agent cannot be within distance d� from both u0i and u0j , or u

d�+1
i and ud

�+1
j , or u0i

and ud
�+1
j , for i �= j ∈ [n]. As Divider has n remaining agents, for every i ∈ [n],

there must be an agent, say Di , within distance d� from both u0i and ud
�+1

i . This is
possible only when for every i ∈ [n], Di is on one of the internal vertices of the path
P[u0i , ud

�+1
i , d�]. Suppose φ : [n] → [d�] is the mapping corresponding to the initial

position of the Divider’s agents. Formally, for every i ∈ [n], Divider places agent
Di on uφ(i)

i . For every i ∈ [n], the initial position of Di also represents a possible
assignment of variable xi in (X ,D, C).

We now define the Facilitator’s strategy. Considering X = {x1, . . . , xn} as the
variables that each take a value in the domain D = {1, . . . , d�}, she constructs a col-
lection C of clauses such that for every j ∈ [m], clause C j = NAE(xi1 ≤ d1, xi2 ≤
d2, xi3 ≤ d3), where xi1 , xi2 , xi3 ∈ X for some d1, d2, d3 ∈ [d�]. Alternately, she
reverse-engineers the process used by the reductions to encode clauses. She also con-
structs an assignment ψ : X → D = [d�] by considering the initial positions of
agents D1, D2, . . . , Dn . Formally, ψ(xi ) = φ(i) for every i ∈ [n]. It then determines
whether the following statements are True.

1. For some clause C j = NAE(xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3), all of the inequalities
in {ψ(xi1) ≤ d1;ψ(xi2) ≤ d2;ψ(xi3) ≤ d3} are True, where j ∈ [m].

123



Algorithmica

2. For some clause C j = NAE(xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3), all of the inequalities
in {ψ(xi1) ≤ d1;ψ(xi2) ≤ d2;ψ(xi3) ≤ d3} are False, where j ∈ [m].

Facilitator has tomake a critical choice in the first stepwhere she has to decide about
moving Romeo towards c�

1, . . . , c
�
m, cr1, . . . , or c

r
m . This choice depends on which of

the above statement is True and for which clause it is True. If the first statement is
True for the clause C j ∈ C, then she moves Romeo and Juliet towards crj . Similarly,
if the second statement is True for the clause C j ∈ C, then she moves Romeo and
Juliet towards c�

j .
To argue that this is indeed a winning strategy for Facilitator, we first argue that for

any initial positions of Divider’s agents, at least one of the two statements above is
True. Assume the above two statements are False for all j ∈ [m], which implies in
all the clausesC j ∈ C, not all three inequalities areTrue and not all areFalseḢence,
all the clauses are satisfied by the assignment ψ . This, however, contradicts the fact
that (X ,D, C) is a No-instance. Hence, for any initial positions of Divider’s agents,
at least one of the two sentences is True.

This allows Facilitator to make her choice. It remains to argue that Romeo and
Juliet can meet at the vertex c�

j or c
r
j which Facilitator has chosen. Suppose, one

of the statements is True for the clause C j . For notational convenience, suppose
C j = NAE(x1 ≤ d1, x2 ≤ d2, x3 ≤ d3).

Suppose ψ(x1) ≤ d1, ψ(x2) ≤ d2, ψ(x3) ≤ d3 (i.e. First statement is True).
Then, as mentioned in the Facilitator’s strategy, her choice will be to move Romeo
and Juliet towards crj . For i ∈ {1, 2, 3}, Divider needs at least d� − ψ(xi ) + 1 +
d� + di + 1 ≥ 2d� + 2 steps to move Di from uψ(xi )

i to crj via the shortest path

P[uψ(xi )
i , ud

�+1
i , d� − ψ(xi )] ◦ P[ud�+1

i , crj , d
� + di ]. Note that, by the construction,

the Divider’s agents that are at distance less than or equal to 2d� + 2 from crj are D1,
D2 and D3, only. Facilitator can move Romeo and Juliet to crj in 2d

� +2 steps through
the paths P[s, crj , 2d� + 1] and P[t, crj , 2d� + 1], respectively. Since Facilitator takes
the first turn, she can move Romeo and Juliet to crj before Divider’s agents. Hence,
Facilitator wins in 2d� + 2 steps.

Suppose ψ(x1) > d1, ψ(x2) > d2, ψ(x3) > d3 (i.e. Second statement is True).
Then, as mentioned in the Facilitator’s strategy, her choice will be to move Romeo
and Juliet towards c�

j . For i ∈ {1, 2, 3}, Divider needs at least ψ(xi ) − 1 + 1 +
2d� − di + 1 > 2d� + 1 steps to move Di from uψ(xi )

i to c�
j via the shortest path

P[uψ(xi )
i , u0i , ψ(xi ) − 1] ◦ P[u0i , c�

j , 2d
� − di ]. Once again, by the construction, the

Divider’s agents that are at distance less than or equal to 2d� + 2 from c�
j are D1, D2

and D3. Facilitator moves Romeo and Juliet to c�
j in 2d� + 2 steps through the paths

P[s, c�
j , 2d

� + 1] and P[t, c�
j , 2d

� + 1] respectively. Since Facilitator takes the first
turn, Romeo and Juliet is moved to c�

j before Divider agents and Facilitator wins in
2d� + 2 steps.

This implies that if (X ,D, C) is a No-instance of (Monotone) NAE- Integer-

3- Sat, then Facilitator wins in at most 2d�+2 steps against Divider with n+2 agents,
i.e., (G, s, t, n + 2) is a Yes-instance of Rendezvous. 
�

123



Algorithmica

By the construction, the number of agents is upper bounded by the number of
variables in (Monotone) NAE- Integer- 3- Sat plus two. Consider the set S :=
⋃

i∈[n]{u0i , ud
�+1

i } ∪ {s, t} of 2n + 2 vertices in G. It is easy to verify that G − S is a
collection of paths (corresponding to variable gadgets) and subdivided stars (centered
at the vertices added while encoding the clauses). It is easy to verify that the pathwidth
of a subdivided star is at most two. Hence, the feedback vertex set number and the
pathwidth of the resulting graph are bounded by the linear function in the number
of variables. Lemmas 7, 8 and the fact that the reduction can be completed in time
polynomial in the input size imply Theorem 2 which we restate here.

Theorem 2 Rendezvous is co-W[1]-hardwhen parameterized by:

• the feedback vertex set number and the solution size, or
• the pathwidth and the solution size.

5 Parameterizing by Vertex Cover

In this section we focus on Theorem 3:

Theorem 3 Rendezvous is FPTwhen parameterized by the vertex cover number of the
input graph and the solution size. Moreover, the problem does not admit a polynomial
kernel when parameterized by the vertex cover number and the solution size unless
NP ⊆ co-NP/poly.

Throughout this section, we assume that a vertex cover X of size vc(G) is given
as a part of the input. We first discuss the FPT result.

Reduction Rule 5.1 Consider an instance (G, X , s, t, k) of Rendezvous. If s = t ,
st ∈ E(G), |N (s) ∩ N (t)| > k, then return a trivial Yes-instance.

For the rest of this discussion, we will assume that any instance (G, s, t, k) of
Rendezous under consideration does not satisfy the premise of Reduction Rule 5.1,
i.e, we assume that we are not dealing with trivial Yes instances. Also, since the
vertices s and t can always be added to the vertex cover and this only increases the
parameter by two, we assume for simplicity—and without loss of generality—that
s, t ∈ X .

We now introduce some notation. For a subset Y ⊆ X , let IY ⊆ G \ X denote
the set of vertices in G\X whose neighborhood is exactly Y . Note that {IY }Y⊆X is a
partition of G \ X into at most 2vc(G) many parts. For a vertex v ∈ G \ X , we use
EG,X (v) to denote the part that v belongs to, in other words, EG,X (v) = IN (v). We
now apply the following reduction rule.

Reduction Rule 5.2 Consider an instance (G, X , s, t, k) of Rendezvous. Repeat the
following for each v ∈ G\X. If |EG,X (v)| > k + 1, then choose any subset of exactly
k + 1 vertices from EG,X (v) and delete the rest of the vertices from EG,X (v).

Lemma 9 Reduction Rule 5.2 is safe.

123



Algorithmica

Proof Let (G, X , s, t, k) denote the input instance, and let v ∈ G\X be arbitrary but
fixed. Further, let (H , X , s, t, k) denote the instance obtained by applying Reduction
Rule 5.2 with respect to v. If |E(v)| ≤ k + 1 in G then G = H and there is nothing
to prove. Otherwise, let Qv ⊆ EG,X (v) denote the set of vertices deleted by the
application of the reduction rule with respect to v. Note that H = G\Qv . Also observe
that |EH ,X (v)| = k + 1.

To begin with, suppose the Facilitator has a winning strategy in G. Observe that
the Facilitator can employ the same strategy in H as well, except when the strategy
involves moving to a vertex u ∈ Qv . However, since |EH ,X (v)| = k + 1, we have that
there is at least one vertex w in H \ X that has the same neighborhood as u and is
not occupied by an agent of the Divider, since the Divider has only k agents at their
disposal. The strategy, at this point, would remain valid if we were to replace u withw.
If the strategy involved using two distinct vertices from Qv in the same step, then note
that we can modify the strategy and have the Faciliator’s agents meet immediately at
the vertex w.

On the other hand, if the Facilitator had a winning strategy in H , then it is easy to
check that the Facilitator can win in G by mimicking the strategy directly. Another
way to see this is the following. Suppose that the Divider had a winning strategy in G.
Then observe that in any step, without loss of generality, if the Divider’s agents occupy
some vertices of EG,X (v), we can replace this configuration with all of these agents
on a single vertex of EG,X (v) outside Qv . Thus any winning strategy for the divider
in G can be adapted to a valid winning strategy in H . This concludes the argument
for the equivlance of the two instances. 
�
Lemma 10 Rendezvous is FPT when parameterized by the vertex cover number and
the solution size.

Proof Observe that repeated applications of ReductionRule 5.2 ensures that |V (G)| =
|X | + |G\X | ≤ vc(G) + 2vc(G) · (k + 1). Thus we have an exponential kernel in
vc(G), and the claim follows.

Now,we establish the lower bound claimed in Theorem 3 by showing the following.

Lemma 11 Rendezvous does not admit a polynomial kernel when parameterized by
the vertex cover number and the solution size unless NP⊆ co-NP/poly.

The proof is based on observing that the instance in the reduction used in [4]—to
prove that problem is co-W[2]-hard when parameterized by the solution size—has
bounded vertex cover number. In particular, the reduction is from Set Cover, which
does not admit a poylnomial kernel parameterized by the size of the universe unless
NP⊆ co-NP/poly [5]. We reproduce the construction here for completeness (Fig. 8).

Proof Recall that an instance of Set Cover consists of a universeU of size n, a family
over U of size m, and a budget of k; and the question is if there exists a collection of
at most k sets from the given family whose union is U . Let (U ,S, k) be an instance
of Set Cover. Let U = {u1, . . . , un} and S = {S1, . . . , Sm}.
• Construct a set of n vertices U = {u1, . . . , un} corresponding to the universe.

123



Algorithmica

Fig. 8 A schematic of the reduction with the vertex cover vertices highlighted

• For every i ∈ {1, . . . , k}, construct a set of m vertices S(i) =
{
s(i)
1 , . . . , s(i)

m

}
;

each S(i) corresponds to a copy of S.
• For every i ∈ {1, . . . , k}, h ∈ {1, . . . ,m} and h ∈ {1, . . . , n}, make s(i)

j and uh
adjacent if the element of the universe uh is in S j ∈ S.

• For every i ∈ {1, . . . , k}, construct a vertexwi andmake it adjacent to s(i)
1 , . . . , s(i)

m .
• Construct two vertices s and t .
• For every h ∈ {1, . . . , n}, join s and uh by a path sxhuh and joint uh and t by a
path uhx ′

ht .• For every i ∈ {1, . . . , k}, join s and wi by a path syiwi and join wi and t by a path
wi y′

i t .• Construct a vertex z and make it adjacent to s and t .

It is shown in [4] that (U ,S, k) is a yes-instance of Set Cover if and only if
Divider with k + 1 agents can win in the Rendezvous game. It is straightforward to
check that U ∪ {s, t} ∪ {wi | i ∈ [k]} is a vertex cover for the reduced instance of size
at most m + k + 2. The claim follows from the hardness of obtaining a polynomial
kernel for Set Cover parameterized bym+ k, since the equivalence of the instances
is already known. 
�

6 Some Polynomial Cases

In this section, we focus on a few tractable scenarios.

Theorem 4 Rendezvous admits a polynomial-time algorithm when input graph is a
grid or has treewidth at most two.

123



Algorithmica

As the ideas used to prove the theorem are different for these two classes of graphs,
we present two lemma separate lemmas. As mentioned in the Introduction, all the
known polynomial-time algorithms are obtained by proving that the size of a dynamic
separator, denoted by dG(s, t), is same as that of a (static) separator, denoted by
λG(s, t). In the next lemma, we present a winning strategy for Divider for any non-
trivial instances when the input graph is a grid. This makes the class of grid graphs
a unique graph class in which the problem admits polynomial time algorithm even
when dynamic separators can be smaller than separators.

Lemma 12 For a grid graph G and two non-adjacent vertices s, t ∈ V (G), dG(s, t) =
2.

Proof Consider an instance (G, s, t, k) of Rendezvous where G is a M × N undi-
rected grid. Without loss of generality, we assume that s and t are non-adjacent in G.
It is known [4, Theorem 2] that dG(s, t) = 1 if and only if λG(s, t) = 1. Since in grid
graphs any two vertices are part of at least one cycle, λG(s, t) ≥ 2. Hence, for any
non-adjacent pair of vertices s and t , dG(s, t) ≥ 2. Therefore, it is sufficient to show
that dG(s, t) ≤ 2. We prove that Divider with 2 agents has a winning strategy on G
against Facilitator starting from s and t .

We respresent vertex v of G that is in i th row and j th column as (i, j), where
i ∈ [M] is the row number of vertex v and j ∈ [N ] is the column number of vertex v.
Let s be (sx , sy) and t be (tx , ty), where sx , tx ∈ [M], and sy, ty ∈ [N ]. For Facilitator
to win, she must make the difference between the row number as well as column
number of the vertices having Romeo and Juliet equal to 0. Since (sx , sy) and (tx , ty)
are two different and non-adjacent vertices either |sx − tx | > 0 or |sy − ty | > 0. We
assume without loss of generality |sx − tx | > 0 and sx < tx ; in other words, s and t
are on different rows and s is “below” t in the grid.

We describe a winning strategy for Divider with the agents D1 and D2. Intuitively,
the agent D1 starts off to the “top” of s and the agent D2 starts off at a location to the
“bottom” of t . Their goal will be to maintain the initial separation between s and t by
not allowing the agent on s to advance upwards or the agent on t to advance downwards.
They do this by “tracking” the agent movements and mimicing them whenever there
is a shift to an adjacent column, and staying put if the agents are moving along the
same column, in which case they are drifting further apart.

In particular, to begin with, Divider puts D1 in the vertex (sx +1, sy) and D2 in the
vertex (tx − 1, ty) (since sx < tx , sx < M and tx > 1). Then the following strategy is
used. The agents D1 and D2 are keeping their positions until Facilitator moves Romeo
or Juliet from (sx , sy) or (tx , ty), respectively. Whenever Facilitator moves Romeo,
the agent D1 replicates her move and similarly, whenever Facilitator moves Juliet, the
agent D2 replicates her move. Facilitator can move Romeo to either (sx − 1, sy) (if
sx > 1) or (sx , sy − 1) (if sy > 1 and D2 is not on this vertex) or (sx , sy + 1) (if
sy < N and D2 is not on this vertex). The vertex (sx + 1, sy) is occupied by D1.
Let the new position of Romeo be (s′

x , s
′
y), where s′

x ∈ [M] and s′
y ∈ [N ]. Divider

moves the agent D1 to (sx , sy) or (sx + 1, sy − 1) or (sx + 1, sy + 1) corresponding
to the above mentioned three possible moves of the Facilitator for Romeo. Similarly,
Facilitator can move Juliet to either (tx + 1, ty) (if tx < M) or (tx , ty − 1) (if ty > 1
and D1 is not on this vertex) or (tx , ty +1) (if ty < N and D1 is not on this vertex). The

123



Algorithmica

vertex (tx − 1, ty) is occupied by D2. Let the new position of Juliet be (t ′x , t ′y), where
t ′x ∈ [M] and t ′y ∈ [N ]. Divider moves the agent D2 to (tx , ty) or (tx − 1, ty − 1)
or (tx − 1, ty + 1) corresponding to the above mentioned three possible moves of
the Facilitator for Juliet. Observe that, the difference of the row number of Juliet and
Romeo does not decrease after any of the possiblemoves, i.e. t ′x −s′

x ≥ tx −sx . Divider
follows the same strategy after every move of Facilitator for Romeo and Juliet, and the
strategy ensures that the difference of the row number of Juliet and Romeo does not
decrease after any possible move of the Facilitator. Hence, Divider prevents Romeo
and Juliet from meeting by ensuring that the difference of their row number does not
decrease after any number of moves. This implies Divider wins. The argument also
follows when |sy − ty | > 0 since Divider can prevent Romeo and Juliet from meeting
by ensuring that the difference of their column number does not decrease after any
number of moves.

We conclude that Divider with 2 agents has a winning strategy on G against
Facilitator starting from s and t , which implies dG ≤ 2. Since dG ≤ 2 as well as
dG ≥ 2, dG = 2. This implies that for a grid graph G and two non-adjacent vertices
s, t ∈ V (G), dG(s, t) = 2. 
�
Lemma 13 If G is a connected graph of treewidth atmost 2, then for every s, t ∈ V (G),
dG(s, t) = λG(s, t).

Proof We first consider the simple case when dG(s, t) = 1. As stated in [4, Theorem
2], dG(s, t) = 1 if and only if λG(s, t) = 1, and hence in this case, dG(s, t) =
λG(s, t) = 1 which proves the claim. In the remaining proof, we consider the case
when dG(s, t) ≥ 2 which also implies λG(s, t) ≥ 2.

Consider an optimal tree decomposition of G. In this decomposition, if s and t are
in different bags, then λG(s, t) ≤ 2. This implies λG(s, t) = 2, and as dG(s, t) ≤
dG(s, t), we have dG(s, t) = 2. In this case also, we get the desired result. Now,
consider the case when s and t are in the same bag in the tree decomposition. Consider
the graph G ′ by adding an edge (s, t) to graph G. Since, both of these vertices are
in the same bag in an optimal tree decomposition, we can conclude that treewidth
of G ′ is also at most 2. Now, consider the connected components C1,C2, . . . ,Cq of
G ′ − {s, t} (which is same as connected components of G − {s, t}). Any (s, t)-paths
in G is completely contained in one of these connected components.

Consider a connected component Ci that contains one of (s, t)-paths in G, apart
from its endpoints. We argue that there exists a vertex xi ∈ V (Ci ) such that every
(s, t)-paths in G whose all internal vertices are in Ci , also contains xi . Assume, for
the sake of contradiction, that it is not the case, and there exists two (s, t)-paths in G,
say P1 and P2, whose all internal vertices are in Ci . As Ci is a connected component,
there exists a vertex y1, part of P1 and a vertex y2, part of P2, such that there is a
(y1, y2)-path all the internal vertices are in V (Ci ) \ (V (P1) ∪ V (P2)). This implies
that the following five paths in G (and hence also in G ′) only meet at the endpoints:
(s, y1)-path, (y1, t)-path (both along P1), (s, y2)-path, (y2, t)-path (both along P2),
and (y1, y2)-path. As edge (s, t) is present in G ′, this implies that G ′ contains K4 as
a contraction-minor. This, however, contradicts the fact that the treewidth of G ′ is at
most 2. Hence, our assumption is wrong and exists a vertex xi ∈ V (Ci ) such that
every (s, t)-paths in G whose all internal vertices are in Ci , also contains xi .

123



Algorithmica

The arguments in the previous paragraph implies that λG(s, t) is the number of
connected components of G − {s, t} that contains a (s, t)-path. Note that Divider has
to put one agent in each such component, as otherwise, Facilitator wins by moving
Romeo and Juliet towards each other along the shortest path that goes through the
component that does contain the agent.Hence,dG(s, t) ≤ λG(s, t). But, by definitions,
dG(s, t) ≥ λG(s, t). This implies the lemma. 
�

7 Conclusion

In this work, we studied the game of rendezvous with adversaries on a graph intro-
duced by Fomin, Golovach, and Thilikos [4]. The game is a natural dynamic version
of the problem of finding a vertex cut between two vertices s and t . Given that the
problem is W[2]-hard when parameterized by the natural parameter, i.e. the solution
size, we continued studying structural parameters of the input graph. We proved, to
our surprise, that the problem is co-NP-hard even when restricted to graphs whose
feedback vertex set number is at most 14, or pathwidth is at most 16. In particu-
lar, we proved Rendezvous is para-co-NP-hard parameterized by treewidth, thereby
answering an open question by Fomin et al. [4]. It turns out that even augmenting
the feedback vertex set number or the pathwidth with the solution size is not enough.
Specifically, we proved that Rendezvous is co-W[1]-hard when parameterized by
the feedback vertex set number and the solution size, or the pathwidth and the solu-
tion size. Towards the positive side, we proved that the problem admits a natural
exponential kernel when parameterized by the vertex cover number and the solution
size, however this kernel cannot be improved to a polynomial kernel under standard
complexity-theoretic assumptions. Finally, we presented polynomial time algorithms
on two restricted cases and proved that Rendezvous can be solved in polynomial
time on the classes of treewidth at most two graphs and grids.

While we addressed the structural parameterized by arguably the most well stud-
ied parameters, it remains interesting to study the parameterized complexity for other
structural parameters. Amongst these, we highlight the following question: Is Ren-
dezvousW[1]-hardwhen parameterized by the vertex cover number (only)?We tend
to believe it is indeed the case. To the best of our knowledge, the problems that are
W[1]-hard when parameterized by the vertex cover number, like List Coloring,
Weighted (k, r)-Center, etc., have additional input arguments like lists or weights.
We believe that the dynamic nature of the Rendezvous problem might make it an
exception to the above known trend.

Acknowledgements We are grateful for feedback from anonymous reviewers. We especially thank the
reviewers of Algorithmica as their feedback helped us to improve the presentation. The first reviewer also
suggested a much simpler proof of Lemma 13.

Author Contributions All authors have contributed eqaully.

Funding Neeldhara Misra: The author is grateful for support from DST-SERB and IIT Gandhinagar. This
work was partially supported by the ECR grant ECR/2018/002967. Prafullkumar Tale: Part of the work was
carried out when the author was a Post-Doctoral Researcher at CISPA Helmholtz Center for Information

123



Algorithmica

Security, Germany, supported by the European Research Council (ERC) consolidator Grant No. 725978
SYSTEMATICGRAPH.

Declarations

Competing interests The authors declare no competing interests.

References

1. Bringmann, K., Hermelin, D., Mnich, M., Van Leeuwen, E.J.: Parameterized complexity dichotomy for
steiner multicut. J. Comput. Syst. Sci. 82(6), 1020–1043 (2016). https://doi.org/10.1016/j.jcss.2016.03.
003

2. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer (2015). https://doi.org/10.1007/978-3-319-21275-3

3. Diestel, R.: Graph Theory, 4th Edition, vol. 173 of Graduate Texts in Mathematics. Springer (2012)
4. Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Can Romeo and Juliet meet? Or rendezvous games with

adversaries on graphs. Inf. Comput. 293, 105049 (2023). https://doi.org/10.1016/j.ic.2023.105049
5. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Prepro-

cessing. Cambridge University Press (2019). https://doi.org/10.1017/9781107415157
6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman (1979)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1016/j.jcss.2016.03.003
https://doi.org/10.1016/j.jcss.2016.03.003
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ic.2023.105049
https://doi.org/10.1017/9781107415157

	Romeo and Juliet Meeting in Forest Like Regions
	Abstract
	1 Introduction
	2 Preliminaries
	3 para-co-NP-Hardness Parameterized by FVS and Pathwidth
	4 co-W[1]-Hardness Parameterized by FVS, Pathwidth, and the Solution Size
	5 Parameterizing by Vertex Cover
	6 Some Polynomial Cases
	7 Conclusion
	Acknowledgements
	References


