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Abstract
Interval scheduling is a basic algorithmic problem and a classical task in combinatorial
optimization. We develop techniques for partitioning and grouping jobs based on their
starting/ending times, enabling us to view an instance of interval scheduling on many
jobs as a union of multiple interval scheduling instances, each containing only a few
jobs. Instantiating these techniques in a dynamic setting produces several new results.
For (1+ε)-approximation of job scheduling of n jobs on a single machine, we develop
a fully dynamic algorithm with O(log n/ε) update and O(log n) query worst-case time.
Our techniques are also applicable in a setting where jobs have weights. We design a
fully dynamic deterministic algorithm whose worst-case update and query times are
poly(log n, 1

ε
). This is the first algorithm that maintains a (1+ε)-approximation of the

maximum independent set of a collection of weighted intervals in poly(log n, 1
ε
) time

updates/queries. This is an exponential improvement in 1/ε over the running time of
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an algorithm of Henzinger, Neumann, and Wiese [SoCG, 2020]. Our approach also
removes all dependence on the values of the jobs’ starting/ending times and weights.

Keywords Interval scheduling · Job scheduling · Dynamic algorithms · Local
computation algorithms

1 Introduction

Job scheduling is a fundamental task in optimization, with applications ranging from
resource management in computing [1, 2] to operating transportation systems [3].
Given a collection of machines and a set of jobs (or tasks) to be processed, the goal
of job scheduling is to assign those jobs to the machines while respecting certain
constraints. Constraints set on jobs may significantly vary. In some cases, a job has
to be scheduled, but the starting time of its processing is not pre-specified. In other
scenarios, a job can only be scheduled at a given time, but there is flexibility on
whether to process the job or not. Frequent objectives for this task can include either
maximizing the number of scheduled jobs or minimizing the needed time to process
all given jobs.

An important variant of job scheduling is the task of interval scheduling: here, each
job has a specified starting time and length, but a job is not required to be scheduled.
Given M machines, the goal is to schedule as many jobs as possible. More generally,
each job is also assigned a reward or weight, which can be thought of as a payment
received for processing the given job. If a job is not processed, the payment is zero,
i.e., there is no penalty. We refer to this variant as weighted interval scheduling. This
problem, in a natural way, captures real-life scenarios. For instance, consider assigning
crew members to flights where we aim to assign crews for as many flights as possible.
In the context of interval scheduling, flights can be seen as jobs and the crew members
as machines [3, 4]. Interval scheduling also has applications in geometrical tasks – it
can be seen as a task of finding a collection of non-overlapping geometric objects. In
this context, its prominent applications are in VLSI design [5] and map labeling [6,
7].

The aforementioned scenarios are executed in different computational settings. For
instance, some use cases are dynamic in nature, e.g., a flight gets canceled. Then, in
certain cases, we have to make online decisions, e.g., a customer must know imme-
diately whether we are able to accept its request or not. In some applications, there
might be somany requests that wewould like to design extremely fast ways of deciding
whether a given request/job can be scheduled, e.g., providing an immediate response
to a user submitting a job for execution in a cloud.

1.1 The ComputationModel

In our work, we focus on the dynamic setting of computation. Our algorithms for the
fully dynamic setting design data structures that maintain an approximately optimal
solution to an instance of the interval scheduling problem while supporting insertions
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and deletions of jobs/intervals. The data structures also support queries of the main-
tained solution’s total weight and whether or not a particular interval is used in the
maintained solution.

1.2 Our Results

Ourfirst result, given inSect. 4, focuses ondesigning an efficient dynamic algorithm for
unweighted interval scheduling on a singlemachine. Prior to ourwork, the state-of-the-
art result for this unweighted interval scheduling problem was due to [8], who design
an algorithm with O(log n/ε2) update and query time. We provide an improvement in
the dependence on ε.

Theorem 1.1 (Unweighted dynamic, single machine) Let J be a set of n jobs. For
any ε > 0, there exists a fully dynamic algorithm for (1+ ε)-approximate unweighted

interval scheduling for J on a single machine performing updates in O
(
log(n)

ε

)
and

queries in O(log(n)) worst-case time.

Theorem 1.1 can be seen as a warm-up for our most challenging and technically
involved result, which is an algorithm for the dynamic weighted interval scheduling
problem on a single machine. We present our approach in detail in Sect. 5. As a
function of 1/ε, our result is an exponential improvement compared to the running
times obtained in [9]. We also remove all dependence on the job starting/ending times
(previous work crucially used assumptions on the coordinates to bound the ratio of
jobs’ lengths by a parameter N ), and remove all dependence on the value of the job
rewards.

Theorem 1.2 (Weighted dynamic, single machine) Let J be a set of n weighted jobs.
For any ε > 0, there exists a fully dynamic algorithm for (1+ε)-approximate weighted
interval scheduling for J on a single machine performing updates and queries in
worst-case time T ∈ poly(log n, 1

ε
). The exact complexity of T is given by

O

(
log12(n)

ε7
+ log13(n)

ε6

)
.

1.3 RelatedWork

The closest prior work to ours is that of Henzinger et al. [9], and Bhore et al. [8].
The work of Henzinger et al. studies (1 + ε)-approximate dynamic interval schedul-
ing for one machine in both the weighted and unweighted setting. Unlike our main
result in Theorem 1.2, they assume that: jobs have rewards within [1,W ]; jobs have
length at least 1; and jobs start/end within times [0, N ]. They obtain determinis-
tic algorithms with O(exp(1/ε) log2 n · log2 N ) update time for the unweighted and
O(exp(1/ε) log2 n · log5 N · logW ) update time for the weighted case. They cast
interval scheduling as the problem of finding a maximum independent set among a set
of intervals on the x-axis. The authors extend this setting to multiple dimensions and
design algorithms for approximating the maximum independent set among a set of
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d-dimensional hypercubes, achieving a (1 + ε)2d -approximation in the unweighted
and a (4 + ε)2d -approximation in the weighted regime.

The authors of [8] primarily focus on the unweighted case of approximating max-
imum independent set of a set of cubes. For the 1-dimensional case, which equals
interval scheduling on one machine, they obtain O(log n/ε2) update time, which is
slower by a factor of 1/ε than our approach. They also show that their approach gen-
eralizes to the d-dimensional case, requiring poly log n amortized update time and
providing O(4d) approximation.

The problem of dynamicallymaintaining an exact solution to interval scheduling on
one or multiple machines is studied by [10]. They attain a guarantee of Õ(n1/3) update
time for unweighted interval scheduling on M = 1 machine, and Õ(n1−1/M ) for
M ≥ 2. Moreover, they show an almost-linear time conditional hardness lower bound
for dynamically maintaining an exact solution to the weighted interval scheduling
problem on even just M = 1 machine. This further motivates work such as ours that
dynamically maintains approximate solutions for weighted interval scheduling.

The authors of [11] consider dynamic interval scheduling on multiple machines in
the setting where all the jobs must be scheduled. The worst-case update time of their
algorithm is O(log(n)+d), where d refers to the depth of what they call idle intervals
(depth meaning the maximal number of intervals that contain a common point); they
define an idle interval to be the period in a schedule between two consecutive jobs
in a given machine. The same set of authors, in [12], also study dynamic algorithms
for the monotone case, in which no interval completely contains another one. For this
setup, they obtain an algorithm with O(log(n)) update and query time.

In the standardmodel of computing (i.e., one processor, static), there exists anO(n+
m) running time algorithm for (exactly) solving the unweighted interval scheduling
problem on a single machine with n jobs and integer coordinates bounded by m [13].
An algorithm with running time independent of m is described in [14], where it is
shown how to solve this problem on M machines in O(n log(n)) time. An algorithm
is designed in [15] for weighted interval scheduling on M machines that runs in
O(n2 log(n)) time.

We refer a reader to [3] and references therein for additional applications of the
interval scheduling problem.
Other related work. There has also been a significant interest in job scheduling prob-
lems in which our goal is to schedule all the given jobs across multiple machines, with
the objective tominimize the total scheduling time. Several variants have been studied,
including setups that allow preemptions or setting where jobs have precedence con-
straints. We refer a reader to [16–22] and references therein for more details on these
and additional variants of job scheduling. Beyond dynamic algorithms for approxi-
mating maximum independent sets of intervals or hypercubes, [23] show results for
geometric objects such as disks, fat polygons, and higher-dimensional analogs. After
we had published a preprint of this work, [23] proved a result for dynamic data struc-
tures approximating the maximum independent set of fat objects. As discussed in their
Section 6, this subsumes our Theorem 1.1.
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2 Problem Setup

In the interval scheduling problem, we are given n jobs and M machines. With each
job j are associated two numbers s j and l j > 0, referring to “start” and “length”
respectively, meaning that the job j takes l j time to be processed and its processing
can only start at time s j . The job then finishes at time f j = s j + l j . In addition, with
each job j is associated weight/rewardw j > 0, that refers to the reward for processing
the job j . The task of interval scheduling is to schedule jobs across machines while
maximizing the total reward and respecting that each of the M machines can process
at most one job at any point in time.

3 Overview of Our Techniques

Our primary goal is to present unified techniques for approximating scheduling prob-
lems that can be turned into efficient algorithms for many settings. In this section, we
discuss key insights of our techniques.

In the problems our work tackles, partitioning the problem instance into indepen-
dent,manageable chunks is crucial.Doing so enables anLCA to determine information
about a job of interest without computing an entire schedule, or enables a dynamic
data structure to maintain a solution without restarting from scratch.

3.1 Unweighted Interval Scheduling—Partitioning Over Time (Sect. 4)

For simplicity of presentation, we begin by examining our method for partitioning
over time for just the unweighted interval scheduling problem on one machine (i.e.,
M = 1). In particular, we first focus on doing so for the dynamic setting.

Recall that in this setting, the primary motivation for partitioning over time is to
divide the problem into independent, manageable chunks that can be utilized by a
data structure to quickly modify a solution while processing an update. In our work,
we partition the time dimension by maintaining a set of borders that divide time into
some contiguous regions. By doing so, we divide the problem into many independent
regions, andwe ignore jobs that intersectmultiple regions; equivalently, we ignore jobs
that contain a border. Our goal is then to dynamically maintain borders in a way such
that we can quickly recompute the optimal solution completely within some region,
and that the suboptimality introduced by these borders does not affect our solution
much. In Sect. 4, we show that by maintaining borders where the optimal solution
inside each region, i.e., a time-range between two borders, is of size �( 1

ε
), we can

maintain a (1 + ε)-approximation of an optimal solution as long as we optimally
compute the solution within each region.

Here, the underlying intuition is that because each region has a solution of size
�( 1

ε
), we can charge any suboptimality caused by a border against the selected jobs

in an adjacent region. Likewise, because each region’s solution has size O( 1
ε
), we are

able to recompute the optimal solution within some region quickly using a balanced
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binary search tree. We dynamically maintain borders satisfying our desired proper-
ties by adding a new border when a region becomes too large, or merging with an
adjacent region when a region becomes too small. As only O(1) regions will require
any modification when processing an update, this method of partitioning time, while
simple, enables us to improve the fastest known update/query time to O(log(n)/ε). 1

In Sect. 3.2 we build on these ideas to design an algorithm for the weighted interval
scheduling problem.

3.2 Weighted Interval Scheduling (Sect. 5)

In our most technically involved result, we design the first deterministic (1 + ε)

approximation algorithm for weighted interval scheduling that runs in poly(log n, 1
ε
)

time. In this section, we give an outline of our techniques and discuss key insights.
For full details, we refer a reader to Sect. 5.

3.2.1 Job Data Structure

Let E be the set of all the endpoints of given jobs, i.e., E contains si and fi for each
job [si , fi ]. We build a hierarchical data structure over E as follows. This structure is
organized as a binary search tree T . Each node Q of T contains a value key(Q) ∈ E ,
with a “1-1” mapping between E and the nodes of T . Each node Q is responsible for
a time range. The root of T , that we denote by Qroot , is responsible for the entire
time range (−∞,∞). Each node Q has at most two children, that we denote by QL

and QR . If Q is responsible for the time range [X ,Y ], then QL is responsible for
[X ,key(Q)], while QR is responsible for [key(Q),Y ].

Jobs are then assigned to nodes, where a job J is assigned to every node Q such
that J is contained within the Q’s responsible time range.

3.2.2 Organizing Computation (Sect. 5.1)

We now outline how the structure T is used in computation. As a reminder, our
main goal is to compute a (1 + ε)-approximate weighted interval scheduling. This
task is performed by requesting Qroot to solve the problem for the range (−∞,∞).
However, instead of computing the answer for the entire range (−∞,∞) directly,
Qroot partitions the range (−∞,∞) into:

• atmost poly(n, 1/ε) ranges overwhich it is relatively easy to compute approximate
solutions, such ones are called sparse, and

• at most poly(n, 1/ε) remaining ranges over which it is relatively hard to compute
approximate solutions at the level of Qroot .

These hard-to-approximate ranges are deferred to the children of Qroot , and are hard
to approximate because any near-optimal solution for the range contains many jobs.

1 Themain advantage of this techniques is that it leads toworst-caseO(log (n)/ε)update time, as opposed to
only an amortized one.We point out that it is not difficult to obtain such amortized guarantee in the following
way: after each ε · OPT many updates, recompute the optimum solution from scratch. Given access to the
balanced binary tree structure described above, this re-computation can be done in O(OPT · log n) time.
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On the other hand, solutions in sparse ranges are of size O(1/ε). As discussed later,
approximate optimal solutions within sparse ranges can be computed efficiently; for
details, see the paragraph Approximate dynamic programming below.

In general, a child QC of Qroot might receivemultiple ranges from Qroot for which
it is asked to find an approximately optimal solution. QC performs computation in the
same manner as Qroot did – the cell QC partitions each range it receives into “easy”
and “hard” to compute subranges. QC computes the first type of subranges, while
the second type is deferred to the children of QC . These “hard” ranges have large
weight and allow for drawing a boundary and hence dividing a range into two or more
independent ranges. We now discuss how the partitioning into ranges is undertaken.

3.2.3 Auxiliary Data Structure (Sect. 5.2)

To divide a range into “easy” and “hard” ranges at the level of a node Q, we design an
auxiliary data structure, which relates to a rough approximation of the problem. This
structure, called Z(Q), maintains a set of points (we call these points grid endpoints)
that partition Q into slices of time. We use slice to refer to a time range between
two consecutive points of Z(Q). Recall how for unweighted interval scheduling, we
maintained a set of borders and ignored a job that crossed any border. In the weighted
version, we will instead use Z(Q) as a set of partitions from which we will use some
subset to divide time. Our method of designing Z(Q) reduces the task of finding a
partitioning over time Z(Q) within a cell for the (1+ ε)-approximate weighted inter-
val scheduling problem to finding multiple partitionings for the (1 + ε)-approximate
unweighted problem.

It is instructive to think of Z(Q) in the following way. First, we view
weighted interval scheduling as O(log n) independent instances of unweighted
interval scheduling – instance i contains the jobs having weights in the interval
(wmax (Q)/2i+1, wmax (Q)/2i ]. Then, for each unweighted instance we compute bor-
ders as described in Sect. 3.1. Z(Q) constitutes a subset of the union of those borders
across all unweighted instances. We point out that the actual definition of Z(Q) con-
tains some additional points that are needed for technical reasons, but in this section
we will adopt this simplified view. In particular, as we will see, Z(Q) is designed
such that the optimal solution within each slice has small total reward compared to the
optimal solution over the entirety of Q. This enables us to partition the main problem
into subproblems such that the suboptimality of discretizing the time towards slices,
that we call snapping, is negligible.

However, a priori, it is not even clear that such structure Z(Q) exists. So, one of
the primary goals in our analysis is to show that there exists a near-optimal solution
of a desirable structure that can be captured by Z(Q). The main challenge here is
to detect/localize sparse and dense ranges efficiently and in a way that yields a fast
dynamic algorithm. As an oversimplification, we define a solution as having nearly-
optimal sparse structure if it can be generated with roughly the following process:

• Each cellQ receives a set of disjoint time ranges forwhich it is supposed to compute
an approximately optimal solution using jobs assigned to Q or its descendants.
Each received time range must have starting and ending time in Z(Q).
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Fig. 1 Visual example for hierarchical decomposition. Consider we are given jobs with the following ranges
of (1, 5), (2, 10), (7, 20), (4, 5). On the left is T , a balanced binary search tree over the set of all si and
fi . On the right is the hierarchical decomposition that corresponds to T . That is, in each row, the intervals
on the right correspond to the [lQ , rQ ] for the nodes on the left. For instance, in the third row, (−∞, 2]
corresponds to the node Q with K EY (Q) = 1

• For each time range R that Q receives, the algorithm partitions R into disjoint
time ranges of three types: sparse time ranges, time ranges to be sent to QL for
processing, and time ranges to be sent to QR for processing. In particular, this
means that subranges of R are deferred to the children of Q for processing.

• For every sparse time range, Q computes an optimal solution using at most 1/ε

jobs.
• The union of the reward/solution of all sparse time ranges on all levels must be
a (1 + ε)-approximation of the globally optimal solution without any structural
requirements.

Moreover, we develop a charging method that enables us to partition each cell with
only |Z(Q)| = poly(1/ε, log(n)) points and still have the property that it contains a
(1+ε)-approximately optimal solution with nearly-optimal sparse structure. Then, we
design an approximate dynamic programming approach to efficiently compute near-
optimal solutions for sparse ranges. Combined, this enables a very efficient algorithm
for weighted interval scheduling. On a high-level, Z(Q) enables us to eventually
decompose an entire solution into sparse regions.

3.2.4 The Charging Method (Sect. 5.2.3)

Wenow outline insights of our charging arguments that enable us to convert an optimal
solution OPT into a near-optimal solution OPT ′ with nearly-optimal sparse structure
while relaxing our partitioning to only need |Z(Q)| = poly(1/ε, log(N )) points. For
a visual aid, see Fig. 2.

As outlined in our overview of the nearly-optimal sparse structure, each cell Q
receives a set of disjoint time ranges, with each time range having endpoints in Z(Q),
and must split them into three sets: sparse time ranges, time ranges for QL , and time
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ranges for QR . We will now modify OPT by deleting some jobs. This new solution
will be denoted by OPT ′ and will have the following properties:

1. OPT ′ exhibits nearly-optimal sparse structure; and
2. OPT ′ is obtained from OPT by deleting jobs of total reward at most O(ε ·

w(OPT )).

We outline an example of one such time range a cell Q may receive in Fig. 2, anno-
tated by “received range R”. We will color jobs in Fig. 2 to illustrate aspects of our
charging argument, but note that jobs do not actually have a color property beyond
this illustration. Since our structure only allows a cell Q to use a job within its cor-
responding time range, any relatively valuable job that crosses between QL and QR

must be used now by Q putting it in a sparse time range. One such valuable job in
Fig. 2 is in blue marked by “B”. To have “B” belong to a sparse range, we must divide
the time range R somewhere, as otherwise our solution in the received range will be
dense. If we naively divide R at the partition of Z(Q) to the left and right of the job
“B”, we might be forced to delete some valuable jobs; such jobs are pictured in green
and marked by “G”. Instead, we expand the division outwards in a more nuanced
manner. Namely, we keep expanding outwards and looking at the job that contains
the next partition point (if any). If the job’s value exceeds a certain threshold, as those
pictured as green and marked by “G” in Fig. 2, we continue expanding. Otherwise, the
job crossing a partition point is below a certain threshold, pictured as brown and not
marked in Fig. 2, and its deletion can be charged against the blue job. We delete such
brown jobs, and the corresponding partition points, i.e., the vertical red lines crossing
those brown jobs, constitute the start and the end of the sparse range. By the end, we
decided the starting and ending time of the sparse range, and what remains inside are
blue job(s), green job(s), and yellow job(s) (alsomarked by “Y”). Note that yellow jobs
must be completely within a partition slice of Z(Q). Since we define Z(Q) such that
the optimal total reward within any grid slice is small, the yellow jobs have relatively
small rewards compared to the total reward of green and blue jobs that we know must
be large. Accordingly, we can delete the yellow jobs (to help make this time range’s
solution sparse) and charge their cost against a nearby green or blue job. In Fig. 2, an
arrow from one job to another represents a deleted job pointing towards the job which
we charge its loss against. Finally, each sparse range contains only green job(s) and
blue job(s). If there are more than 1/ε jobs in such a sparse range, we employ a simple
sparsifying step detailed in the full proof.

It remains to handle the time ranges of the received range that were not put in
sparse ranges. These time ranges are sent to QL and QR . In Fig. 2, these ranges are
outlined in yellow and annotated by “child subproblem”. However, the time ranges do
not necessarily align with Z(QL) or Z(QR) as is required by nearly-optimal sparse
structure. We need to adjust these ranges to align with Z(QL) or Z(QR) so we can
send the ranges to the children. See Fig. 3 for intuition on why we cannot just imme-
diately “snap” these child subproblems to the partition points in Z(QL) and Z(QR).
(We say that a range R is snapped inward (outward) within cell Q if R is shrunk
(extended) on both sides to the closest points in Z(Q). Inward snapping is illustrated
in Fig. 3.) Instead, we employ a similar charging argument to deal with snapping. As
an analog to how we expanded outwards from the blue job for defining sparse ranges,
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Fig. 2 Visual example for charging argument

we employ a charging argument where we contract inwards from the endpoints of
the child subproblem. In summary, these charging arguments enabled us to show a
solution of nearly-optimal sparse structure exists even when only partitioning each
cell Q with |Z(Q)| = poly(1/ε, log(n)) points.

3.2.5 Approximate Dynamic Programming (Sect. 5.3)

Now, we outline our key advance for more efficiently calculating the solution of
nearly-optimal sparse structure. This structure allows us to partition time into ranges
with sparse solutions. More formally, we are given a time range and we want to
approximate an optimal solutionwithin that range that uses at most 1/ε jobs.We outline
an approximate dynamic programming approach that only requires polynomial time
dependence on 1/ε.

The relatively well-known dynamic programming approach for computing
weighted interval scheduling is maintaining a dynamic program where the state is a
prefix range of time, and the output is the maximum total reward that can be obtained
in that range of time. However, for our purposes, there are too many possibilities
for prefix ranges of time to consider. Instead, we invert the dynamic programming
approach and have a state referencing some amount of reward, where the dynamic
program returns the minimum length prefix range of time in which one can obtain
a given reward. Unfortunately, there are also too many possible amounts of rewards.
We observe that we do not actually need this exact state but only an approximation.
In particular, we show that one can round this state down to powers of (1 + ε2) and
hence significantly reduce the state space. In Sect. 5.3, we show how one can use
this type of observation to quickly compute approximate dynamic programming for a
near-optimal sparse solution inside any time range.

3.2.6 Comparison with Prior Work

The closest to our work is the one of [9]. In terms of improvements, we achieve the
following: we remove the dependence on N and wmax in the running-time analy-
sis; and, we design an algorithm with poly(1/ε, log n) update/query time, which is
exponentially faster in 1/ε compared the prior work.
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In this prior work, jobs are assumed to have lengths of at least 1 and belong in
the time-interval [1, N ]. To remove the dependence on N and such assumptions, we
designed a new way of bookkeeping jobs. Instead of using a complete binary tree
on [1, N ] to organize jobs as done in the prior work, we construct a binary balanced
search tree on the endpoints of jobs. A complete binary tree on [1, N ] is oblivious to the
density of jobs. On the other hand, and intuitively, our approach allows for “instance-
based” bookkeeping: the jobs are in a natural way organized with respect to their
density. Resorting to this approach incurs significant technical challenges. Namely,
the structure of the solution our tree maintains is hierarchically organized. However,
each tree update, which requires node-rotations, breaks this structure which requires
additional care in efficiently maintaining approximate solution after an update, as
well as requiring an entirely different approach for maintaining a partitioning of time
Z(Q) within cells. Moreover, we show how to leverage these ideas further to obtain
a deterministic approach.

In our work, we use borders to define the so-called sparse and dense ranges. This
idea is inspired by the work of [9]. We emphasize, though, that one of our main
contributions and arguably the most technically involved component is showing how
to algorithmically employ those borders in running-time only polynomially dependent
on 1/ε, while [9] require exponential dependence on 1/ε.

Our construction of auxiliary data structure Z(Q) enables us to boost an O(log(n))-
approximate solution into a decomposition enabling a (1 + ε)-approximate solution
is inspired by the approach of [9]. They similarly develop Z(Q) to boost an instead
O(1)-approximation that fundamentally relies on the bounded coordinate assumptions
of jobs beingwithin [1, N ] and having length at least 1. Our different approach towards
Z(Q) enables simplification of some arguments, or on length or bounded coordinate
assumptions. Further, we note that the dynamic programming approach for sparse
regions that we develop is significantly faster than the enumerative approach used in
the prior work, that eventually enables us to obtain a poly(1/ε) dependence in the
running time. The way we combine solutions over sparse regions is similar to the way
it is done in the prior work.

4 Dynamic Unweighted Interval Scheduling on a Single Machine

In this section, we prove Theorem 1.1. As a reminder, Theorem 1.1 considers the case
of interval scheduling in which w j = 1 for each j and M = 1, i.e., the jobs have unit
reward and there is only a single machine at our disposal. This case can also be seen
as a task of finding a maximum independent set among intervals lying on the x-axis.
The crux of our approach is in designing an algorithm that maintains the following
invariant:

Invariant 1 The algorithm maintains a set of borders such that an optimal
solution schedules between 1/ε and 2/ε intervals within each two consecutive
borders.

We will maintain this invariant unless the optimal solution has fewer than 1/ε inter-
vals, in which case we are able to compute the solution from scratch in negligible time.
We aim for our algorithm to maintain Invariant 1 while keeping track of the optimal
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solution between each pair of consecutive borders. The high-level intuition for this is
that if we do not maintain too many borders, then our solution must be very good (our
solution decreases in size by at most 1 every time we add a new border). Furthermore,
if the optimal solution within borders is small, it is likely easier for us to maintain said
solutions. We prove that this invariant enables a high-quality approximation:

Lemma 4.1 A solution that maintains an optimal solution within consecutive pairs of
a set of borders, where the optimal solution within each pair of consecutive borders
contains at least K intervals, maintains a K+1

K -approximation.

Proof For our analysis, suppose there are implicit borders at −∞ and +∞ so that all
jobs are within the range of borders. Consider an optimal solution OPT . We will now
design a K -approximate optimal solution OPT ′ as follows: given OPT , delete all
intervals in OPT that overlap a drawn border. Fix an interval J appearing in OPT
but not in OPT ′. Assume that J intersects the i-th border. Recall that between the
(i − 1)-st and the i-th border there are at least K intervals in OPT ′. Moreover, at
most one interval from OPT intersects the i-th border. Hence, to show that OPT ′
is a K+1

K -approximation of OPT , we can charge the removal of J to the intervals
appearing between the (i − 1)-st and the i-th border in OPT ′. ��

Not only does Invariant 1 enable high-quality solutions, but it also assists us in
quickly maintaining such a solution. We can maintain a data structure with O(

log(n)
ε

)

updates and O(log(n)) queries that moves the borders to maintain the invariant and
thus maintains an (1 + ε)-approximation as implied by Lemma 4.1.

Theorem 1.1 (Unweighted dynamic, single machine) Let J be a set of n jobs. For
any ε > 0, there exists a fully dynamic algorithm for (1+ ε)-approximate unweighted

interval scheduling for J on a single machine performing updates in O
(
log(n)

ε

)
and

queries in O(log(n)) worst-case time.

Proof Our goal now is to design an algorithm that maintains Invariant 1, which by
Lemma 4.1 and for K = 1/ε will result in a (1 + ε)-approximation of Maximum- IS.

On a high level, our algorithm will maintain a set of borders. When compiling a
solution of intervals, the algorithm will not use any interval that contains any of the
borders but proceed by computing an optimal solution between each two consecutive
borders. The union of those between-border solutions is the final solution. Moreover,
we will maintain the invariant that the optimal solution for every contiguous region is
of size within [ 1

ε
, 2

ε
).

In the rest, we show how to implement these steps in the claimed running time.
Maintained data-structures. Our algorithm maintains a balanced binary search tree
Tall of intervals sorted by their starting points. Each node of Tall will also maintain the
end-point of the corresponding interval. It is well-known how to implement a balanced
binary search tree with O(log n) worst-case running time per insertion, deletion, and
search query. Using such an implementation, the algorithm can in O(log n) time find
the smallest ending point in a prefix/suffix on the intervals sorted by their starting
points. That is, in O(log n) time we can find the interval that ends earliest, among
those that start after a certain time.
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In addition, the algorithm also maintains a balanced binary search tree Tborders of
the borders currently drawn.

Also, we will maintain one more balanced binary search tree Tsol that will store the
intervals that are in our current solution.

We will use that for any range with an optimal solution of size S, we can make
O(S) queries to these data structures to obtain an optimal solution for the range in
O(S · log n) time.
Update after an insertion. Upon insertion of an interval J , we add J to Tall. We make
a query to Tborders to check whether J overlaps a border. If it does, we need to do
nothing; in this case, we ignore J even if it belongs to an optimal solution. If it does
not, we recompute the optimal solution within the two borders adjacent to J . If after
recomputing, the new solution between the two borders is too large, i.e., it has at
least 2

ε
intervals, then draw/add a border between the 1

ε
-th and the (1+ 1

ε
)-th of those

intervals.
Update after a deletion.Upon deletion of an interval J , we delete J from Tall. If J was
not in our solution, we do nothing else. Otherwise, we recompute the optimal solution
within the borders adjacent to J and modify Tsol accordingly. Let those borders be
the i-th and the (i + 1)-st. If the new solution between borders i and i + 1 now has a
size less than 1/ε (it would be size exactly 1/ε), we delete an arbitrary one of the two
borders (thus combining this region with an adjacent region). Then, we recompute the
optimal solution within the (now larger) region J is in. If this results in a solution of
size at least 2/ε, we will need to split the newly created region by adding a border.
Before splitting, the solution will have size upper-bounded by one more than the size
of the solutions within the two regions before combining them as an interval may
have overlapped the now deleted border (one region with size exactly 1

ε
− 1 and the

other upper-bounded by 2
ε
−1). Thus, the solution has size at in range [2/ε, 3

ε
). We can

add a border between interval 1/ε and 1/ε + 1 of the optimal solution and will have a
region with exactly 1/ε intervals and another with [1/ε, 2/ε) intervals, maintaining our
invariant.

In all of these, the optimal solution for each region has size O(1/ε), so recomputing
takes O(log(n)/ε) time.

For queries, wewill havemaintained Tsol in our updates such that it contains exactly
the intervals in our solution. So each query we just need to do a lookup to see if the
interval is in Tsol in O(log n) time. ��

This result improves the best-known time complexities [8, 9]. Unfortunately, it does
not immediately generalize well to the weighted variant. In Sect. 5, we show our more
technically-challenging result for the weighted variant.

5 DynamicWeighted Interval Scheduling on a Single Machine

This section focuses on a more challenging setting in which jobs have non-uniform
weights. Non-uniform weights introduce difficulties for the approach mentioned in
Sect. 4, as adding a border (which entails ignoring all the jobs that cross that border)
may now force us to ignore a very valuable job. Straightforward extensions of this
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border-based approach require at least a linear dependence on the ratio between job
rewards (e.g., if all jobs have rewards within [1, w], then straightforward extensions
would require a linear dependence on w). This is because an ignored job containing
a border can have a reward of w (as opposed to just 1), requiring w/ε reward inside
the region to charge it against (as opposed to just 1/ε). In this work, we show how
to perform this task in O(poly(log(n), 1/ε)) time, having no such dependency on the
rewards of the jobs or the starting/ending times. This improves upon the best-known
preexisting result of O(poly(log(n), log(N ), log(w)) · exp(1/ε)) time accomplished
by the decomposition scheme designed in the work of Henzinger et al. [9], which we
compare with in Sect. 3.2.6. Both our algorithm and our analysis introduce new ideas
that enable us to design a dynamic algorithmwith running time having only polynomial
dependence on 1/ε and log(n), yielding an exponential improvement in terms of 1/ε over
[9], and removing all dependence on N andw.Moreover, our algorithm is deterministic
and requires no assumption on the lengths or coordinate values of the jobs; [9] is also
deterministic, but it assumes all jobs are length at least 1 and all coordinates are within
[0, N ], where N affects the time complexity.

As the first step, we show that there exists a (1 + ε)-approximate optimal solution
OPT ′ that has nearly-optimal sparse structure, similar to a structure used in [9]. We
define properties of this structure in Sect. 5.2, although it is instructive to think of this
structure as of a set of non-overlapping time ranges such that:

1. Within each time range, there is an approximately optimal solution that contains
a small number of jobs (called sparse);

2. The union of solutions across all the time ranges is (1 + ε)-approximate; and
3. There is an efficient algorithm to obtain these time ranges.

Effectively, this structure partitions time such that we get an approximately optimal
solution by computing sparse solutions within partitioned time ranges and ignoring
jobs that are not fully contained within one partitioned time range. To obtain the
guarantees of such a set of time ranges that can be obtained efficiently, we utilize a
new hierarchical decomposition based on a balanced binary search tree and employ
novel charging arguments. This result is described in detail in Sect. 5.2.

Once equipped with this structural result, we first design a dynamic programming
approach to compute an approximately optimal solution within one time range. Let
wmax denote the maximal reward among all jobs currently in the instance. To obtain
an algorithm whose running time is proportional to the number of jobs in the solution
for a time range, as opposed to the length of that range, we “approximate” states that
our dynamic programming approach maintains, and ultimately obtain the following
claim whose proof is deferred to Sect. 5.3.

Lemma 5.1 Given any contiguous time rangeR and an integer K , consider an optimal
solution OPT (R, K ) inR containing at most K jobs and ignoring jobs with weight
less than ε/n ·wmax . Then, there is an algorithm that inR finds a (1+ ε)-approximate

solution to OPT (R, K ) in O
(
K log(n) log2(K/ε)

ε2

)
time andwith atmost O

(
K log(K/ε)

ε

)

jobs.

Observe that running time of the algorithm given by Lemma 5.1 has no dependence
on the length ofR. Also observe that the algorithm possibly selects slightly more than
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K jobs to obtain a (1+ ε)-approximation of the best possible reward one could obtain
by using at most K jobs inR (i.e., OPT (R, K )).

Finally, in Sect. 5.5 we combine all these ingredients and prove the main theorem
of this section.

Theorem 1.2 (Weighted dynamic, single machine) Let J be a set of n weighted jobs.
For any ε > 0, there exists a fully dynamic algorithm for (1+ε)-approximate weighted
interval scheduling for J on a single machine performing updates and queries in
worst-case time T ∈ poly(log n, 1

ε
). The exact complexity of T is given by

O

(
log12(n)

ε7
+ log13(n)

ε6

)
.

5.1 Decomposition Overview

We utilize a hierarchical decomposition to organize time such that we may efficiently
obtain time ranges that satisfy the nearly-optimal sparse structure. This decomposi-
tion has two levels of granularity. For the higher-level decomposition, we employ a
decomposition similar to that of a balanced binary search tree with O(log(n)) depth.
Each cell Q in this balanced binary search tree will correspond to a range of time.
Further details on this hierarchical decomposition are described in Sect. 5.2.1.

For the lower-level decomposition, we split each cell Q more finely. Formally, for
a set of grid endpoints Z(Q), we define a grid slice as follows.

Definition 5.2 (Grid slice) Given a set of grid endpoints Z(Q) = {r1, r2, . . . , rX−1}
with ri < ri+1, we use grid slice to refer to an interval (ri , ri+1), for any 1 ≤ i <

X − 1. Note that a grid slice between ri and ri+1 does not contain ri nor ri+1.

We further discuss Z(Q) in Sect. 5.2.2. Importantly, Z(Q) is designed such that
the optimal solution entirely within any grid slice is upper-bounded to be relatively
small compared to the weight of the optimal solution within Q, orw(OPT (Q)). This
property makes the grid endpoints Z(Q) a helpful tool in partitioning time. At a high
level, Z(Q) is used to define a set of segments that motivate dynamic programming
states of the form DP(Q, S), where each S corresponds to a segment between two
grid endpoints of Z(Q), and DP(Q, S) computes an approximately optimal sparse
solution among schedules that can only use jobs contained within the segment of time
S. The key idea is that this dynamic programming enables the partitioning of time into
dense and sparse ranges. Solutions for sparse ranges are computed immediately, while
dense ranges are solved by children with dynamic programming (by further dividing
the dense range into more sparse and dense ranges). We recall from Sect. 3.2.6 that [9]
were first to design a two-level hierarchical decomposition that computes DP(Q, S) to
optimize over dense and sparse ranges. However, we emphasize that our work utilizes
entirely new approaches for our high-level hierarchical decomposition into cells Q, for
our low-level decomposition of each cell into Z(Q), and for our method of computing
approximately optimal sparse solutions of DP(Q, S).
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5.2 Solution of Nearly-Optimal Sparse Structure

To remove exponential dependence on 1/ε and all dependence on N andw,we introduce
a new algorithm for approximating sparse solutions, a newhierarchical decomposition,
and novel charging arguments that (among other things) reduce the number of grid
endpoints |Z(Q)| required in each cell. With this, we will compute an approximately
optimal solution of the following very specific structure.

Definition 5.3 (Nearly-optimal sparse structure) To have nearly-optimal sparse struc-
ture, a solution must be able to be generated with the following specific procedure:

• Each cell Q will receive a set of time ranges, denoted as RANGES(Q), with
endpoints in Z(Q). To start, Qroot will receive one time range containing all of
time (i.e., RANGES(Qroot ) = {[−∞,∞]})

• RANGES(Q) is split into a collection of disjoint time ranges, with each being
assigned to one of three sets: SP ARSE(Q), RANGES(QL), RANGES(QR)

• SP ARSE(Q), a set of time ranges, must have endpoints in Z(Q) ∪ Z(QL) ∪
Z(QR)

• For each child Qchild (where child ∈ {L, R}) of Q, RANGES(Qchild) must
have all endpoints in Z(Qchild)

• The total weight of sparse solutions (solutions with at most 1/ε jobs) within
sparse time ranges must be large (where SP ARSE_OPT (R) denotes an optimal
solution having at most 1/ε jobs within range R):

∑
Q

∑
R∈SP ARSE(Q)

w(SP ARSE_OPT (R)) ≥ (1 − O(ε))w(OPT )

Now, we prove our result for a (1+ε)-approximation to dynamic, weighted interval
Maximum- IS algorithm with only polynomial time dependence on 1/ε and log(n).
Unlike the decomposition of Henzinger et al., we will not define our decomposition
such that each cell Q will split exactly in half to produce both its children QL and QR .
Instead, we will divide every cell Q in a manner informed by a balanced binary search
tree. Desirably, this will make the depth of our decomposition O(log(n)) instead of
O(log(N )), but it will remove the possibility of utilizing the random-offset style of
idea to assign jobs to cells where they each job’s length is approximately ε fraction
of the cell’s length. This necessitates novel charging arguments. We supplement this
new hierarchical decomposition with a new alternative for the Z(Q) data structure
that enables us to determine important dynamic program subproblems without any
dependence on N . Additionally, we take a new approach for solving the small sparse
subproblems, where we use an approximate dynamic programming idea to remove
exponential dependence on 1/ε in the best known running time for these subproblems.
In our novel charging arguments, there is a particular focus on changing where deleted
intervals’ weights are charged against and introducing a snapping budget, which we
use to relax the required number of grid endpoints |Z(Q)| to depend only polynomially
on 1/ε. As a reminder, Z(Q) is a set of grid points within Q such that between any two
consecutive points we are guaranteed that the optimal solution has small weight. Our
final algorithm will consider a number of subproblems for each cell proportional to
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|Z(Q)|2, so improvements in |Z(Q)| directly lead to improvements in the best-known
running time. Effectively, we make each of our smaller subproblems easier to solve
while also reducing the number of subproblems we need to solve. All improvements
are exponential in ε and remove dependence on N and w.

5.2.1 Hierarchical Decomposition

We now formally describe our hierarchical decomposition of jobs.

• Consider the set of all jobs’ starting/ending times, i.e., for each job i , include si
and fi . Now, consider a balanced binary search tree T over this set of times. For
the sake of this paper, one can assume this is maintained by a red-black tree such
that the tree has depth O(log(n)) and O(log(n)) rotations are required per update.
We have a cell Q in our hierarchical decomposition corresponding to each node
in T . Let K EY (Q) be the corresponding key for the node in T .

• Each Q has a left child QL or right child QR if the corresponding node in T does.
• Each cell Q represents a range of time. Qroot corresponds to all time, meaning

T I ME(Qroot ) = [−∞,∞]. This time range is split for the children of Q by
K EY (Q). More formally, given a cell Q where T I ME(Q) = [lQ, rQ], then (if
QL exists) T I ME(QL) = [lQ, K EY (Q)], and (if QR exists) T I ME(QR) =
[K EY (Q), rQ].
This fully describes our hierarchical decomposition of depth O(log(n)). A visual

example is provided in Fig. 1.

5.2.2 Structure Z(Q)

We use the set of grid points Z(Q) to determine segments that will be used as sub-
problems for dynamic programming and in reference to the nearly-optimal sparse
structure. For some specified X , our goal is to maintain a Z(Q) such that the optimal
solution within every grid slice is at most O(w(OPT (Q))/X). The previously-utilized
methods for obtaining this require logarithmic dependence on N and w. To remove
dependence on w, we relax our requirements of Z(Q) to ignore all jobs with weight
less than w(OPT (Q)) · ε/n; in total, these jobs have negligible reward. To remove
dependence on N , we consider an alternative approach to computing Z(Q), where we
take the union of multiple solutions to Z(Q) for the analogous unweighted interval
scheduling problem using ideas similar to those in Sect. 4. We design a Z(Q) with the
following guarantees, whose proof is deferred to Sect. 5.4:

Lemma 5.4 (Dynamically maintaining Z(Q)) For any fixed positive integer X, it is
possible to return a set Z(Q) for any cell Q in the hierarchical decomposition in
O(X · log3(n)) query time. Moreover, the returned Z(Q) will satisfy the following
properties:

• For every Q, the optimal solution within each grid slice of Z(Q) is at
most O(w(OPT (Q))/X); as a reminder, we ignore jobs with weights less than
w(OPT (Q)) · ε/n.

• For every Q, |Z(Q)| = O(X · log2(n))
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Fig. 3 This example illustrates why the snapping we perform must be done carefully. The horizontal
segments in this figure represent jobs. We show an initial dense range (outlined in purple) with endpoints
in Z(Q). We show where these endpoints are in QL with dashed vertical lines. Importantly, they are not
aligned with Z(QL ), i.e., the vertical dashed lines do not belong to Z(QL ). However, our structure requires
that dense ranges align with Z(Qchild ), so wemust address this. If we were to naively snap the endpoints of
the dense range inwards to the endpoints of Z(QL ), then we would need to delete some jobs (these deleted
jobs are colored in yellow and marked by “Y”), while some other jobs would not be affected (like the
remaining jobs in this example, those colored in blue). While this naive snapping may be fine in some cases,
it will incur a significant loss in cases where the “Y” jobs have large weights. Notice that naively snapping
outward to define a new region corresponding to the purple one is not a solution either, as this could cause
the dense time range to overlap with a previously selected sparse time range. Having overlapping ranges can
cause us to choose intersecting jobs and, thus, an invalid solution. Thus, we detail a more comprehensive
manner of dealing with snapping

5.2.3 Existence of Desired (1+ ")-Approximate Solution

We now argue that there exists a (1+O(ε))-approximation with nearly-optimal sparse
structure in reference to our new hierarchical decomposition for Q and our Z(Q)when

using X = log2(n)

ε2
and thus |Z(Q)| = O(

log4(n)

ε2
):

Lemma 5.5 There exists a solution OPT ′ that has nearly-optimal sparse structure
and such that w(OPT ′) ≥ (1 − O(ε))w(OPT ). Thus, OPT ′ is a (1 + O(ε))-
approximation of OPT .

Proof We emphasize that the goal of this lemma is not to show how to construct a
solution algorithmically, but rather to show that there exists one, that we refer to by
OPT ′, that has a specific structure and whose weight is close to OPT .

In this paragraph, we provide a proof overview. At a high-level, we show this claim
by starting with OPT , and maintaining a solution OPT ′ that holds our desired struc-
ture and only deletes jobs with total weight O(ε ·w(OPT )). Our process of converting
OPT to OPT ′ is recursive, as we start at the root and work down. Generally, our
preference for any rangeR ∈ RANGES(Q)will be to defer it to a child by passing it
on to a RANGE(Qchild). This preference can often not be immediately satisfied for
two reasons: (i) R may not be completely contained within a Qchild (i.e. R crosses
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between QL and QR), or (ii) the endpoints ofR do not alight with the corresponding
Z(Qchild). We will modify OPT to accommodate these concerns. To handle concern
(i), we will delete a job in OPT if it crosses between QL and QR and has small
went (and hence it can be ignored). Otherwise, if such a crossing job has large weight,
we will divide R into three time ranges such that one is contained within QL , one
uses the crossing job, and the last is contained within QR , using a process detailed
in the following proof. For the central third, we will sparsify this range to produce a
set SP ARSE(Q) of sparse time ranges. For time ranges completely contained within
QL and QR that are not designated as sparse time ranges, we will essentially consider
them dense time ranges, that will be delegated to children cells of Q. In order to dele-
gate a time range to a child Qchild , we require that the delegated time range must have
endpoints that align with Z(Qchild). Accordingly, we performmodifications to “snap”
the time ranges’ endpoints to Z(Qchild) for the corresponding child Qchild of Q and
include the “snapped” time ranges in RANGES(Qchild). We show that throughout
this process, we do not delete much weight from OPT and obtain an OPT ′ that has
our desired structure. Now, we present the proof in detail:
Deleting light crossing jobs.
We now describe how to modify OPT , obtaining OPT ′, such that OPT ′ has our
desired structure and OPT ′ is a (1 + ε)-approximation of OPT . Note that we will
never actually compute OPT ′. It is only a hypothetical solution that has nice structural
properties and that we use to compare our output to.

For a cell Q, consider a time range it receives in RANGES(Q). We shall split
this time range into sparse time ranges (to be added to SP ARSE(Q)) and dense time
ranges (to be added to RANGES(QL) or RANGES(QR)). There is at most one
range Rcross ∈ RANGES(Q) that crosses between QL and QR , and we call the
at most one job crossing between QL and QR the crossing job (if it exists). If the
crossing job has weight ≤ ε

log(n)
w(OPT (Q)), we call it light, we delete the light

crossing job, and we split Rcross at the dividing point K EY (Q). One of these two
resulting ranges can inherit the snapping budget of Rcross , while we can allocate the
other a snapping budget of weight O( ε

log(n)
w(OPT (Q)). We delete/allocate at most

O( ε
log(n)

w(OPT (Q)))weight at every cell, O( ε
log(n)

w(OPT ))weight at every level,
and O(εw(OPT )) weight in total. Also note how all ranges in RANGES(Q) are
now completely contained within either QL or QR . Otherwise, if the crossing job has
large weight, we call it heavy and must find some way to include it in our solution
instead of deleting it.
Utilizing heavy crossing jobs.
We now focus on showing how to construct our solution using a heavy crossing job.
Our goal is to split Rcross into three parts: one range completely within QL , some
sparse ranges thatwill be SP ARSE(Q) and include the crossing job among other jobs,
and one range completely within QR . As an overview, we will start by considering
the smallest time range that contains the crossing job and spans the grid between two
(not necessarily consecutive) endpoints in Z(Q). This range may contain many jobs in
OPT , so we perform an additional refinement to divide it up into sparse time ranges.
In this refinement, we will split up the time range such that we do not delete too much
weight and, moreover, all of the resulting time ranges have at most 1/ε jobs. These time
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Fig. 4 This example illustrates how the sparse regions are created. All vertical segments within Q, which
are red in the figure, correspond to the points in Z(Q). The cell Q is divided by Z(Q) such that the optimal
solution within every grid slice is small. As a reminder, a grid slice is an open time-interval between two
consecutive points in Z(Q); see Definition 5.2 for a formal definition. We start with the heavy crossing job
(the blue horizontal segment marked by “B”). From this heavy crossing job, we expand the region outwards
as necessary. In this example, we expanded to the right, seeing two highlighted jobs (the green horizontal
segments marked by “G”) until we saw a job with low enough weight intersecting a grid endpoint (these job
segments are colored in brown and crossed). We delete such brown jobs, and use the grid endpoints they
intersected to define the region (outlined in purple and annotated by “new region”). Useless jobs (pictured
in yellow) are then deleted. Later, we sparsify the region

ranges now constitute SP ARSE(Q). A detailed description of this process of deter-
mining SP ARSE(Q) is given in stages from “utilizing heavy jobs” to “sparsifying
regions.” For an example of this process that uses the terminology later described in
these stages, see Fig. 4. Any remaining time ranges not selected at this stage will effec-
tively be dense time ranges, and are delegated into RANGES(QL), RANGES(QR)

(after dealing with their alignment issues). This process of designating time ranges to
delegate is detailed in stages from “creating dense ranges” to “resolving leafs.”

As a reminder, we have chosen Z(Q) such that the total weight inside any grid
slice (a time range between two consecutive endpoints of Z(Q)) of Q is at most

ε2

log2(N )
w(P(Q)). Recall that Z(Q) contains grid endpoints. For the heavy crossing

job, consider the grid endpoint immediately to its left and to its right. Without loss of
generality, consider the right one and call it r . How we proceed can be split into two
cases:

1. In the first case, r overlaps a job J in OPT ′ with weight at most
ε

log(n)
w(OPT (Q)). We delete J and draw a boundary at r . In doing this, we

will charge the weight of J against the cell Q. There are at most two jobs we
charge in this manner for that original heavy interval, one for the grid endpoint to
the right and one to the left. Meaning, each cell will be charged in this manner at
most twice for a total of O( ε

log(n)
w(OPT )weight at each level and O(εw(OPT ))

weight overall.
2. In the other case, r overlaps a job J that hasweight greater than ε

log(n)
w(OPT (Q)).

We call J a highlighted job. Our algorithm proceeds by considering the grid
endpoint immediately to the right of J . We determine what to do with this grid
endpoint in a recursive manner. Meaning, we proceed in the same two cases that
we did when considering what to do with r , and continue this recursive process
until we finally draw a boundary.
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After this process, we will have drawn a region (time range corresponding to where
we drew a left and right boundary for) in which OPT ′ has the one heavy crossing job,
a number of highlighted jobs (possibly zero), and potentially some remaining jobs that
are neither crossing nor highlighted (we call these useless). It is our goal to convert
this region into time ranges that we can use as sparse time ranges. Our process also
guarantees this region has borders with endpoints in Z(Q). Note that we have created
a region within some time range of RANGES(Q), but not every point in the time
range is necessarily contained within the region.
Deleting useless jobs.
In the generated region, we define useless jobs as all jobs that are neither crossing
nor highlighted. Useless jobs are completely contained within grid slices. We want to
convert the region into sparse time ranges, but there may be many useless jobs that
make the region very dense. Thus, we will delete all jobs in the region that are useless.
By the process of generating the region, any such job is fully contained within a grid
slice for which there is a heavy crossing job or highlighted job partially overlapping
the grid slice. We charge deletion of all useless jobs in a given slice by charging
against a highlighted or heavy crossing job that must partially overlap the given slice.
By definition of Z(Q), useless jobs in the slice add up to a total weight of at most

ε2

log2(n)
w(OPT (Q)). This is because we set Z(Q) with X = log2(n)

ε2
and thus the

optimal solution within any grid slice has total weight at most ε2

log2(n)
w(OPT (Q)).

Moreover, ε2

log2(N )
w(OPT (Q)) is at least a factor of ε less than the highlighted or

heavy crossing job we are charging against (and there are only two such slices whose
useless jobs are charging against any highlighted or heavy jobs).
Sparsifying the region.
Now, the region only contains heavy crossing job or highlighted jobs. We aim to split
the region into ranges for SP ARSE(Q) without deleting much weight. The region
mayhavemore than 1

ε
jobs (meaning it is not sparse). If this is the case,we desire to split

the region into time ranges that each have ≤ 1
ε
jobs and start/end at grid endpoints

of Z(Q). To do so, we number the jobs in a region from left to right and consider
them in groups based on their index modulo 1

ε
. Note that a group does not consist of

consecutive jobs. Then, we delete the group with lowest weight. We delete this group
because we make the observation that all remaining jobs in the region must contain
a grid endpoint within it. This is because heavy crossing jobs must contain a grid
endpoint by how we defined Z(Q), and highlighted jobs must contain a grid endpoint
by their definition. Thus, we can delete the jobs belonging to the lightest group and
split the time range at the grid endpoints contained inside each of the deleted jobs. In
doing so, we lose at most a factor of ε of the total weight of all the considered jobs.
However, now each resulting time range will have at most 1

ε
jobs and thus will be a

valid sparse range in SP ARSE(Q) (because for any range containing a number of
consecutive jobs greater than 1

ε
, we will have split it). Note that all these sparse ranges

have endpoints in Z(Q). With all of its terminology now defined, readers may find
the example illustrated in Fig. 4 helpful for their understanding.
Snapping dense ranges.
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Fig. 5 This example illustrates why the snapping we perform has to be done with care. The horizontal
segments in this figure represent jobs. We show an initial dense range (outlined in purple) with endpoints
in Z(Q). With dashed vertical lines, we show where these endpoints are in QL . Importantly, they are not
aligned with Z(QL ), i.e., the vertical dashed lines do not belong to Z(QL ). However, our structure requires
that dense ranges align with Z(Qchild ), so wemust address this. If we were to naively snap the endpoints of
the dense range inwards to the endpoints of Z(QL ), then we would need to delete some jobs (these deleted
jobs are colored in yellow and marked by “Y”), while some other jobs would not be affected (like the
remaining jobs in this example, those colored in blue). While this naive snapping may be fine in some cases,
it will incur significant loss in cases in which the “Y” jobs have large weight. Notice that naively snapping
outward to define a new region corresponding to the purple one is not a solution neither, as this could cause
the dense time range to overlap with a previously selected sparse time range. Having overlapping ranges
can cause us to choose intersecting jobs, and thus an invalid solution. Thus, we detail a more comprehensive
manner of dealing with snapping

Recall that not all of the time ranges that we are modifying from RANGES(Q) were
part of the region. In particular, there are the time ranges originally in RANGES(Q)

other thanRcross , as well as the time range inRcross to the left of the region, and to the
right of the region.We call these remaining time ranges our dense ranges because they
may containmany jobs. Note how all dense range are now completely containedwithin
QL or QR . Ideally, we assign dense ranges to RANGES(QL) or RANGES(QR).
However, the remaining dense time ranges have one remaining potential issue, that
their endpoints may not align with Z(Qchild) even though they align with Z(Q). For
an example of this issue, see Fig. 5. The core of this problem is that these dense time
ranges correspond to time ranges we would like to delegate to children of Q (i.e.,
add to RANGES(QL) and RANGES(QR)). However, there is the requirement that
time ranges delegated to RANGES(QL) and RANGES(QR) must have endpoints
in Z(QL) and Z(QR), respectively. Therefore, we have to modify the dense ranges so
they alignwith the grid endpoints of oneofQ’s children. It is tempting to naively “snap”
the endpoints of these time ranges inward to the nearest grid endpoints of Z(Qchild),
meaning to slightly contract the endpoints of the time ranges inward so they align with
Z(Qchild). Unfortunately, this might result in some jobs being ignored in the process
(as illustrated in Fig. 5); a cell does not consider jobs which are not within a given
range. If these ignored jobs have non-negligible total reward, ignoring them can result
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in a poor solution. In the stage “snapping dense ranges” we detail a more involved
contraction-like snapping process that contracts inwards similar to our argument for
expanding outwards from heavy crossing jobs when we determined sparse ranges. In
our contraction-like snapping process, we convert some of the beginning and end of
the dense range into sparse ranges, so we do not need to delete some of the high-
reward jobs that we would need to delete with naive snapping. In the stages from
“using essential jobs” to “resolving leafs”, we detail how to apply modifications to
fulfill the required properties and how to analyze the contraction process with charging
arguments.

Consider an arbitrary unaligned dense time range U . Ideally, we would “snap” the
endpoints ofU inward to the nearest grid point of Z(Qchild ) (i.e.move the left endpoint
of U to the closest grid point of Z(Qchild) to its right, and the right endpoint of U to
the closest grid endpoint of Z(Qchild) to its left). However, doing so may force us to
delete a job in OPT ′ that is too valuable (as we would have to delete jobs that overlap
the section ofU that was snapped inwards). So, we will handleU differently. Without
loss of generality, suppose we want to “snap” inward the left endpoint of U to align
with Z(Qchild). Doing so may leave some jobs outside the snapped range. We define
the cost of snapping as the total weight of jobs that were previously contained within
the range but are no longer completely contained within after snapping. If immediately
snapping inward the left endpoint to the nearest grid point of Z(Qchild) would cost
at most 2ε

log2(n)
w(OPT (Q)), we do that immediately. Otherwise, this snapping step

would cost more than 2ε
log2(n)

w(OPT (Q)), implying that there is a job that overlaps

with the grid endpoint of Z(Qchild) to the right of U ’s left endpoint (all other jobs
we are forced to delete are strictly inside a slice of Z(Qchild) and thus have total
weight ≤ ε2

log2(n)
w(OPT (Qchild)) ≤ ε2

log2(n)
w(OPT (Q))) and has weight of at least

2ε
log2(n)

w(OPT (Q)) − ε2

log2(n)
w(OPT (Q)) ≥ ε

log2(n)
w(OPT (Q)). We mark that job

as “essential”.
Then, we look to the right of that essential job and examine the job that overlaps
the next grid endpoint to the right in Z(Qchild). If this job has weight at most

2ε
log2(n)

w(OPT (Q)), we delete it and draw a boundary. Otherwise, we mark it as

“essential” and continue (following the same process). When we are done, we have a
prefix of the dense time range that contains some number of “essential” jobs and other
jobs, and then a border at a grid endpoint of Z(Qchild). The final “snapping” where we
deleted jobs to add the split point had cost ≤ 2ε

log2(n)
w(OPT (Q)). In essence, these

essential jobs are the collection of jobs that were too valuable for us to delete them
when we were undergoing the snapping process.
Using essential jobs.
We will assume this dense time range had a snapping budget and charge the afore-
mentioned final snapping cost to that. Now, we just need to find a way to use the time
range prefix with the essential jobs. We delete all jobs that are not essential in this
time range with a similar argument as earlier, that such a job is completely contained
in a grid slice with total weight of jobs ≤ ε2

log2(N )
w(OPT (Q)) which is at most a

factor of ε of an essential job partially contained within the slice (and it is partially
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contained within at most two slices). Then, we convert this time range of essential jobs
(with potentially many such essential jobs) into sparse time ranges in the same way
as done previously during the “sparsifying regions” step. We do so by grouping the
jobs according their index modulo 1

ε
, deleting the group with least total weight, and

drawing a border at the grid endpoint of Z(Qchild) contained within the deleted jobs.
Again, by our process we know all such essential jobs must contain a grid endpoint.
This creates sparse time ranges with endpoints in Z(Q) ∪ Z(Qchild) and our dense
time range has endpoints in Z(Qchild) so they are both valid.
Financing a snapping budget.
Finally, we need to show that we actually have a sufficient snapping budget. Con-
sider our dense time ranges. We may adjust their endpoints in other scenarios, but
we only split dense time ranges into more dense time ranges when they are a cross-
ing range. As only one there is only one crossing range at every cell Q, if we give
the newly created range a snapping budget of O( ε

log(n)
w(OPT (Q))), then we do

not lose more than O(εw(OPT )) in total. We showed above that each dense range
will use at most O( ε

log2(N )
w(OPT (Q))) of its snapping budget at each level, so it

will will use O( ε
log(n)

w(OPT (Q))) in total and stay within its allotted budget of
O( ε

log(n)
w(OPT (Q))) throughout.

Resolving leaves.
Finally, when we have a time range but it cannot be delegated to Qchild because Qchild

does not exist, note there is only possibly room for one job in the range (as by definition
of the decomposition of Q, no job starts or ends in this range). So we simply consider
this range as part of SP ARSE(Q).

This concludes the proof by providing a way to convert OPT to a solution OPT ′
that obeys our structure and is a (1 + ε)-approximation of OPT . ��

5.3 Efficiently Approximating Sparse Solutions

Now, we focus on designing an efficient algorithm for approximating the optimal
solution in a sparse time range.

Lemma 5.1 Given any contiguous time rangeR and an integer K , consider an optimal
solution OPT (R, K ) inR containing at most K jobs and ignoring jobs with weight
less than ε/n ·wmax . Then, there is an algorithm that inR finds a (1+ ε)-approximate

solution to OPT (R, K ) in O
(
K log(n) log2(K/ε)

ε2

)
time andwith atmost O

(
K log(K/ε)

ε

)

jobs.

Proof To prove this claim, we use a dynamic programming approach where our state
is the total weight of jobs selected so far. The dynamic programming table earliest
contains for state X , earliest[X ], the earliest/leftmost point in time for which the
total weight of X is achieved. If we implement this dynamic programming directly,
it would require space proportional to the value of solution (which equals the largest
possible X ). Our goal is to avoid this time/space dependence. To that end, we design
an approximate dynamic program that requires only poly-logarithmic dependence on
the value of an optimal solution. We derive the following technical tool to enable this:
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Claim 5.6 Let S be the set of all powers of (1 + ε/K ) not exceeding W, i.e., S =
{(1 + ε/K )i | 0 ≤ i ≤ 
log1+ε/K W�}. Consider an algorithm that supports the
addition of any K values (each being at least 1) where the sum of these K values is
guaranteed to not exceed W. The values are added one by one. After each addition
step, the algorithm maintains a running-total by rounding down the sum of the new
value being added and the previous rounded running-total to the nearest value in S.
Then, the final running-total of the algorithm is a (1 + ε) approximation of the true
sum of those K values.

Proof Consider the sequence of K values and thus K additions. Let OPT denote
the exact sum of the K values. Let SOL denote the running-total we achieve at
the end of our additions. Finally, let CURi denote the running-total as we do these
additions at the beginning of stage i , which must be in S at the end of every stage.
We prove that SOL ≥ (1 − ε)OPT and thus SOL is a (1 + ε) approximation of
OPT . Initially, CUR0 = 0. Each step, we add some value vi to CURi . This new
value CUR′

i = CURi + vi . Then, we round CUR′
i to the nearest power of (1+ ε/K )

and denote this as CUR′′
i . We call the amount we lose by rounding down the loss

�i = CUR′
i − CUR′′

i . For the next stage, we denote CURi+1 = CUR′′
i . Note that

�i

O PT
≤ �i

SOL
≤ �i

CUR′′
i

= CUR′
i − CUR′′

i

CUR′′
i

≤ ε

K

or, otherwise, we would have rounded to a different power of (1 + ε/K ). Thus, �i ≤
OPT ( ε

K ). Note that SOL = CURK and CURK + ∑
i �i = OPT . As such,

SOL = OPT −
∑
i

�i ≥ OPT − K
(
OPT

( ε

K

))
= OPT − ε · OPT

= (1 − ε)OPT .

��
Inspired by Claim 5.6, we now define a set of states S as follows. Our states will

represent powers of (1 + ε/K ) from 1 to Kw, and hence

|S| = O

(
log(Kw)

log(1 + ε/K )

)
= O

(
K log(Kw)

ε

)
.

Using this, we create a set of states S which corresponds to powers of (1 + ε/K )

from 1 to Kw (and 0). We want to maintain for each of these states, approximately the
smallest prefix with at most K jobs where we could get total weight approximately
equal to s ∈ S. To do this, we loop over the states in increasing order of value. Suppose
the current state corresponds to having approximate weight s ∈ S and earliest[s]
is the shortest prefix we have that has approximate weight s. Then we loop over all
rounded weights v ∈ {(1 + ε)i }. There are O(log(w)/ε) such v. For each v, set V to
be the value of s + v rounded down to the nearest power of (1 + ε/K ). Then, if the
earliest ending time of a job with rounded weight v that starts after earliest[s] is
less than earliest[V], we update earliest[V] to that ending time. We can calculate
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the earliest ending time of any job, with a particular rounded weight, starting after
some specified time in O(log(n)) time by maintaining a balanced binary search tree
(as done in Sect. 4) for each of the O(log(w)/ε) rounded weights (to powers of (1+ ε)).
This negligibly adds O(log(n)) time to each update. In total, this solution runs in
O(

K log(n) log(w) log(Kw)

ε2
) time.

As we can ignore all jobs with weight less than ε/nwmax , then we can only focus
on jobs with weights in [ εwmax

n , wmax ] and effectively modify w to be n/ε by dividing
all weights by εwmax

n . This enables us to use w = O(n/ε) in the above runtime bound.

As such, this algorithm runs in O(
K log(n) log(n/ε) log(Kn/ε)

ε2
) time.

To show the algorithm’s correctness, observe that since we always round down, we
will not overestimate the cost. Moreover, we show with that any set of K additions
will be within a factor of (1 + ε) from its true value. ��
Corollary 5.7 For our application, we let K = 1

ε
. As such, we have a (1 + ε)-

approximation algorithm of the minimum solution with at most 1
ε
jobs that runs in

time

O

(
K log(n) log(n/ε) log(Kn/ε)

ε2

)
= O

(
log(n) log2(n/ε)

ε3

)
= O

(
log3(n)

ε3

)
.

5.4 Dynamically Maintaining Z(Q)—Proof of Lemma 5.4

Now, we describe how to maintain Z(Q), to intelligently subdivide the cells with
guarantees as restated below:

Lemma 5.4 (Dynamically maintaining Z(Q)) For any fixed positive integer X, it is
possible to return a set Z(Q) for any cell Q in the hierarchical decomposition in
O(X · log3(n)) query time. Moreover, the returned Z(Q) will satisfy the following
properties:

• For every Q, the optimal solution within each grid slice of Z(Q) is at
most O(w(OPT (Q))/X); as a reminder, we ignore jobs with weights less than
w(OPT (Q)) · ε/n.

• For every Q, |Z(Q)| = O(X · log2(n))

Proof Suppose how all jobs are rounded down to powers of 2. Note how for a cell
Q, let wmax (Q) correspond to the reward of the job with the largest reward contained
completely within Q. Clearly, OPT (Q) ≥ wmax (Q). Moreover, by discarding all
jobs with weight less than ε/n · wmax (Q), we discard jobs with total weight at most
ε ·wmax (Q) ≤ ε ·OPT (Q). Accordingly, we focus just on jobs with weights in range
[ε/n · wmax (Q), wmax (Q)]. As these weights have been rounded to powers of 2, there
are only �log( wmax (Q)

ε/nwmax (Q)
) = O(log(n/ε)) distinct remaining weights. Moreover, we

assume that 1/ε ≤ n, as otherwise we can obtain a better algorithm by simply rerunning
the classical static algorithm for each update. Altogether, this implies that it suffices
to consider O(log(n)) distinct weights.

In our approach, we consider each distinct weight independently, enabling us to
consider a Zi (Q) for only jobs with rounded weight 2i . That is, Zi (Q) is computed
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with respect to a set of jobs all having the same weight, which enables us to treat
Zi (Q) computation as if it was performed for the unweighted variant. At the end, we
let Z(Q) to be the union over the O(log(n)) different Zi (Q), giving us a Z(Q)with our
desired guarantees. This approach is particularly desirable, as we will show how for a
particular fixed weight, i.e., we consider the unweighted variant, we can use ideas very
similar to those discussed in Sect. 4 to obtain the Zi (Q). Expanding our scope, for each
rounded weight 2i , let us maintain a constant-factor approximation of the unweighted
problem using the border-based algorithm of Theorem 1.1. In other words, we run the
algorithm of Theorem 1.1 with ε′ = O(1) such that it has update time O(log(n)) and
maintains an O(1)-approximation of the unweighted interval scheduling problem.

Consider SOLi to be the set of points corresponding to the border-based O(1)-
approximation when only considering jobs of rounded weight 2i . In particular, SOLi

contains all start/endpoints of the selected jobs by the approximation, as well as
all borders. SOLi [L, R] contains all points in SOLi within [L, R]. We define
OPT ([L, R], i) as the optimal number of jobs one can schedule when only con-
sidering jobs with rounded weights 2i when only considering jobs fully contained
within [L, R].
Claim 5.8 For all i, L, R, it holds that: OPT ([L, R], i) ≤ |SOLi [L, R]|
Proof Recall that the border-based approximation algorithmmaintains a set of borders
and finds the optimal solutionwithin each border chunk. The optimal solutionwithin is
calculated by using the greedy earliest-ending algorithm. In general, consider any job
J . This job J must contain an endpoint of a job in the approximately chosen solution,
or it must contain a border. If this were not the case, there are only two possibilities:
(i) J is completely contained within a job chosen by the approximate solution, or (ii)
J does not intersect any job chosen by the approximate solution. For case (i): this is
impossible as the greedy earliest-ending algorithm would not have chosen the job that
completely contains J . For case (ii): this is impossible because J could be added to
the solution within the corresponding border chunk, and this is impossible because
the solution within each border chunk is optimal. As each job J must contain a point
of SOLi [L, R], it must hold that OPT ([L, R], i) ≤ |SOLi [L, R]|. ��

Also note a similar bound in the opposing direction:

Claim 5.9 For all i, L, R it holds that: |SOLi [L, R]| ≤ 3 · OPT ([L, R], i) + 3

Proof From SOLi [L, R], ignore the at most two points corresponding to endpoints
of jobs that are only partially within [L, R], and ignore the first remaining point if it
corresponds to a border (for a total of ignoring at most 3 points). Of the remaining
points in SOLi [L, R], they all correspond to endpoints of jobs fully within [L, R],
or are a border following such a job. Note how the number of these jobs with points
corresponding to them in SOLi [L, R]must be at most OPT ([L, R], i) by definition.
Accordingly, we will charge the two points from each job (and its associated border
if there is one) to a different job corresponding from OPT ([L, R], i), for a total of at
most 3 points of SOLi [L, R] being charged per job in OPT ([L, R], i). ��

All SOLi can be maintained with update time O(log(n)) because we only update
one unweighted O(1)-approximation per job insertion or deletion. We compute each
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Zi (Q) for a cell Q corresponding to time range [L, R], by taking O(X log(n)) quan-
tiles of SOLi [L, R]. Each of these Zi (Q) can be achieved with O(X log(n)) walks
down a balanced binary search tree, resulting in O(X log2(n)) time.Wedefine Z(Q) as
the union of the O(log(n)) different Zi (Q). In total, Z(Q) is obtained in O(X log3(n))

time and |Z(Q)| = O(X log2(n)).
Finally, the optimal solution within any grid slice, ignoring jobs with weight less

than ε · w(OPT (Q)), is upper-bounded by the union of the independent optimal
solutions for each rounded weight. Within each grid slice of any Zi (Q), the opti-

mal solution of jobs using weight 2i is upper-bounded by O(
2i |SOLi [lQ ,rQ ]|

X log(n)
) =

O(
2i O PT ([lQ ,rQ ],i)

X log(n)
) = O(

w(OPT (Q))
X ·log(n)

) following from Claim 5.8, taking X log(n)

quantiles of SOLi [lQ, rQ] to form Zi (Q), and Claim 5.9. Accordingly, bounding
over the O(log(n)) different Zi (Q), the optimal solution within each grid slice is at
most O(w(OPT (Q))/X). ��

5.5 Combining All Ingredients—Proof of Theorem 1.2

Now, we put this all together to get a cohesive solution that efficiently calculates an
approximately optimal solution of the desired structure. When we handle an inser-
tion/deletion, we make an update to the corresponding balanced binary search tree T .
Recall that we use a balanced binary search tree such as a red-black tree so that T
has depth O(log(n)) and there are O(log(n)) rotations per update. For the O(log(n))

cells Q corresponding to nodes in T affected by rotations, we will recompute aspects
of Q such as Z(Q) and all DP(Q, S). For each such cell Q, we will compute a sparse
solution corresponding to each segment formed by considering all pairs of grid end-
points Z(Q) ∪ Z(QL) ∪ Z(QR) and a dense solution for each segment S formed by
pairs of endpoints Z(Q) denoted as DP(Q, S).

To compute all sparse solutions, we use O(|Z(Q) ∪ Z(QL) ∪ Z(QR)|2) calls to
our algorithm from Lemma 5.1 resulting in O(|Z(Q)∪ Z(QL)∪ Z(QR)|2( log3(n)

ε3
) =

O(
log8(n)

ε4
(
log3(n)

ε3
)) = O(

log11(n)

ε7
) running time. To obtain this complexity, we use

the upper-bound |Z(Q)| = O(X · log2(n)) from Lemma 5.4 and the fact that we let

X = log2 n
ε2

in the beginning of Sect. 5.2.3.
To compute all DP(Q, S), we build on the proof of Lemma 5.5. Namely, from the

proof of Lemma 5.5 a (1 + ε)-approximate solution is maintained by dividing S into
sparse, i.e., SP ARSE(Q), and dense segments of QL and QR , i.e., RANGES(QL)

and RANGES(QR). We update our data structure from bottom to top. Hence, when
we update DP(QL) and DP(QR) it enables us to learn approximate optimal values
gained from a set RANGES(QL) and RANGES(QR). Thus, to calculate DP(Q, S)

we consider an interval scheduling instance where jobs start at a grid endpoint of S
and end at a grid endpoint of S. In this instance, jobs correspond to all the sparse
segments of Z(Q), Z(QL), Z(QR) and all the dense segments of Z(QL), Z(QR).
We compute this dense segment answer for all dense segments Z(Q) in O(|Z(Q) ∪
Z(QL) ∪ Z(QR)|3) = O

(
log12(n)

ε6

)
time, with a dynamic program where the state

is the starting and ending point of a segment and the transition tries all potential grid
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endpoints to split the range at (or just uses the interval from the start to the end).
For each update, we update O(log(n)) cells affected by rotations by recomputing the
optimal sparse solutions for segments and the respective DP(Q, S). Finally, at the
beginning of each update,we use O(log(n)) calls to our algorithm for computing Z(Q)

from Sect. 5.4 with X = log2(n)

ε2
in O(X · log3(n)) time for O(

log5(n)

ε2
) time for each

cell. As such, our total update time is O
(
log(n) · (

log11(n)

ε7
+ log12(n)

ε6
+ log6(n)

ε2
)
)

=
O

(
log12(n)

ε7
+ log13(n)

ε6

)
.
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