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Abstract
The two-watchman route problem is that of computing a pair of closed tours in an envi-
ronment so that the two tours together see the whole environment and some length
measure on the two tours is minimized. Two standard measures are: the minmax mea-
sure, where we want the tours where the longest of them has smallest length, and the
minsum measure, where we want the tours for which the sum of their lengths is the
smallest. It is known that computing aminmax two-watchman route isNP-hard for sim-
ple rectilinear polygons and thus also for simple polygons. Also, any c-approximation
algorithm for the minmax two-watchman route is automatically a 2c-approximation
algorithm for theminsum two-watchman route.We exhibit two constant factor approx-
imation algorithms for computing minmax two-watchman routes in simple polygons
with approximation factors 5.969 and 11.939, having running times O(n8) and O(n4)
respectively, where n is the number of vertices of the polygon. We also use the same
techniques to obtain a 6.922-approximation for the fixed two-watchman route problem
running in O(n2) time, i.e., when two starting points of the two tours are given as input.

Keywords Art gallery problems · Visibility · Watchman routes · Approximation
algorithms

1 Introduction

Some of the most intriguing problems in computational geometry concern visibility
and motion planning in polygonal environments. A classical problem is that of com-
puting a shortest watchman route in an environment, i.e., the shortest closed tour that
sees the complete free-space of the environment. Watchman routes can either be fixed,
requiring the tour to pass a given boundary point or floating, with no requirement to

B Bengt J. Nilsson
bengt.nilsson.TS@mau.se

Eli Packer
eli@yoom.com

1 Malmö University, 205 06 Malmö, Sweden

2 Yoom, Ramat Gan, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01245-0&domain=pdf
http://orcid.org/0000-0002-1342-8618


2846 Algorithmica (2024) 86:2845–2884

pass any specific point. These problems have been shown NP-hard [7, 10] and even
�(log n)-inapproximable [23] for polygons with holes having a total of n segments.

After a sequence of false starts [8, 14, 31, 32], Tan et al. [33] prove an O(n4)
time dynamic programming algorithm for computing a shortest fixed watchman
route through a given boundary point in a simple polygon. This is later improved
to O(n3 log n) time by Dror et al. [9] and to O(n3) time by Tan and Jiang [34]. Carls-
son et al. [6] show how to generalize an algorithm that computes a shortest fixed
watchman route to compute a shortest floating watchman route in a simple polygon
with a quadratic factor overhead. Tan [29] improves this to a linear factor overhead.
Hence, the currently best algorithm for a shortest floating watchman route in a simple
polygon uses O(n4) time.

Given the relatively high polynomial time complexity for computing watchman
routes in simple polygons, efficient approximation algorithms are also of interest.
Nilsson [25] and Tan [30] have independently developed linear time approximation
algorithms for a shortest floating watchman route in a simple polygon.

The more general problem of computing multiple watchman routes that together
see the environment has received much less attention. Mitchell andWynters [24] show
that already computing the pair of tours that together see a simple rectilinear polygon is
NP-hard, if we want to minimize the length of the longest of the two tours, theminmax
measure. It is still an open problem whether it is possible to compute a pair of tours
for which the sum of the lengths of the two tours is minimal, the minsum measure, in
polynomial time. Packer [26] gives some experimental results for multiple watchman
routes in simple polygons. For point sizedwatchmen, so-called static guards, Belleville
[3, 4] shows an efficiently computable characterization of all simple polygons that are
two-guardable with point guards.
Our Results.We present a polynomial time constant factor approximation algorithm
to compute a minmax or minsum pair of tours that together see a simple polygon. We
first consider the floating version of the problem and obtain a 5.969-approximation
algorithm for the minmax pair of tours and 11.939-approximation for the minsum pair
of tours that runs in O(n8) time, where n is the number of vertices of the polygon.

In the next three sections, we provide some preliminary results and prove some cru-
cial properties that we use continuously in the sequel. In Sect. 5, we give the algorithm
for theminmax two-watchman route prove its correctness and analyze its running time.
In Sect. 6, we show how to modify the previous algorithm to run in O(n4) time while
maintaining constant approximation factor, albeit only guaranteeing a factor twice as
large as the previous algorithm. In Sect. 7 we modify the algorithm to handle the fixed
two-watchman route, the case when we have fixed starting points for the tours that
they have to pass through, arriving at an O(n2) time algorithm with approximation
factor 6.922. We conclude the presentation in Sect. 8.

2 Preliminaries

Let P be a simple polygon having n vertices and let ∂P denote the boundary of P.
We say that two points in P see each other, if the line segment connecting the points
does not intersect the exterior of P. For any arbitrary connected object X inside P, we
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Fig. 1 Illustrating the definition of extensions (a) and an example where a disconnected set has points to
the left of every extension (the marked blue convex vertices) but does not see the whole polygon (b) (Color
figure online)

denote by VP(X) the weak visibility polygon of X in P, i.e., the set of points in P that
see some point of X. The boundary of a visibility polygonVP(X) consists of edges that
are either (sub)edges of P or edges that have their end points on ∂P but their interior
points in the interior of P. These latter edges are denoted the windows of VP(X) and
they have at least one end point on a reflex vertex of P. We henceforth assume the
existence of linear time algorithms to compute VP(X) when X is a point or a segment
inside P. Such algorithms have previously been presented in the literature [12, 16, 21,
28].

A cut is a directed line segment in P with both end points on ∂P and each interior
point is an interior point of P. Hence, a directed segment incident to a polygon edge
or a directed segment intersecting more than two vertices is not a cut. A cut always
separates P into exactly two sub-polygons of nonzero area. If a cut is represented by
the segment [p, q]we say that the cut is directed from p to q. For a cut c in P, we define
the left polygon, L(c), to be the set of points in P locally to the left of c according to
c’s direction.

Assume a counterclockwise walk of ∂P. Such a walk imposes a direction on each
of the edges of P in the direction of the walk. Consider a reflex vertex of P. The two
edges incident to the vertex can each be extended inside P until the extensions reach
a boundary point. These extended segments form cuts given the same direction as the
edge they are collinear to. We call these cuts extensions; see Fig. 1a and denote the set
of extensions in P by E .

We define a guard set to be any set of points G that together see all of P, i.e.,⋃
g∈G VP(g) = P. It is clear that any guard set must have points intersecting L(e) for

every extension e of P, since otherwise the edge collinear to e will not be seen by the
guard set; see Fig. 1a. Chin and Ntafos [8] prove that this is indeed also a sufficient
requirement when the guard set is connected, as it is for a shortest watchman route.
For disconnected guard sets, it is easy to construct examples where this requirement
is not sufficient; see Fig. 1b where the guard set consisting of the three marked convex
vertices has points to the left of each essential extension but it does not see the complete
polygon.

Let c be a cut. If a guard set G intersects L(c), i.e., G ∩ L(c) is non-empty, we say
that c is covered by G. Furthermore, if G intersects the interior ofL(c), then G properly
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Fig. 2 Illustrating covering, crossing, and reflecting guard sets. The cut c is covered in all four examples

covers c. If G properly covers c and intersects c, we say that G crosses c. Finally, if G
covers c, but does not properly cover c, then G reflects on c; see Fig. 2.

We also make use of the fact that shortest paths in P between combinations of
segments and points can be computed efficiently [12, 13, 21]. We denote the shortest
path between two objects X and Y in P by SP(X ,Y ).

Let X1 and X2 be two closed polygonal cycles contained in a simple polygon P,
such that each point in P sees some point on X1 or X2. We call the pairX = (X1,X2), a

two-watchman route. The length of a cycleX in P is denoted ‖X‖ andwe let ‖X‖sum def=
‖X1‖ + ‖X2‖ be the sum length of X and ‖X‖max

def= max
{‖X1‖, ‖X2‖

}
be the max

length of X .
Let S = (S1, S2) and T = (T1,T2) be two two-watchman routes such that

‖S‖sum ≤ ‖X‖sum and ‖T ‖max ≤ ‖X‖max for any two-watchman route X in P. We
say that S is a minsum two-watchman route and T is a minmax two-watchman route.
The following inequalities are immediate from the definitions, for any two-watchman
route X ,

‖X‖max =max
{‖X1‖, ‖X2‖

} ≤ ‖X1‖ + ‖X2‖ = ‖X‖sum, (1)

‖X‖sum =‖X1‖ + ‖X2‖ ≤ 2max
{‖X1‖, ‖X2‖

} = 2‖X‖max, (2)

and therefore

‖T ‖max ≤ ‖S‖sum ≤ 2‖T ‖max. (3)
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Fig. 3 A counterexample,
showing that no cut through the
polygon separates the
two-watchman route problem
into two independent single
watchman route problems
having reasonable
approximation ratio

Hence, computing a c-approximation for one measure also gives at most a 2c-approx-
imation for the other measure.

One could imagine that there always is a cut in the polygon such that the two
tours that are shortest watchman tours for the two sub-polygons formed are almost
as short as the optimum two-watchman tour. Trying out all possible cuts, and solving
the two single watchman tour subproblems in each case would give a simple and
efficient algorithm with good approximation ratio. One would then imagine wrong,
as the counterexample in Fig. 3c shows. The red and blue point sized tours, each see
the grey region and the regions of their own color. Here, any partition of the polygon
into two pieces by a cut will make the watchman tour solution of each piece infinitely
longer than the optimal solution. The example can easily be modified for non-point
sized tours.

3 General Properties of Two-Watchman Routes

We make the following assumption about the polygons considered in this section.

Assumption 3.1 The polygon P considered in this section is simple and not guardable
by one or two point guards. Hence, P is not convex or starshaped.

The following lemma is at the heart of our construction of an algorithm to compute
a two-watchman route.

Lemma 3.1 If two tours in P see all of ∂P, then they see all of P.

Proof We do a proof by contradiction. Let X1 and X2 be two tours in P and assume
that p is an interior point of P not seen by any of them. We show that there must be
some boundary point that is also not seen by the tours contradicting that X1 and X2
together see ∂P. Let VP(X1) and VP(X2) be the two visibility polygons of the tours.
Each of them must have boundary segments w1 and w2 separating the subpolygon
containing p from the subpolygon containing the tour. The segment w1 cuts P into two
subpolygons. Let PX1 be the subpolygon containing X1 and let Pp be the subpolygon
containing p. If X2 intersects w1, we interchange the roles of X1 and X2, thus we can
assume that X2 is either completely in PX1 or completely in Pp. We have three cases:

X2 lies in PX1 . Let SP(p,X2) be the shortest path from p to X2 and let s be the
first segment of this path. It connects p with a reflex vertex v on the boundary of
P. Extend s away from v until it hits the boundary at p’; see Fig. 4a. The point
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Fig. 4 Illustrating the three cases of the proof of Lemma 3.1. Examples a, b illustrate the case when X2 lies
in PX1 , c illustrates the case when X2 lies in Pp and w1 and w2 intersect, and d the case when X2 lies in Pp
and w1 and w2 do not intersect

p’ is clearly not seen by X2 since if it were, then p would also bee seen by X2.
The point p’ is not seen by X1 either since SP(p,X2) crosses w1 at some point q
with SP(p, q) in Pp and since SP(p, q) is a shortest path, the extension from p to
p’ cannot cross w1; see Fig. 4b.
X2 lies in Pp and w1 and w2 intersect. Let q be the intersection point between
w1 and w2 and let s be the first segment of SP(p, q). It connects p either with a
reflex vertex v on the boundary of P or with q. Extend s away from v (or q) until it
hits the boundary at p’; see Fig. 4c. The point p’ cannot be seen by X1 or X2 since
SP(p, q) lies outside bothVP(X1) andVP(X2) (except for the point q), and hence,
since SP(p, q) is a shortest path, the extension from p to p’ cannot cross any of w1
or w2.
X2 lies in Pp and w1 and w2 do not intersect. It is clear that there exist points on
the boundary not seen by the two tours since the boundary points close to the end
points of w1 not in PX1 and the boundary points close to the end points of w2 not
in PX2 are not seen by any of the tours; see Fig. 4d.

This completes the proof. ��
The lemma implies that it is sufficient that our algorithm constructs two tours that

together see thewhole boundary of P to guarantee that all of P is guarded. The example
in Fig. 1b shows that the claim does not hold for three guard sets.

Consider two tours X1 and X2 and a polygon boundary edge b.

Lemma 3.2 For any two tours X1 and X2 and a polygon boundary edge b, the sets
VP(X1) ∩ b, VP(X2) ∩ b and VP(X1) ∩ VP(X2) ∩ b are each connected.
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Proof If the set under consideration is empty, the lemma follows by definition so
assume in each case that it is nonempty. If any of VP(Xi ) ∩ b, for i ∈ {1, 2}, is
connected, it is a subsegment of b and therefore convex. Since the intersection of
two connected and convex sets is also a connected and convex set, it follows that
the connectedness of VP(X1) ∩ VP(X2) ∩ b = ⋂

i∈{1,2} VP(Xi ) ∩ b is an immediate
consequence, if we can show that the two setsVP(Xi )∩b, for i ∈ {1, 2}, are connected.

We make a proof by contradiction and assume that VP(Xi ) ∩ b is disconnected,
for each i ∈ {1, 2}. By following b from one end point to the other we pass each of
the connected components giving us an ordering of them. Let r1 be a point in the first
component and let r2 be a point in the last component. Each point r1 and r2 is seen by
Xi . Hence, forXi there is a point r’ on b between r1 and r2 that is not seen byXi . Let p j ,
for j ∈ {1, 2}, be two points on Xi that see r j respectively. Without loss of generality,
we can assume that [p j , r j ] does not intersect Xi except at p j , for i ∈ {1, 2}. If the
segments [p1, r1] and [p2, r2] do not intersect, we construct a closed simple polygon
Ri in P as follows: follow b from r1 to r2, from r2 to p2, from p2 to p1 along a simple
path in Xi , and finally from p1 to r1. The only edges of the constructed polygon Ri

that are not part of Xi are the three edges adjacent to r1 and r2 so Ri is completely
seen by the part of the tour Xi connecting p2 to p1. Hence, the point r’ is also seen
since it lies on b between r1 and r2, giving us a contradiction.

On the other hand if the segments [p1, r1] and [p2, r2] intersect, let q be an intersec-
tion point between [p1, r1] and [p2, r2]. The three points p1, p2, and q form a triangle
interior to P and we construct a closed simple polygon R′

i in P having q as a vertex as
follows: follow a simple path of Xi from p1 to p2, a straight edge from p2 to q, and a
straight edge from q to p1. If we extend the segment [p′, q] inside R′

i , it must intersect
Xi , since p1 connects to p2 in R

′
i using a simple path of Xi . Hence, the point p’ is also

seen from Xi , again giving us a contradiction. ��
From Lemma 3.2 we have that T1 and T2 both see connected components of any

boundary edge of P. Hence, a boundary edge b can be partitioned into at most three
subsegments, at most one of which is seen by both T1 and T2 and the remaining at
most two are seen by one of T1 and T2.

Our next lemma shows that ‖(T1,T2)‖max < ‖Wopt‖ and this strict inequality is
used in the proof of Lemma 3.5.

Lemma 3.3 Let (T1,T2) be the shortest minmax two-watchman route and Wopt the
shortest watchman route. If ‖Wopt‖ > 0,

‖(T1,T2)‖max < ‖Wopt‖.

Proof Consider a shortest watchman routeWopt and let p and q be two points onWopt
such that if you follow the tourWopt from p a distance of ‖Wopt‖/2 in counterclockwise
order, you reach the point q. It is clear that following the tour from p to q in clockwise
order also gives a path of length ‖Wopt‖/2.

Let SP(p, q) be the shortest path from p to q in P. If ‖SP(p, q)‖ < ‖Wopt‖/2,
we construct a two-watchman route (X1,X2) such that ‖(X1,X2)‖max < ‖Wopt‖ as
follows. Let X1 be the tour obtained by following SP(p, q) from p to q andWopt from
q to p in counterclockwise order. Since ‖SP(p, q)‖ < ‖Wopt‖/2, the length of X1 is
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strictly smaller than ‖Wopt‖. The tour X2 is obtained by following Wopt from p to q
in counterclockwise order and then SP(p, q) from q to p. Again, the length of X2 is
strictly smaller than ‖Wopt‖.

If ‖SP(p, q)‖ = ‖Wopt‖/2, on the other hand, then both the clockwise and coun-
terclockwise paths from p to q along Wopt follow SP(p, q), since shortest paths are
unique. We construct a two-watchman route (X1,X2) as follows. Let r be the midpoint
on SP(p, q) and let X1 be the tour obtained by following SP(p, q) from p to r and back
to p. Similarly, let X2 be the tour obtained by following SP(p, q) from q to r and back
to q. We have that ‖(X1,X2)‖max = ‖Wopt‖/2 < ‖Wopt‖ also in this case.

Since (T1,T2) is the shortest minmax two-watchman route, it has max-length
bounded by that of (X1,X2) and is hence also strictly smaller than ‖Wopt‖, concluding
the proof. ��

In the previous section, we defined E to be the set of extensions of the edges in P.
There is a subdivision of E into nonempty subsets E1 and E2, such that each tour T1 and
T2 of a minmax two-watchman route covers the extensions in E1 and E2 respectively.
It is clear that neither E1 nor E2 can be empty since if one of them is empty, the
other contains all the extensions of E . This means that one of T1 or T2 covers all
the extensions in E , but the shortest tour that covers all extensions in E is Wopt, the
shortest watchman route, contradicting Lemma 3.3. Note also that the subdivision is
not necessarily a partition since an extension in E can be covered by both T1 and T2.

Assume fromnowon that each tour T1 andT2 is as short as possible and consider the
points of the boundary ∂P of P that are seen by T1. The visibility from T1 subdivides
∂P into disjoint (maximal) subpaths and we color the interior points of each subpath
white if T1 sees these points and black if T1 does not see the points. The end points of
each (maximal) subpath is colored grey. For a color c ∈ {black, grey,white}, we say
that a point on ∂P has color c for T1. We can similarly color the boundary for T2 in
which case we say that a point has color c′ for T2, c′ ∈ {black, grey,white}.

We refine the coloring of the boundary somewhat by considering the convex vertices
of T1. Let ‖T1‖ > 0 and let u be a convex vertex of T1. There exists at least one grey
boundary point p(u) that is seen from u but not from any other point of T1. The point
p(u) must exist, otherwise T1 can be made shorter, contradicting that the tours T1
and T2 are as short as possible. In fact, u can have many such points. We therefore
consider a convex vertex u of T1 to have multiplicity k, if there are k different points
p(u) associated to u. We differentiate between p(u) and p(u′) even though u = u′ and
has multiplicity at least two. We let the color of each point p(u) be dark grey. The
remaining grey points are considered to be light grey.

Let l(u) be the maximal line segment in P passing through the points u on T1 and
p(u) on ∂P. The segment l(u) must intersect at least one reflex vertex of ∂P between u
and p(u) that hides p(u) from T1\u. Let v(u) be the reflex vertex of ∂P on l(u) closest
to p(u). The line segment [p(u), v(u)] partitions P into two subpolygons P1 containing
T1 and P0. Let b(u) be the polygon boundary edge adjacent to the reflex vertex v(u) in
P0 and let e(u) be the extension collinear to b(u) inside P1. We associate a direction to
l(u) so that e(u) lies locally to the left of l(u). Henceforth, we denote P0 by Pe(u) and P1
by Pl(u) to let them depend on the vertex u of T1. We refer to Fig. 5a for an illustration
of the given definitions and prove the following lemma.
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Fig. 5 a Illustrates the coloring definitions of the points on the boundary of P. b Illustrates the proof of
Lemma 3.4, if p is white for T2, then T1 can be shortened

Lemma 3.4 For ‖T1‖ > 0, any boundary point that is dark grey for T1 must also be
grey for T2, and for ‖T2‖ > 0, any boundary point that is dark grey for T2 must also
be grey for T1.

Proof We show the lemma for a boundary point p that is dark grey for T1. The reverse
claim follows by symmetry. We have two cases.

If p is white for T2, we have an immediate contradiction since the single convex
vertex u of T1 that sees p can be cut away from T1 arbitrarily close to u, thus
shortening the length of T1; see Fig. 6b.
If p is black for T2, this means that there is open interval on the boundary ∂P
centered at p that is not seen by any point of T2. Since p is one end point of a
maximal subpath that is seen by T1, there exist boundary points not seen by either
T1 or T2, a contradiction.

This concludes the proof. ��
We can now show the following claim.

Lemma 3.5 There exists a minmax two-watchman route T = (T1,T2), such that each
tour Ti intersects some extension in Ei , i ∈ {1, 2}.
Proof We will use the assumption that both tours T1 and T2 are as short as possible.
At least one of them will have the length ‖(T1,T2)‖max and the other the shortest
possible length given that the first tour achieves the length ‖(T1,T2)‖max. We will
show the result only for tour T1, but the same argument holds also for T2. The proof
is by case analysis, first subdividing into the cases when ‖T1‖ = 0 and thus the region
P\VP(T2) is starshaped, and the case ‖T1‖ > 0. In this latter case we make a proof by
contradiction assuming that T1 does not intersect any extension in E . The argument in
this case becomes slightly involved but relies on showing that under this assumption,
Lemma 3.4 does not hold, giving us a contradiction.

Assume first that ‖T1‖ = 0, i.e., T1 is a point sized tour. This implies that P\VP(T2)
is starshaped even though it may be a disconnected set. The set of points in P that see
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all of P\VP(T2), also known as the kernel, is the intersection of the left halfplanes
collinear to the boundary edges from ∂P∩(P\VP(T2)) [20]. Left means here locally to
the left of the associated edge in the order of the counterclockwise traversal. The kernel
boundary cannot be made up only of boundary edges of P, since that would make P a
convexpolygonand thus guardablewith onepoint guard contradictingAssumption3.1.
Hence, there is a kernel boundary edge collinear with some extension of P and we
can let T1 be a point on this kernel boundary edge.

Now, assume that ‖T1‖ > 0. We make a proof by contradiction and assume further
that T1 does not intersect any extension in E . If this is the case, T1 cannot have any
reflex vertices, since if T1 does, then any such vertex coincides with a reflex vertex of
P and thus T1 intersects the two extensions adjacent to this vertex. Hence, T1 has only
convex vertices. If T1 is a line segment, we consider the two end points of the segment
to be the convex vertices of the tour that goes back and forth between them.

The rest of the proof now shows that, if T1 does not intersect some extension,
then there exists a dark grey boundary point for T1 that is either black or white for
T2, contradicting Lemma 3.4. We prove this by a case analysis. The case analysis
first considers the two cases when T1 has two convex vertices u and u’, such that
L

(
l(u)

) ∩ L
(
e(u′)

) = ∅, i.e., T1 lies in a region of P bounded by two extensions on
either side of T1 and the case when it does not. This second case is then subdivided into
two further cases, when the left hand sides of all the segments l(u) of convex vertices
u of T1, all have non-empty intersection and when they have empty intersection. In
the first of these cases, T1 can be slid in one direction shortening it and in the second
of these cases, there must exist exist a convex vertex u of T1 and three extensions that
T2 covers ensuring that p(u) is white for T2, contradicting Lemma 3.4. We proceed
with the formal details.

If T1 has two convex vertices u and u’, such that L
(
l(u)

) ∩ L
(
e(u′)

) = ∅, then the
intersection L

(
e(u)

) ∩ L
(
e(u′)

)
is also empty, since

(
L

(
e(u)

)\Pe(u)
)

⊂ L
(
l(u)

)
.

This means that T1 lies properly in the region P \
(
L

(
e(u)

) ∪ L
(
e(u′)

))
without

touching e(u) or e(u’) whereby T2 must intersect the two disjoint regions L
(
e(u)

)

and L
(
e(u′)

)
. Since L

(
l(u)

) ∩ L
(
e(u′)

) = ∅, T2 must cross l(u) and hence p(u) is
white for T2 giving us a contradiction to Lemma 3.4; see Fig. 5a illustrating this
case.
If all pairs of vertices u and u’ of T1 (with multiplicity) have the property that

L
(
l(u)

)∩L
(
e(u′)

) �= ∅, then since
(
L

(
e(u′)

)\Pe(u′)
)

⊂ L
(
l(u′)

)
it also holds that

L
(
l(u)

) ∩ L
(
l(u′)

) �= ∅ and we have further subcases.

If
⋂

u∈U L
(
l(u)

) �= ∅, where U is the set of vertices of T1 (with multiplicity),
then let q be a point in

⋂
u∈U L

(
l(u)

)
and let u1 and u2 be two distinct vertices

of T1 such that T1 is completely contained in the cone ∠u1, q, u2. We note
that T1 is the shortest tour that visits the regions L

(
l(u)

)
, for u ∈ U . Let

u1, q, u2 denote the triangle with corners at u1, q, and u2. The interior region
of ∠u1, q, u2 \u1, q, u2 cannot contain convex vertices of T1, since any such
vertex u’ would have q /∈ L

(
l(u′)

)
contradicting that

⋂
u∈U L

(
l(u)

) �= ∅;
see Fig. 6a. T1 thus connects u1 and u2 by a line segment. Vertex u1 (with
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multiplicity) intersects
⋂

u∈Uu1
L

(
l(u)

)
for some subset Uu1 of U . Similarly, the

vertex u2 (with multiplicity) intersects
⋂

u∈Uu2
L

(
l(u)

)
for some subset Uu2 of

U , with Uu1∩ Uu2 = ∅. Since the intersection of locally convex regions is also
locally convex, any point on the line segment [u1, q] intersects ⋂

u∈Uu1
L(l(u))

and similarly, any point on the line segment [u2, q] intersects ⋂
u∈Uu2

L
(
l(u)

)
.

Thus we can move u1 and u2 (with multiplicity) along their corresponding line
segments towards q, thus shortening T1, giving us a contradiction; see Fig. 6a.
If

⋂
u∈U L

(
l(u)

) = ∅ and for all pairs u and u’,L
(
l(u)

)∩L
(
l(u′)

) �= ∅, then T1
must have at least three vertices.We first show that there exists a subset of three
vertices u1, u2, and u3 such that L

(
l(u1)

) ∩ L
(
l(u2)

) ∩ L
(
l(u3)

) = ∅. Since
T1 ∩L

(
l(u)

) = u, for every vertex u of T1, not only do L
(
l(u)

)∩L
(
l(u′)

) �= ∅
but the segments l(u) and l(u′) intersect in a point, for every vertex pair u and u’.
Pick u1 to be any vertex of T1 and assume without loss of generality that l(u1)
is horizontal and directed towards the right; see Fig. 6b. Initialize the setL to be
L := {u1} and sort the remaining vertices u on the angle the corresponding cut
l(u)makeswith l(u1), from0 to 2π . Now, add vertices u (withmultiplicity), one
by one, according to the sorted order to L, for u ∈ U until

⋂
u∈L L

(
l(u)

) = ∅.
Let u2 denote the last vertex added to L during the process above, and let
u3 be a vertex in L such that the intersection q1 = l(u3) ∩ l(u1) lies after
q2 = l(u3) ∩ l(u2) on the directed cut l(u3). To see that L

(
l(u1)

) ∩ L
(
l(u2)

) ∩
L

(
l(u3)

) = ∅, any point in the intersection L
(
l(u1)

) ∩ L
(
l(u3)

)
lies above

(or on) l(u1) and any point in the intersection L
(
l(u2)

) ∩ L
(
l(u3)

)
lies below

l(u1), since q2 lies below l(u1); see Fig. 6b. This also shows that u3 must exist,
since if, for all vertices u ∈ L\ {u1, u2}, the point l(u) ∩ l(u1) lies before
l(u) ∩ l(u2) on l(u), the first such intersection point on l(u2) along l(u2) lies to
the left (or on) each cut l(u), for u ∈ L, contradicting that

⋂
u∈L L

(
l(u)

) = ∅;
see Fig. 6b. Since L

(
l(u1)

) ∩ L
(
l(u2)

) ∩ L
(
l(u3)

) = ∅, it also follows that

L
(
e(u1)

) ∩ L
(
e(u2)

) ∩ L
(
e(u3)

) = ∅, as
(
L

(
e(u)

) \Pe(u)
)

⊂ L
(
l(u)

)
, for

every vertex u of T1. The tour T1 has no points in any of the regions L
(
e(u1)

)
,

L
(
e(u2)

)
, or L

(
e(u3)

)
, so T2 must intersect each of them. Assume that T2 does

not intersect l(u2) or l(u3), otherwise at least one of p(u2) or p(u3) is white
for T2, contradicting Lemma 3.4. However, then T2 must have interior points
in L

(
l(u2)

) ∩L
(
l(u3)

)
since T2 intersects L

(
e(u2)

)
and L

(
e(u3)

)
but does not

intersect l(u2) or l(u3). Hence, T2 has points below l(u1) and since L
(
e(u1)

)

lies above (or on) l(u1), T2 must intersect l(u1) and thus p(u1) is white for T2,
again contradicting Lemma 3.4; see Fig. 6b.

This concludes the proof. ��
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Fig. 6 Illustrating the proof of Lemma 3.5. a Illustrates the case when
⋂

u∈U L
(
l(u)

) �= ∅ where U is the
set of vertices of T1. b Illustrates the case when

⋂
u∈U L

(
l(u)

) = ∅, showing how to select u1, u2, and u3,
so that L

(
l(u1)

) ∩ L
(
l(u2)

) ∩ L
(
l(u3)

) = ∅

4 Tentacles and Jellyfish

We will use the following definitions extensively in the sequel.

Definition 4.1 For a point q in P and a point r on the boundary ∂P, we call the shortest
path from q to some point in P that sees r, a tentacle from q to r, denoted Zrq. We say
that q is the head of the tentacle and that a tentacle is attached to its head. The other
end point of the tentacle is called the tip.

The idea of tentacles is not new, as similar geometric objects have, for example,
previously been defined to compute the quickest visibility path, the visibility center,
and the geodesic center in simple polygons [2, 22, 27].

With a tentacle Zrq (where q does not see r) we also associate a tentacle cut c(Zrq).
Consider the maximal line segment l in P passing through the tip p of Zrq and the
boundary point r. If the segment l has end points r and r’ and (possibly) subdivides
into connected pieces l1, l2, . . . intersecting the boundary only at the end points and
where li partitions P into two subpolygons, one containing q and one containing r.
The cut c(Zrq) is the segment li directed so that q ∈ P \L(

c(Zrq)
)
; see Fig. 7a. The first

boundary vertex u encountered as you move from r along l towards p is the hiding
vertex of the tentacle Zrq.

We can prove the following technical lemma.

Lemma 4.1 If q is a point in P and sb is a subsegment of a boundary edge b of ∂P
having end points r1 and r2, then the two tentacles Z

r1
q and Zr2q together see the whole

subsegment sb.

Proof The proof is a simple modification of the proof of Lemma 3.2. Let p1 and p2
be the two tips of Zr1q and Zr2q , respectively. Let r be some arbitrary point in sb. If the
segments [p1, r1] and [p2, r2] do not intersect, we construct a closed simple polygon
R in P as follows: follow sb from r1 to r2, from r2 to p2, from p2 to q along the tentacle
Zr2q , from q to p1 along Z

r1
q , and finally from p1 to r1. The only edges of the constructed

polygon R that are not part of the two tentacles are the three edges adjacent to r1 and
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Fig. 7 a Illustrating the tentacle Zrq, its hiding vertex u, and its associated cut. b The difference between
tentacle and edge restricted tentacle. Vertex u is the hiding vertex for Zvq and v is the hiding vertex for Z

v
q(b)

r2 so R is completely seen by the two tentacles. Hence, the point r is also seen since
it lies on sb between r1 and r2.

On the other hand if the segments [p1, r1] and [p2, r2] intersect, let p be an intersec-
tion point between [p1, r1] and [p2, r2]. The three points r1, r2, and p form a triangle
interior to P and we construct a closed simple polygon R′ in P having p as a vertex
as follows: follow the tentacles from r1 to r2 via q, a straight edge from r2 to p, and a
straight edge from p to r1. If we extend the segment [r, p] inside R′, it must intersect
a tentacle, since r1 connects to r2 in R′ using the tentacles. Hence, the point r is also
seen from the tentacles. ��
Let s be a line segment in P and let b = [v, v′] be some boundary edge of ∂P. The next
lemma establishes that if we move the head of the tentacle Zrq, from q ∈ s, a small
distance to the point q′ ∈ s and the point r ∈]v, v′[ to the point r′ ∈]v, v′[ also a small
distance, the difference in length between the two tentacles ‖Zrq‖ − ‖Zr′q′‖ is a smooth
function.

Lemma 4.2 Let q move a distance δ to q’ on a line segment s and let r move a distance
ε to r’, where both r and r’ lie in the open interval ]v, v′[ of a boundary edge b = [v, v′],
in such a way that the first segment of the tentacles from q and q’ intersect the same
reflex vertex, if the tentacle consists of multiple segments, and c(Zrq) and c(Zr

′
q′) have

the same hiding vertex, then

‖Zr′q′‖ = ‖Zrq‖ + F(δ, ε),

where F(δ, ε) is continuous and differentiable.

The proof of the lemma is a lengthy case analysis where all arguments are based on
similarity and the cosine theorem and is therefore deferred to “Appendix A”.

To alleviate the fact that Lemma4.2 only holds for points r in the interior of boundary
edges we define the edge restricted tentacle Zrq(b) to be

Zrq(b) = lim
]v,v′[�p→r

Zpq, where b = [v, v′]. (4)

An edge restricted tentacle Zrq(b) can differ from Zrq only when r is a vertex of b. If v
is a reflex vertex and q lies to the right of extension e collinear to boundary edge b,
then Zvq(b) is the shortest path from q that sees b, not just v; see Fig. 7b. In all other
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cases, Zrq(b) = Zrq. The proof of Lemma 4.1 does not make use of the edge restriction
of a tentacle Zrq(b) so it still holds for edge restricted tentacles. We can generalize
Lemma 4.2 to also hold for vertices using edge restricted tentacles. We claim this as
a corollary.

Corollary 4.3 Let q move a distance δ to q’ on a line segment s and let r move a
distance ε to r’ along a boundary edge b = [v, v′], in such a way that the first segment
of the tentacles from q and q’ intersect the same reflex vertex, if the tentacle consists
of multiple segments, and c

(
Zrq(b)

)
and c

(
Zr

′
q′(b)

)
have the same hiding vertex, then

‖Zr′q′(b)‖ = ‖Zrq(b)‖ + F(δ, ε),

where F(δ, ε) is continuous and differentiable.

Wewill henceforth onlyworkwith edge restricted tentacles and just call them tentacles.
Given two points q and q’ in P, consider the tentacles Zvq(b) and Zvq′(b), for each

boundary edge b and each vertex v of b. We define two sets Jq and Jq′ of tentacles
such that Zvq(b) ∈ Jq iff ‖Zvq(b)‖ ≤ ‖Zvq′(b)‖ and Zvq′(b) ∈ Jq′ iff ‖Zvq(b)‖ > ‖Zvq′(b)‖.
In this way, each end point v of each boundary edge b has exactly one tentacle in one
of Jq or Jq′ .

FromLemma4.1 it is clear that if both endpoints of a boundary edgeb = [v, v′]have
tentacles in the same set, either Jq or Jq′ , then the tentacles in the set sees the whole
edge b. However, assume that Zvq(b) ∈ Jq and Zv

′
q′(b) ∈ Jq′ , then ‖Zvq(b)‖ ≤ ‖Zvq′(b)‖

and ‖Zv′q(b)‖ > ‖Zv′q′(b)‖. Since the length of a tentacle Zrq(b) changes smoothly as r
moves along b from v to v’; see Corollary 4.3, there is some point r∗ on b such that
‖Zr∗q (b)‖ = ‖Zr∗q′(b)‖. If we include Zr∗q (b) into Jq and Zr

∗
q′(b) into Jq′, this guarantees

that the tentacles in Jq and Jq′ together see b.
Thus, if each edge b either has the two tentacles of its end points in one set or there

is a point r∗ on b such that Zr
∗
q (b) ∈ Jq and Zr

∗
q′(b) ∈ Jq′ , then the whole boundary

is seen by the tentacles in the set. By considering the tour constructed by following
each tentacle from the head to the tip and back in some order for each set Jq and
Jq′ , by Lemma 3.1, the polygon P is guarded by the tentacles in the two sets. We
call each of the two sets Jq and Jq′ a jellyfish with head q and q’, respectively, and
Jq,q′ = Jq ∪ Jq′ the jellyfish pair with heads q and q’. We define ‖Jq,q′‖, the length
of a jellyfish pair, to be the length of its longest tentacle; see Fig. 8a, b.

Let e1 and e2 be two extensions intersected by T1 and T2 respectively. These exten-
sions exist by Lemma 3.5 and we have the following lemma.

Lemma 4.4 If u1 and u2 are intersection points of T1 and T2 with extensions e1 and
e2 respectively, then ‖Ju1,u2,‖ ≤ ‖(T1,T2)‖max/2.

Proof Without loss of generality, assume that a longest tentacle in Ju1,u2, is Z
r
u1(b),

for some point r on boundary edge b. We distinguish five cases.

1. If r is an interior point of b seen by T1, then follow a path from u1 along T1 until we
reach the first point u1’ on T1 that sees r. Denote the subpath of T1 thus constructed
T1[u1, u′

1] and let the other subpath (T1\T1[u1, u′
1]) ∪ {u1, u′

1} (the closure of the
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Fig. 8 aA pair of tentacles Zrq(b) and Z
r
q′(b) in blue, b a jellyfish pairJq,q′ in blue with jellyfishJq andJq′ ,

c a minimum jellyfish pair Jmin
e1,e2 with minimum jellyfish Jmin

e1 and Jmin
e2 in blue (Color figure online)

path) be denoted T1[u′
1, u1]. The path T1[u′

1, u1] also sees r since u1’ sees r. The
tentacle Zru1(b) is at most as long as the shorter of the subpaths T1[u1, u′

1] and
T1[u′

1, u1], whereby ‖Zru1(b)‖ ≤ ‖T1‖/2 in this case.
2. If r is an interior point of of b but is not seen by T1, then it is seen by T2, and since

‖Zru1(b)‖ ≤ ‖Zru2(b)‖ and by the argument in Case 1. using u2 and T2 instead of u1
and T1, giving us ‖Zru2(b)‖ ≤ ‖T2‖/2, we have ‖Zru1(b)‖ ≤ ‖T2‖/2 in this case.

3. If r = v is a vertex of b seen by T1 and T1 also sees other points of b,
then by Lemma 3.2, T1 sees some connected set of b that includes v. Hence
limb�p→v ‖Zpu1‖ = ‖Zvu1(b)‖ by the definition of edge restricted tentacle and using
our argument from Case 1 (including the fact that T1 sees all points p on b in a
connected neighbourhood of v), we have ‖Zvu1(b)‖ ≤ ‖T1‖/2 in this case.

4. If r = v is a vertex of b seen by T1 but T1 sees no other points of b, then T2 must see
v and other points of b, otherwise there are points on b not seen by any of T1 and T2.
Using the same argument as in Case 3 for u2 and T2, we have ‖Zvu2(b)‖ ≤ ‖T2‖/2.
Since ‖Zvu1(b)‖ ≤ ‖Zvu2(b)‖ we have ‖Zvu1(b)‖ ≤ ‖T2‖/2 in this case.

5. If r = v is a vertex of b not seen by T1, then b contains some connected set that
includes v and that is not seen by T1. This set must be seen by T2 and we can use
the argument in the previous step to establish that ‖Zvu1(b)‖ ≤ ‖T2‖/2 also in this
case.

This concludes the proof. ��
Given two segment s and s′ in P, we define the bases along s and s′ to be a pair of

points having the property q∗, q′∗ = argminq∈s,q′∈s′
{‖Jq,q′‖}, i.e., two points, q∗ on

s and q′∗ on s′, where ‖Jq∗,q′∗‖ is minimal. We denote the jellyfish pair Jq∗,q′∗ by J
min
s,s′ ,

the minimum jellyfish pair; see Fig. 8b, c.
From this definition and Lemma 4.4, we have that

‖J min
e1,e2‖ ≤ ‖Ju1,u2‖ ≤ ‖(T1,T2)‖max/2, (5)

where again, e1 and e2 are two extensions intersected by T1 and T2, respectively.
Let q1 on e1 and q2 on e2 be the two bases ofJ min

e1,e2 ; see Fig. 8c. We denote byJ min
e1

the subset of tentacles having their heads at q1 and by J min
e2 the subset of tentacles

having their heads at q2. Each set of tentacles J min
e1 and J min

e2 is a minimum jellyfish.
We call q1 the base of J min

e1 and q2 the base of J min
e2 . Thus, J min

e1,e2 = J min
e1 ∪ J min

e2 .
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Fig. 9 The two-watchman-route algorithm

The main part of our algorithm, presented in the next section, computes, for every
pair of extensions and every pair of boundary edges, the heads of the shortest tentacle
pairs that see these edges. The heads are then used as potential bases and the length of
the jellyfish pair with these heads as bases is computed. We keep the jellyfish pair with
minimum length and its bases through the iteration and from the previous discussion
we know that at the end of the iteration the final bases are q1 and q2.

5 The Algorithm

Our algorithm is illustrated in pseudo-code in Fig. 9 and we show that it approximates
a minmax two-watchman route by a factor of

(
7π/6 + 3 − √

3 + √
5 arcsin 1/

√
5
)

and therefore by Inequality (2) also a minsum two-watchman route by a factor twice
as large.

The algorithm begins by running Belleville’s algorithm [3, 4] to establish if the
polygon is guardable by two point guards. If this is the case, it returns the two point
guards computed by the algorithm.Note that if P is two-guardable by point guards, our
algorithm must obtain two such point guards to satisfy the approximation guarantee.
Otherwise, it computes the set of extensions E in O(n log n) time using a dynamic
ray-shooting data structure [17], and initializes the solution to be a single shortest
watchman route Wopt[29, 34] together with some arbitrary point in P.

The rest of this section is devoted to showing how to implement Step 5 of the
algorithm. It consists of an iteration over all pairs of extensions. For each pair, we
assume that each tour in aminmax two-watchman route intersects one of the extensions
in the pair.

5.1 Computing Tentacles and Bases

The algorithm needs to find the two bases q1 on e1 and q2 on e2. To this end, let sei be
the maximal line segments through qi , orthogonal to ei inside P, for i ∈ {1, 2}. The
segment sei partitionsP into two subpolygons PL andPR . Theminimum jellyfishJ min

ei
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either has one tentacle that attains the length ‖J min
ei ‖ with its first segment orthogonal

to ei or at an endpoint of ei , or it has two tentacles, one in PL and the other in PR ,
that attain this length. To prove this, note that if the single tentacle attaining the length
‖J min

ei ‖ does not have a first segment orthogonal to ei , then bymoving the head slightly
along ei , we can reduce the length of the tentacle and thereby the jellyfish. Similarly,
if all tentacles attaining the maximal length are in the same subpolygon, say PL , then
we can move the head along ei into PL , again reducing the length of the jellyfish. In
both cases, this contradicts thatJ min

ei is a minimum jellyfish from a minimum jellyfish
pair on e1 and e2. Thus, there are at most two longest tentacle pairs of J min

e1,e2 , at least
one pair of which attains the length ‖J min

e1,e2‖.
We construct the data structures needed to compute the bases. These data structures

are, for each reflex vertex in P and each extension endpoint, the shortest path tree to
every vertex in P[13]. The shortest path trees are augmented with the additional edges
and leaves obtained by extending each tree edge until it intersects a boundary edge of P
without crossing any other tree edge. Also, for each augmented tree, a data structure is
built, enabling us to find the common ancestor of any pair of nodes in the tree (vertices
of P) in constant time [15]. These can be precomputed in linear time for each root
vertex, i.e., in quadratic time in total.

Next, we do a case analysis based on the number of longest tentacles occurring in
a jellyfish pair. There are six cases to deal with.

Case 1

If J min
e1,e2 has one unique longest tentacle, then we know from the previous discussion

that it is a tentacle Zvqei
(b) for some vertex endpoint v of some boundary edge b and

i = 1 or i = 2. The point qei is the point on ei that minimizes this distance and
furthermore ‖Zvqei(b)‖ ≤ ‖Zvqe3−i

(b)‖. If v is a reflex vertex, let e be the extension

associated to it and we have that Zvqei
(b) = SP

(
ei ,VP(v) ∩ L(e)

)
and if v is a convex

vertex, Zvqei
(b) = SP

(
ei ,VP(v)

)
. In both cases, qei is the point of intersection between

the shortest path and ei . Given e1 and e2 we can, for each boundary edge b and for each
vertex end point v, verify if v is reflex or convex, compute SP

(
e1,VP(v) ∩ L(e)

)
and

SP
(
e2,VP(v) ∩ L(e)

)
or SP

(
e1,VP(v)

)
and SP

(
e2,VP(v)

)
, depending on the case,

in linear time [11, 12, 18, 19, 21, 28]. We denote these tentacles Zve1(b) and Zve2(b)
to indicate that the intersection points with e1 and e2 are not fixed given points. We
select the shorter of the two, Zvei(b), identifying the intersection with the corresponding
extension ei , i = 1 or 2, keeping the qei for which the tentacle is the longest. After
iterating over all boundary edges, one potential base qei remains on ei and one qe3−i

remains on e3−i . The whole process takes quadratic time and gives us the potential
bases q(1)

1 and q(1)
2 on e1 and e2, respectively.

Case 2

IfJ min
e1,e2 has two longest tentacles, this canoccur in three differentways.Onepossibility

is that two tentacles Zvei(b) and Zv
′
e j(b

′), i ∈ {1, 2}, j ∈ {1, 2} and different boundary

edges b and b’, have exactly the same length. If i = j , the heads of Zvei(b) and Z
v′
e j(b

′)
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Fig. 10 Computing the bases of the minimum jellyfish pair

also coincide in this case, otherwise the base is found in Case 3. Such tentacles are
discovered using the method described in the previous case.

The second way is that two tentacles in J min
e1,e2 are Zr

∗
e1(b) and Zr

∗
e2(b), for some

boundary edge b, where r∗ is a point on b such that ‖Zr∗qe1(b)‖ = ‖Zr∗qe2(b)‖, qe1 and qe2
being the points on e1 and e2 that make these tentacles as short as possible. We can,
for each boundary edge b = [v, v′], compute Zve1(b), Z

v
e2(b), Z

v′
e1(b), and Zv

′
e2(b) as in

Case 1. Now, if ‖Zve1(b)‖ < ‖Zve2(b)‖ and ‖Zv′e1(b)‖ > ‖Zv′e2(b)‖, or the inequalities are
reversed, we let a point r slide along b from v to the other end point v’; see Fig. 10a. By
Corollary 4.3, the lengths of Zre1(b) and Z

r
e2(b) as rmoves along b are smooth functions

(continuous and differentiable) except at positions denoted event points where any of
the participating tentacles has one of the following properties:

1. an interior point of the first edge of a tentacle intersects a vertex of P, or the first
and second edge of the tentacle become collinear,

2. an interior point of the last edge of a tentacle intersects a vertex of P, or the last
and penultimate edge of the tentacle become collinear,

3. the cut c
(
Zrei(b)

)
, i ∈ {1, 2}, becomes intersects more than one vertex of P,

4. the head or the tip of a tentacle either hits or leaves the boundary of P, and
5. one tentacle goes from being shorter than the longer tentacle to becoming the

longer tentacle, at which point the two tentacles have equal length.

The positions on b for the first three event point types can be obtained in linear
time, if Zrei(b) consists of at least two segments having as common end point, the
reflex boundary vertex ui , by a traversal of the augmented shortest path tree to each
vertex in P from the root ui , giving us a total of O(n) such event points. If Zrei(b)
consists of just one segment, the positions for the first three event point types on b can
be obtained in linear time by a traversal of the augmented shortest path trees rooted at
the two end points of ei .

The fourth type is obtained by finding the point at which the first edge of the
tentacle hits either end point of ei and where the last edge of the tentacle intersects
c
(
Zrei(b)

)
orthogonally on the boundary which can happen only once for each tentacle

in each interval between event points of the first three types. Finally, the last type of
event points can occur only a constant number of times in each interval between event
points of the first four types, since here each function is the sum of at most three square
roots of rational polynomials of constant degree and two such functions can be equal
in at most a constant number of points. The number of event points between v and v’
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on b is at most linear and iterating over all possible boundary edges, takes quadratic
time to solve this case. This gives us the potential bases q(2)

1 and q(2)
2 on e1 and e2,

respectively.

Case 3

In the third possibility that J min
e1,e2 has two longest tentacles, the two tentacles are

Z
v1
q (b1) and Z

v2
q (b2) for two boundary edges b1 and b2 with vertex end points v1 and

v2 respectively and q on ei such that ‖Zv1q (b1)‖ = ‖Zv2q (b2)‖. We compute Z
v1
ei(b1) and

Z
v2
ei(b2) and let qei and qei ’ be the heads of Z

v1
ei(b1) and Z

v2
ei(b2), respectively, on ei .

We let a point q slide along ei from qei to qei ’. Again, by Corollary 4.3, the lengths

of Z
v1
q (b1) and Z

v2
q (b2) as q moves along ei are smooth functions (continuous and

differentiable) except at the event points established in Case 2. At these event points,
the structures of the tentacles are updated and we can test whether the two tentacles
have equal length for some head point on ei before the next event point. The number
of event points between qei and qei ’ on ei is at most linear. We perform these steps
also on e3−i and take the shortest pair as the representative base for the pair (v1, v2)
of vertices. Iterating over all possible pairs of boundary edges and their end points,
the process takes cubic time in total and gives us the potential bases q(3)

1 and q(3)
2 on

e1 and e2, respectively.

Case 4

If J min
e1,e2 has three longest tentacles, this can occur in two ways. The first possibility if

some combination of three tentacles with common heads from the three previous cases
exist, in which case these can be established using the previously described methods.

The second possibility that J min
e1,e2 has three longest tentacles occurs if there are two

boundary edges b1 = [v1, v′
1] and b2 = [v2, v′

2] such that ‖Zr∗q∗(b1)‖ = ‖Zr∗e3−i
(b1)‖ =

‖Zv2q∗(b2)‖, with q∗ on ei ; see Fig. 10b. We can establish the event points by a com-
bination of the methods in Cases 2 and 3. Begin by finding the interval [qei , q′

ei ] on
ei by computing the tentacles Z

v1
ei(b1) and Z

v2
ei(b2) having the heads qei and qei ’, and

then the event points generated by Zvq(b) and Z
v′
q(b

′) in order as qmoves along ei from
qei to qei ’. Subsequently, establish the event points generated by Zrei(b) and Zre3−i

(b)
in order as r moves along b. For each pair of intervals between event points along ei
and along b1, we verify if we can establish a point q in the interval on ei and a point
r in the interval on b1 such that Zrq(b1), Z

v2
q (b2), and Zre3−i

(b1) have equal length by
solving the system of equalities given by the length functions of the three tentacles.
Within each interval the length functions are smooth according to Corollary 4.3 so this
takes constant time. In the worst case, we have to consider a linear number of intervals
each on ei and b1 taking quadratic time. Iterating over all possible pairs of boundary
edges and their end points, the computation takes quartic time in total and gives us the
potential bases q(4)

1 and q(4)
2 on e1 and e2, respectively.
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Case 5

If J min
e1,e2 has four longest tentacles, this can occur in two ways. Again, the first pos-

sibility is if some combination of four tentacles with common heads from the four
previous cases exist, in which case these can be established using the previously
described methods.

The second possibility that J min
e1,e2 has four longest tentacles occurs if there are two

boundary edges b1 and b2 such that ‖Zr∗1q∗
1
(b1)‖ = ‖Zr∗1q∗

2
(b1)‖ = ‖Zr∗2q∗

1
(b2)‖ = ‖Zr∗2q∗

2
(b2)‖,

with q∗
1 on e1, q∗

2 on e2, r∗1 on b1, and r∗2 on b2; see Fig. 10c. We can establish the
event points by extending the method in Case 4, giving a linear number of intervals
on each segment e1, e2, b1, and b2, where the length functions of the tentacles are
smooth according to Corollary 4.3. We verify if we can establish point q1, q2, r1,
and r2 in their respective interval such that Z

r1
q1(b1), Z

r1
q2(b1), Z

r2
q1(b2), and Z

r2
q2(b2) have

equal length by solving the system of equalities given by the length functions of the
four tentacles which takes constant time in each interval. In the worst case, we have
to consider a linear number of intervals each on e1, e2, b1, and b2, thus taking quartic
time. Iterating over all possible pairs of boundary edges and their end points, the
computation takes O(n6) time in total and gives us the potential bases q(5)

1 and q(5)
2

on e1 and e2, respectively.

Case 6

If J min
e1,e2 has five or more longest tentacles, they must occur as some combination of

tentacles structured as in the previous cases and they can therefore be obtained using
the methods described above.

Analysis of the Preprocessing Step

The case analysis above gives us five pairs of potential bases,
(
q(1)
1 , q(1)

2

)
,
(
q(2)
1 , q(2)

2

)
, . . . ,

(
q(5)
1 , q(5)

2

)
, for which we can compute the jellyfish pairs

J
q(1)
1 ,q(1)

2
,J

q(2)
1 ,q(2)

2
, . . . ,J

q(5)
1 ,q(5)

2
, each in quadratic time, and from these we select the

minimum one. By Corollary 4.3 and the previous discussion, it follows that this jel-
lyfish pair is a minimum jellyfish pair J min

e1,e2 with bases q1 and q2 on e1 and e2,
respectively.

In this way, we have an O(n6) time subroutine to find the bases q1 and q2 on e1
and e2, respectively. Given the bases, the computation of J min

e1,e2 takes an additional
quadratic time. The whole process of Step 5.1 of the algorithm thus takes O(n6) time.

5.2 Establishing the Tours

Given a minimum jellyfish pair J min
e1,e2 , we sort the tentacles in decreasing order of

length and for each tentacle Zrqi(b) in decreasing order check if c
(
Zrqi(b)

)
is already

covered by a longer tentacle. If so, Zrqi(b) is removed from the jellyfish pair. We call

the resulting jellyfish pair reduced and denote it by J red
e1,e2 with individual jellyfish

J red
e1 and J red

e2 .
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Fig. 11 Illustrating the constructionof the tour and thepartition into subpaths used in the proof ofLemma5.1.
a The green tourW1 is the relative convex hull of the jellyfish J red

e1 (light blue). b Partitioning the tourW1
into subpaths C, �R , and �L , whenW1 does not intersect or contain T1(Color figure online)

Let t(J ) denote the two relative convex hulls of each of the jellyfish in the jellyfish
pair J inside P. Without loss of generality, if J = J1 ∪J2 with J1 and J2 being the
two jellyfish, t(J1) and t(J2) also denote the individual relative convex hulls of J1
and J2 in P.

Let W1 and W2 be the relative convex hulls t(J red
e1 ) and t(J red

e2 ) in P, respectively.
These tours can be computed in linear time by first following the shortest path from
each tentacle tip to the next, cyclically around the corresponding head of each jellyfish
and then applying the algorithm by Toussaint [35]; see Fig. 11a.

Consider a polygonal tour that has reflex vertices only at reflex vertices of P. A
maximal consecutive subsequence of edges of the tour is called a reflex chain of the
tour, if each interior vertex of the chain is reflex in the tour. The end vertices of a reflex
chain must therefore be convex vertices of the tour. In contrast, a convex chain of the
tour is a maximal consecutive subsequence of edges such that each interior and end
vertex of the chain is convex in the tour. We note that a single convex vertex of a tour
is a convex chain if the preceding and subsequent vertices are reflex.

Lemma 5.1 The tours (W1,W2) obtained by algorithm Two-Watchman-Route form a
two-watchman route and

‖(W1,W2)‖max ≤ (7π/6 + 3 − √
3 + √

5 arcsin 1/
√
5)‖(T1,T2)‖max

≈ 5.969‖(T1,T2)‖max.

Proof The correctness of the algorithm follows from Lemmas 3.1, 4.1, and the fact
that since the two tours together see every boundary edge this ensures that they form
a two-watchman route.

To prove the approximation bound, we assume that T1 and T2 do not intersect,
otherwise ‖Wopt‖ ≤ ‖T1‖ + ‖T2‖ ≤ 2‖(T1,T2)‖max immediately proving the lemma
since ‖(W1,W2)‖max ≤ ‖Wopt‖ and the algorithm initializes the two-watchman route
with a shortest watchman tour and a point in Step 3 and then only updates its two-
watchman route in Step 5.4 if its max length is strictly smaller than that of the current
route pair.

The algorithm computes the reduced minimum jellyfish pair J red
e1,e2 in Step 5.2. By

trying all pairs of extensions in Step 5, the algorithm must necessarily consider a pair,
e1 and e2, intersected by the tours T1 and T2; see Lemma 3.5. Consider the tentacles in

123



2866 Algorithmica (2024) 86:2845–2884

J red
e1 andJ red

e2 centered on the bases q1 on e1 and q2 on e2, respectively. Every tentacle
has length at most R = ‖(T1,T2)‖max/2 by Inequality (5), since we can assume that
T1 intersects e1 and T2 intersects e2, whereby the geodesic radii of W1 and W2 are
both at most R.

Each convex chain of W1 has length at most 2πR, where R is an upper bound on
the length of each geodesic shortest path from q1 to any point onW1, since the circle
is the longest convex curve of radius R. This follows from Archimedes’ axioms for
arc-length [1, 5].

We make a case analysis and bound the length ofW1 for each case separately. The
first case when W1 has one convex chain can be easily bounded. When W1 has two
or more convex chains, we separate that into two further cases, whenW1 intersects or
contains both T1 and T2 and when it does not. The first of these cases can be bounded
by estimating the total length of a tour including both T1 and T2. For the last case,
we assume thatW1 does not intersect T1 and partitionW1 into the subpath C1 and the
subtourW′

1 and bound the length of these separately. The pathC1 passes those tentacle
cuts for tentacles in J red

e1 that are covered exclusively by T1 and the subtourW′
1 is the

relative convex hull of the tentacles in in J red
e1 for which the tentacle cuts are covered

by T2. The length of the subpath C1 is bounded in Lemma 5.2 and the length of the
subtour W′

1 is bounded in Lemma 5.3. We provide the details below.

W1 has one convex chain. The convex chain ofW1 has length at most 2πR as we
noted above. The length of the possible reflex chain of W1 is bounded by at most
two radii from q1 to the circle perimeter since its length is bounded by that of the
two tentacles of J min

e1 connecting to the end points of the reflex chain. Hence,

‖W1‖ ≤ 2πR + 2R = (π + 1)‖(T1,T2)‖max. (6)

W1 has at least two convex chains. This case is further subdivided into the cases:

W1 or its interior intersects both T1 and T2. If W1 intersects T1, let p1 be an
intersection point of W1 with T1. From p1 move counterclockwise along W1
until the end point of a tentacle from J red

e1 is reached at pL. Similarly, move
clockwise along W1 until the end point of a tentacle from J red

e1 is reached at
pR. Since the region bounded by moving counterclockwise from pR along W1
to pL, from pL along the tentacle of J red

e1 to q1, and from q1 along a tentacle of
J red
e1 to pR forms a pseudotriangle, relatively convex inside P, the shortest path

from p1 to q1 has length at most that of one of the tentacles of J red
e1 , which is

bounded by R. If W1 does not intersect T1, then T1 lies interior to W1 and we
let p1 be a point closest to q1. Again, the length of shortest path from p1 to q1
is bounded by R, since extending the first edge until it hits the tourW1 at some
point p1’, the shortest path from p1’ to q1 contains p1 and since p1’ lies onW1,
we can use the previous argument to show that the length of the shortest path
from p1’ to q1 is bounded by R.
If W1 intersects T2, let p2 be intersection point of W1 with T2, otherwise let
p2 be a point on T2 closest to q1. In the same way as above, we can bound the
length of the shortest path from p2 to q1 by R.
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Now, construct a tourWbnd by followingT1 fromp1 around in counterclockwise
order, following the shortest path from p1 to q1, the shortest path from q1
to p2, from p2 around T2 in counterclockwise order, and then back along
the shortest paths via q1 to p1. It is clear that Wbnd is a watchman tour and
therefore has length no shorter than Wopt and since the algorithm initializes
the two-watchman route with Wopt and an arbitrary point in Step 3 and then
only updates its two-watchman route in Step 5.4 if it has max-length strictly
smaller than the current route pair, the length of W1 is bounded by

‖W1‖ < ‖Wopt‖ ≤ ‖Wbnd‖ ≤ ‖T1‖ + ‖T2‖ + 4R ≤ 4‖(T1,T2)‖max. (7)

W1 or its interior intersects at most one of T1 or T2. Without loss of generality,
we assume that T1 does not intersect W1 or the interior of W1, otherwise we
interchange the roles of T1 and T2 in the argument below.
Cut P along the segments of W1 into disjoint pieces, thus partitioning P into
separate components; see Fig. 11b. Let Q be the component containing T1.
The subpath � of W1 bounding Q is either a single segment connecting two
reflex vertices of W1 or it consists of a single convex chain C between two
segments having reflex vertices v and v’ at the end points. Extend � at both
ends alongW1 until convex vertices are reached at both ends, these must exist
sinceW1 has at least two convex chains. Let the path thus obtained be �′. If �

includes a convex chain, consider the two paths �′ \ C that we denote by �L

and �R , where �L appears before �R during a counterclockwise traversal of
W1 starting at a point in C; see Fig. 11b.
Walk along C from each end point v and v’ until convex vertices v̄ and v̄’ are
reached for which the associated tentacle cuts are not covered by T2, if there
are any. These cuts must be covered by T1. Let C1 be the subpath of C from v̄
to v̄’. If C1 = C, then already the end points of C have associated tentacle cuts
that are not covered by T2 and if all associated tentacle cuts to the vertices of
C are covered by T2, then we let C1 = ∅.
If C1 is not empty, Lemma 5.2 below gives us that ‖C1‖ ≤ 4πR/3 and if
it is empty or a single point ‖C1‖ = 0. Thus, we need to bound the length
of the remainder of W1. Let px be some intersection point between W1 and
e1. From px , walk counterclockwise along W1 back to px , shortcutting those
convex vertices associated to tentacle cuts only covered by T1 and let W′

1 be
the tour thus obtained. Let J 2

e1 be the subset of tentacles of J red
e1 for which

each associated tentacle cut is covered by T2. By construction, the tour W′
1

is the relative convex hull of the tentacles of J 2
e1 in P. All convex vertices

on W1 associated to tentacle cuts covered exclusively by T1 lie on C1 by our
observation above, giving us

‖W1‖ ≤ ‖W′
1‖ + 2R + ‖C1‖, (8)

since the union of the two tentacles connecting q1 with the end points of C1
intersectsW′

1, they together cover the tentacle cuts covered byW1 at the same
points, and W1 is relatively convex.
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From Inequality (8), Lemmas 5.2 and 5.3 below, bounding the lengths of C1
and W′

1, we have for this case

‖W1‖ ≤ ‖W′
1‖ + 2R + ‖C1‖

≤
(
π/2 + 2 − √

3 + √
5 arcsin 1/

√
5
)

‖(T1,T2)‖max + 2R + 4πR/3

= (
7π/6 + 3 − √

3 + √
5 arcsin 1/

√
5
)‖(T1,T2)‖max. (9)

From the three cases that we have dealt with, Inequalities (6), (7), and (9), we have

‖W1‖ ≤ max

⎧
⎨

⎩

(
π + 1

)‖(T1,T2)‖max,

4‖(T1,T2)‖max,(
7π/6 + 3 − √

3 + √
5 arcsin 1/

√
5
)‖(T1,T2)‖max.

(10)

The last case has the worst upper bound
‖W1‖ ≤ (

7π/6+3−√
3+√

5 arcsin 1/
√
5
)‖(T1,T2)‖max ≈ 5.969‖(T1,T2)‖max.

We can make the same argument for the second tourW2, obtaining the same bound,
whereby the lemma follows. ��

We bound the length of the subpath C1 next.

Lemma 5.2 Given a jellyfish J red
e1 with relative convex hull W1 that does not intersect

T1, let C1 be the maximal subpath of W1 connecting convex vertices of W1 such that
the corresponding tentacle cuts are covered by T1. We have

‖C1‖ ≤ 4π · R
3

.

Proof Consider the two end points v̄ and v̄’ of C1 (if the end points coincide, C1 is
a single point and has length 0, so we assume that the end points do not coincide);
see Fig. 11b. Let e and e’ be the two tentacle cuts covered by the two end points v̄
and v̄’ of C1. Since T2 does not cover any of e or e’, T1 must have points to the left
of these cuts. Without loss of generality, we assume that v̄ is passed before v̄’ during
a counterclockwise traversal of W1 starting at a point interior to C1. We make the
additional observation that any tentacle cut associated to convex vertices of W1 \ C1
must be covered by T2, otherwise T1 would intersectW1 or have points in its interior.

Let l and l ′ be the lines through e and e’ and let p be the intersection point between
l and l ′, assuming that it exists. If l and l ′ are parallel or p lies after v̄ on l in the
direction of e, then the angle between the tentacle of J red

e1 connecting q1 and v̄ and the
tentacle of J red

e1 connecting q1 and v̄’ containing C1 is at most π , since q1, v̄’, p, and
v̄ form a convex quadrilateral (p can be taken to be a point on l implicitly at infinity,
if l and l ′ are parallel); see Fig. 12a. Each segment of C1 can be projected onto a half
circle centered at q1 having radius R without overlap so the length of C1 is therefore
bounded by πR in this case.

Now, if p lies before v̄ on l in the direction of e; see Fig. 12b, then since T1 lies
in Q without intersecting C1, T1 must intersect the two cuts e and e’. Assume these
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Fig. 12 Illustrating the proof of Lemma 5.2. Bounding the length of C1

intersection points are r and r’. The distance between r and r’ is at most R since
‖T1‖ ≤ ‖(T1,T2)‖max = 2R by Inequality 5. Assume that the longest tentacle of J red

e1
connecting q1 with a convex vertex of C1 has length D ≤ R and let d and d’ be
the points at distance exactly D from q1 to l and l ′, respectively. The point d must
lie between v̄ and r on e, otherwise T1 intersects the longest tentacle of J red

e1 and
therefore also C1. For the same reason, the point d’ must lie between v̄’ and r’ on e’.
The distance ‖d, d ′‖ ≤ R since T1 does not intersect W1. Given that the angle at d,
q1, v̄, and the angle at d’, q1, v̄’, are each at most π/2, that the angle at d, q1, d’ is θ ,
the segments of C1 can be projected onto a semicircle centered at q1 having radius D
without overlap. The length of this semicircle is (π + θ)D, which is maximized for
θ = π/3 and D = R as obtained by standard analytic methods. Thus, ‖C1‖ ≤ 4πR/3
is the maximum bound in all cases. ��

It only remains to show the bound for the length of the subtour W′
1.

Lemma 5.3 Given a jellyfish J red
e1 with base q1 and relative convex hull W1 that does

not intersect T1, let W′
1 be the relative convex hull of J 2

e1 , the subset of tentacles Zq1
in J red

e1 for which each tentacle cut c(Zq1) is covered by T2. We have

‖W′
1‖ ≤

(
π

2
+ 2 − √

3 + √
5 arcsin

1√
5

)

‖(T1,T2)‖max.

Proof Let e be an extension covered by T1 such that T1 makes a reflection on e. Such
an extension must exist by Lemma 3.5 since, if T1 properly covers e, then it must cover
some other extension inL(e). Without loss of generality, we can therefore assume that
e1 = e and thus that all but one point of T1 lie in P \ L(e1). It also follows that T2
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Fig. 13 Illustrating the proof of Lemma 5.3. a Tours T2 and W′
1 intersect if W′

1 has reflex vertices. b–

e Constructing the chain C̄(i) from C(i). b The base case of one extension, c the inductive case with obtuse
angle between two extensions, d the inductive case with acute angle between two extensions

cannot cover e1, since this would mean that T1 could be made shorter contradicting
that T1 and T2 are as short as possible. Hence, all points of T2 lie in P \ L(e1).

We identify two different cases. In the first case, W′
1 has at least two con-

vex chains, we bound the length of W′
1 by considering a tour V2 that contains

W′
1 and show inductively on the number number of convex chains it contains that

‖V2‖ ≤ 2
√
2‖(T1,T2)‖max. In the second case, W′

1 has one convex chain and we
bound its length by a short sequence of circular arcs. We provide the details below.

W′
1 has at least two reflex chains or one reflex chainwith both end points inP\L(e1)

Weprove thatT2 must intersectW′
1. Let e’ and e” be the two tentacle cuts associated

to convex vertices of W′
1 on either side of a reflex chain with both end points

in P \ L(e1). The cuts e’ and e” must exist and do not intersect in P \ L(e1),
otherwise W′

1 does not have the stated reflex chain. Now, T2 must cover e’ and
e” so it either covers e’ exactly at the reflection point of W′

1 and e’ or T2 covers
e” exactly at the reflection point of W′

1 and e”, giving us an intersection point
between W′

1 and T2 in either case, or T2 contains a path that connects a point in
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(
P\L(e1)

)∩L(e′)with a point in
(
P\L(e1)

)∩L(e′′)whichmust intersectW′
1 since

e’ and e” are separated by reflex vertices on W′
1 touching the boundary of P and

T2 has no point in the interior of L(e1); see Fig. 13a. We can construct a tour that
connects q1 with the closest point on T2, follows T2 around in counterclockwise
order and then connects to q1. This tour has the following properties, that we call
bounding properties,

1. it covers all the tentacle cuts covered by W′
1 (and thus by J 2

e1 ),
2. it lies completely in e1 ∪ (P \ L(e1)),
3. it has a convex vertex at q1, and
4. it has length at most 2R + ‖T2‖.
The last bounding property follows since T2 intersects W′

1 (or its interior). Now,
let U2 be the shortest tour that obeys the bounding properties. We show how to
extend U2 to a new tour V2 so that W′

1 is contained in V2 and ‖V2‖ ≤ √
2‖U2‖.

Since W′
1 is relatively convex and contained in V2, we immediately have

‖W′
1‖ ≤ ‖V2‖ ≤ √

2‖U2‖ ≤ 2
√
2R + √

2‖T2‖. (11)

To prove Inequality (11), follow U2 counterclockwise from q1, subdividing the
tour into convex chains C(i), 1 ≤ i ≤ k, such that u(i)

1 is the reflex vertex before

C(i) on U2, and u(i)
2 is the reflex vertex after C(i) on U2. In the cases where the

first vertex after q1 or before q1 is convex, we consider q1 to be the vertex u
(1)
1 and

u(k)
2 according to the case. For each convex chain C(i), let m(i) be the number of

convex vertices on the chain, denoted by v(i)
1 , . . . , v(i)

m(i) , these are the tips of the

tentacles of J 2
e1 , and let e(i)

1 , . . . , e(i)
m(i) be the corresponding associated tentacle

cuts; see Fig. 13b–e. It is clear that no tentacle of J 2
e1 intersects the interior of

L(e(i)
j ), for any tentacle cut e(i)

j , since J 2
e1 ⊆ J red

e1 and if it did, it would cover e(i)
j

whereby e(i)
j and its associated tentacle would be discarded asJ red

e1 is constructed.

(To guarantee this property is in fact the reasonwhy the algorithm constructsJ red
e1,e2

in Step 5.2.) To obtain V2 fromU2, we replace each convex chain C(i), from u(i)
1 to

u(i)
2 by a different path C̄

(i)
. If m(i) = 1, i.e., C(i) has only one convex vertex v(i)

1 ,

then let r(i)1,1 be the end point of SP(u(i)
1 , e(i)

1 ) on the tentacle cut e(i)
1 . Similarly, let

r(i)1,2 be the end point of SP(u(i)
2 , e(i)

1 ) on e(i)
1 . We let C̄

(i)
be the shortest path from

u(i)
1 to e(i)

1 , the path from r(i)1,1 to r
(i)
1,2 on e

(i)
1 , followed by the shortest path from e(i)

1

to u(i)
2 ; see Fig. 13b. The convex vertex v(i)

1 lies on the segment from r(i)1,1 to r
(i)
1,2 on

e(i)
1 , otherwise U2 can be made shorter contradicting that U2 is the shortest tour

obeying the bounding properties. The length of the subpath of C̄
(i)

from u(i)
1 to

v(i)
1 is upper bounded by the length of the two catheti connecting u(i)

1 with v(i)
1 , one

being parallel to e(i)
1 and the other orthogonal to e(i)

1 . Similarly, the length of the

subpath of C(i) from u(i)
1 to v(i)

1 is lower bounded by the length of the line segment
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from u(i)
1 to v(i)

1 forming the hypotenuse of a right angled triangle with u(i)
1 and v(i)

1
as two corners. From elementary geometry it follows that the sum of the lengths of
the catheti is bounded by

√
2 times the length of the hypotenuse in a right angled

triangle. Thus, the length of the subpath of C̄
(i)

from u(i)
1 to v(i)

1 is at most
√
2 times

the length of the subpath of C(i) from u(i)
1 to v(i)

1 . The same argument ensures that

the length of the subpath of C̄
(i)

from v(i)
1 to u(i)

2 is also at most
√
2 times the length

of the subpath of C(i) from v(i)
1 to u(i)

2 . We proceed inductively on the parameter

m(i), the number of tentacle cuts covered along the path C(i), as follows. Let p(i)
1 be

the intersection of e(i)
1 and e(i)

2 (or the directed lines along e(i)
1 and e(i)

2 ). The point

p(i)
1 must exist, otherwise C(i) is not a convex chain but contains reflex vertices.

Let α
(i)
1 be the angle of the wedge P \ (

L(e(i)
1 ) ∩ L(e(i)

2 )
)
at p(i)

1 ; see Fig. 13c–e.

We let C̄
(i) def= C̄

(i)(
u(i)
1 , u(i)

m(i)
) = C̄

(i)(
u(i)
1 , v(i)

2

) ∪ C̄
(i)(

v(i)
2 , u(i)

m(i)
)
be the path from

u(i)
1 to u(i)

2 , where C̄
(i)(

u(i)
1 , v(i)

2

)
is a path from u(i)

1 to v(i)
2 that covers e(i)

1 , contains

v(i)
1 , and is at most

√
2 times longer than the path from u(i)

1 to v(i)
2 along C(i).

Since C(i) from v(i)
2 to u(i)

2 covers fewer than m(i) tentacle cuts, we can assume

that C̄
(i)(

v(i)
2 , u(i)

m(i)
)
from v(i)

2 to u(i)
2 constructed inductively covers the remaining

tentacle cuts, contains the vertices v(i)
2 , . . . , v(i)

m(i) , and is at most
√
2 times longer

than the path from v(i)
2 to u(i)

2 along C(i). It remains to describe the construction of

C̄
(i)(

u(i)
1 , v(i)

2

)
from u(i)

1 to v(i)
2 , that covers one tentacle cut e(i)

1 , passes one vertex

v(i)
1 , and is at most

√
2 times longer than the path from u(i)

1 to v(i)
2 along C(i).

If α
(i)
1 is obtuse or a right angle, let SP(e(i)

1 , e(i)
2 ) be the shortest path between

e(i)
1 end e(i)

2 . The path either degenerates into the single point p(i)
1 , if e(i)

1 end

e(i)
2 intersect, or it is a path connecting a point r(i)1,2 on e(i)

1 to a point r(i)2,1 on

e(i)
2 . In this case, C̄

(i)(
u(i)
1 , v(i)

2

)
is the shortest path from u(i)

1 to e(i)
1 , the path

from r(i)1,1 to r
(i)
1,2 (or p

(i)
1 ) on e(i)

1 , followed by the shortest path from e(i)
1 to e(i)

2 ,

the path from r(i)2,1 (or p(i)
1 ) to v(i)

2 ; see Fig. 13c, d. As previously noticed, the

length of the subpath of C̄
(i)(

u(i)
1 , v(i)

2

)
from u(i)

1 to v(i)
1 is upper bounded by

the length of the two catheti connecting u(i)
1 with v(i)

1 , one being parallel to e(i)
1

and the other orthogonal to e(i)
1 . Similarly, the length of the subpath of C(i)

from u(i)
1 to v(i)

1 is lower bounded by the length of the line segment from u(i)
1

to v(i)
1 forming the hypotenuse of a right angled triangle with u(i)

1 and v(i)
1 as

two corners. From elementary geometry it follows that the sum of the lengths
of the catheti is bounded by

√
2 times the length of the hypotenuse in a right

angled triangle. Thus, the length of the subpath of C̄
(i)(

u(i)
1 , v(i)

2

)
from u(i)

1 to

v(i)
1 is at most

√
2 times the length of the subpath of C(i) from u(i)

1 to v(i)
1 . The

same argument ensures that the length of the subpath of C̄
(i)(

u(i)
1 , v(i)

2

)
from
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v(i)
1 to v(i)

2 is also at most
√
2 times the length of the subpath of C(i) from v(i)

1

to v(i)
2 , since the angle α

(i)
1 is obtuse or a right angle.

If α
(i)
1 is acute, consider the segment s

def= [q1, p(i)
1 ] allowed to pass through

the boundary of P, if e(i)
1 and e(i)

2 do not intersect. Let l be the line orthogonal

to s passing through p(i)
1 . We slide l along the segment s from p(i)

1 towards q1
until l touches a point of C(i) between v(i)

1 and v(i)
2 inclusive, giving the line l∗.

In fact, this intersection point is one of v(i)
1 or v(i)

2 . Let r(i)1,2 be the intersection

point of SP(e(i)
1 , l∗) on e(i)

1 and r(i)1,∗ the intersection point of SP(e(i)
1 , l∗) on l∗.

Similarly, let r(i)2,1 be the intersection point of SP(e(i)
2 , l∗) on e(i)

2 and r(i)2,∗ the

intersection point of SP(e(i)
2 , l∗) on l∗. As before, r(i)1,1 is the intersection point

of SP(u(i)
1 , e(i)

1 ) with e(i)
1 . Now, C̄

(i)(
u(i)
1 , v(i)

2

)
is the shortest path from u(i)

1 to

e(i)
1 , the path from r(i)1,1 to r(i)1,2, followed by the shortest path from e(i)

1 to l∗ at

r(i)1,∗, the path from r(i)1,∗ to r(i)2,∗ on l∗, the shortest path from l∗ to e(i)
2 ending at

r(i)2,1, followed by the path from r(i)2,1 to v
(i)
2 ; see Fig. 13e. Since α

(i)
1 is acute, the

interior angles between e(i)
1 and l∗ and between e(i)

2 and l∗ are both obtuse or

right angles. Hence, the lengths of the subpaths of C̄
(i)

from u(i)
1 to v(i)

1 and

from v(i)
1 to v(i)

2 are upper bounded by the lengths of the corresponding catheti

of the right angled triangles, one connecting u(i)
1 and v(i)

1 , with one catheter

being parallel to e(i)
1 , and one connecting v(i)

1 to v(i)
2 , with one catheter parallel

to l∗. As before, the length of this subpath of C̄(i)(
u(i)
1 , v(i)

2

)
is at most

√
2 times

the length of the subpath of C(i) from u(i)
1 to v(i)

2 .

Thus, we have proved Inequality (11) for both cases.
W′

1 has no reflex chain or one reflex chain with at most one end point in P\L(e1) If
there is a point of T2 at distance at most R from q1, then there exists a tour having
the bounding properties as defined above and we can bound the length of W′

1 in
exactly the same way as in the previous case. Hence, from now on, we assume
that all points of T2 have distance greater than R from q1. Since each tentacle of
J 2
e1 has length at most R, every point of the tour W′

1 has distance at most R to
q1 and each tentacle is perpendicular to the tentacle cut which in turn intersects
T2, except where W′

1 has a reflex chain. Let D1 be the possible set of points that
can be points of W′

1, given T2 but for any possible set of tentacle cuts. Thus, W′
1

is contained in D1. The perimeter of D1 consists of connected circular arcs with
possible line segments in between. IfW′

1 has a reflex chain, the perimeter alternates
between circular arcs centered at q1 and straight line segments connecting those
reflex boundary vertices where W′

1 also has reflex vertices. Any other polygon
boundary part intersecting the interior of the region is disregarded as we want to
obtain the maximum possible perimeter length in relation to R, given thatW′

1 has
at most one reflex chain. D1 is the region painted light green in Fig. 14a. SinceW′

1
passes q1 and the remaining perimeter of D1 is convex (except where W′

1 follows
the reflex chain), it follows that ‖W′

1‖ ≤ sup ‖∂D1‖ over the set of all possible
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tentacle cuts. We bound the length of the perimeter of D1 as follows. Consider the
smallest angle cone ∠T2 with apex q1 that contains T2. Let t1 and t2 be two points
of T2 that touch the sides of this cone; see Fig. 14a.We assume a coordinate system
where q1 is at the origin, t1 is at distance R + y1, with y1 > 0, directly above
q1 and t2 lies in the first quadrant in this coordinate system at distance R + y2,
with y2 > 0, from q1. We can also assume that any reflex chain of W′

1 lies in the
first quadrant in the coordinate system. If the reflex chain has points in the fourth
quadrant, the length of D1 can never attain its maximum possible ratio to R since
all tentacle cuts then lie in quadrants three and four and have positive slope. Thus,
all tentacles ofJ 2

e1 lie in the fourth quadrant and ‖W′
1‖ ≤ sup ‖∂D1‖ ≤ (π/2+2)R

in this case, which is not maximal as we shall see below.
Denote the part of D1 in the fourth quadrant (to the left of ∠T2) by DL

1. We can
bound the length of the two circular arcs that form part of the perimeter of DL

1 by

‖∂DL
1‖ = πR/2 − α1R/2 + α1(R + y1) = (π + α1)R/2 + α1 · y1, (12)

where α1 = 2 arcsin
(
R
/
(2R + 2y1)

)
; see Fig. 14c. If we denote the part of D1

inside the cone ∠T2 by DC
1 , the light green region in the cone ∠T2 in Fig. 14a, we

can bound the length of the circular arc perimeter of DC
1 by ‖∂DC

1‖ ≤ R · β, where
‖[t1, t2]‖2 = (R+ y1)2+(R+ y2)2−2(R+ y1)(R+ y2) cosβ and β is the angle of
the cone ∠T2, by the cosine theorem; see Fig. 14a. Again, we can assume that any
reflex chain ofW′

1 does not intersect the cone∠T2 and therefore also not insideDC
1 ,

otherwise the length of the perimeter ofD1 can never attain its maximum possible
ratio to R since this would give a coarse bound of ‖W′

1‖ ≤ sup ‖∂D1‖ ≤ (π + 2)R
in this case, which again is not maximal.
If the remaining part of D1 intersects the single reflex chain of W′

1, the length of
the sequence of alternating circle arcs and line segments is bounded be the length
of two line segments along two radii from q1 of length R and t2 of length R + y2,
from their intersection point to their respective ends at p1 and p2; see Fig. 14a, b.
We denote these segments by s1 and s2 as in Fig. 14b. Denote the angle between
s1 and s2 by γ . Let p3 be the intersection point of the two circular arcs with center
at q1 and length R and center at t2 and length R+ y2 having positive x-coordinate
in our coordinate system and let l1 and l2 be the subarcs of these two circular
arcs from p3 to p1 and p2, respectively; see Fig. 14b. Let the radius [q1, p1] have
angle θ1 to the radius [q1, p3] and let the radius [t2, p2] have angle θ2 to the radius
[t2, p3]. Thus, γ = π/2− α2/2+ θ1 + θ2. Let s′

1 be the subsegment of s1 outside
the triangle q1, t2, p3 and let s

′
2 be the subsegment of s2 outside q1, t2, p3. The

angle of the triangle at p3 is π/2 − α2/2 ≤ γ so ‖s1‖ − ‖s′
1‖ + ‖s2‖ − ‖s′

2‖ ≤
‖l1‖ + ‖s′

1‖ + ‖l2‖ + ‖s′
2‖ giving ‖s1‖ + ‖s2‖ ≤ ‖l1‖ + 2‖s′

1‖ + ‖l2‖ + 2‖s′
2‖. Let

the two circle arcs symmetric toDL
1 in the first quadrant, to the right of ∠T2 bound

the region DR
1 and we have

‖∂DR
1‖ = (π + α2)R/2 + α2 · y2, (13)
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where α2 = 2 arcsin
(
R
/
(2R + 2y2)

)
; see Fig. 14a, c. Define DX

1 to be the union
of DL

1, D
C
1 , and DR

1, i.e., the locus D1 whenW′
1 does not have a reflex chain in the

interior of D1; see Fig. 14c. Since ‖s1‖ + ‖s2‖ ≤ ‖l1‖ + 2‖s′
1‖ + ‖l2‖ + 2‖s′

2‖, we
have that

‖∂D1‖ ≤ ‖∂DX
1‖ + 2‖s′

1‖ + 2‖s′
2‖ (14)

and we bound the length of these three parts separately.
To maximize the length of the perimeter of DX

1 we observe that the angle β is as
large as possible when the segment [t1, t2] is as large as possible and the values y1
and y2 are as small as possible. The length of [t1, t2] is bounded above by R and y1
and y2 are minimal if the segment [t1, t2] is almost tangent to the circle of radius
R centered at q1. With this setup we can write the length of the perimeter of DX

1
as a function of y1, where 0 ≤ y1 ≤ (

√
2 − 1)R, and using standard variational

calculus we obtain that

sup
0≤y1≤(

√
2−1)R

‖∂DX
1(y1)‖ <

(

π + 2
√
5 arcsin

1√
5

)

R, (15)

which occurs when y1 = y2 = (
√
5/2 − 1)R.

To maximize the lengths of s′
1 and s

′
2, we realize that they are the longest when the

radius [q1, p1] intersects the segment [t2, p3] perpendicularly and when the radius
[t2, p2] intersects the segment [q1, p3] perpendicularly, i.e., when θ1 = θ2 = α2/2.
Hence, the two segments are the longest when α2 is as large as possible, which
occurs when the triangle q1, t2, p3 is equilateral, whereby

sup
0≤α2≤π/6

‖s′
1‖ = sup

0≤α2≤π/6
‖s′

2‖ = (1 − √
3/2)R. (16)

This gives us a final bound of

‖W′
1‖ <

(
π + 4 − 2

√
3 + 2

√
5 arcsin 1/

√
5
)
R

=
(
π/2 + 2 − √

3 + √
5 arcsin 1/

√
5
)

‖(T1,T2)‖max. (17)

We have from the two cases above, Inequalities (11) and (17), that

‖W′
1‖ ≤ max

{
2
√
2R + √

2‖T2‖ = 2
√
2‖(T1,T2)‖max ≈ 2.8284‖(T1, T2)‖max,(

π/2 + 2 − √
3 + √

5 arcsin 1/
√
5
)

‖(T1, T2)‖max ≈ 2.8754‖(T1,T2)‖max.

(18)

The larger of the two values is our bound for the length of W′
1. ��

We note that we have made a slight overestimation when bounding the length of the
perimeter ofD1 as we aremaximizing the length of the perimeter ofDX

1 and the lengths
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Fig. 14 Illustrating the proof of Lemma 5.3. Bounding the length of W′
1 when it has at most one reflex

chain with at most one end point in P \ L(e1) and the distance from T2 to q1 is greater than R. a D1 in
green is the locus of possible points for W′

1. b The worst case placement of T2 relative to D1 maximizing

its boundary length. c Partitioning D1 into DL
1, D

C
1 , and DR

1. d Detail of DR
1 indicating the subsegments s′1

and s′2 outside the triangle q1, t2, p3 (Color figure online)

of s′
1 and s

′
2 separately; see Inequalities (15) and (16). Some numerical experimentation

indicates that our overestimation only affects the approximation bound in the second
decimal, leading us to not pursue any improvement further.

5.3 Complexity Analysis of the Algorithm

The complexity analysis of the algorithm is straightforward. The for-loop in Step 5
considers O(n2) pairs of extensions. Computing the tentacles and bases in Step 5.1
takes O(n6) time as established in Section 5.1. The work in Step 5.2 takes O(n log n)

time since it is dominated by sorting the tentacles by length. Step 5.3 requires linear
time using the algorithm by Toussaint [35] and the test in Step 5.4 takes constant time.
Hence, the total time complexity for the algorithm is O(n8). The running time analysis
together with Lemma 5.1 give us our main result.

Theorem 1 The Two-Watchman-Route algorithm computes a 5.969-approximation of
the minmax two-watchman route and a 11.939-approximation of the minsum two-
watchman route in O(n8) time.
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Fig. 15 Illustrating the trade-off between the optimal base placement and the approximate base placement

6 A Trade-off Between Computation Time and Accuracy

We can trade the approximation bound for computational efficiency by realizing that
relaxing the computation as described in Sect. 5.1 still provides base positions q1 and
q2 sufficiently close to their optimal positions on e1 and e2. To do this, we reduce the
computation in Sect. 5.1 to only use the first two cases, taking O(n2) time rather than
O(n6) time. Let q1 be the base placement on e1 using the reduced computation and
let q∗

1 be its optimal placement on e1. Let Zrq1(b) be a longest tentacle in the jellyfish

J min
q1

. Now, consider the tentacle Zr
∗
q∗
1
(b), taking into account that r moves to r∗ on b

when the head moves from q1 to q∗
1 on e1. There must exist a boundary edge b’ such

that the tentacle Zr
′
q∗
1
(b′) intersects the line through q1 orthogonal to e1, otherwise q1

would be closer to q∗
1; see Fig. 15. Hence, ‖q1, q∗

1‖ ≤ ‖Zr′q∗
1
(b′)‖ and we have

‖Zrq1(b)‖ ≤ ‖Zr∗q1(b)‖ ≤ ‖Zr∗q∗
1
(b)‖ + ‖q1, q∗

1‖ ≤ ‖Zr∗q∗
1
(b)‖ + ‖Zr′q∗

1
(b′)‖ ≤ 2R, (19)

since R is the length of the longest tentacle in J min
e1 . We can argue similarly for J min

q2
giving us the jellyfish pair J min

q1,q2
for which we can compute the reduced jellyfish pair

and then the relative convex hulls.
Using R′ = 2R in the proofs of Lemmas 5.1, 5.2 and 5.3 instead of R, all the

arguments hold, giving us a tour with an approximation ratio at worst twice that of
Theorem 1. We state this as a corollary.

Corollary 2 The simplified Two-Watchman-Route algorithm computes a 11.939-
approximation of the minmax two-watchman route and a 23.879-approximation of
the minsum two-watchman route in O(n4) time.

7 Computing the Fixed Two-Watchman Route

Since the heads q1 and q2 are given as input in this simpler case of the problem, it
suffices to compute the Jellyfish pairs Jq1,q2 with q1 and q2 as heads which takes
O(n2) time as explained in Sect. 5.1 and sinceW1 intersects T1 andW2 intersects T2,
the second case in the proof of Lemma 5.3 cannot occur, whereby the approximation
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bound forW1 becomes

‖W1‖ ≤ ‖W′
1‖ + 2R + ‖C1‖ ≤ 2

√
2R + √

2‖T2‖ + 2R + 4πR/3

= (2
√
2 + 1 + 2π/3)‖(T1,T2)‖max. (20)

However, we note that this tour does not necessarily pass through q1, unless q1 lies on
the polygon boundary, hence we have to account for an extra reflex chain of length at
most 2R to guarantee this. Making the same analysis forW2, the approximation factor
becomes 2

√
2 + 2 + 2π/3 ≈ 6.922 in this case. The time complexity is dominated

by computing the jellyfish, giving us the following theorem.

Theorem 3 The algorithm computes a 6.922-approximation of the fixed minmax two-
watchman route and a 13.845-approximation of the fixed minsum two-watchman route
in O(n2) time given two starting points for the two tours. If both starting points lie on
the boundary, the approximation factors are 5.922 and 11.845, respectively.

8 Conclusions

We have shown a polynomial time algorithms for computing constant factor approxi-
mations for the minmax and minsum two-watchman route in a simple polygon.

Our algorithms rely heavily on the fact that for two tours it is sufficient to guarantee
that the boundary is seen to ensure that the complete polygon is seen. This does not
hold for three or more tours. Thus, our method for the two-watchman tours does not
generalize to the problem for three or more watchmen. Solving these problems within
a constant factor bound remains elusive.

Establishing the complexity for the minsum two-watchman route is still open
although our algorithm provides a polynomial time 11.939-approximation.
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A Proof of Lemma 4.2

Lemma Let q move a distance δ to q’ on a line segment s and let r move a distance ε

to r’, where both r and r’ lie in the open interval ]v, v′[ of a boundary edge b = [v, v′],
in such a way that the first segment of the tentacles from q and q’ intersect the same
reflex vertex, if the tentacle consists of multiple segments, and c(Zrq) and c(Zr

′
q′) have

the same hiding vertex, then

‖Zr′q′‖ = ‖Zrq‖ + F(δ, ε),

such that

F(δ, ε) = −F0 +
√
F2
0 + F1δ + F2δ2 − F3 + F3 + F4ε + F5δ + F6εδ + F7ε

2 + F8ε
2δ

√
1 + F9ε + F10ε2 + F11ε3 + F12ε4

− F13 +
√

F2
13 + F14ε + F15δ + F16εδ + F17ε2 + F18δ2 + F19ε2δ + F20εδ2 + F21ε2δ2

1 + F22ε + F23ε2
,

where F0, . . . , F23 are constants.

Proof We begin with the assumption that Zrq consists of at least two segments whose
end points touch reflex boundary vertices of the polygon. Since this is the case, we
can separate the motion from r to r’ on b and the motion from q to q’ on s and handle
those two cases separately. We first look at the motion from r to r’ on b and since a
small change of q on s does not affect the motion on b.

Given a tentacle Zrq, we emulate a point sliding from r to r’ along b. If the tentacle
tip intersects the boundary of the polygon at a point p, where the tentacle sees r, then
we let the segment [r, r′′] be parallel to [p, p′] and intersecting the line collinear to
[uh, r′] at r”, where uh is the hiding vertex; see Fig. 16a. The lines through [p, p′] and
[v, v′] intersect at a point t (unless they are parallel, in which case we assume t to be
a point at infinity). Since the triangles r′, r, r′′ and r′, t, p′ are similar, we have

ε

‖r, r′′‖ = ‖r, t‖ − ε

‖p, t‖ + ε′

and since the triangles r, uh, r′′ and p, uh, p′ are also similar, we have

‖r, r′′‖
‖uh, r‖ = ε′

‖uh, p‖ ,
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Fig. 16 Showing the motions of a tentacle along the interior of b

giving us that

ε′ = ‖p, t‖ · ‖uh, p‖ · ε

‖r, t‖ · ‖uh, r‖ − (‖uh, p‖ + ‖uh, r‖) · ε
= a · ε

1 − c · ε
, (21)

for constants a and c depending on the points p, r, uh , and t .
Thus, the length of the tentacle as the point moves locally from r to r’ along b is

‖Zr′q‖ = ‖Zrq‖ − ‖u, p‖ + ‖u, p′‖
= ‖Zrq‖ − ‖u, p‖ +

√

‖u, p‖2 + ε′2 − 2‖u, p‖ε′ cosφ

= ‖Zrq‖ − ‖u, p‖ +
√‖u, p‖2(1 − cε)2 + a2ε2 − 2‖u, p‖aε cosφ(1 − cε)

1 − cε

= ‖Zrq‖ − A0 +
√
A2
0 + A1ε + A2ε2

1 + A3ε
, (22)

for constants A0, . . . , A3 that only depend on the points u, p, r, uh , t , and the angle
φ; see Fig. 16a.

If the tentacle tip does not touch the boundary of the polygon; see Fig. 16b, then we
realize that as the point moves locally from r to r’, the length of the tentacle changes
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Fig. 17 Showing the motion of a tentacle along line segment e

as

‖Zr′q‖ = ‖Zrq‖ − ‖u, p‖ + ‖u, p′‖
= ‖Zrq‖ − ‖u, p‖ + ‖u, uh‖ sin(γ − α)

= ‖Zrq‖ − ‖u, p‖ + ‖u, uh‖(sin γ cosα − cos γ sin α)

= ‖Zrq‖ − ‖u, p‖ + ‖u, uh‖ sin γ
‖uh, r‖ − ε cosβ

√‖uh, r‖2 − 2ε‖uh, r‖ cosβ + ε2

− ‖u, uh‖ cos γ
ε sin β

√‖uh, r‖2 − 2ε‖r‖ cosβ + ε2

= ‖Zrq‖ − ‖u, p‖ + ‖u, uh‖‖uh, r‖ sin γ − ε‖u, uh‖(cosβ sin γ + cos γ sin β)
√‖uh, r‖2 − 2ε‖uh, r‖ cosβ + ε2

= ‖Zrq‖ − ‖u, p‖ + ‖u, p‖‖uh, r‖ − ε‖u, uh‖ sin(β + γ )
√‖uh, r‖2 − 2ε‖uh, r‖ cosβ + ε2

= ‖Zrq‖ − B0 + B0 + B1ε
√
1 + B2ε + B3ε2

(23)

for constants B0, . . . , B3 that only depend on the points u, p, r, uh and the angles β

and γ ; see Fig. 16b.
Let us now consider the change that happens as the head moves a distance δ from q

to q’ on s, still under the assumption that Zrq and Z
r′
q′ consists of at least two segments

where the end points different from q (q’) and r (r’) touch reflex vertices of the polygon
thus making turns at the boundary. The length of the tentacle changes as

‖Zrq′‖ = ‖Zrq‖ − ‖q, u‖ + ‖q′, u‖
= ‖Zrq‖ − ‖q, u‖ +

√

‖q, u‖2 + δ2 − 2‖q, u‖δ cos(π − θ)

= ‖Zrq‖ − C0 +
√
C2
0 + C1δ + C2δ2, (24)

for constants C0, C1 and C2 that only depend on the points u, q, and the angle θ ; see
Fig. 17a.

If the Zrq and Zr
′
q′ each consists of a single segment, then either the tip touches

the boundary or it does not. If the tentacle Zrq is a single segment that intersects
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c(Zrq) without the tip touching the boundary, then ‖q′, p′‖ depends on both ε and δ.
The length ‖q′, p′‖ is established from ‖q, p‖ by first computing ‖q, p̄‖, a case we
have already solved; see Equality 23 and Fig. 16b; and then computing ‖q′, p′‖ from
‖q, p̄‖. ‖q′, p′‖ = ‖q, p̄‖(1− δ/‖q, t ′‖) since ‖q′, p′‖/(‖q, t ′‖ − δ) = ‖q, p̄‖/‖q, t ′‖ by
similarity. Hence, the length of the tentacle changes as

‖Zr′q′‖ = ‖Zrq‖ − ‖q, p‖ + ‖q′, p′‖
= ‖Zrq‖ − ‖q, p‖ +

(

1 − δ

‖q, t ′‖
)

‖q, p̄‖

= ‖Zrq‖ − ‖q, p‖ +
(

1 − δ

‖q, t‖ − ε′

)

‖q, uh‖ sin(γ − α)

= ‖Zrq‖ − ‖q, p‖ +
(

1 − δ

‖q, t‖ − aε
1−cε

)

‖q, uh‖(sin γ cosα − sin γ cosα)

= ‖Zrq‖ − ‖q, p‖+

+
(

1 − δ

‖q, t‖ − aε
1−cε

)

‖q, uh‖ sin γ
‖uh, r‖ − ε cosβ

√‖uh, r‖2 − 2ε‖uh, r‖ cosβ + ε2

−
(

1 − δ

‖q, t‖ − aε
1−cε

)

‖q, uh‖ cos γ
ε sin β

√‖uh, r‖2 − 2ε‖uh, r‖ cosβ + ε2

= ‖Zrq‖ − ‖q, p‖+
+

(

1 − δ(1 − cε)

‖q, t‖ − (c‖q, t‖ + a)ε

) ‖q, p‖‖uh, r‖ − ε‖u, uh‖ sin(β + γ )
√‖uh, r‖2 − 2ε‖uh, r‖ cosβ + ε2

= ‖Zrq‖ − D0 + D0 + D1ε + D2δ + D3εδ + D4ε
2 + D5ε

2δ
√
1 + D6ε + D7ε2 + D8ε3 + D9ε4

, (25)

for constants D0, . . . , D9 that only depend on the points p, q, r, and uh , together with
the angles β and γ ; see Fig. 17b.

If the tentacle Zrq is a single segment that intersects c(Zrq) with the tip touching the
boundary, then the length ‖q′, p′‖ is established from ‖q, p‖ by the cosine theorem.
Hence, the length of the tentacle changes as

‖Zr′q′‖ = ‖Zrq‖ − ‖q, p‖ + ‖q′, p′‖

= ‖Zrq‖ − ‖q, p‖ +
√

(‖p, t‖ − ε′)2 + (‖q, t‖ − δ)2 − 2(‖p, t‖ − ε′)(‖q, t‖ − δ) cosφ

= ‖Zrq‖ − ‖q, p‖+

+
√

(

‖p, t‖ − aε

1 − cε

)2

+ (‖q, t‖ − δ)2 − 2

(

‖p, t‖ − aε

1 − cε

)

(‖q, t‖ − δ) cosφ

= ‖Zrq‖ − E0 +
√

E2
0 + E1ε + E2δ + E3εδ + E4ε2 + E5δ2 + E6ε2δ + E7εδ2 + E8ε2δ2

1 + E9ε + E10ε2
, (26)
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for constants E0, . . . , E10 that only depend on the points p, q, r, uh and the angle φ;
see Fig. 17c.

Combining Equalities (22)–(26), we obtain the equality

‖Zr′q′‖ = ‖Zrq‖ − F0 +
√
F2
0 + F1δ + F2δ2 − F3 + F3 + F4ε + F5δ + F6εδ + F7ε2 + F8ε2δ

√
1 + F9ε + F10ε2 + F11ε3 + F12ε4

− F13 +
√

F2
13 + F14ε + F15δ + F16εδ + F17ε2 + F18δ2 + F19ε2δ + F20εδ2 + F21ε2δ2

1 + F22ε + F23ε2
, (27)

for constants F0, . . . , F23, as claimed. We note further that since F0, F3, and F13
represent actual distances, these must be non-negative. ��
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