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Abstract
We study theOnline Multiset Submodular Cover problem (OMSC), where we
are given a universe U of elements and a collection of subsets S ⊆ 2U . Each element
u j ∈ U is associated with a nonnegative, nondecreasing, submodular polynomially
computable set function f j . Initially, the elements are uncovered, and therefore we
pay a penalty per each unit of uncovered element. Subsets with various coverage and
cost arrive online. Upon arrival of a new subset, the online algorithm must decide how
many copies of the arriving subset to add to the solution. This decision is irrevocable,
in the sense that the algorithm will not be able to add more copies of this subset in the
future. On the other hand, the algorithm can drop copies of a subset, but such copies
cannot be retrieved later. The goal is to minimize the total cost of subsets taken plus
penalties for uncovered elements. We present an O(

√
ρmax)-competitive algorithm

for OMSC that does not dismiss subset copies that were taken into the solution, but
relies on prior knowledge of the value of ρmax, where ρmax is the maximum ratio,
over all subsets, between the penalties covered by a subset and its cost. We provide an
O

(
log(ρmax)

√
ρmax

)
-competitive algorithm for OMSC that does not rely on advance

knowledge of ρmax but uses dismissals of previously taken subsets. Finally, for the
capacitated versions of the Online Multiset Multicover problem, we obtain an
O(

√
ρ′
max)-competitive algorithm when ρ′

max is known and an O
(
log(ρ′

max)
√

ρ′
max

)
-

competitive algorithm when ρ′
max is unknown, where ρ′

max is the maximum ratio over
all subset incarnations between the penalties covered by this incarnation and its cost.
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1 Introduction

We study the Multiset Multicover problem, in which we are given a universe U
with n elements, where element u j has a covering requirement b j ∈ N and a penalty
p j ∈ R+. There is a collection S of m subsets, where the coverage of subset Si of
element u j is ai j ∈ N and its cost is ci . Without loss of generality, we assume that
ai j ≤ b j , for every i and j . (Note that a subset Si is actually a multiset if ai j > 1,
for some element j , but we misuse the term “subset” for simplicity.) A solution is a
multicollection C of the subsets, wheremultiple copies of subsets are allowed. The cost
of a solution is the cost of selected subsets plus the penalties for unsatisfied covering
requirements.Onemay formulateMultiset Multicoverusing the following integer
linear program:

min
m∑

i=1

ci xi +
n∑

j=1

p j z j

s.t.
m∑

i=1

ai j xi + z j ≥ b j ∀u j ∈ U

xi ∈ N ∀Si ∈ S
z j ∈ N ∀u j ∈ U

(MM)

where the value of xi represents the number of copies of subset Si taken into the
solution C, and z j is the amount of unsatisfied coverage by C of element u j (for which
we pay a penalty per unit). Notice that, given a solution C one can easily obtain the
corresponding pair (x, z). We define:

cost(C) �
∑

i

ci xi +
∑

j

p j z j .

The above formulation is unconstrained in the sense that each subset can be used any
number of times. In the constrained variant a subset can be used at most once, i.e.,
xi ∈ {0, 1}, for every i .

We study (generalizations of) the following online version of the Multiset

Multicover problem, called Online Multiset Multicover (OMM), that was
introduced by Fraigniaud et al. [15]. Initially, the elements are uncovered—and hence
incur a penalty per each unit of uncovered element. That is, initially we pay

∑
j p j b j .

Subsets with various coverage and cost arrive online. In each time step, a new subset
arrives, and the online algorithmmust decide howmany copies of the arriving subset to
add to the solution. This decision is irrevocable, in the sense that the algorithmwill not
be able to addmore copies of this subset in the future. On the other hand, the algorithm
is allowed to drop copies of a subset, but such copies cannot be retrieved later. The goal
is to minimize the total cost of subsets taken plus penalties for uncovered elements. As
usual with online algorithms we measure an online algorithm by its competitive ratio:
in this case, the maximum ratio of cost incurred by the algorithm to the best possible
cost for any given instance. We consider expected cost if the algorithm is randomized.
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OMM is an abstraction of the following team formation scenario (corresponding
to a binary matrix A and binary requirements b). Suppose we are embarking on a new
project that is composed of n tasks. A task j can be satisfied by outsourcing at cost
p j , or by hiring an employee who possesses the ability or skill to perform task j .
The goal is to minimize the project cost under the following procedure: We interview
candidates one by one. After each interview we know the skills and the hiring cost
of the candidate and must decide irrevocably whether to hire the candidate or not.
In the more general setting, a task may require more effort, and this is captured by
element requirements. A candidate i may be able to contribute more that one unit of
effort to a task j and this is captured by the coverage ai j . Finally, the unconstrained
case is more appropriate when a candidate corresponds to a technology that may be
purchased more than once.

As shown in [15], even randomized algorithms cannot have competitive ratio better
than �(

√
ρmax), where ρmax is the maximum ratio, over all subsets, between the

penalties covered by a subset and its cost (see Sect. 2 for an exact definition). The
lower bound holds even in the binary case and even if ρmax is known and one is
allowed to drop previously selected subsets. On the other hand, they presented a
deterministic algorithm with a competitive ratio of O(

√
ρmax) that does not dismiss

subsets that were taken into the solution. This algorithmworks for both the constrained
and unconstrained cases. However, this algorithm relies on prior knowledge of the
value of ρmax. It was also shown that without dismissals and without such knowledge
only the trivial O(ρmax) bound is possible. It remained an open question whether
there is an o(ρmax)-competitive algorithm that has no knowledge of ρmax but allows
dismissals.

We note that in online algorithms the initial solution is typically empty and its value
increases with time. In contrast, the algorithm from [15] is unique in the sense that
a solution get progressively cheaper with time. This is a natural dimension that is
worth exploring more widely. We contribute to this by treating (just about) the most
general forms of covering problems known. We consider two extensions of OMM in
this paper.

First, we considerOMMwith submodular coverage.Assume that each element u j is
associated with a nonnegative, nondecreasing, submodular polynomially computable
set function f j , whose domain consists of multi-collection of subsets and its range is
[0, b j ]. Recall that a function g is nondecreasing if g(A) ≤ g(B), for all A ⊆ B, and
g is submodular if g(A)+g(B) ≥ g(A∪B)+g(A∩B), for every two subcollections
A and B. Assume that f j (∅) = 0, for every j . Also, note that the domain of f j is
revealed in an online manner. Given a multicollection C of S, let xi be the multiplicity
of Si in C (as defined above). Also, let z j = b j − f j (C). Going back to the team
formation scenario, a submodular function captures the case where several employees
that work together on a task need to spend some effort on maintaining team work, and
thus their combined productivity is less than the sum of their productivities. We refer
to this problem as Online Multiset Submodular Cover (abbreviated OMSC).

In another extension of OMM each subset Si has a capacity cap(Si ) that limits the
amount of coverage of a single copy of Si . More specifically, when a subset Si arrives,
it can potentially cover ai j of element j , for every j , but it can only cover at most
cap(Si ) out of this potential coverage. In this case a solution can be described as a
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pair (C, y), where C is a multicollection and y satisfies the following conditions: (i)
yi j ≤ ai j , for every i and j , (ii)

∑
i yi j ≤ b j , for every j , and (iii)

∑
j yi j ≤ cap(Si ),

for every i . We refer to y as an incarnation function, since it determines the actual
coverage of each subset Si . This capacitated version of OMM has two flavors. In
the soft capacities case (unconstrained) one is allowed to use multiple copies of any
subset Si , provided that one pays for each such copy. One the other hand, in the hard
capacities case (constrained) one is allowed to use each subset at most once.

Capacities may describe the setting where a candidate has the potential to work
on many tasks, but has a limited workload capacity. For example, there may be two
task that require six hours a day, each. That is, b1 = b2 = 6. Assume that there is
a candidate who can work eight hours per day, but at most five hours per task. In
addition, this person may be assigned to both tasks, as long as each assignment is
for at most five hours. In this case, a11 = a12 = 5 and cap(S1) = 8. If this person
is assigned to work five hours on task 1 and three on task 2, then we are using the
incarnation y11 = 5 and y12 = 3.

1.1 Our Contribution

We present an O(
√

ρmax)-competitive algorithm for OMSC that does not dismiss
subsets that were taken into the solution, but relies on prior knowledge of the value
of ρmax. It works for both the constrained and unconstrained cases. This competitive
ratio is tight for the setting where ρmax is known, since there is an �(

√
ρmax) lower

bound on the competitive ratio of randomized algorithms even for the special case
of OMM with b = 1 [15] and even if dismissals are possible. Our algorithm is an
extension of the one for OMM from [15], and it is based on two upper bounds, one
for the total cost of the subsets and one for the penalties. The next result required a
parameterized version of the former bound.

Our main result is an O
(
log(ρmax)

√
ρmax

)
-competitive algorithm for OMSC that

does not rely on advance knowledge of ρmax. This result is new also for OMM. In
contrast to the first algorithm, this one uses dismissals of previously taken subsets. Our
algorithm does not use standard online methods, like Doubling or Classify & Select.
Instead, it executes the above mentioned algorithm, for every power of 2 in parallel.
We show that it is sufficient to maintain O(log(ρmax)) executions at any given time.
As a result, throughout the execution covers may be dropped completely, while others
emerge. This algorithm also works for both the constrained and unconstrained cases.
Specifically, in the constrained case, a subset used by several solutions is taken by the
algorithm only once.

Finally, for the capacitated versions of OMM, we obtain an O(
√

ρ′
max)-competitive

algorithm when ρ′
max is known and an O

(
log(ρ′

max)
√

ρ′
max

)
-competitive algorithm

when ρ′
max is unknown, where ρ′

max is the maximum ratio over all subset incarnations
between the penalties covered by this incarnation and its cost. For soft capacities this
is a straightforward corollary from the OMM results. However, in the hard capacities
case, we show a lower bound of �(ρmax) if element reassignments are disallowed.
If one may reassign elements, then we show that OMM with hard capacities can be
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reduced to OMSC. Submodularity is shown using a reduction to submodularity of
partial maximum weight matching functions [3].

1.2 RelatedWork

In the most basic covering problem, Set Cover, the input consists of a universe U
of n elements, a collection S ⊆ 2U of subsets of U , and a non-negative cost function
c : S → N. The instance is called unweighted, if c(S) = 1, for every S ∈ S. A
sub-collection C ⊆ S is a set cover if ∪S∈CS = U . The goal is to find a minimum
weight set cover, i.e., a sub-collection C that minimizes c(C) �

∑
S∈C c(S). There

are several �(log n) lower bounds [2, 14, 26, 28] on the approximation ratio of Set
Cover. Dinur and Steurer [12] gave an optimal inapproximability result by showing
that Set Cover is not approximable within (1 − o(1)) ln n, unless P=NP. On the
other hand, it is well known that the approximation ratio of the greedy algorithm is
bounded by Hn , where Hn is the nth Harmonic number [9, 22, 25]. Set Cover can be
approximated within� � maxu |{S : u ∈ S}| [5, 21]. On the other hand, it is NP-hard
to approximate Set Cover within a factor of � − 1 − ε, for any ε > 0, assuming
� > 2 is a constant [10]. The case where � = 2 (i.e., Vertex Cover) is NP-hard to
approximate within a factor of 10

√
5 − 21 ≈ 1.36 [11].

In the Set Multi- Cover problem each element u j is associated with a covering
requirement b j ∈ N. A feasible solution is required to cover an element u j using
b j sets, i.e., it is a sub-collection C ⊆ S such that |{S : u ∈ S} ∩ C| ≥ b j ), for
every u j ∈ U . As in Set Cover, the goal in Set Multi- Cover is to minimize
c(C). There are two versions on Set Multi- Cover. In the unconstrained version
C is a multi-set that may contain any number of copies of a subset S, and in the
constrained version each set may be picked at most once. We revert to Set Cover

by setting b j = 1, for every u j , therefore the hardness results of Set Cover apply
to both versions. On the positive side, both versions of Set Multi- Cover can be
approximated with O(log n) using the natural greedy algorithm [29]. Constrained Set
Multi- Cover admits a�-approximation algorithm [20]. In the unweighted case there
is a deterministic (� − bmin + 1)-approximation algorithm [31] and a randomized
(� − bmin + 1)(1 − o(1))-approximation algorithm [27], where bmin = min j b j .
Finally, it is known that a (� − bmin + 1)-approximation algorithm for the weighted
case can be obtained using primal-dual or local ratio.

Multi- Set Multi- Cover (MM) is an extension of Set Multi- Cover inwhich
the input also contains a coverage ai j ∈ N, for every Si ∈ S and u j ∈ Si . Hence,
Si can be viewed is a multi-set having ai j copies of u j , for each u j . As in Set

Multi- Cover, the MM problem has two variants, unconstrained and constrained.
Even the special case of constrained MM with one element is already NP-hard, since
it is equivalent to Minimum Knapsack. Unconstrained MM can be approximated
within an O(log n) ratio by greedy [29]. Dobson [13] showed that greedy is an
H(maxi

∑
j ai j )-approximation algorithm for constrainedMM. Carr et al. [7] gave an

LP-based p-approximation algorithm, where p � max j
∣∣{Si : ai j > 0

}∣∣. Kolliopou-
los and Young [23] obtained an O(log n)-approximation algorithm for constrained
MM that uses LP-rounding.
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Wolsey [30] studiedSubmodularSet Cover,where the goal is tofind aminimum
cost collection C ⊆ S which covers all elements inU .Wolsey showed that the approxi-
mation ratio of thegreedy algorithm is 1+O(log fmax),where fmax = maxS∈S f ({S}).
As mentioned in [8], Capacitated Set Cover can be seen a special case of Sub-
modular Set Cover by defining f (C) as the maximum number of elements that a
subcollection C can cover.

Guha et al. [18] presented a primal-dual 2-approximation algorithm for Vertex
Cover with soft capacities (a local ratio interpretation was given in [4]) and a 3-
approximation algorithm for capacitated Vertex Cover with edge requirements.
Both algorithms can be extended to Set Cover and the resulting approximation ratios
are � and � + 1, respectively. Gandhi et al. [17] presented a 2-approximation algo-
rithm for Vertex Cover with soft capacities using an LP-rounding method called
dependent rounding. Chuzhoy and Naor [8] presented a 3-approximation algorithm
for unweighted Vertex Cover with hard capacities, which is based on randomized
rounding with alterations. They also proved that the weighted version of this problem
is as hard to approximate as set cover. Gandhi et al. [16] improved the approximation
ratio for unweighted Vertex Cover with hard capacities to 2.

In the standard approach to online covering, it is the elements that arrive overtime as
opposed to the subsets. Alon et al. [1] definedOnline Set Cover as follows (see also
[6]).A collection of sets is known in advance. Elements arrive online, and the algorithm
is required tomaintain a cover of the elements that arrived: if the arriving element is not
already covered, then some set from the given collectionmust be added to the solution.
They presented an O(log n logm)-competitive algorithm, which is the best possible
unless NP ⊆ BPP [24]. Observe that our problem has the complementary view of
what is known in advance and what arrives online. Recently, Gupta and Levin [19]
considered a problem called Online Submodular Cover, which extends Online
Set Cover. In this problem the subsets are known and the submodular functions
(elements) arrive in an online manner. They presented a polylogarithmic competitive
algorithm whose ratio matches the one from [1] in the special case of Online Set

Cover.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we introduce some
notation. In Sect. 3 we present the O(

√
ρmax)-competitive algorithm for OMSC

which relies on prior knowledge of the value of ρmax. Section4 contains our
O

(
log(ρmax)

√
ρmax

)
-competitive algorithm for OMSC that does not rely on advance

knowledge of ρmax. Section5 studies the capacitated versions of OMM. We conclude
in Sect. 6.

2 Preliminaries

When considering multicollections of subsets one should define set operations, such
as union or intersection, on multicollections. If one implicitly assumes that each copy
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of a subset Si have a unique serial number, then multicollections become collections
and set operations are properly defined. LetA and B be multi-collections. We assume
that the operationA∪B is done on two multicollections whose subset serial numbers
may or may not match. Moreover, we assume that the disjoint union operationA�B
is done on two multicollections whose subset serial numbers do not match. Hence,
the outcome of A � B can be represented by the vector xA + xB, where xA and xB
are the corresponding vectors that indicate the number of copies of each subset in the
multicollections.

As mentioned earlier, g is submodular if g(A)+ g(B) ≥ g(A∪B)+ g(A∩B), for
every two multicollections A and B. An equivalent definition is that g is submodular
if g(A ∪ {S}) − g(A) ≥ g(B ∪ {S}) − g(B), for every A ⊆ B and S ∈ S.

Given a multicollection C, let F(C) be the weighted coverage (or, penalty sav-
ings) of C, namely F(C) = ∑

j p j f j (C). Observe that F is submodular, since the
class of submodular functions is closed under non-negative linear combinations. F is
monotone as well.

For a subset Si let κ(i) be the weighted coverage of a single copy of the subset Si
by itself, i.e.,

κ(i) � F({Si }) =
∑

j∈Si
p j f j ({Si }) .

κ(i) is the potential savings in penalties of a single copy of subset Si . Observe that
since the f j s are submodular, κ(i) is the maximum amount of penalties that can be
saved by a single copy of Si . More formally, for any multicollection C, we have that

κ(i) = ∑
j p j f j ({Si }) ≥ ∑

j p j

(
f j (C � {Si }) − ∑

j f j (C)
)

= F(C � {Si }) − F(C) .

In addition, define ρ(i) � κ(i)/ci , for every i , and ρmax � maxi ρ(i). Hence,
ρ(i) is the ratio between the maximum potential savings and the cost of the subset Si ,
namely it is the cost effectiveness of subset Si . Observe that if κ(i) ≤ ci for some i ,
then the subset is redundant. It follows that we may assume, without loss of generality,
that κ(i) > ci for every i , which means that ρ(i) > 1, for every i , and that ρmax > 1.

Intuitively, the cheapest possible way to cover the elements is by subsets with
maximum cost effectiveness. Ignoring the sets and simply paying the penalties (i.e.,
the solution x = 0 and z = b) gives a ρmax-approximate solution.

In the capacitated version of OMM each subset Si has a capacity cap(Si ). This
means that a single copy of Si may cover a total of at most cap(Si ) units of the
covering requirements of elements contained in Si . Given Si ∈ C, we refer to ai as
the potential coverage vector of Si . A vector a′

i ∈ R
n+ is called an incarnation of

Si if (i) a′
i j ≤ ai j , for every j , (ii)

∑
j a

′
i j ≤ cap(Si ), and (iii)

∑
i a

′
i j ≤ b j . We

use a′
i � ai to denote that a′

i is an incarnation of Si . In the capacitated case it is not
enough to provide a multicollection C as a solution, but rather one needs to assign an
incarnation to every subset in C. Hence, a solution can be described as a pair (C, y),
where C is a multicollection and y(Si ) is an incarnation of Si , i.e., y(Si ) � ai . In the
soft capacities case, one may use multiple incarnations of a subset Si , provided that
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one pays ci for each one. In the hard capacities case, one may use only one incarnation
of Si . In the capacitated case, the maximum weighted coverage of a subset Si depend
on the incarnation of Si . Hence, we define κ ′(i) = maxa′

i�ai

∑
j p j a′

i j . Also, define

ρ′(i) � κ ′(i)/ci , for every i , and ρ′
max � maxi ρ′(i).

3 Competitive Submodular Coverage

In this section we provide a deterministic online algorithm for OMSC that relies on
the advance knowledge of ρmax. The section mainly focuses on unconstrained OMSC,
but a similar approach would work for constrained OMSC.

Our algorithm is called Threshold (Algorithm 1) and it generates a monotonically
growing multicollection C of subsets based on a simple deterministic threshold rule.
(Initially, C = ∅.) It is assumed that Threshold has knowledge of an upper bound
σ on ρmax (the maximum cost effectiveness over all subsets) and works as follows:
Upon arrival of a new subset Si , we add xi copies of Si to C, where xi is the largest
integer satisfying satisfying (1)

xi · ci ≤ (
F(C � Sxii ) − F(C)

)
/
√

σ , (1)

where Sqi denotes the multicollection with q copies of S. Intuitively, we take the
maximum possible number of copies of subset Si that allows us to save a factor
of at least

√
σ over the penalties avoided. Notice that xi is well-defined because

Inequality (1) is always satisfied by xi = 0. Also, let z j be the requirement of j that
is uncovered by the current solution C, namely let z j = b j − f j (C).

Algorithm 1: – Threshold
1 Upon arrival of Si , begin
2 Let xi be the largest integer satisfying (1).

3 C ← C � S
xi
i

We show that the competitive ratio of Threshold is at most 2
√

ρmax, if σ = ρmax.
We assume that Threshold is executed with a parameter σ such that σ ≥ ρmax, since
we shall need this extension in the next section.

Let Ci be the solution that is constructed after the arrival of subset Si , and let zij be
the corresponding value of z j , for every i .

We first bound the cost
∑

i ci xi of the selected sets.

Lemma 1 Let C be the solution computed by Threshold with parameter σ , where
σ ≥ ρmax. Also, let C∗ be an optimal solution. Then,

∑

i

ci xi ≤ ρmax√
σ

∑

i

ci x
∗
i + 1√

σ

∑

j

p j (z
∗
j − z j ) .
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Proof By condition (1), we have that

√
σ

∑

i

ci xi ≤
∑

i

(
F(Ci−1 � Sxii ) − F(Ci−1)

)

=
∑

i

(F(Ci ) − F(Ci−1)) = F(C) =
∑

j

p j (b j − z j ) .

On the other hand, since ρ(i) = κ(i)/ci , for every i , we have that

∑

i

ci x
∗
i =

∑

i

F({Si })
ρ(i)

x∗
i

≥ 1

ρmax

∑

i

x∗
i F({Si })

≥ 1

ρmax

∑

i

(
F(C∗

i ) − F(C∗
i−1)

)

= 1

ρmax

∑

j

p j (b j − z∗j ) .

It follows that

√
σ

∑

i

ci xi ≤
∑

j

p j (b j − z j ) =
∑

j

p j (b j − z∗j ) +
∑

j

p j (z
∗
j − z j )

≤ ρmax

∑

i

ci x
∗
i +

∑

j

p j (z
∗
j − z j ) ,

as required. ��
Theorem 1 Let C be the solution computed by Algorithm Threshold, and let C∗ be
an optimal solution. Then,

cost(C) =
∑

i

ci xi +
∑

j

p j z j ≤ 2

⎛

⎝√
ρmax

∑

i

ci x
∗
i +

∑

j

p j z
∗
j

⎞

⎠ .

Proof Due to Lemma 1, with σ = ρmax, we have that

∑

i

ci xi ≤ √
ρmax

∑

i

ci x
∗
i + 1√

ρmax

∑

j

p j (z
∗
j − z j ) .

The next step is to bound the total sum of penalties that C pays and C∗ does not pay,
namely to bound

∑

j

p j max
{
z j − z∗j , 0

}
.
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Define

�i � max
{
x∗
i − xi , 0

}
.

If�i = 0, for all i , then C∗ ⊆ C and z j ≤ z∗j , for every j , and we are done. Otherwise,
let i be an index such that �i > 0. Due to condition (1) in the i th step, we have that

ci xi ≤ (F(Ci ) − F(Ci−1)) /
√

ρmax ,

where Ci = Ci−1 � Sxii , while

ci x
∗
i >

(
F

(
Ci−1 � S

x∗
i

i

)
− F(Ci−1)

)
/
√

ρmax .

Hence,

ci�i = ci x
∗
i − ci xi >

(
F

(
Ci � S�i

i

)
− F(Ci )

)
/
√

ρmax

≥
(
F

(
C � S�i

i

)
− F(C)

)
/
√

ρmax ,

where the second inequality is due to the submodularity of F . It follows that

√
ρmax

∑

i

ci�i >
∑

i

(
F

(
C � S�i

i

)
− F(C)

)

≥ F

(

C �
⊎

i

S�i
i

)

− F(C)

≥ F(C∗) − F(C)

≥
∑

j

p j max{z j − z∗j , 0} ,

where the second inequality is due to the submodularity of F , and the third is due to
the monotonicity of F . Since x∗ ≥ �, we have that

∑

j

p j max{z j − z∗j , 0} <
√

ρmax

∑

i

ci�i ≤ √
ρmax

∑

i

ci x
∗
i .

Putting it all together, we have that

∑

i

ci xi +
∑

j

p j z j

≤
∑

i

ci xi +
∑

j

p j z
∗
j +

∑

j

p j max{z j − z∗j , 0}

≤ √
ρmax

∑

i

ci x
∗
i + 1√

ρmax

∑

j

p j (z
∗
j − z j ) +

∑

j

p j z
∗
j +

∑

j

p j max{z j − z∗j , 0}
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= √
ρmax

∑

i

ci x
∗
i + 1√

ρmax

∑

j

p j max
{
z∗j − z j , 0

}
− 1√

ρmax

∑

j

p j max
{
z j − z∗j , 0

}

+
∑

j

p j z
∗
j +

∑

j

p j max{z j − z∗j , 0}

≤ √
ρmax

∑

i

ci x
∗
i +

(
1 + 1√

ρmax

) ∑

j

p j z
∗
j −

(
1 − 1√

ρmax

)∑

j

p j max{z j − z∗j , 0}

≤ (2
√

ρmax − 1)
∑

i

ci x
∗
i +

(
1 + 1√

ρmax

) ∑

j

p j z
∗
j ,

as required. ��
Theorem 1 leads us to an upper bound on the competitive ratio of Algo-

rithm Threshold.

Corollary 2 Algorithm Threshold is 2
√

ρmax-competitive for unconstrained OMSC,
assuming prior knowledge of ρmax.

The same approach would work for the constrained variant of OMSC. In this case
the value of xi in the Condition described by (1) is also bounded by 1.

Corollary 3 Algorithm Threshold is 2
√

ρmax-competitive for constrained OMSC,
assuming prior knowledge of ρmax.

4 AlgorithmWithout Prior Knowledge of �max

In this sectionwe provide a deterministic online algorithm forOMSC that does not rely
on advance knowledge of ρmax. This algorithm is based on Algorithm Threshold,
but as opposed to algorithm Threshold, it uses dismissals. Recall that is was shown
that dismissals are necessary in order to obtain an o(ρmax)-competitive ratio [15] even
for OMM. The competitive ratio of the algorithm is O(log(ρmax)

√
ρmax).

Algorithm Multi- Threshold maintains a variable ρ̄ that holds, at any given
moment, ρmax of the instance that it has seen so far. In addition, it computes in parallel,
using Threshold, a solution Ck , with the parameter σ = 2k , for all k such that
2k ∈ [ρ̄, ρ̄2] (initially, ρ̄ = 1). Each invocation of Threshold is run independently.
That is, each copy of Thresholdmakes its decisions without taking into account the
decisions of other copies. Let (xk, zk) be the pair of variable vectors that correspond
to Ck .

Upon arrival of subset Si , the Algorithm Multi- Threshold updates ρ̄, if need
be. If ρ̄ is updated, then the algorithm terminates the invocations of Threshold for
all parameters that are smaller than ρ̄. That includes dismissing all subsets that were
taken by those invocations. The algorithm then executes a step of Threshold for each
power of 2 in the interval [ρ̄, ρ̄2].

Consider such an execution of Threshold with parameter σ = 24 = 16. As long
as ρ̄ <

√
16 = 4, then this execution does nothing. Hence, it is safe to activate it only

upon arrival of a subset Si such that ρ(i) ≥ 4.
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Algorithm 2:Multi- Threshold

1 Upon arrival of Si , begin
2 if ρ(i) > ρ̄ then
3 Abort Threshold for every σ = 2k ∈ [ρ̄, ρ(i))

4 Inialize Threshold for every σ = 2k ∈ [ρ̄2, ρ(i)2)
5 Update ρ̄: ρ̄ ← ρ(i)

6 Execute Threshold on Si for every σ = 2k ∈ [ρ̄, ρ̄2)

The next lemma generalizes this argument in order to justify the fact that Multi-

Threshold executes Threshold only on parameters in the interval [ρ̄, ρ̄2]. In other
words, we show that one may assume that Multi- Threshold actually executes
Threshold with parameter 2k , for all k ≥ �, where � = min

{
k : 2k ≥ ρ̄

}
, on the

whole instance.

Lemma 2 Let k be such that 2k > ρ̄2, and assume that we execute Threshold with
parameter σ = 2k starting at the arrival of the first subset. Then, Ck = ∅.
Proof When Threshold is run with parameter σ = 2k , the algorithm adds a copy of a
subset Si to the solution only if (1) is satisfied with (at least) xki = 1. If σ = 2k > ρ̄2,
then no set will be included. ��

The multicollection which is computed by Multi- Threshold is:

C =
⊎

k:2k∈[ρ̄,ρ̄2]
Ck or x =

∑

k:2k∈[ρ̄,ρ̄2]
xk .

Let z j = b j − f j (C), for every j . (We note that we need not hold a separate set of
copies of each subset for each Threshold execution – it suffices to hold themaximum
number of copies required.)

We observe that the penalties that are paid by the combined solution is smaller than
the penalty that any invocation would have to pay.

Observation 1 z ≤ zk , for every k such that 2k ∈ [ρ̄, ρ̄2].
Next, we bound the competitive ratio of Multi- Threshold. We first show that

the cost of subsets (without penalties) taken by invocation with parameter σ = 2k , for
k > �, is bounded by the optimal cost.

Lemma 3 Let k > � such that 2k ≤ ρ̄2. Then,
∑

i ci x
k
i ≤ √

ρ̄ · cost(C∗).

Proof Due to Lemma 2 one may assume that the invocation of Threshold with
parameter 2k is run on the whole instance. Define a new instance similar to the original
instance but with coverage requirements bkj = f j (Ck), for every j . The solution Ck
covers all of the requirements in the new instance by definition. Moreover, notice that
Threshold would compute Ck if executed on the new instance with parameter 2k .
Let C′ be an optimal solution for the new instance.
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Lemma 1 applied to Threshold with parameter 2k and the new instance implies
that

∑

i

ci x
k
i ≤ ρ̄√

2k

∑

i

ci x
′
i + 1√

2k

∑

j

p j z
′
j .

Since 2k > ρ̄, we have that

∑

i

ci x
k
i ≤ √

ρ̄
∑

i

ci x
′
i + 1√

ρ̄

∑

j

p j z
′
j ≤ √

ρ̄ · cost(C′) .

The lemma follows, since cost(C′) ≤ cost(C∗). ��
We bound the total cost of the solution using Lemma 3 and the fact that the solution

computed by invocation with parameter σ = 2� is O(
√

ρmax)-competitive.

Theorem 4 There exists an O(log(ρmax)
√

ρmax)-competitive algorithm for uncon-
strained OMSC.

Proof Consider the solution C at termination of Multi- Threshold. Since ρ̄ = ρmax
at termination, we have that xi = ∑

k:2k∈[ρmax,ρ2
max] x

k
i , for every i . By Lemma 2 we

may assume that the invocation of Threshold with parameter 2� run on the whole
instance. Also, by Observation 1 it follows that z j ≤ zkj , for every j , and in particular
for k = �. Hence,

cost(C) =
∑

i

ci xi +
∑

j

p j z j

≤
∑

i

ci
∑

k:2k∈[ρmax,ρ2
max]

xki +
∑

j

p j z j

≤
∑

i

ci
∑

k �=�:2k∈[ρmax,ρ2
max]

xki +
∑

i

ci x
�
i +

∑

j

p j z
�
j

≤ log(ρmax)
√

ρmax · cost(C∗) + 2
√
2ρmax · cost(C∗) ,

where the second inequality follows from Lemma 3 and Corollary 2. ��
By replacing Corollary 2 with Corollary 3, we have that:

Theorem 5 There exists an O(log(ρmax)
√

ρmax)-competitive algorithm for con-
strained OMSC.

5 Capacitated OnlineMultiset Multicover

In this section we consider the capacitated versions of Online Multiset Multi-

cover. We deal with soft capacities using a straightforward reduction to uncapacited
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OMM. As for hard capacities, we show a lower bound of �(ρmax), if subset reas-
signments are not allowed. If reassignments are allowed, we show that the capacitated
coverage is submodular, and this paves the way to a reduction to OMSC.

5.1 Soft Capacities

We first show that our results extend to soft capacities.

Theorem 6 There exists an O(
√

ρ′
max)-competitive algorithm for OMM with soft

capacities, assuming prior knowledge of ρ′
max.

Proof Consider a subset Si . One can simulate the arrival of Si with the arrival of all
its possible incarnations, namely with the arrival of Si = {

S′
i ⊆ Si : ∣∣S′

i

∣∣ = cap(Si )
}
.

The theorem follows, since the maximum cost effectiveness is ρ′
max. ��

Theorems 4 and 6 lead to the following result:

Theorem 7 There exists an O(log(ρ′
max)

√
ρ′
max)-competitive algorithm for OMM

with soft capacities.

5.2 Hard CapacitiesWithout Reassignments

The following construction shows a lower bound of �(ρ′
max), for the case where

elements cannot be reassigned to other subsets.

Theorem 8 The competitive ratio of any randomized online algorithm for OMM with
hard capacities is �(ρmax) if reassignments are disallowed. This bound holds even if
the algorithm is allowed to discard sets, and for inputs with unit penalties and costs,
and subsets of size at most two.

Proof Let alg be a randomized algorithm. Consider an instance with two unit penalty
elements u1, u2. The coverage requirements of both elements is β. The sequence
consists of two unit cost subsets with capacity β. It starts with S1 = {u1, u2}, a11 =
a12 = β. The second subset S2 has two options, each with probability 0.5: (i) S2 =
{u1}, a11 = β, and a12 = 0, and (ii) S′

2 = {u2}, a12 = β, and a11 = 0. Clearly, the
optimal cost is 2. Also, ρmax = ρ′

max = β.
Let A be the event that alg uses at least β/2 units of the capacity of S1 to cover

u1. If A occurs and the adversary presents the subset S2, then at least β/2 units of the
cover requirements of u2 are unsatisfied, for a penalty of at least β/2. Similarly, if A
does not occur and the adversary presents the subset S′

2, the same β/2 penalty applies
to u1. In either case, with probability 1

2 , the cost is at least β/2. Hence, the expected
cost of alg is at least β/4, for a competitive ratio of at least β/8. ��

5.3 Hard Capacities with Reassignments

Now consider the version of OMM, where reassignments are allowed. In this case,
it is only natural to have the best possible assignment with respect to the current
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Fig. 1 A bipartite graph
G = (L, R, E) for the instance
U = {1, 2, 3}, where
b = (2, 2, 1) and
S = {{1} , {1, 2} , {2, 3}}, where
cap(S1) = cap(S3) = 2 and
cap(S2) = 1

multicollection C at any time. Formally, given C ⊆ S, let ỹ be an incarnation function
that maximizes the weighted coverage of C, i.e., ỹC = argmaxy F(y(C)) .Also, denote

F̃(C) = F(ỹC) .

The next natural step is to modify Algorithm Threshold by using F̃ instead
of F . Hence, we would like to prove that F̃ is submodular. Before dealing with
submodularity we reduce the problem of finding the best cover of a universe U using
a capacitated collection C of subsets to an instance of the Maximum Weighted

Matching problem in a bipartite graph.
Given a multicollection S, we define the following bipartite graph G = (L, R, E),

where

L = {
�si : Si ∈ C, s ∈ {1, . . . , cap(Si )}

}

R =
{
r tj : u j ∈ U , t ∈ {

1, . . . , b j
}}

E =
{
(�si , r

t
j ) : u j ∈ Si , s ∈ {1, . . . , cap(Si )} , t ∈ {

1, . . . , b j
}}

.

The weight of an edge (�si , r
t
j ) is defined as p j , i.e., w(�si , r

t
j ) = p j . A depiction is

given in Fig. 1.
Given a multicollection C, let LC be the vertices in L that correspond to subsets

in C, i.e., LC = {
�si ∈ L : Si ∈ C}

. The graph G[LC × R] is an induced subgraph
of G that contains that all element vertices on the right side, but only vertices that
correspond to subsets in C on the left side.

Lemma 4 Consider an instance of capacitated Multiset Multicover and a mul-
ticollection C ⊆ S. Then, an incarnation function y induces a fractional matching M
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in G[LC × R], such that the weight of the matching is equal to the total penalty that
is covered by y, and vice versa.

Proof Given an incarnation y, let y′ be the following fractional matching:

y′(�si , r
t
j ) = y(Si , u j )

cap(Si ) · b j
.

y′ is a fractional matching, since

∑

�si :u j∈Si
y′(�si , r tj ) =

∑

�si :u j∈Si

y(Si , u j )

cap(Si ) · b j
=

∑

u j∈Si
b j · y(Si , u j )

cap(Si ) · b j
=

∑

u j∈Si

y(Si , u j )

cap(Si )
≤ 1 ,

for every r tj , and similarly

∑

r tj :u j∈Si
y′(�si , r

t
j ) =

∑

r tj :u j∈Si

y(Si , u j )

cap(Si ) · b j

=
∑

Si :u j∈Si
cap(Si ) · y(Si , u j )

cap(Si ) · b j
=

∑

Si :u j∈Si

y(Si , u j )

b j
≤ 1 ,

for every �si .
For the other direction, let y′ be a fractional matching. Define the following incar-

nation function:

y(Si , u j ) =
∑

s

∑

t

y′(�si , r
t
j ).

We have that

∑

j

y(Si , u j ) =
∑

j

∑

s

∑

t

y′(�si , r
t
j ) =

∑

s

∑

�si :u j∈Si
y′(�si , r

t
j ) ≤

∑

s

1 = cap(Si ) ,

and

∑

i

y(Si , u j ) =
∑

i

∑

s

∑

t

y′(�si , r
t
j ) =

∑

t

∑

r tj :u j∈Si
y′(�si , r

t
j ) ≤

∑

t

1 = b j ,

Finally, it is not hard to verify that the total sum of covered penalties is equal to the
weight of the matching. ��

Since the polytope of bipartiteMaximum Weighted Matching is known to have
integral optimal solutions, Lemma 4 implies that:

Corollary 9 Consider an instance of capacitated Multiset Multicover and a mul-
ticollection C ⊆ S. Then, there exists an optimal integral incarnation function y.
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Now we move to proving that F̃ is submodular. To do that we use a result by Bar-
Noy and Rabanca [3] that showed submodularity of partial maximumweight matching
functions.

Definition 1 [3] Let G = (L, R, E) be a bipartite graph and let w : E → R+ be a
non-negative weight function on the edges. The partial maximum weight matching
function f : 2A → R maps any subset U ⊆ L to the value of a maximum weight
matching in G[U ∪ R].
Lemma 5 [3] Let f be a partial maximum weight matching function for a bipartite
graph G with non-negative edge weights. Then, f is submodular.

By Lemmas 4, 5, and Corollary 9, we have that:

Lemma 6 Given an instance of capacitated Multiset Multicover, F̃ is submodu-
lar.

Since F̃ is submodular one may use the algorithms from the previous sections.

Theorem 10 There exists an O(
√

ρ′
max)-competitive algorithm for OMM with hard

capacities, assuming prior knowledge of ρ′
max.

Proof We use Algorithm Threshold with F̃ instead of F . We assume that Algo-
rithm Threshold uses the bipartite graph G in order to compute its solution. If this
is done using an augmenting path algorithm, then z j can only decrease, for every u j ,
throughout execution.

By Lemma 6, F̃ is submodular and F̃ is also monotone. Therefore the analysis of
the Algorithm Threshold applies with ρ′

max replacing ρmax. ��
Theorems 4 and 10 lead to the following result:

Theorem 11 There exists an O(log(ρ′
max)

√
ρ′
max)-competitive algorithm for OMM

with hard capacities.

6 Conclusion

It was shown in [15] that randomized algorithms cannot have competitive ratio better
than �(

√
ρmax), even for OMM. This lower bound holds even if ρmax is known, and

even if one is allowed to drop previously selected subsets. We gave a matching upper
bound for OMSC, but the corresponding algorithm is based on the prior knowledge
of ρmax. The competitive ratio of our second algorithm is O(log(ρmax)

√
ρmax), and

this leaves a multiplicative gap of O(log(ρmax)). It remains an open question whether
there is an O(

√
ρmax)-competitive algorithm that has no knowledge of ρmax, even for

OMM.
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