Algorithmica (2024) 86:2211-2249
https://doi.org/10.1007/500453-024-01219-2

®

Check for
updates

The Impacts of Dimensionality, Diffusion, and Directedness
on Intrinsic Cross-Model Simulation in Tile-Based
Self-Assembly

Daniel Hader' - Matthew J. Patitz’

Received: 9 August 2023 / Accepted: 23 February 2024 / Published online: 3 April 2024
© The Author(s) 2024

Abstract

Motivated by applications in DNA-nanotechnology, theoretical investigations in
algorithmic tile-assembly have blossomed into a mature theory. In addition to com-
putational universality, the abstract Tile Assembly Model (aTAM) was shown to be
intrinsically universal (FOCS 2012), a strong notion of completeness where a single
tile set is capable of simulating the full dynamics of all systems within the model;
however, this construction fundamentally required non-deterministic tile attachments.
This was confirmed necessary when it was shown that the class of directed aTAM
systems, those where all possible sequences of tile attachments result in the same
terminal assembly, is not intrinsically universal (FOCS 2016). Furthermore, it was
shown that the non-cooperative aTAM, where tiles only need to match on 1 side to
bind rather than 2 or more, is not intrinsically universal (SODA 2014) nor computation-
ally universal (STOC 2017). Building on these results to further investigate the other
dynamics, Hader et al. examined several tile-assembly models which varied across (1)
the numbers of dimensions used, (2) how tiles diffused through space, and (3) whether
each system is directed, and determined which models exhibited intrinsic universality
(SODA 2020). In this paper we extend those results to provide direct comparisons of
the various models against each other by considering intrinsic simulations between
models. Our results show that in some cases, one model is strictly more powerful than
another, and in others, pairs of models have mutually exclusive capabilities. This paper
is a greatly expanded version of that which appeared in ICALP 2023.

Keywords Tile-assembly - Tiles - ATAM - Intrinsic simulation - Simulation

B Daniel Hader
dhader@uark.edu

Matthew J. Patitz
patitz@uark.edu

Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville,
USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01219-2&domain=pdf

2212 Algorithmica (2024) 86:2211-2249

1 Introduction

Self-assembling systems are those in which a disorganized collection of simple compo-
nents spontaneously combine to form complex, organized structures through random
motion and local interactions. From the pristine, periodic arrangements formed by
crystallizing atoms to the robust coordination of dividing cells in developing organ-
isms, such systems are the source of much complexity in nature and a topic of critical
importance to many fields of research. Among them is the field of DNA nanotech-
nology, wherein artificial DNA strands are used as structural units that self-assemble
according to the dynamics of DNA base pairing, which has seen immense success over
the past several decades in harnessing the power of self-assembly to create microscopic
structures with incredible precision [1—4] and even perform algorithmic tasks at the
nano-scale [5—12]. Because it’s difficult and expensive to accurately model the chem-
istry of DNA, a variety of simplifying models have been proposed to facilitate the
design of DNA-based self-assembling systems. Among the more popular and effec-
tive ones are tile-assembly (TA) models where components, made of several bound
DNA strands exposing small unbound portions with which other components can
bind, are abstractly represented as geometric tiles whose labeled sides attach to one
another according to predefined affinity rules [13—15]. The advantage of these models
lies not only in their success as design tools, but in their similarity to existing models
studied heavily in computer science such as Wang tiles and cellular automata. This
similarity isn’t a coincidence either; the first TA model proposed, the abstract Tile-
Assembly Model (aTAM), was designed, at least in part, to show that the dynamics
of DNA-based self-assembly are algorithmically universal [15]. Consequently, DNA
nanotechnology shares a unique relationship with the theory of computation, with
theorists frequently borrowing ideas from complexity, computability, and information
theory to study questions regarding, among many other things, what kinds of struc-
tures can be self-assembled, the relative difficulty of assembling different shapes, and
how variations in a model’s dynamics affect its algorithmic power.

This paper is particularly focused on that latter question. As with more conventional
models of computation, we generally study such questions by proving whether one
model is capable of simulating all systems of another. We have to be careful about our
definition of simulation however, as it’s generally straightforward to show that many
TA models are capable of universal computation. Consequently, most TA models are
capable of “simulating” all others in that they can simulate a Turing machine which can
in turn simulate the other model. To learn something useful about the relative power
of two TA models therefore, we have to consider the geometry of the tile-assembly
dynamics. We do this by adapting a tool from the theory of cellular automata, namely
intrinsic simulation. For a simulation to be intrinsic, we require that the simulation
is not merely symbolic (i.e. how a Turing machine can simulate an aTAM system
by storing an internal representation of the tiles as symbols on its tape), but rather
geometric wherein blocks of tiles in the simulating system correspond to individual
tiles in the simulated system and the order of tile attachments in these blocks follow
those in the simulated system up to a fixed scale factor. In other words, such a simulation
would appear identical to the system being simulated if we “zoomed out” sufficiently
far (Fig. 1). This approach is not novel to our results, in fact there is already a relatively

@ Springer

Algorithmica (2024) 86:2211-2249 2213

Fig.1 During an intrinsic
simulation, the dynamics of
individual tile attachments are

simulated so that blocks of tiles ! : .
in the simulating system “look -
like” individual tiles at scale e ! -

mature theory of intrinsic simulations in tile-assembly which has resulted in a “kind
of computational complexity theory for self-assembly” [16]. Such efforts have been
instrumental in characterizing the relative power of TA models and has lead to a deeper
understanding how different dynamics can be used for the same algorithmic purpose.

1.1 Our Results

In an attempt to extend several previous results regarding intrinsic simulation, here
we consider 3 specific variations of the aTAM: dimensionality, where both 2D and
3D systems are considered, diffusion, where tiles cannot attach in regions which have
been surrounded by previously attached tiles, and directedness, where tile attachments
in a system are required to result in exactly one terminal assembly. It’s important to
note that these variations aren’t arbitrary either. The difference between directed and
undirected systems is analogous to the difference between deterministic and proba-
bilistic algorithms and, among other things, plays a role in the study of the complexity
of shape assembly [17, 18]. The diffusion restriction on the other hand is often used
to make 3D tile-assembly models more realistic by limiting tile attachments to those
locations in which a tile could reasonably diffuse (i.e. not in a region completely sur-
rounded by other tiles). There are certainly other variations of the aTAM including
those where tiles have negative glues [19, 20], complex geometries [13, 21], and even
the ability to propagate signals along their surface [14, 22]; however, we note that these
models are generally highly theoretical and have seen little use in the aid of designing
physical and practical self-assembling DNA-based tile systems. The 3 variations we
have chosen all arise naturally in the design of DNA-based tile systems and are thus
well motivated for theoretical comparative study of their relative capabilities.

These variations can be introduced into the aTAM in any combination to yield 8 dif-
ferent models and, considering all ordered pairs of these 8 models gives rise to a table
consisting of 64 entries each representing one model’s ability or inability to intrinsi-
cally simulate the dynamics of another. Generally speaking, results regarding these
cross-model simulations are complex, involving intricate tile-assembly constructions
and counterexamples; consequently, only a handful of these entries have been proved
in past literature.

In this paper, we fill a considerable number of missing entries. Table 1 lays out our
results along with past results denoted by an asterisk. In it, entries are labeled to indicate
whether the model in the row’s header can simulate the model in the column’s header.

@ Springer

Algorithmica (2024) 86:2211-2249

2214

[2AOU AIE S)[NSAI IAYIO [[“SINSAI FUNSIXS WOIJ $19S [N
SUISN SUOTIEAISSQO RIALN Q1€ () JOTTep B [IIM PIYIRUI 9SOY) PUB S)NSAT SUTISTXD AIB () YSTIA)SE UL [IIM PD[IBUI S[[2)) "SWA)SAS PAIOAIIP JO 12SqNS) 0] SIQJAI /1P PUE [9pOul
© UL SWISAS [[€ JO 125 3y} 0} SI2JaI J7y/ *(SUONIUYDP [N 10 T'T 199S 238) NV.LE [eNedS Ul ST AVIES PUE ‘N VLE [EUOISUSWIP-¢ 94} INVIEAE ‘INVLE Jeueld oy st NV.ILEd

¢ (1 war09y L) ON (¥ uoneaIasqQ) ;Sax (] wa109y[) ON Ip
¢ [YAFESN (¥ uoneAIasqQ) ;Sax (¥ uoneAIdsqQ) (S e INV1ES
¢ (T UONBAIdSQQ ‘p WAI03YT) ON YAREDN (1 wal09y L) ON Ip
i (1 uoneAIasqQ ‘f W103Y 1) ON [zl 450k [SAIRDN e INVLedE
(Z uoneardsqQ) oN (Z uoneardsqQ) oN (Z uoneardsqO) oN (Z uoneadsqQ) oN I1p
(g uonea1ssqQ) oN (g uonea1ssqQ) oN (g uoneadsqQ) ON (g uoneaIssqQ) oN e NV.Led
(Z uoneadsqQ) oN (Z uoneadsqQ) oN (Z uoneardsqQO) oN (7 uoneaRsqQO) oN Ip
(7 uoneaRsqQ) oN (Z uoneadsqQ) oN (Z uoneardsqQO) oN (7 uoneasqQ) oN e V1e
1p e 1p 1
INVLES INVIedE
2 (T wa109yL) ON (€ uoneaIasqQ) ;S (1 wa109y[) oN 1p
2 2 (€ uoneaIasqQ) ;S (€ uoneAIdSqQ) | SK Ie NVLeS
2 (T wea109yL) ON (€ uoneaIasqQ) ;S (1 wa109y[,) ON Ip
2 2 (€ uoneaIasqQ) ;S (€ uoneAIdsqQ) | SK Ie NVLede
[sT] «ON (1 war09y L) ON (1 uoneAIasqQ ‘g weloay]) oN (1 uoneAILsqQ ‘g Waloay]) ON 1p
(G war0ay) $9X [sT] «ON (1 uonea1asqQ ‘g waloay]) oN (1 UoneAI2sqQ ‘g Waloay]) oN Ie INV.Led
2 (T UONBAIdSQQ ‘¢ WRI03YL) ON [l «ON (1 wa109y]) ON 1p
2 (T uoneAIdSqQQ ‘¢ WRI03Y L) ON [€T] «Sok [€T] 489K e INVLE
1p e 1p e
NVLed INVLE

[opou s, UWN[0d Y} AB[NWIS A[[EIISULIUL UBD [9POW S, MOI 9} IOYIoym SUTUI[INO ‘S)[NSAI INO JO d[qe, | 3|qel

pringer

As

Algorithmica (2024) 86:2211-2249 2215

There are of course a few entries for which the answer is obvious, which we state as
observations with justification rather than full theorems, but many of our results are
distinctly non-trivial and some were rather unexpected. For instance, while we initially
suspected that the diffusion restricted version of the aTAM (i.e. the Planar aTAM or
PaTAM) was, as it’s name suggests, a weaker version of the aTAM, we found that both
models exhibit dynamics which cannot be simulated by the other. While the table is
still missing a few entries, our contributions have brought the number of known entries
up to 52 from the 16 which previously existed in published literature (8 of which were
technically not explicitly stated, but were trivial observations based on the tile sets and
proofs presented in [25]).!

A shortened version of this paper was published in [26], and in this version we still
include the high-level overview of each result but then also include the full proof details
which were omitted in [26]. The rest of our paper is laid out as follows. In Sect.?2,
we provide definitions of the various models, concepts, and types of simulation used
throughout the paper. In Sect.3 we present the relatively simple set of results that
arise from observations and utilizing prior constructions. In Sect. 4 we prove that there
exist aTAM systems that cannot be simulated by any PaTAM systems, and in Sect. 5
we show the reverse, i.e. there exist PATAM systems that cannot be simulated by any
aTAM systems. Thus, those two sections show the mutually exclusive powers of those
two models. Section6 contains our final impossibility result showing that SaTAM
systems exist that cannot be simulated by any 3DaTAM systems. In Sect. 7 we present
a positive result by construction, showing that there exists a universal PaTAM tile set
that can be used to simulate any directed PaATAM system. Finally, in Sect. 8 we provide
an overview of our work and goals, as well as speculation on possible approaches for
solving some of the remaining open problems.

2 Preliminary Definitions

Throughout this paper we will use Z, Z™, and N to denote the set of integers, posi-
tive integers, and non-negative integers respectively. We will also assume Z¢ has the
additional structure of a lattice graph so that each point is a vertex and two points are
adjacent (i.e. share an edge) exactly when their Euclidean distance is 1.

2.1 Definition of the Abstract Tile-Assembly Model

In this section, we define the abstract Tile-Assembly Model in 2 and 3 dimensions.
We will use the abbreviation aTAM to refer to the 2D model and 3DaTAM for the
3D model. These definitions are borrowed from [25] and we note that [27] is a good
introduction to the model for unfamiliar readers.

Fix d € {2, 3} to be the number of dimensions and X to be some alphabet with ¥*
its finite strings. A glue g € ¥* x N consists of a finite string label and non-negative

1 It should also be noted that most of the remaining unknown entries involve simulating directed, diffusion
restricted systems. While we do hope to fill these entries in the future, we suspect that their proofs will
be quite complicated since simulating diffusion restricted systems is tricky and counterexamples are often
harder to find in directed systems.

@ Springer

2216 Algorithmica (2024) 86:2211-2249

integer strength. A tile type is a tuple t € (£* x N)2¢, thought of as a unit square or
cube with a glue on each side. A tile set is a finite set of tile types. We always assume
a finite set of tile types, but allow an infinite number of copies of each tile type to
occupy locations in the Z¢ lattice, each called a tile.

Given atile set T', a configuration is an arrangement (possibly empty) of tiles in the
lattice Z¢, i.e. a partial function « : Z? --» T. Two adjacent tiles in a configuration
interact, or are bound or attached, if the glues on their abutting sides are equal (in both
label and strength) and have positive strength. Each configuration « induces a binding
graph B, whose vertices are those points occupied by tiles, with an edge of weight s
between two vertices if the corresponding tiles interact with strength s. An assembly
is a configuration whose domain (as a graph) is connected and non-empty. The shape
So C 74 of assembly « is the domain of . For some 7 € 7%, an assembly « is T-stable
if every cut of B, has weight at least 7, i.e. a T-stable assembly cannot be split into two
pieces without separating bound tiles whose shared glues have cumulative strength
7. Given two assemblies «, 8, we say « is a subassembly of B (denoted o T B) if
So € Sg and for all p € Sy, a(p) = B(p).

A tile-assembly system (TAS) is a triple 7 = (T, 0, t), where T is a tile set, o is
a finite 7-stable assembly called the seed assembly, and T € Z™ is called the binding
threshold. Given a TAS 7 = (T, o, t) and two t-stable assemblies o and 3, we say
that o 7 -produces 8 in one step (written « —>IT B)if o C B and |S}3\Sa‘ = 1. That
is, o —>? B if B differs from « by the addition of a single tile. The 7 -frontier is the
set 07 o = U, ~Tp Sg\ S of locations in which a tile could 7-stably attach to .

We use AT to denote the set of all assemblies of tiles in tile set 7. Given a TAS
T = (T,o0,1), a sequence of k € 7t U {00} assemblies ag, a1, ... over AT is
called a 7 -assembly sequence if, forall 1 < i < k, aj_; —>17 o;. The result of an
assembly sequence is the unique limiting assembly of the sequence. For finite assembly
sequences, this is the final assembly; whereas for infinite assembly sequences, this is
the assembly consisting of all tiles from any assembly in the sequence. We say that «
T-produces B (denoted &« —7 B) if there is a T-assembly sequence starting with o
whose result is 8. We say « is 7 -producible if o —7T o and write A[7] to denote
the set of 7 -producible assemblies. We say « is 7 -terminal if « is T-stable and there
exists no assembly which is 7 -producible from «. We denote the set of 7 -producible
and 7 -terminal assemblies by AG[7].

When 7 is clear from context, we may omit 7 from the notation above.

Cooperative Attachment

Given a TAS 7 = (T, o0, 1), for a tile to attach to an assembly it must match glues
whose cumulative strength is at least in order to result in a T-stable assembly. This can
happen if, for instance, one of the matched glues has strength at least 7, in which case
any other matching glues are superfluous. Alternatively, a tile may still attach without
any t-strength glues though this requires multiple glues to match whose strengths sum
to at least 7. We refer to such attachments as cooperative.

@ Springer

Algorithmica (2024) 86:2211-2249 2217

2.2 Model Variations

In this paper we consider 3 variations of the aTAM. Other than the 3D aTAM, these
include directed and diffusion restricted versions of the models. We say that a TAS 7
is directed if | Ag[7]| = 1, 1.e. 7 admits only a single producible terminal assembly.
When we refer to a directed model we simply mean the set of all directed systems in a
model. Directed systems are desirable for self-assembly since we often want our tiles
to grow into a single target shape.

For diffusion restricted models, we note that in the aTAM it’s possible for tiles to
attach within a region of space which has been completely surrounded by other tiles.
In 2D, we can imagine that the tiles are able to navigate around the assembly through
the 3rd dimension, but in 3D such attachments are difficult to justify. Consequently,
we also consider models where such attachments are forbidden. In 2D, this restriction
could model a self-assembly process on the surface of a droplet of water where surface
tension prevents the components from taking advantage of the 3rd dimension. We call
the 2D diffusion restricted aTAM the Planar aTAM or PaTAM, and we call the 3D
diffusion restricted aTAM the Spatial aTAM or SaTAM. In these models, and their
directed subsets, we refer to regions which have been completely surrounded (in
which no tile attachments are allowed to occur) constrained. To formally model this
restriction, we first note that given a finite d-dimensional assembly «, the graph Z4\ S,
consists of a finite number of connected components, exactly one of which will be
infinite in size. We say that this component graph is the outside of « while the finite-
sized components are constrained. In a diffusion restricted system we only allow tile
attachments on the outside of an assembly.

2.3 Intrinsic Simulation

First we provide a high-level definition of the notion of intrinsic simulation which
should be sufficient for understanding our results. A full technical definition follows
afterward. For brevity, in this paper, unless explicitly stated, “simulation” will refer to
intrinsic simulation.

High-Level Description of Simulation

Simulation of system 7 by system S occurs at a scale factor m, so that m x m (or
m x m x m in 3D) blocks of tiles from S, which we refer to as macrotiles, correspond
to individual tiles in 7. For a given simulation, we define a macrotile representation
Sfunction R which describes this mapping of macrotiles to tiles. Additionally for conve-
nience, using R we define an assembly representation function R* which maps entire
assemblies from S to assemblies in 7, essentially evaluating R on each macrotile
location for a given assembly in S. Note that we don’t require all locations within a
macrotile to contain a tile and macrotile blocks containing tiles can still be mapped to
empty space under R. When a tile attachment causes the representation of a macrotile
location to map to a tile for the first time, we say that the attachment has caused the
macrotile to resolve and once a macrotile has resolved, any additional tile attachments
within the macrotile cannot change its representation under R. While we do allow
macrotile locations to map to empty space, for a simulation to be valid there must be

@ Springer

2218 Algorithmica (2024) 86:2211-2249

restrictions on where tiles are allowed to attach in S. For our notion of simulation to
be useful as a metric of comparing the relative capabilities of models, we require that
S only place tiles within the macrotile regions immediately adjacent (not diagonally)
to those which have already resolved, and we call such locations fuzz. This allows
tiles in S to attach only in macrotiles which could potentially resolve during a valid
simulation, since only the locations in 7 mapped to by the fuzz locations could possi-
bly receive tiles in 7. If a class of systems C can all be simulated by another class of
systems C’ sharing a single tile set (though each may have a different seed assembly),
we say that class C’ intrinsically simulates C with a universal tile set. We can also
say that C” is intrinsically universal (IU) for C.

Formal Definition of Simulation

Now we provide formal definitions for intrinsic simulation. The definitions here are
taken from [25] and specifically refer to 3D systems. Similar definitions for 2D intrinsic
simulation are given in [24]. For simulation of a 2D system by a 3D system, we use
the 3D definitions and assume that all systems in the 2D system are defined in 3D so
that assemblies occupy only the z = 0 plane.

From this point on, let T be a tile set and let the scale factor be m € Z*. An m-block
macrotile over T is a partial function « : Z?n --» T, where Z,, ={0,1,...,m — 1}.
Let B! be the set of all m-block macrotiles over T'. The m-block with no domain is
said to be empty. For a general assembly « : 73 --s T and x',y,7) € 73, define
aﬁ,’y,,z,) to be the m-block macrotile defined by a:';,,y,’z,)(ix, iy, i;) = a(mx’ +
ix,my +iy,mz' +i;) for 0 < iy,iy,i; < m.Forsome tile set S, a partial function
R : B3 --» T is said to be a valid m-block macrotile representation from S to T if
for any o, S € B;Z such that o C S and @ € dom R, then R(«) = R(8).

For a given valid m-block macrotile representation function R from tile set S to
tile set 7', define the assembly representation function* R* : AS — AT such that

m
(x,¥,2)

assembly o’ € AS such that R* () = a, &' is said to map cleanly to a € AT under

R* if for all non empty blocks Otz’;cl,y‘z)’ (x,y,2) + (uy,uy, u;) € dom () for some

(ttx, uy, uz;) € Us such that ui + u§ + u% < 1, or if &’ has at most one non-empty
m-block «g'y. In other words, o’ may have tiles on macrotile blocks representing
empty space in «, but only if that position is adjacent to a tile in «. We call such
growth “around the edges” of a’ fuzz and thus restrict it to be adjacent to only valid
macrotiles, but not diagonally adjacent (i.e. we do not permit diagonal fuzz).

In the following definitions, let 7 = (T, or, 77) be a TAS, let S = (S, oy, t5) be
a TAS, and let R be an m-block representation function R : Brfl — T.

R*(¢/) = a if and only if a(x, y,z) = R (a) for all (x, y,z) € Z3. For an

Definition 1 We say that S and 7 have equivalent productions (under R), and we
write S < 7 if the following conditions hold:

1. {R*(a))|e’ € A[S]} = A[T).
2. {R*(@)la’ € Ap[S]} = Ap[T].
3. Forall o’ € A[S], o/ maps cleanly to R*(a’).

2 Note that R* is a total function since every assembly of S represents some assembly of T'; the functions
R and « are partial to allow undefined points to represent empty space.

@ Springer

Algorithmica (2024) 86:2211-2249 2219

Definition 2 We say that 7 follows S (under R), and we write 7 —g S if o’ —S B,
for some o', B’ € A[S], implies that R* (/) =7 R*(B).

The next definition essentially specifies that every time S simulates an assembly
a € A[T], there must be at least one valid growth path in S for each of the possible
next steps that 7 could make from « which results in an assembly in S that maps to
that next step. While this definition is unfortunately dense, it accommodates subtle
situations such as where S must “commit to”” a subset of possible representations in
T before being explicitly mapped, under R, to any one in particular.

Definition 3 We say that S models 7 (under R), and we write S =g 7, if for every
a € A[T], there exists IT C A[S] where I # @ and R*(a’) = « for all o’ € TI, such
that, for every 8 € A[7] where « -7 B, (1) forevery o’ € II there exists 8/ € A[S]
where R*(8') = and o’ —° B, and (2) for every o” € A[S] where o’ —5 B/,
B € A[S], R*(a") = a, and R*(B') = B, there exists o’ € IT such that &’ — .

In this definition, IT is a set of assemblies in S which map to a given assembly
a in 7 under the representation function R*. Specifically, this set IT represents the
assemblies in S which are still capable of resolving into any assembly producible from
« in 7 (this is condition 1 in the definition). Furthermore, condition 2 stipulates that
while any assembly in S representing & may have already grown to the point where it
is no longer possible to resolve into all assemblies in 7 producible from «, it must have
been possible at some previous time during the assembly sequence for all assemblies
producible from « to be represented.

Definition 4 We say that S intrinsically simulates T (under R) if S < 7 (equivalent
productions), 7 —Ig S and S = 7 (equivalent dynamics).

2.4 Window Movie Lemma

In [28], the authors proved the Window Movie Lemma, a pumping lemma of sorts
for the aTAM (and its variants) which has since seen much use as a powerful tool
for proving that certain tile-assembly simulations are impossible. Since it appears in
several of our proofs, we first informally describe the lemma, then explicitly state it.
A window is an edge cut which partitions the lattice graph (Z in 2D or Z> in 3D) into
two regions. Given some window w and some assembly sequence « in a TAS 7, a
window movie M is defined to be the ordered sequence of glues presented along w by
tiles in 7 during the assembly sequence a. Informally, if we think of the window w
as a thin pane dividing two regions of tile locations and imagine stepping through the
assembly sequence & one tile attachment at a time, M is constructed by recording the
glues which appear on the surface of the pane and their relative order. More formally,
a window movie is the sequence Mg‘) = {(v;, gi)} of pairs of grid graph vertices v;
and glues g;, given by order of appearance of the glues along window w during @.
Furthermore, if k glues appear along w during the same assembly step in &, then these
glues appear contiguously and are listed in lexicographical order of the unit vectors
describing their orientation in M%,

@ Springer

2220 Algorithmica (2024) 86:2211-2249

wln]e]o

MNBNE

wln]e]o
MNBNE

Fig.2 Anillustration of the window movie lemma. On the left are two producible assemblies « = o7 Uag
and f = B U Br made from the same tile set, which are each divided into two subassemblies by the
window w. For both assemblies, the window w has the same window movie, i.e. the order in which tiles
present glues along the window, depicted by numbers on the tiles describing the relative order in which
they attached. Since all growth within the windowed regions depends only on the glues presented along the
window, we can splice these assemblies to get oy, U B or B, U ap (illustrated on the right). The window
movie lemma then guarantees that both of these assemblies are producible

w
sl [| ennees s[7]]
s | |eeenes AE
ol []eeeees e]
2le| | |aeanns 2|s

wW+C
Sl] - S] - ST]
5[[|eeeee- 5| [|eeenn- 1l
als] | [-neun- afs| | [-eenn- 43|
26| | |eneees 26| | |eeenes 2|

Fig.3 Using the Window Movie Lemma to “pump” assembly sequences. The top assembly depicts a ribbon
of tiles growing horizontally to the right and numbers on tiles describe a relative order of attachment. If
such a ribbon of tiles grows long enough, then by pigeonhole principle, eventually there must exist two
identical vertical slices along its length. Because every tile attachment inside a window w depends only on
the tiles and their relative order of attachment along the window, we can thus find an assembly sequence
where growth repeats after the second identical vertical slice. This can be performed indefinitely to “pump”
the ribbon

Informally, the Window Movie Lemma states that any tile attachments that occur
within the region bounded by a window are possible in a region bounded by the same
window (up to translation) with an identical window movie (Fig. 2). This allows us
to splice assembly sequences together and, consequently, pump a sequence of tile
attachments so long as we can ensure the existence of identical window movies.
Figure 3 illustrates how the Window Movie Lemma can be used to pump growth.

@ Springer

Algorithmica (2024) 86:2211-2249 2221

Window Movie Lemma

Let @ = {a;} and B = {B;} be assembly sequences in TAS 7 and let «, 8 be the
result assemblies of each respectively. Let w be a window that partitions « into two
configurations o7, and o g and let w’ = w+¢ be a translation of w that partitions 8 into
two configurations B and Br (with oz and By being the configurations containing

their respective seed tiles). Furthermore define M 5‘) and M5 to be the window movies

for @, w and B w’ respectively. Then if Mg‘) = Mf,, the assemblies «;, U ﬂ% and
B; Uag (where g; = B — ¢ and B, = Br — ¢) are also producible.

3 Observations and Simpler Results

In this section we present some relatively trivial observations that allow us to fill in
several boxes from Table 1.

Observation 1 If there exists a system T in the directed subset of systems in tile-
assembly model M which cannot be simulated by any system in tile-assembly model
M, then (1) there exists a system in M which cannot be simulated by any system in
M', (2) there exists a system in M which cannot be simulated by any directed system
in M', and (3) there exists a directed system in M which cannot be simulated by any
directed system in M'.

Observation 2 There exists systems, both directed and undirected, in the 3D models
(3DaTAM and SaTAM) which cannot be simulated by any systems in any of the 2D
models (aTAM and PaTAM, both directed and undirected).

Observation 1 holds because the set of directed systems in a model is a subset of
all systems in that model. Consequently, 7 is a system in both M and in the directed
subset of M. By assumption, 7 cannot be simulated by any system in M” and therefore
cannot be simulated by any subset of systems of M’, particularly the subset of directed
systems. Regarding Observation 2, while we restrict the notion of simulation to use
square macrotiles, simulations of systems on triangular lattices have been implemented
using roughly hexagonal macrotiles made from square tiles [29], so one might imagine
the possibility that by loosening our definition of simulation to use more interesting
macrotiles, it could be possible to capture the geometry of 3D square tiles using 2D
tiles. In our case however, we note that there can exist no planar embedding of the
lattice graph of Z3 as a consequence of Kuratowski’s theorem. Consequently, there can
be no way to divide Z? into connected regions of macrotile locations which preserves
the adjacency of points in Z> and therefore simulation could not be possible even if
we generalized our notion of macrotiles. This is true for any 3D systems which have
producible assemblies whose domains, as graphs, are non-planar as is trivially possible
in all 3D models considered.

3.1 Simulations Using Existing Tile Sets

In [25], it was shown that there exists IU tile sets for the 3DaTAM, SaTAM, and both
models’ subsets of directed systems. While the main focus of that result was intrinsic

@ Springer

2222 Algorithmica (2024) 86:2211-2249

Fig.4 a Tile set of an undirected

system for the proof of E C
Theorem 1 and b its two b
. . -
terminal assemblies -
:
o
(a)

simulation within a model, those IU tile sets can be used to trivially fill in a few boxes
of Table 1. First we note that any aTAM system can also be thought of as a 3DaTAM
system (or even SaTAM system since tiles occupying only a single plane of 3D space
can’t constrain a 3D region) with glues only appearing on 4 of the 6 faces of any tile.
Second, we note that the IU tile sets for the 3DaTAM and SaTAM differed only by
the addition of a few tile types responsible for growing a wall around each face of a
macrotile before resolving. This was necessary for intrinsic universality in the SaTAM
since without them, the tiles making up a macrotile were sparse enough to necessarily
allow a diffusion path for tiles to pass through a resolved macrotile. Consequently, if
we don’t include those tile types, then the IU tile set can simulate 3DaTAM systems
even in the SaTAM since without walls surrounding each macrotile, the diffusion
restriction does not interfere with the attachment of any tiles. Finally, by design, this
tile set preserves directedness when simulating a directed system. Therefore, using
the IU tile set and proofs from [25], the following observations hold.

Observation 3 There exists a universal tile set in both the 3DaTAM and SaTAM which
intrinsically simulates all systems in the aTAM, preserving directedness.

Observation 4 There exists a universal tile set in the SaTAM which intrinsically sim-
ulates all systems in the 3DaTAM, preserving directedness.

3.2 Directed Systems Cannot Simulate Undirected Systems

Theorem 1 There exist systems in the aTAM, 3DaTAM, PaTAM, and SaTAM, which
cannot be simulated by any directed system in any of these models.

High-level overview.

Whereas directed systems only have one terminal assembly, undirected systems can
have several. Figure 4 illustrates the tile set and terminal assemblies of a simple undi-
rected system 7 which can be a system in the aTAM, 3DaTAM, PaTAM, or SaTAM
without modification as it does not use any dynamics unique to any of those models.
Because directed systems can only have a single terminal assembly, any directed sys-
tem attempting to simulate 7 would necessarily fail since any assembly representation
function R* could not map one terminal assembly to both terminal assemblies of 7.

Proof Let T be the tile set shown in Fig.4a. Define a tile assembly system 7 =
(T, o, 1) where o consists of a single tile: a copy of the tile labeled S located at the
origin. Note that if 7 is a system in the aTAM, 3DaTAM, PaTAM, or SaTAM, it

@ Springer

Algorithmica (2024) 86:2211-2249 2223

behaves identically: it is an undirected system with exactly two terminal assemblies,
which are shown in Fig. 4b.

We prove Theorem 1 by contradiction. Therefore, assume that S = (S, o/, 7) is
a directed system which simulates 7 (under representation function R and at scale
factor ¢). By the definition of simulation, R(c) = o (i.e. the seed o’ represents o),
and there exists at least one assembly sequence in S such that in the resulting terminal
assembly the ¢ x ¢ macrotile region north of ¢’ represents, under R, the tile of T
labeled A, and there also exists at least one assembly sequence in S such that in the
resulting terminal assembly the ¢ x ¢ macrotile region north of o’ represents, under R,
the tile of 7' labeled B. However, since S is directed, there can only be one terminal
assembly, and therefore both assembly sequences result in the exact same tiles being
placed in that ¢ x ¢ macrotile region. But, since R is a function, it cannot map the same
input macrotile region to two different tiles. This is a contradiction, and therefore S
does not simulate 7, and since the only assumption made about S was that it was
directed, no directed system can simulate 7 (whether it is in the aTAM, 3DaTAM,
PaTAM, or SaTAM) and Theorem 1 is proven. O

4 The PaTAM Cannot Simulate the aTAM

Here we show that there are aTAM systems which cannot be correctly simulated by
any PaTAM systems. To show this, we take advantage of the fact that aTAM systems
are capable of growth inside of constrained regions while PaATAM systems are not.
Specifically, we show that the PATAM can’t simulate the directed aTAM and, by
Observation 1, note that this also implies that the PATAM can’t simulate the aTAM.

Theorem 2 There exists a system T which is a directed aTAM system, and therefore
also an aTAM system, which cannot be simulated by any PaTAM system.

High-level Overview
Figure 5 is a schematic diagram of the terminal assembly of 7, a directed aTAM
system which we claim is impossible to simulate in the PATAM. Note that it is not
sufficient to simply chose 7 to be a system where a tile attaches within a single
potentially constrained region. This is because the definition of intrinsic simulation
allows for macrotiles to resolve even when they aren’t completely filled with tiles.
Consequently, while macrotiles may map to tiles constraining aregion, the tiles making
up the macrotiles may not constrain a region. Our construction is designed to

ensure that at some point, any supposed simulating system must constrain a region
before the tiles inside are able to attach. In our directed aTAM system 7, this is done
by first initiating the growth of a planter, a gadget that counts up in binary as it grows
eastward, initiating the growth of increasingly tall arms at defined intervals. These
arms are essentially binary counter gadgets which each grow upward to a distance,
encoded in the glues of the tiles provided by the planter, and initiate the growth of
thin arms when they finish. The thin arms are just a single tile wide and begin by
growing a fixed distance to the west before growing south to crash into the planter
below. By this process, each arm initiated by the planter constrains increasingly large

@ Springer

2224 Algorithmica (2024) 86:2211-2249

iteration
5

iteration A
4

iteration
3

iteration

iteration 2

Fig. 5 The aTAM system 7 of the proof of Theorem 2. An infinite planter grows to the east from the
seed and initiates upward growth of an infinite series of counters, each taller than the last, which initiate
single-tile-wide paths that grow to the left then crash downward into the planter. To the left of each counter,
at its base, it is possible for a red tile to attach

regions of space which each contain a single location between the planter and arms,
in which a single tile can cooperatively attach (denoted by the red squares in Fig.5).
Each of the tiles making up the southward growing portion of the thin arms are of
the same tile type, each with identical glues on their north and south faces. While
it is possible for different macrotiles to map to the same tile in 7, there are only so
many combinations of tiles that make up a macrotile. Consequently, regardless of scale
factor, if we look far enough down the planter, there will be an arm which grows tall
enough that the simulating set must repeat a macrotile representation in two places
along the same thin arm. We can then use the Window Movie Lemma to show that
this arm “pumps” in our supposed simulating system, before crashing into the planter.
It is therefore impossible for any simulating PATAM system to prevent a region from
becoming constrained before the macrotile inside is able to resolve, yielding terminal
assemblies which aren’t correctly mapped to a terminal assembly in 7.

Proof Let 7 be the system which is schematically depicted in Fig.5. 7 has a seed
consisting of a single tile placed at (0, 0) and has a binding threshold of 2 (i.e. T = 2).
From the seed tile, 7 grows a “planter”, which is simply a modified log-width binary
counter which counts from 8 to co. It is modified so that as it counts each number
8 < n < oo, the bits of that n are rotated upward so that they can initiate a counter
which grows upward n rows. Additionally, there are 8 extra spaces between the bits of
each counter. The planter grows infinitely to the right, independently of each upward
growing counter which it initiates. Each upward growing counter, seeded with the bits
of a unique value of n, grows upward n rows. At that point, it grows a single additional
row across the top and then a single-tile-wide arm 4 tiles to the left, which then allows
a tile to attach to its south which has 7-strength glues allowing copies of itself to attach
to its north and south. This results in a single-tile-wide column composed of copies
of that tile which grows downward until it eventually “crashes” into the planter (i.e.
a tile of the column is placed adjacent to the planter so that no additional tiles can
be placed). Note that the growth of the planter is designed so that the location of the
planter into which a downward growing arm crashes must be completed before the

@ Springer

Algorithmica (2024) 86:2211-2249 2225

counter which eventually initiates the growth of that arm can begin. Finally, at any
time after the growth of the first row of the upward growing counter a red tile can bind
to the leftmost tile of that row.

By careful design of the modules of 7" (which are standard modules in many aTAM
constructions, see [24, 30], e.g.), it is clear that 7 is not only a valid aTAM system,
but it is also directed. We prove Theorem 2 by contradiction, so therefore assume that
‘P is a PaTAM system with tileset P which simulates 7. Let ¢ be the scale factor by
which P simulates 7, and let R be the representation function.

For each 8 < n < oo, we use the term “nth iteration” to refer to the growth of
the upward counter to n, the arm which grows to the left then downward, and the red
tile associated with that n. Notice that the downward growing arms become arbitrarily
tall, but remain a constant width. By the definition of simulation and inspection of
T, we see that number of tiles spanning any row of an arm cannot be more than 3c,
which is the width of 3 macrotiles. This number includes the macrotile representing
the tile of the arm, plus one macrotile of fuzz on each side. Anything outside that
width would violate the constraints on fuzz in the simulation and make the simulation
invalid. Therefore, let p = (3¢)!(|P|+ 1)3¢ and note that this is an upper bound on the
number of orders in which tiles from | P| (including the lack of a tile) can be placed
in a row of 3c tile locations.

Now, consider some assembly sequence @ which grows the assembly up to the 2 pth
iteration where the counter grows to a height of 2p, but where the 2 pth red tile has
not yet attached. Since by assumption P simulates 7, there must be a corresponding
assembly sequence &’ in 7. Notice that by our definition of p and the size of the
iteration, tiles must attach in the same way and order on the top rows of at least two
distinct macrotiles (and surrounding fuzz) corresponding to the downward growing
arm. We can then define two windows w; and w;, both as the boundary of a 3¢ x p+1
rectangle with the tops centered along the top rows of these macrotiles and note that
during @ both windows will have the same window movies. Consequently we can
construct a new assembly sequence B’ in 7, similar to &’ except that tiles attach
identically in the regions enclosed by both windows. These tile attachments can then
be repeated until blocked by some tile in the planter macrotiles or surrounding fuzz.
At this point, since P is a Planar aTAM system, it is impossible for tiles to attach
in the macrotile region representing the red tile for that iteration. Regardless of how
tiles attach after this, the macrotile corresponding to the red tile will never be able to
resolve and thus the simulation will be incorrect. Since, P fails to simulate 7', and
since we made no assumptions about P other than the fact that it is a PATAM system
which simulates 7, no such simulator can exist. O

5 The aTAM Cannot Simulate the PaTAM

Given that the PATAM is just the aTAM with an added restriction on tile attachment,
it’s not terribly surprising that the PaATAM can’t simulate the full dynamics of the
aTAM; however, less obvious is the fact that the planarity restriction also gives the
PaTAM some capabilities not possible in the aTAM, namely the ability to constrain a

@ Springer

2226 Algorithmica (2024) 86:2211-2249

Fig.6 A schematic of the ——
PaTAM system P for the proof h: 4
of Theorem 3. Tiles grow in a [——]
rectangular shape, periodically
spawning arms which can crash h.
into the walls and constrain a el
region. It is undirected and its N N
size depends o -
non-deterministically on the 4
number of tiles that attach Am-2
between each corner |
hm-l
[—]
Il A
———
seed
N

region and stop growth within. We utilize this ability in our proof of Theorem 3. Also,
by Observation 1, this also holds for the directed aTAM.

Theorem 3 There exists a PaTAM system P which cannot be simulated by any aTAM
system.

High-level Overview

As with the proof for Theorem 2, in the definition of intrinsic simulation, we consider
all possible representation functions and scale factors to prove impossibility. Figure 6
is a schematic diagram of the PaTAM system PP which we show is impossible to
correctly simulate in the aTAM. Growth of P begins with tiles attaching in a row
growing east. The length of this row is non-deterministic as at any point along the row,
it’s possible for a corner tile to attach, initiating growth to the north. Consequently, P
is an undirected system so any potential simulating system must be able to simulate
all possible assemblies of P. Similarly, northward and eastward growing rows of tiles
attach with some length depending on how many tiles attached before each corner.
Finally, a column of tiles begins growing south and, as it does, initiates the growth of
several arms eastward, each spaced 4 tiles apart. Both the southward growing column
of tiles and the arms continue growth until they are constrained or crash into another
part of the assembly. To show that P cannot be simulated in the aTAM, we assume
the existence of a simulating aTAM system 7 and prove that it must admit some
assembly sequences which don’t correspond to those in P. To do this, we consider
an assembly sequence in P where the rectangle of tiles grows to a size, based on the
scale factor of the simulation, so that a sufficiently large number of sufficiently long
arms are spawned by the south growing column of tiles. We also choose an assembly
sequence where the south growing column will eventually collide with the seed tile,
constraining the region containing the arms. Because we’ve chosen the assembly to
be sufficiently large, each arm is capable of being “pumped” as per the window movie
lemma. We then grow the bottom arm until just after it has collided with the east
wall and note that, while 7 is an aTAM system and can still grow tiles inside of the

@ Springer

Algorithmica (2024) 86:2211-2249 2227

u w2 w w
W1 W> Ws Wi v 1 H e NW v
ws w3 wh wi w

im
jm

Seed iIs NI N BN E st S ms ~iNE si SE

- L
E E

Fig.7 Tileset for a PATAM system which cannot be correctly simulated by any aTAM system

constrained region, tiles on the inside and outside will no longer be able to affect each
other’s growth. There are a few cases to be considered, depending on whether or not
the representation function has resolved the last tile of the bottom arm, but essentially
we then show that we can continue the growth of the west wall until its macrotiles have
resolved to tiles in P that constrain the rectangle’s interior. By a counting argument
and our choice of the number of arms, we can then show that one of the other arms
must be able to continue growth within the constrained region, and that the assembly
sequence in 7 maps to one invalid in P.

Proof To prove Theorem 3, let P be the PATAM system whose tile types are shown in
Fig.7 and whose growth is illustrated in Fig. 8. This system starts with a single seed
tile from which a rectangular frame grows. The south, east, and north walls of this
frame are each made of several copies of a single tile type unique to that side, while the
west wall is made of 4 distinct tile types which grow in a periodic sequence. Because
the frame’s first 3 sides each consist of copies of a single tile type, the length of the
each side is non-deterministic and depends on how many copies of each type happen
attach before a corner tile. Additionally, there is no corner tile which attaches after the
west wall tiles so it will grow indefinitely or until it collides with another tile. As the
west wall grows, each 4th tile initiates the eastward growth of an arm which grows
by the attachment of identical tiles indefinitely or until the region is constrained or a
collision occurs. All glues in this system are strength-1 and the binding threshold is
likewise 1.

We show that no system in the aTAM is capable of simulating all assembly
sequences of P by contradiction. Therefore, assume that 7 = (7, o, t) is an aTAM
system which simulates P, let ¢ be the scale factor, and let R be the representation
function of the simulation. Now, let p = (3¢)! - 2(g + 1))3¢. This is an upper bound
on the number of orders in which tiles attachments from 7" (including the lack of a tile)
be placed in along the boundary between 2 rows of 3c tile locations. Consequently, p
bounds the number of possible 1D slices of scale-c macrotiles, including two adjacent
fuzz macrotile regions, accounting for the relative order in which the tiles attach. This
can be thought of as a pumping length of sorts since, if a line of at least p identical
tiles is growing in P, sufficiently far enough away from other tiles, then it must be
the case that, between at least two of the corresponding macrotiles in 7, an identical
sequence of tile attachments occurred. When this happens, it’s then possible to con-
sider an assembly sequence wherein any tile attachments beyond the second of these
identical macrotile boundaries mimics the attachments beyond the first. This implies

@ Springer

2228 Algorithmica (2024) 86:2211-2249

Fig.8 This PaTAM system

> NWN‘N|N‘N‘< ------ |N‘N|N‘N NE
cannot be correctly simulated by
any aTAM system U LB
W E
W e |
Wa H‘H|H‘H‘ ------ > e |
wi e |
W, |
W, e |
Wa H‘H|H‘H‘ ------ > e |
wi e |
: e
: i
E
e |
e |
e |
w[s[s[s[s][s]s][s]s]=

the existence of assembly sequences in 7 with periodic growth which can continue
indefinitely or until blocked by other parts of the assembly. O

Consider now an assembly o in P wherein the backward C shaped frame grows
so that its north and south sides are of length p(6¢ + 2) and its east side is of length
4 . (6¢c + 2) + 2 not including the corner tiles. The reason for these specific values
will be explained shortly. Additionally, in ¢, the west side has grown to the point
where it is two tiles away from colliding with the seed tile, but has not yet initiated
the growth of any of it’s horizontal arms. Let & be the assembly sequence in P which
starts with the seed tile and ends with «q. So far, it should not be difficult to see how
system 7 could simulate this assembly sequence. Let &, be some assembly sequence
in 7 which models ay.

Next, we will consider a sequence of assembly sequences @1, @2, . . ., &, in P, each
of which follows from the previous, wherein horizontal arms grow from the west side
in a specific manner. We chose the value n = 6¢ + 1 for reasons which will become
clear soon. By our choice of the east side length, the west side will be able to spawn
m = 6¢ + 2 horizontal arms (each spaced 4 tiles apart) while still remaining 2 tiles
away from colliding with the seed tile. We will call these arms hy, ko, h3, ..., hy
from north to south for convenience. Additionally, let ¥ be the y-coordinate which is
exactly between the y-coordinates of arms /,,_; and h,, in P. Accordingly, fix ' to
be any y-coordinate within the row of macrotile locations in 7" corresponding to the
tile locations in P at y-coordinate y.

We define the assembly sequence @; (i = 1,2, ..., n) immediately following the
growth of assembly sequence &; | such that: (1) tiles attach so as to grow arm /; until
it collides with the east side, and (2) p tiles attach to the end of arm 4,,. Note that
in each assembly sequence arm h,,, only grows partially by p tiles. We’ve chosen the
width of our assembly so that even if there is an assembly sequence corresponding to

@ Springer

Algorithmica (2024) 86:2211-2249 2229

each arm north of 4,,, it will not collide with the east side. Now for each assembly
sequence &; in P, let @/ be the corresponding assembly sequence in 7 . Corresponding
to each tile attachment in &;, there may be several tile attachments in &/. During these
attachments in the macrotile locations of 7, we will keep track of a specific condition,
namely tiles being placed at y-coordinate J'. Including the fuzz regions surrounding
the east and west arms, there are only 6c¢ tile locations in 7 at y-coordinate 3" where
tiles could be placed which are not too far away to invalidate the simulation. Because
of our choice of n = 6¢ + 1, at least one of the assembly sequences, say 5(;., must
occur without a tile being placed at y-coordinate j'.

Now we define the assembly sequence ,é in P as follows. First we follow the
assembly sequences do, &1, ..., «j—; in order. Then we follow assembly sequence
o up to the attachment of the second to last tile of arm % j. We then deviate from our
assembly sequences and skip the attachment of the last tile of arm £ ;. Instead, we
grow arm h,,, stopping one tile short of colliding with the east side of our assembly.
Finally, we attach the remaining 2 tiles of the west side, colliding with the seed tile. It
shouldn’t be too difficult to see that B is a valid assembly sequence in P. Additionally,
notice that B is a terminal assembly in P, since by the planarity constraint, it’s now
impossible for any of the arms inside the assembly to continue growth. Therefore, if we
define ¥ to be the assembly sequence ,5 followed by the attachment of the remaining
tile in arm 4 j, y would not be a valid assembly sequence in P. Despite this, we can
construct an assembly sequence 7’ in 7 which models y, proving that 7" does not
correctly simulate P.

To do this, we construct the assembly sequence 3’ in 7 as follows. First, we follow
the assembly sequences &), ..., &’_,. Then, we follow assembly sequence 62’/. up to
but not including the tile attachment which would cause the macrotile corresponding
to the final tile of /; to resolve. Next we continue following &}, but we skip any
tile attachments north of y-coordinate 3'. Because during &’; no tiles attached in this
y-coordinate, this does not interfere with the growth of the macrotiles corresponding
to the next p tiles in arm h,,. During these attachments south of 3, we consider a
rectangular window w with dimension p + 1 x 3¢ and note that by our choice of p, it
must be possible to position translate w along the arm in two ways, both with identical
window movies. By the Window Movie Lemma, all tile attachments possible in the
first of these translated windows must be possible in the second. These tile attachments
can then be repeated (or “pumped”) until blocked by a tile on the east side. Note that
because the first pumped sequence of tile attachments didn’t grow north of j’, the
remaining attachments won'’t either. If, upon collision with the east side, the macrotile
corresponding to the final tile of &, resolves, then we reach a contradiction since we
can then resolve the final macrotile corresponding to /; with a single tile attachment
after the arm h,,, supposedly blocked off the region containing % ;. Otherwise, we can
continue with an arbitrary sequence of tile attachments in 7 corresponding to the
remaining two tiles of the west side in P. These tile attachments cannot influence the
region closed off by the collision between the macrotiles corresponding to /4, and the
east wall, and therefore the attachment of a single tile in the macrotile corresponding
to the final tile of /; will still lead to the macrotile resolving, a contradiction.

@ Springer

2230 Algorithmica (2024) 86:2211-2249

Fig.9 Cut-away view of system
S from the proof of Theorem 4.
Two chambers are connected by

/7‘4
P (
a thin tunnel. Pillars growing
inside the outer west chamber —‘%: —‘%:
will eventually constrain the || ||

region within the chambers, at a1] #‘
I I

[

[]

which point, the pillar growing
in the inner east chamber will no

N
l

longer be able to continue . T . .
growth [B
[T 1] [T 1] U{ »
- D

6 The 3DaTAM Cannot Simulate the SaTAM

The proof of Theorem 4 is similar in principle to the proof of Theorem 3, albeit with
a slightly different system which takes advantage of the differences between 2D and
3D.

Theorem 4 There exists an SaTAM system S which cannot be simulated by any
3DaTAM system.

High-level Overview

The system S for this result, as illustrated in Fig. 9, initially grows 2 nearly sealed
chambers connected by a thin tunnel which allows for a diffusion path between them.
These chambers both have a fixed base size of 9 x 9, but they can grow to have
an arbitrary height in a way similar to the frame of the system used in the proof of
Theorem 3. Once fully grown, the ceiling of one chamber contains a single tile wide
opening which is the only way for tiles to diffuse into the chambers from outside;
we call the chamber with this hole the outer chamber and the other one the inner
chamber. Additionally, from the bottoms of both chambers, pillars can grow upwards
to an arbitrary height by the attachment of copies of tiles with identical tile types. The
pillar in the inner chamber will eventually crash into the ceiling or until the pillar in
the outer chamber grows tall enough to plug the opening in its ceiling and constrain the
space inside. We show that S cannot be simulated by any 3DaTAM system by showing
that, in any potential simulating system, under the right conditions, although unwanted,
it must still possible for the inner chamber pillar to continue growth even after the outer
chamber pillar has sealed the chambers. To do this, we note that during some supposed
simulation, the only way for the pillar in the inner chamber to “know” that the chambers
have been sealed, is for tiles to attach inside of the tunnel. Consequently, because the
tunnel is thin with a cross-section made of a hollow 3 x 3 square, the chambers
can only communicate with each other a finite amount of times during a simulation.
Specifically, if the scale factor of the simulation is ¢, then the number of tiles that
can be placed in any x-coordinate corresponding to the tunnel is bounded by 5¢ x 5S¢
which includes any potential tiles growing in the fuzz adjacent to the macrotiles of the
tunnel. Therefore, by a simple counting argument, if we initially grew our chambers

@ Springer

Algorithmica (2024) 86:2211-2249 2231

to have a sufficiently large height, then there must exist some assembly sequence
where both pillars grow by any desired number of macrotiles (which we choose to
be long enough to allow pumpable growth) and during which no tile is placed in the
center of the tunnel. Using the Window Movie Lemma, we then construct an assembly
sequence where the outer chamber pumps to constrain the chambers. Because during
this assembly sequence, no tiles are placed in the center of the tunnel, there is nothing
to stop the inner chamber pillar from also being pumped. Such an assembly sequence
must be possible in any 3DaTAM system which supposedly simulates our system S,
and since this assembly sequence corresponds to one which is invalid in the SaTAM,
such a simulation is impossible.

Proof Here we use the convention that the cardinal directions north, south, east, west,
up, and down correspond to +y, —y, +x, —x, +z, and —z respectively. When refer-
ring to dimensions of tile constructions, we use width, length, and height to refer to
dimensions in the x, y, and z axis respectively.

Let S be the SaTAM system, illustrated in Fig.9, described as follows. From the
seed, tiles attach to form two boxes, one on the east which we will call the inner
chamber and one on the west which we will call the outer chamber, connected by a
thin tunnel which separates the chambers by a distance of 5. The base of each chamber
is a9 x 9 square of tiles and each chamber can grow to have an arbitrary height before
a special tile attaches to initiate the growth of their ceilings. The ceiling of the inner
chamber is solid, but the ceiling of the outer chamber has a single tile opening in its
center. Inside each chamber, a pillar of tiles can grow upwards from the center of the
base. These pillars are each made of copies of the same tile type which can attach on
top of each other allowing the pillars to grow arbitrarily tall. The tunnel has a cross
section of a hollow 3 x 3 square allowing for tiles to diffuse into the inner chamber
until the pillar in the outer chamber has grown tall enough to plug the opening in the
ceiling and constrain the region inside.

Now suppose, for contradiction, that there exists a 3DaTAM system 7 which
simulates S using tileset 7', scale factor ¢, and macrotile representation function R.
First, we define a few constants whose values will be important during the proof. Let
p= OcAHI(T| + 1)962. This is an upper bound on the number of orders in which tiles
from T (including no tile) can be placed in a 3¢ x 3¢ square. We also define b = 25¢2
andleth = (p + 1)(b + 2) + 2 which will be used as the height of our chambers and
whose value will become clear shortly. We, now consider a few assembly sequences in
S which, by our assumption, 7 must be able to simulate. First let &59 be the assembly
sequence in S during which tiles attach to the seed to complete the growth of both
chambers so that both have an interior height of % (i.e. not including the base and ceil-
ing) and both pillars grow to a height of 2. We’ll refer to the last assembly in &(‘)S as Ol(‘)s .
Additionally, we consider a series of continuations of this assembly sequence which
we will define inductively; so for k = 0, ..., b, let o?,iL | be the assembly sequence
which begins at the assembly a,‘? and during which the outer chamber pillar grows by
p + 1 tiles followed by the inner chamber pillar growing by p + 1 tiles. To complete
the inductive definition, let a,‘f ', be the final assembly in the assembly sequence &,‘f 1
Notice that, during the assembly sequences af fork =1,...,b+ 1, each pillar will
grow by a height of p + 1 tiles which, by our definition of 2 tobe (p + 1)(b +2) + 2,

@ Springer

2232 Algorithmica (2024) 86:2211-2249

means that neither pillar has reached the ceiling yet. We then define a® to be the
concatenation of each of these assembly sequences in order.

Because we assumed that 7 simulates S, there must be an assembly sequence in
T which simulates the growth of assembly sequence aS. Let a7 be such assembly

sequence and, fork =0, ...,b + 1, let Ot]z— be the first assembly in a? which maps
under R* to a,‘f. Then for convenience, we divide the assembly sequence a7 into
subsequences &kT (k=0,...,5¢+ 1) so that &E— simulates the assembly sequence

&,‘f and ends with the assembly osz. We will now use these assembly sequences in 7 to
construct a new assembly sequence in 7 which cannot possibly correspond to a valid
assembly sequence in S. First, let x; be the x-coordinate of the center of the tunnel in
calT . For the macrotiles in the inner chamber to “know’” anything about the macro tiles
in the outer chamber, tiles must attach in a location with x-coordinate x;. In 7, a cross
section of the tunnel at x-coordinate x; is a 3 x 3 macrotile square and, if we include
fuzz, this means that no tile in 7" will be able to attach outside of the 5¢ x 5¢ square
surrounding the tunnel at x-coordinate x;. Consequently, at most 25¢> (our choice of
value for b) tiles will be able to attach in locations with x-coordinate x; during the
assembly sequence a” . Therefore, there must exist some index jaa<j<b+1),
such that during the assembly sequence &jT, no tile is ever placed at x-coordinate x;.

Now notice that during assembly sequence &3—, tiles attach to grow both pillars by

a height of p + 1. Our definition of p will allow us to use the Window Movie Lemma
as follows. First, let w be the window defined as the boundary of a box with x and y
dimensions 3¢ and with z dimension p + 2. Then note that because each pillar started
at a height of 2 macrotiles before any of the assembly sequences &IT, e &,Z:r |» hone

of the fuzz adjacent to any macrotiles in &JT will be adjacent to any macrotiles except

those which resolve ina? . Because p was defined as an upper bound on the number of
orders in which tiles from 7T can attach in a 3¢ x 3¢ square and, since we are growing

p + 1 macrotiles on each pillar during 5(/.7, there must be two ways to translate our

window w, say w‘l’“t and wg‘“, so that it is centered on the outer chamber pillar, such

that w"" and w§" have identical window movies during the assembly sequence &17,—.
By the Window Movie Lemma, we can therefore create a new assembly sequence

B"“‘ which begins the same as &,7" but during which all of the tile placements in the

region bounded by w{" also occur in the region bounded by w$"". We can do the same

for the pillar in the inner chamber to define an assembly sequence Ei“ analogously.
We can then repeat this process to “pump” both pillars upwards by repeating the tile
attachments occurring in the respective window regions, noting again that no tile is
ever placed in x-coordinate x; so neither pillar’s growth can affect the other.

We can therefore construct an assembly sequence y in the following way. First
we continue to pump the growth of the outer chamber pillar until the final macrotile
resolves so that the pillar has grown to height 2. We do have to be a bit careful though,
because during the final pumping iteration, the assumptions of the Window Movie
Lemma will no longer hold. This is because when we get close enough to the opening
in the ceiling, the macrotiles of the ceiling and surrounding fuzz will alter the window
movie. If we carefully consider the growth that occurs during the pumping however,
this is not a problem. To see why, recall that growth is not allowed to occur in any

@ Springer

Algorithmica (2024) 86:2211-2249 2233

locations which are not in the fuzz adjacent to resolved macrotiles. Consequently,
in the prior pumping iterations, as tiles attach in a macrotile location, say m, on top
of the pillar, no tiles have been able to attach in those macrotile locations adjacent
to m before it resolves. Consequently, even though the Window Movie Lemma no
longer holds, we can still repeat the same sequence of tile attachments up to the point
where the macrotile resolves to form a height £ pillar, as none of the tiles in the
ceiling fuzz occupy locations which would be occupied by the pillar and could not
prevent the necessary attachments. After growing the outer chamber pillar to a height
of h macrotiles, we continue the assembly sequence y by performing the same tile
attachments that occurred in Ein, corresponding to tiles attaching to the inner chamber
pillar. We then let the assembly sequence § be the assembly sequence formed by
concatenating the assembly sequences &g ,...,&j—1 and the assembly sequence .
This assembly sequence is valid in 7', but under R it maps to an assembly sequence
in S wherein the inner chamber pillar continues growth after the outer chamber pillar
has grown tall enough to constrain the region. This is a contradiction and since we
made no prior assumptions about 7, it cannot be the case that 7 correctly simulates

S. O

7 The PaTAM can Simulate the Directed PaTAM

Theorem 5 There exists a universal Planar aTAM tile set S that can simulate any
directed PaTAM system.

High-level overview

Despite the fact that both the PaATAM and directed PATAM are not intrinsically univer-
sal for themselves [25], using tools from [23, 25] we are able to construct a PATAM
tile set capable of simulating arbitrary directed PaTAM systems. Here we outline the
process by which a PaTAM tileset S can simulate any given directed PaATAM system
T . The tileset S is universal, meaning that regardless of the directed PaATAM system
T, the same tileset will be used at a fixed binding threshold, with only the seed of the
simulating system changing to accommodate 7 .

Given a directed PaTAM system 7, we define a simulating system S using a fixed
tile set at binding threshold 2. The seed of S consists of already-resolved macrotiles
in the same configuration as the seed of 7. Each macrotile in S consists of a9 x 9 grid
of structures we call component blocks (CBs) which are each made of many smaller
tile-based constructions and which each store an encoding of the system 7 along with
a bit of extra data in the form of specific glues on some of its tiles. The CBs of a
macrotile each perform calculations using tiles which emulate Turing machines to
determine how they should grow and whether or not the macrotile can resolve given
the current information regarding the surrounding macrotiles.

Each CB essentially behaves like an individual tile on the 9 x 9 grid and we can think
of CBs as growing in one of two ways. Either the CB grows using tile attachments from
another adjacent CB in a way analogous to a t-strength tile attachment, or a CB can
grow in the gap between two adjacent CBs in certain locations of the grid designated as
probe regions. This is analogous to a tile attachment that occurs by cooperative binding

@ Springer

2234 Algorithmica (2024) 86:2211-2249

VLAY
t t
I ! ! I
t]t t t : t]t
T A7
- L)

Fig. 10 A schematic describing the 9 x9 grid of potential component blocks which may appear in a macrotile
location. Squares containing two arrows indicate a grid location which may contain a probe region. Parts of
adjacent macrotiles are indicated by the colored squares surrounding the macrotile. The colors of the grid
locations within a macrotile describe which of the adjacent macrotiles each component block may have
information from (Color figure online)

between two opposing tiles (which we refer to as across-the-gap cooperation). These
“cooperative attachments” between CBs are used to consolidate information between
the CBs. For instance, one CB might contain information encoded about the north
adjacent macrotile and one might contain information about the west; in the probe
region between them, a new CB can grow which will contain the information about
both which it can then use to determine if a tile attachment in 7" would be possible
in the tile location corresponding to the macrotile. Figure 10 illustrates the layout of
a macrotile into CB locations with these probe regions indicated by squares with two
opposing arrows.

Probe regions are CB locations in which two adjacent CBs, on opposite sides, can
present structures called probes which are long, thin structures that grow from the
surrounding CBs towards the center of a CB location. Each probe that grows in a
probe region, indicates some possible combination of information from surrounding
macrotiles and grows in a unique position according to this information. The length
of a probe is chosen to be just shy of the center of the CB location, so that when two
probes align from opposing sides of the probe region, there will be exactly a single tile
wide gap between them. This gap allows a tile to cooperatively attach and grow along
the sides of the probes to recover the information from both. Otherwise, if no probes

@ Springer

Algorithmica (2024) 86:2211-2249 2235

Fig. 11 Probe regions between component blocks. The red and blue CBs present probes made from TM
blocks into the grid location between them. The yellow TM blocks are spawned from those in the green
CB and can only pass through the probe region if none of the probes align. In the case that the probes do
align (left) the yellow TM blocks will not be able to pass and the CB on the right is initiated by cooperative
growth between the probes. If the probes do not align (right), then the yellow TM blocks can pass through
and initiate growth of the right CB. Therefore depending on the alignment of the probes, the CB to the right
of the probe region is determined by either the CBs from which the probes grew or the CB on the left of
the probe region (Color figure online)

Fig. 12 When checking for
across-the-gap cooperation
during a simulation, tiles can’t
naively span the entire gap
without disconnecting two
regions of space

in a probe region align, there will be enough room for the components that make up
a CB to squeeze in between the probes from one side of the probe region to another.
Figure 11 illustrates two scenarios involving probe regions.

Probe regions were introduced in [23] to solve the problem illustrated in Fig. 12.
Naively when simulating a tile system, to check for macrotiles which may cooperate
across-the-gap, tiles must grow to query both adjacent macrotiles and determine if
the attachment is possible. This however necessarily separates regions of space and
in the case of planar systems also constrains one before it has been determined if the
attachment can even occur. If it cannot, then tiles will no longer be able to attach in the
constrained region and the simulation will likely end up being invalid. Probes avoid
this problem by aligning exactly when across-the-gap cooperation is possible while
still allowing tile structures to grow through if they don’t align.

Now that we have an idea of how the component blocks and probe regions behave we
describe the protocol for resolving a macrotile by highlighting a few important cases.
Growth within a macrotile begins when one or more of the surrounding macrotiles

@ Springer

2236 Algorithmica (2024) 86:2211-2249

1 T
[[

Fig. 13 Hands made of component blocks growing from surrounding macrotiles

Fig. 14 Once the hands have grown, CBs cooperate until information from all sides has been combined
into a single CB. Then the macrotile can resolve

resolve and tiles begin to attach within the macrotile. From a surrounding macrotile,
the protocol always begins by the growth of two “T”-shaped structures made from
CBs called hands illustrated in Fig. 13. Note that two adjacent surrounding macrotiles
may both attempt to grow hands in the same location. This is handled by a single
point of competition and the first surrounding macrotile for placing a tile in the closest
corner of the shared hand locations is allowed to place theirs. Between the hands and
the surrounding macrotiles probes are grown in the regions indicated on the right of
Fig. 13 which allows a CB to “attach” cooperatively to combine information from both
the hand and nearby macrotile. In some cases this information may be redundant, but
with two or more surrounding macrotiles at least one location will always be able to
combine information from two macrotiles (Fig. 14).

The CBs resulting from cooperation between the hands and surrounding macrotiles
then cooperate once again and CBs grow along the hands to form clockwise elbows
with additional probe regions between them. CBs then cooperatively attach between
these elbows and cooperate again near the center of the tile to eventually combine
all of the information from the surrounding macrotiles. Once this occurs, the CB
which “attaches” in the center of the tile contains the information from all sides. If the
surrounding macrotiles represent tiles in 7 capable of placing a tile, additional CBs
can grow to the remaining sides to present this information to the remaining sides and
repeat the procedure in the adjacent macrotile locations.

In the case that an across-the-gap cooperation is possible in 7', the protocol deviates
slightly. Illustrated in Fig. 15, if across-the-gap cooperation is possible between the
east and west macrotiles, their hands will share a probe region with aligned probes.
Consequently, a CB can grow in that location and resolve the macrotile. This growth

@ Springer

Algorithmica (2024) 86:2211-2249 2237

[EAT 11]

Fig. 15 Probe regions between opposing macrotiles can check for across-the-gap cooperation

may constrain the region to the south, halting any tile attachments and CB growth
in the south side of the macrotile, but this doesn’t matter since the macrotile will
only need to start the process in adjacent macrotiles that haven’t yet resolved. The
described protocol is robust to different orders of hand growth and different numbers
of surrounding macrotiles, including those that don’t end up contributing to macrotile
resolution. If at any time a CB has sufficient information to determine how the macrotile
should resolve, it begins growth to the center and then surrounding edges of the
macrotile. This process will not be interrupted by other CBs since we are simulating
a directed system where at most one unique tile can attach in each location.

Proof Our proof of Theorem 5 is by construction. Therefore, we now give a full
description of the components of that construction and describe how it works. O

7.1 Tile Gadgets

This construction makes use of a few tile gadgets, components which perform some
specific task or grow in a specific pattern, which have been adapted from the existing
tile-assembly literature. Much like how algorithms are often described using pseu-
docode using existing data-structures, we will describe our construction in terms of
these gadgets.

Turing Machine Blocks

Used in [17] to assemble finite shapes with asymptotically optimal tile-complexity, a
Turing machine block is a tile gadget which simulates space and time bounded Turing
machines within a square region of space. Each side of a TM block is designated either
as an input or an output. Both the input and outputs of a TM block are encoded by
the glues presented along a row of tiles. These glues can be used to encode data in the
form of bits if special glues are designated to act as Os and 1s, and additionally, the
glues presented by the output sides can be used to interface with other tile gadgets or
initiate the growth of an adjacent TM block. Consequently, TM blocks can grow to
form arbitrary computable patterns.

Probes and Probe Regions

Initially defined in [23], probes are simply tall rows of tiles placed at specific locations
of a macrotile. Probes solve the problem illustrated in Fig. 12 of trying to simulate
across-the-gap (AtG) cooperation. Naively, it would seem that it’s necessary to block-
off a region of space to learn if two opposite macrotiles could cooperate to place a tile

@ Springer

2238 Algorithmica (2024) 86:2211-2249

I A= = R

Fig. 16 Anillustration of probe regions. In the case that the probes do not meet, it will be possible for a TM
blocks to grow around the probes. Otherwise, probes will block the growth of TM blocks and across-the-gap
cooperation between the probes can initiate the growth of different TM blocks which perform a different
task

in your location. We can avoid this by specifying regions where sequences of probes
grow into locations corresponding to pairs of tiles which could potentially cooperate
AtG. If AtG cooperation isn’t possible between the relevant macrotiles, then the probes
will be spaced sufficiently far to allow a data path to navigate through the probe region;
otherwise, two probes will meet, with a gap of a single tile between them which is
insufficient for a data path to fit. Instead a tile can cooperatively attach between the
probes and initiate the growth of a new data path indicating that the current macrotile
can resolve into the tile placed by the AtG cooperation (Fig. 16).

7.2 Macrotile Protocol

Given a DPaTAM system 7, we describe the simulation of 7 by some PaTAM system
S by describing the process by which tiles attach within macrotiles of S to resolve
into a tile in 7. Growth within a macrotile location begins once at least one adjacent
macrotile has resolved and our macrotiles must be robust to the arbitrary orders in
which adjacent macrotiles can resolve. In this way, tile attachments within a macrotile
behave similarly to a concurrent algorithm with special care needed to handle race
conditions and avoid deadlocks when undesirable.

Macrotiles and Component Blocks

The fundamental component of used in our protocol are tile gadgets which we call
component blocks (CBs) which are made from several TM blocks and which may
potentially initiate the growth of probe regions. Each macrotile in S will consist of a
9x9 grid of CBs and in turn, each CB consists of a 2k x 2k grid of TM blocks where
k is the number of ways of choosing 4 tile glues from 7. That is k = g* where g is
the number of glues appearing on tile types from 7. Each of the TM blocks within a
CB is large enough to store the following information:

a description of the simulated system 7,

a sequence of upto 4 glues from 7,

its position within the CB,

the CBs position within a macrotile, and

a description of the macrotile algorithm protocol which acts as the algorithm to be
performed.

@ Springer

Algorithmica (2024) 86:2211-2249 2239

We will refer back to this list later to determine the scale factor of the simulation once
the protocol has been described.

Figure 10 illustrates the 9 x 9 grid of component blocks including those which may
contain probe regions. Each probe region may contain probes which grow from the
adjacent CBs indicated by the directions of the arrows. The probes in a probe region
are made from rows of TM blocks spanning half of the width of a CB though, one of the
CBs which spawns a probe is selected beforehand to grow just shy of half-way through
the probe region. This creates a single-tile wide gap between two aligned probes in
which tiles can cooperatively attach to initiate the growth of other TM blocks which
depend on the alignment of probes. Figure 11 illustrates two scenarios: one where two
probes align in a probe region, in which case no path of TM blocks can pass through
the region and in which cooperation between the probes determines the next CB, and
a scenario where no probes align, in which case a path of TM blocks can pass to
determine the next CB.

We can think of the component blocks as behaving similarly to individual tiles,
with probe regions facilitating across-the-gap cooperation, and which perform the
algorithm of simulating 7 in the 9 x 9 grid constituting a macrotile. These “tiles”
grow along a path accumulating information regarding the surrounding macrotiles
until they reach the center of the macrotile. Once there, by design of our protocol,
the TM blocks making up the CB will have enough information to determine the tile
from 7 into which the macrotile should resolve. The specified probe regions indicate
potential locations in which two CBs can “consolidate” information about the adjacent
macrotiles while also allowing TM blocks to pass through in the case that probes don’t
align. Consequently, the size of the CBs, being 2k x 2k TM blocks, was chosen so that
there are always enough probe locations for every combination of glues presented by
the adjacent macrotiles. The additional factor of 2 means that each probe has enough
space for TM blocks to squeeze around even adjacent probes.

Protocol for One Surrounding Macrotile

We will describe the protocol which occurs in the 9 x 9 grid of component blocks
as though each CB is a tile. Cooperative binding of these “tiles” always occurs in a
designated probe region and is facilitated by the probes, while t-strength attachments
are facilitated by the TM blocks which make up each CB “tile”. In other words, t-
strength attachments of CBs is simply a fixed pattern of TM block growth which cause
the CBs to grow along some predetermined path which may depend on the information
stored in the TM blocks.

Ilustrated in Fig. 17, from an adjacent macrotile, CBs first grow into two mirrored
“T”-shaped structures called hands. In the probe regions between these hands and the
adjacent macrotile, CBs then grow cooperatively. Because, for the time being, we are
only dealing with a single adjacent macrotile, these cooperative “attachments” just
cause CBs to grow into the center of the first row of the macrotile. Then one of two
things may happen. If the adjacent macrotile corresponds to a tile in 7 whose glue can
allow a t-strength attachment, then the TM blocks which make up the CBs has enough
information to resolve the current macrotile. In this case, 7-strength attachments cause
the CBs to grow into the center of the macrotile and eventually cause the macrotile to
resolve, as will be described later. Otherwise, a path of CBs will simply grow along

@ Springer

2240 Algorithmica (2024) 86:2211-2249

Fig. 17 The pattern of CB growth from an adjacent macrotile. Starting from the adjacent macrotile, CBs
will grow into mirrored hands which cooperate to allow CBs to attach in the center of the first row in the
macrotile. If this macrotile corresponds to a t-strength attachment in 7, then a row of CBs will attach to the
center (top) and will eventually resolve the macrotile, otherwise, they grow along a clockwise turn (bottom)
to await growth from adjacent macrotiles

Fig. 18 With two adjacent surrounding macrotiles, the protocol occurs similarly to before, but the two
surround macrotiles will compete to place one of their hands

the hand on the clockwise side of the macrotile and no further growth will occur until
another adjacent macrotile resolves.

Protocol for Two Adjacent Surrounding Macrotiles

Figure 18 illustrates the protocol for two surrounding macrotiles which appear on
adjacent sides of the current macrotile. We note that the surrounding macrotiles may
resolve at different times and therefore our protocol is designed to handle different
orders of CB attachment. Growth begins in much the same way as the case above with
both surrounding macrotiles attempting to first grow their hands. Notice though that

@ Springer

Algorithmica (2024) 86:2211-2249 2241

Y Y

[FT 11

[FAT [T

Fig. 19 In the case of two surrounding macrotiles which meet across-the-gap, probe regions on the end of
the respective hands cooperate, if possible

each will attempt to grow one of their hands in the same location. To handle this, we
simply require that during the growth of the hands, the TM blocks which make up
the CB blocks shared by both hands start by placing a single tile in the shared corner.
Whichever hand is able to place that tile first is the one which grows its hand. In Fig. 18
this happens to be the hand from the macrotile to the west, but it could have just as
well been the one from the south.

Once the hands are grown, cooperative “attachment” of CBs occurs between the
hands and the surrounding macrotiles just like before, but in this case one of the
cooperative attachments will happen between one of the macrotiles and a hand which
originated from the other macrotile. This cooperative CB attachment will therefore
be able to consolidate the information from both adjacent macrotiles, storing both
glues in the TM blocks which make the CB. If this information is enough to allow
the macrotile to resolve, that is if the surrounding macrotiles represent tiles in 7°
which can cooperate to allow the attachment of a tile in this location, then CBs will
“attach” with t-strength to the center of the macrotile which will eventually cause it
to resolve. Otherwise, they both grow to form clockwise elbows just as in the case
with only 1 surrounding macrotile. This time however, a probe region exists between
the two adjacent elbows which will allow the further attachment of a few CBs. These
attachments will not do anything until another surrounding macrotile resolves since
no tile in 7 can yet attach in the location corresponding to this macrotile.

Note that this process is robust to the order in which surrounding macrotiles resolves.
Even if the west macrotile resolves well before the south and grows according to the
protocol for a single surrounding macrotile, this protocol is still able to occur with
the south macrotile being the one which loses the competition to place its hand. The
situation is symmetrical so that it occurs similarly even if the south macrotile wins the
competition. Additionally, even if the first surrounding macrotile to arrive corresponds
to a tile in 7 which is able to form a 7-strength attachment in the current macrotile,
the attachments formed by the other macrotile will not interfere.

Protocol for Two Opposite Surrounding Macrotiles

In the case that the two surrounding macrotiles are opposite each other, the probe
regions between the hands grown by both will facilitate the resolution of the macrotile
as illustrated in Fig. 19. Once the hands are grown, if the two opposing macrotiles
correspond to tiles in 7 capable of across-the-gap cooperation, then the probe regions
between the opposing hands will have aligned probes. Using these probes, the TM
blocks which make up the CB can consolidate the information from both surrounding

@ Springer

2242 Algorithmica (2024) 86:2211-2249

Y

[FL]]
RN =N
W [FA1]
[FA]
N

Fig.20 Inthe case that two surrounding macrotiles must simulate an across-the-gap cooperative attachment,
a third surrounding macrotile may attempt to cooperate with either, but cannot prevent the cooperation on
both sides of the current macrotile

macrotiles and consequently are able to determine the tile into which the current
macrotile will resolve. Note that this case is slightly different from the previous cases
since CBs will not grow into the center of the macrotile. In fact, the interior of the
macrotile will become a constrained region into which no additional tiles can diffuse
once both have grown. This doesn’t matter however since both of the CBs between
the hands have sufficient information to determine how the macrotile should resolve
and all that needs to be done is have that information propagated to the empty sides
of the tiles.

Even in the case that there is another surrounding macrotile between the opposing
macrotiles, the protocol allows for the successful resolution of the macrotile as illus-
trated in Fig.20. There are several possibilities regarding which macrotiles win the
competition to place their hands, but these will not affect the probe region on the side
which does not contain a surrounding macrotile. Consequently regardless of the tile
attachments that occur on the south of Fig. 20, CBs can still attach on the north side of
the macrotile indicating that it resolved into the tile corresponding to an across-the-gap
cooperative attachment. Any growth below the north probe region between opposing
hands will not be able to affect this resolution since it will be blocked by the probes and
growth along the south side is irrelevant since the macrotile does not need to indicate
its resolution in that direction as the surrounding macrotile to the south has already
resolved. Also, since we are simulating a directed system, the current macrotile could
not resolve into any other tile anyway.

If on the other hand, the two opposing macrotiles do not represent tiles in 7 capable
of across-the-gap cooperation, then no probes in the region shared between opposing
hands will align and TM blocks will be able to grow in between, allowing the protocol

@ Springer

Algorithmica (2024) 86:2211-2249 2243

[Yy [

t

t

T
T [

i] N]

1 _ 2
[|
+ I3 .
Bl EEEEE
'Y
1]]]
]
[

Fig.21 With 3 incoming macrotiles, up to symmetry, there are 3 fundamentally different ways that hands
can grow. In all cases, it is possible for information from all 3 macrotiles to be collected in the center

to continue to other cases. In other words, opposing macrotiles which aren’t capable
of across-the-gap cooperation will not interfere with the continuation of the protocol.
If an additional macrotile resolves to either the north or south and represents a tile in
T which can cooperate with either the east, west, or both surrounding macrotiles, it
will still be able to do so.

Protocol for Three Surrounding Macrotiles

In the case of three surrounding macrotiles which cooperate to resolve the macrotile,
there are a few cases which need to be considered regarding which surrounding
macrotiles win the race to place their hands. These cases are illustrated in Fig.21.
The most complicated case occurs when the central surrounding macrotile wins both
races and places both of its hands, though all cases are essentially the same. In this
case, like before, all three sides grow their hands and corresponding clockwise elbows.

@ Springer

2244 Algorithmica (2024) 86:2211-2249

Fig.22 Regardless of the number of surrounding macrotiles and their relative orientations, once the the CBs
are able to determine how to resolve, additional CBs will grow from the center (or probe regions between
across-the-gap macrotiles) to the sides which do not yet have a macrotile present. This is facillitated by the
planar restriction which prevents CBs from growing towards sides with existing macrotiles

These elbows then cooperate via probes to consolidate their information with CBs from
the adjacent elbows. We are then left with CBs which can again cooperate to consoli-
date the information from all three sides and grow into the center of the macrotile to
eventually resolve. The other cases are simpler in that the CBs consolidate the infor-
mation of all three surrounding macrotiles earlier. In these cases, the CBs have enough
information to “know” how the macrotile should resolve and are able to grow into the
center earlier.

Four Surrounding Macrotiles

In our directed PaTAM system 7, it is impossible for a tile to be placed in a location
surrounded by tiles on all sides. Any tile location surrounded on all 4 sides is con-
strained; if all 4 tiles were required for the tile placement, it could not occur because
of the diffusion restriction. If on the other hand, fewer than 4 tiles were required but it
were still possible for 4 tiles to surround a location before the tile attached, the system
would not be directed; the tile placement may or may not happen before the region
is constrained. Such situations will never happen in our simulating system S because
they violate the assumption that 7 is a DPaTAM system.

Resolving a Macrotile

Once a CB reaches the center of a macrotile (or when across-the-gap cooperation hap-
pens in the probe regions between opposing macrotile hands), the macrotile is ready
to resolve. Upon placement of the first tile in this center CB location, the macrotile
representation function R no longer maps the macrotile to empty space and instead
maps to the correct tile in 7 which has been determined by the CBs from the informa-
tion from the necessary surrounding macrotiles. Once this happens, additional CBs
begin “attaching” to grow in each of the 4 cardinal directions in order to grow a row
of tiles to each necessary side of the macrotile as illustrated in Fig.22. These rows
of tiles then act to repeat the entire process in adjacent macrotile locations, growing
hands and following the described protocol.

Note that it may be the case that CBs cannot fully grow in one of the directions.
This could happen if one of the surrounding macrotiles resolves after much of the
process has completed in the current macrotile for instance or if one of the directions
requires tile placements in a constrained region. This isn’t a problem however because
only those surrounding macrotiles which could correspond to locations in 7" where

@ Springer

Algorithmica (2024) 86:2211-2249 2245

valid tile attachments can occur need to “know”” about the current macrotiles resolved
state.

7.3 Scale Factor of the Simulation

Recall that each TM block which makes up a component block contains the following
information:

a description of the simulated system 7,

a sequence of upto 4 glues from 7,

its position within the CB,

the CBs position within a macrotile, and

a description of the macrotile algorithm protocol which acts as the algorithm to be
performed.

Foragivensystem 7 = (T, o,), we note that only the tileset 7 and binding threshold
7 are necessary for the TM blocks and component blocks to determine how a macrotile
should resolve. The seed o of 7 is handled by the seed of S since our simulation can
begin with a seed assembly made of pre-resolved macrotiles already placed in the
correct configuration to represent o.

To describe a tileset 7', we note that the number of glues appearing in T is at
most 4 |T'|. Each glue can therefore be encoded efficiently using O (log(|7’|)) bits and
consequently the entire tileset can be encoded using O (|T | log(|T'|)) bits. The binding
threshold is just a positive integer and thus can be encoded using O (log(t)) bits. For
the purposes of our TM blocks, a table describing the tileset 7 along with the binding
threshold 7 can thus be encoded using O (|7 |log(|T|) + log(t)) bits. Additionally, a
sequence of 4 glues simply requires O (log(|7'|)) bits to encode.

The position of a TM block within a component block has coordinates between 0
and 2k where k is, again, the number of possible sequences of 4 glues. k = g* where
g is the number of glues so log(2k) = 10g(2g4) = 0O(log(g)) = Olog(|T])) and
thus the position of a TM block can be encoded using O(log(|T|)) bits. Since the
position of of a CB within a macrotile is always a point in {0, 1, ..., 8} it simply
requires a constant number of bits to store. Similarly, the algorithm performed by a TM
block is fixed so it also requires only a constant number of bits to store. Therefore, the
information stored by a TM block in our construction requires only O (|T|log(|T'|))
bits to encode.

Each TM block within a macrotile performs a fixed algorithm, implicitly described
above. For the most part, this algorithm simply requires the TM blocks to initiate the
growth of other TM blocks according to a fixed pattern to grow the current component
block, but occasionally also requires querying the tileset 7' to determine if the known
glues are sufficient to induce a tile attachment in 7. To grow in the fixed pattern,
requires space and time on the order of the size of the CB which is 0(|T|4). To
determine if the known glues are sufficient for an attachment in 7, we can modify
our naive encoding of the tileset 7 and binding threshold 7 with a slightly more
complex encoding which consists of a table with entries for each combination of 4
glues. These entries simply store a reference to the tile type which may attach given the
surrounding glues. Since we are simulating a directed system, we know that it should

@ Springer

2246 Algorithmica (2024) 86:2211-2249

never be possible for multiple tiles to attach in a single location so no entry needs to
be stored with more than one possible tile. Such an encoding requires g* entries each
of size O(log(|T])) since each holds just a single tile type’s description. This table
thus requires O (| T|4 log(|T])) space and can be queried in the same amount of time.
Overall, each TM block needs to therefore be O (|T |4 log(|T|)) tiles large and since
each CB is 2k = 2g4 TM blocks in each dimension, a component block must be
o(T? log(|T|)) tiles wide in the worst case. Since there are a fixed number of CBs
per macrotile, this is therefore the scale factor of the simulation. While the scale factor
is polynomial in size, we note that it can be significantly improved by storing the
tileset look-up table separately from the TM blocks, most of which do not need to
query the table. In previous iterations of our construction this was done but required
a significantly more complex protocol that was much more difficult to explain and
understand, so here we’ve presented a construction with a larger scale factor but which
is easier to describe. Regardless, the purpose of this construction is to demonstrate
the existence of a universal tileset and show that the PaTAM is capable of all of the
dynamics of its directed subset, which we have done. Thus, Theorem 5 is proven.

8 Conclusion

Through the results in this paper we have increased the understanding of how the
aspects of dimensionality, diffusion, and directedness impact the powers of tile-based
self-assembling systems. We have shown many instances in which systems in one
model are unable to match the behaviors of those in another model and instances
in which all systems of one model can be faithfully simulated by systems in another,
sometimes leading to the powers of one model being a strict subset of those of another,
and sometimes to models having mutually exclusion abilities. While most of these
results require highly theoretical constructions that are unlikely to be implementable
via current approaches to building such systems, e.g. with DNA-based components,
our goal was to provide a high-level mathematical understanding of the dynamics of
self-assembly.

Clearly, as indicated by the holes in Table 1, several open questions remain. The
majority of these relate to the abilities of systems in other models to simulate all systems
in the Planar aTAM and Spatial aTAM that are directed. While we have dedicated much
effort to answering these questions, the answers remain elusive. To summarize, we
conjecture that the systems of the PATAM and SaTAM cannot be simulated by systems
in models that are not constrained by diffusion. This is because systems unconstrained
by the requirement of tiles to be able to diffuse to frontier locations would have to
somehow “know” which locations are contained within closed-off regions in advance
so that neighboring tiles do not expose glues that would allow tiles to attach there.
However, whether a region is constrained or not is a global property of an assem-
bly, potentially influenced by arbitrarily many tile attachments at arbitrarily far away
locations, and this intuitively seems impossible to coordinate in systems where the
diffusion constraint isn’t globally enforced by model dynamics. Despite the seem-
ingly obvious (at least to the authors) impossibility of using systems unconstrained by
diffusion to simulate those that are, the additional constraint of directedness creates

@ Springer

Algorithmica (2024) 86:2211-2249 2247

another level of difficulty. Since the systems to be simulated must be directed, it must
be the case that any region which may be sealed off always receives the exact same tiles
before the region is sealed. This implies a level of determinism that could potentially
allow the creator of the simulating system to know in advance which tiles must be
placed in which locations and somehow encode that information in the system itself,
circumventing the limitation in dynamics to impose correctness. Therefore, any proof
of impossibility would perhaps need to utilize obfuscation of such information (simi-
lar, perhaps, to techniques used in [24]), and our conjecture is that such an approach
may be possible. However, perhaps we are incorrect and it is always possible to utilize
that determinism to design simulating systems.

We hope that the current set of results and the techniques introduced will be useful
for the development of additional theoretical and experimental self-assembly results.
We are also excited to see if the remaining open questions from Table 1 can be solved,
and not only what the answers may be but what new techniques may be involved.

Acknowledgements This work was supported in part by NSF Grant CAREER-1553166

Author Contributions D.H wrote the main manuscript, except for Theorems 1 and 2 and the conclusion,
and prepared all figures except for 4 and 5. M.J.P wrote the statements and proofs for Theorems 1 and 2 as
well as the conclusion, and prepared Figs. 4 and 5. Both authors reviewed the manuscript.

Declarations

Conflict of interest The authors declare that there were no conflicts of interest during the writing and
publication of these results.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Douglas, S.M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into
nanoscale three-dimensional shapes. Nature 459, 414 (2009)

2. Ke, Y., Ong, L.L., Shih, WM., Yin, P.: Three-dimensional structures self-assembled from DNA bricks.
Science 338(6111), 1177-1183 (2012)

3. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNA-origami arrays.
Angew. Chem. Int. Ed. 50(1), 264-267 (2011). https://doi.org/10.1002/anie.201005911

4. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082),297-302
(2006). https://doi.org/10.1038/nature04586

5. Evans, C.G.: Crystals that count! Physical principles and experimental investigations of DNA tile
self-assembly. PhD Thesis, California Institute of Technology (2014)

6. Gu, H., Chao, J., Xiao, S.-J., Seeman, N.C.: A proximity-based programmable DNA nanoscale assem-
bly line. Nature 465(7295), 202-205 (2010). https://doi.org/10.1038/nature09026

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/anie.201005911
https://doi.org/10.1038/nature04586
https://doi.org/10.1038/nature09026

2248 Algorithmica (2024) 86:2211-2249

7. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei,
R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive
landscapes. Nature 465(7295), 206-210 (2010). https://doi.org/10.1038/nature09012

8. Lund, K., Manzo, A.T., Dabby, N., Micholotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei,
R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive
landscapes. Nature 465, 206-210 (2010)

9. Padilla, J.E., Sha, R., Kristiansen, M., Chen, J., Jonoska, N., Seeman, N.C.: A signal-passing DNA-
strand-exchange mechanism for active self-assembly of DNA nanostructures. Angew. Chem. Int. Ed.
54(20), 5939-5942 (2015)

10. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles.
PLoS Biol. 2(12), 424 (2004)

11. Woods, D., Doty, D., Myhrvold, C., Hui, J., Zhou, F.,, Yin, P., Winfree, E.: Diverse and robust molecular
algorithms using reprogrammable DNA self-assembly. Nature 567(7748), 366-372 (2019)

12. Zhang, Y., McMullen, A., Pontani, L.-L., He, X., Sha, R., Seeman, N.C., Brujic, J., Chaikin, PM.:
Sequential self-assembly of DNA functionalized droplets. Nat. Commun. 8(1), 21 (2017). https://doi.
org/10.1038/s41467-017-00070-0

13. Fu, B., Patitz, M.J., Schweller, R.T., Sheline, R.: Self-assembly with geometric tiles. In: Czumaj,
A., Mehlhorn, K., Pitts, A.M., Wattenhofer, R. (eds.) Automata, Languages, and Programming—39th
International Colloquium, ICALP 2012, July 9-13, 2012, Proceedings, Part I. LNCS, vol. 7391, pp.
714-725. Springer, Warwick (2012)

14. Padilla, J.E., Patitz, M.J., Pena, R., Schweller, R.T., Seeman, N.C., Sheline, R., Summers, S.M., Zhong,
X.: Asynchronous signal passing for tile self-assembly: Fuel efficient computation and efficient assem-
bly of shapes. In: UCNC. Lecture Notes in Computer Science, vol. 7956, pp. 174-185. Springer, Milan
(2013)

15. Winfree, E.: Algorithmic self-assembly of DNA. PhD Thesis, California Institute of Technology (1998)

16. Woods, D.: Intrinsic universality and the computational power of self-assembly. Philos. Trans. R. Soc.
Lond. A Math. Phys. Eng. Sci. (2015). https://doi.org/10.1098/rsta.2014.0214

17. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36(6), 1544—
1569 (2007)

18. Kao, M.-Y., Schweller, R.T.: Randomized self-assembly for approximate shapes. In: Aceto, L.,
Damgard, I., Goldberg, L.A., Halldérsson, M.M., Ing6lfsdéttir, A., Walukiewicz, 1. (eds.) ICALP
(1). Lecture Notes in Computer Science, vol. 5125, pp. 370-384. Springer, Reykjavik (2008)

19. Luchsinger, A., Schweller, R.T., Wylie, T.: Self-assembly of shapes at constant scale using repulsive
forces. In: UCNC. Lecture Notes in Computer Science, vol. 10240, pp. 82-97. Springer, New York
City (2017)

20. Patitz, M.J., Schweller, R.T., Summers, S.M.: Exact shapes and Turing universality at temperature
1 with a single negative glue. In: Cardelli, L., Shih, W.M. (eds.) DNA Computing and Molecular
Programming—17th International Conference, DNA 17, September 19-23,201 1. Proceedings. Lecture
Notes in Computer Science, vol. 6937, pp. 175-189. Springer, Pasadena (2011)

21. Hader, D., Patitz, M.J.: Geometric tiles and powers and limitations of geometric hindrance in self-
assembly. In: Proceedings of the 18th Annual Conference on Unconventional Computation and Natural
Computation (UCNC 2019), Tokyo, Japan June 3-7, 2019, pp. 191-204 (2019)

22. Hendricks, J., Padilla, J.E., Patitz, M.J., Rogers, T.A.: Signal transmission across tile assemblies: 3D
static tiles simulate active self-assembly by 2D signal-passing tiles. In: Soloveichik, D., Yurke, B.
(eds.) DNA Computing and Molecular Programming. Lecture Notes in Computer Science, vol. 8141,
pp. 90-104. Springer, Tempe (2013). https://doi.org/10.1007/978-3-319-01928-4_7

23. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly
model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations
of Computer Science. FOCS 2012, pp. 302-310 (2012)

24. Hendricks, J., Patitz, M.J., Rogers, T.A.: Universal simulation of directed systems in the abstract tile
assembly model requires undirectedness. In: Proceedings of the 57th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2016), New Brunswick, October 9-11, 2016, pp. 800-809
(2016)

25. Hader, D., Koch, A., Patitz, M.J., Sharp, M.: The impacts of dimensionality, diffusion, and directedness
on intrinsic universality in the abstract tile assembly model. In: Chawla, S. (ed.) Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, January 5-8, 2020, pp. 2607-2624.
SIAM, Salt Lake City (2020)

@ Springer

https://doi.org/10.1038/nature09012
https://doi.org/10.1038/s41467-017-00070-0
https://doi.org/10.1038/s41467-017-00070-0
https://doi.org/10.1098/rsta.2014.0214
https://doi.org/10.1007/978-3-319-01928-4_7

Algorithmica (2024) 86:2211-2249 2249

26.

27.

28.

29.

30.

Hader, D., Patitz, M.J.: The impacts of dimensionality, diffusion, and directedness on intrinsic cross-
model simulation in tile-based self-assembly. In: Etessami, K., Feige, U., Puppis, G. (eds.) 50th
International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14,
2023, Paderborn. LIPIcs, vol. 261, pp. 71-17119. Schloss Dagstuhl—Leibniz-Zentrum fiir Informatik,
Wadern, Germany (2023). Doi: https://doi.org/10.4230/LIPIcs.ICALP.2023.71

Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended
abstract). In: STOC’00: Proceedings of the Thirty-second Annual ACM Symposium on Theory of
Computing, pp. 459-468. ACM, Portland (2000)

Meunier, P.-E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods, D.: Intrinsic univer-
sality in tile self-assembly requires cooperation. In: Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA 2014), Portland, January 5-7, 2014, pp. 752-771 (2014)

Alumbaugh, J.C., Daymude, J.J., Demaine, E.D., Patitz, M.J., Richa, A.W.: Simulation of pro-
grammable matter systems using active tile-based self-assembly. In: International Conference on DNA
Computing and Molecular Programming, pp. 140-158. Springer (2019)

Lathrop, J.I., Lutz, J.H., Patitz, M.J., Summers, S.M.: Computability and complexity in self-assembly.
Theory Comput. Syst. 48(3), 617-647 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.4230/LIPIcs.ICALP.2023.71

	The Impacts of Dimensionality, Diffusion, and Directedness on Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly
	Abstract
	1 Introduction
	1.1 Our Results

	2 Preliminary Definitions
	2.1 Definition of the Abstract Tile-Assembly Model
	2.2 Model Variations
	2.3 Intrinsic Simulation
	2.4 Window Movie Lemma

	3 Observations and Simpler Results
	3.1 Simulations Using Existing Tile Sets
	3.2 Directed Systems Cannot Simulate Undirected Systems

	4 The PaTAM Cannot Simulate the aTAM
	5 The aTAM Cannot Simulate the PaTAM
	6 The 3DaTAM Cannot Simulate the SaTAM
	7 The PaTAM can Simulate the Directed PaTAM
	7.1 Tile Gadgets
	7.2 Macrotile Protocol
	7.3 Scale Factor of the Simulation

	8 Conclusion
	Acknowledgements
	References

