
Algorithmica (2024) 86:1657–1699
https://doi.org/10.1007/s00453-023-01206-z

Improved FPT Algorithms for Deletion to Forest-Like
Structures

Kishen N. Gowda1 · Aditya Lonkar2 · Fahad Panolan3 · Vraj Patel4 ·
Saket Saurabh5

Received: 24 May 2022 / Accepted: 29 December 2023 / Published online: 27 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The Feedback Vertex Set problem is undoubtedly one of the most well-studied
problems in Parameterized Complexity. In this problem, given an undirected graph
G and a non-negative integer k, the objective is to test whether there exists a subset
S ⊆ V (G) of size at most k such that G − S is a forest. After a long line of improve-
ment, recently, Li and Nederlof [TALG, 2022] designed a randomized algorithm for
the problem running in time O�(2.7k)∗. In the Parameterized Complexity literature,
several problems around Feedback Vertex Set have been studied. Some of these
include Independent Feedback Vertex Set (where the set S should be an inde-
pendent set in G), Almost Forest Deletion and Pseudoforest Deletion. In
Pseudoforest Deletion, each connected component in G − S has at most one
cycle in it. However, in Almost Forest Deletion, the input is a graph G and non-

Polynomial dependency on the input size n is hidden inO� notation.

B Kishen N. Gowda
kishen19@cs.umd.edu

Aditya Lonkar
laditya1235@gmail.com

Fahad Panolan
F.Panolan@leeds.ac.uk

Vraj Patel
vpatel@ethz.ch

Saket Saurabh
saket@imsc.res.in

1 University of Maryland, College Park, MD, USA

2 IIT Madras, Chennai, India

3 School of Computing, University of Leeds, Leeds, UK

4 ETH Zürich, Zürich, Switzerland

5 Institute of Mathematical Sciences, Chennai, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01206-z&domain=pdf
http://orcid.org/0000-0001-6573-9445


1658 Algorithmica (2024) 86:1657–1699

negative integers k, � ∈ N, and the objective is to test whether there exists a vertex
subset S of size at most k, such that G − S is � edges away from a forest. In this paper,
using the methodology of Li and Nederlof [TALG, 2022], we obtain the current fastest
algorithms for all these problems. In particular we obtain the following randomized
algorithms.

1. Independent Feedback Vertex Set can be solved in time O�(2.7k).
2. Pseudo Forest Deletion can be solved in time O�(2.85k).
3. Almost Forest Deletion can be solved in time O�(min{2.85k · 8.54�, 2.7k ·

36.61�, 3k · 1.78�}).

Keywords Parameterized complexity · Independent feedback vertex set · Pseudo
forest · Almost forest · Cut and count · Treewidth

Mathematics Subject Classification 68Q27 · 05C85 · 68W20

1 Introduction

Feedback Vertex Set (FVS) is a classical NP-complete problem and has been
extensively studied in all subfields of algorithms and complexity. In this problem we
are given an undirected graph G and a non-negative integer k as input, and the goal
is to check whether there exists a subset S ⊆ V (G) (called feedback vertex set or in
short fvs) of size at most k such that G − S is a forest. This problem originated in
combinatorial circuit design and found its way into diverse applications such as dead-
lock prevention in operating systems, constraint satisfaction and Bayesian inference
in artificial intelligence. We refer to the survey by Festa et al. [1] for further details on
the algorithmic study of feedback set problems in a variety of areas like approximation
algorithms, linear programming and polyhedral combinatorics.

FVS has played a pivotal role in the development of the field of Parameterized
Complexity. The earliest known FPT algorithms for FVS go back to the late 80 s
and the early 90s [2, 3] and used the seminal Graph Minor Theory of Robertson and
Seymour. These algorithms are quite impractical because of large hidden constants in
the run-time expressions. Raman et al. [4] designed an algorithm with running time
O�(2O(k log log k)) which basically branched on short cycles in a bounded search tree
approach. For FVS, the first deterministic O�(ck) algorithm was designed only in
2005; independently by Dehne et al. [5] and Guo et al. [6]. It is important to note
here that a randomized algorithm for FVS with running timeO�(4k) was known in as
early as 1999 [7]. The deterministic algorithms led to the race of improving the base
of the exponent for FVS algorithms and several algorithms [8–14], both deterministic
and randomized, have been designed. Until recently, the best known deterministic
algorithm for FVS ran in time O�(3.619k) [13], while the Cut & Count technique
by Cygan et al. [11] gave the best known randomized algorithm running in time
O�(3k). However, both these algorithms have been improved; Iwata and Kobayashi
[12] designed the fastest known deterministic algorithmwith running timeO�(3.460k)
and Li and Nederlof [14] designed the fastest known randomized algorithm with

123



Algorithmica (2024) 86:1657–1699 1659

running time O�(2.7k). The success on FVS has led to the study of many variants of
FVS in literature such as Connected FVS [11, 15], Independent FVS [16–18],
Simultaneous FVS [19, 20],Subset FVS [21–25],Pseudoforest Deletion [26,
27],Generalized Pseudoforest Deletion [27], andAlmost Forest Deletion
[28, 29].

1.1 Our Problems, Results andMethods

In this paper we study three problems around FVS, namely, Independent FVS,
Almost Forest Deletion, and Pseudoforest Deletion. We first define the
generalizations of forests that are considered in these problems. We say that a graph
F is an �-forest, if we can delete at most � edges from F to get a forest. That is, F
is at most � edges away from being a forest. On the other hand, a pseudoforest is an
undirected graph, in which every connected component has at most one cycle. Now,
we are ready to define our problems.

Independent FVS (IFVS): Given a graph G and a non-negative integer k, does
there exist a fvs S of size at most k, that is also an independent set in G? Almost
Forest Deletion (AFD): Given a graph G and two non-negative integers k and �,
does there exist a vertex subset S of size at most k such that G − S is an �-forest?
Pseudoforest Deletion (PDS): Given a graph G and a non-negative integer k,
does there exist a vertex subset S of size at most k such that G − S is a pseudoforest?

Given an instance of FVS, by subdividing every edge we get an instance of Inde-
pendent FVS, which is a reduction from FVS to Independent FVS leaving k
unchanged showing that it generalizes FVS. On the other hand setting � = 0 in
Almost Forest Deletion results in FVS. The best known algorithms for Inde-
pendent FVS, Almost Forest Deletion, and Pseudoforest Deletion are
O�(3.619k) [17],O�(5k4�) [29], andO�(3k) [26], respectively. Our main objective is
to improve over these running times for the corresponding problems. Our paper can
be briefly summarized as follows.

Motivated by themethodology developed by Li andNederlof [14] for FVS, we
relook at several problems around FVS, such as Independent FVS,Almost
Forest Deletion, and Pseudoforest Deletion, and design the current
fastest randomized algorithm for these problems. Our results show that the
method of Li and Nederlof [14] is extremely broad and should be applicable
to more problems. Table 1 presents a summary of new and existing results for
the problems that we discuss.

To achieve improvements and tackle Independent FVS and Almost Forest
Deletion at once, we propose a more generalized version of the Almost Forest
Deletion problem.

123



1660 Algorithmica (2024) 86:1657–1699

Table 1 Summary of existing and new results

Problem Running time Deterministic? References

FVS O�(3.460k ) Yes Iwata and Kobayashi [12]

FVS O�(2.7k ) No Li and Nederlof [14]

IFVS O�(3.619k ) Yes Li and Pilipczuk [17]

IFVS O�(2.7k ) No This paper

AFD O�(5k4�) Yes Lin et al. [29]

AFD O�(2.85k · 8.54�) No This paper

AFD O�(2.7k · 36.61�) No This paper

AFD O�(3k · 1.78�) No This paper

PDS O�(3k ) Yes Bodlaender et al. [26]

PDS O�(2.85k ) No This paper

Restricted Independent Almost Forest Deletion (RIAFD)
Parameter(s): k and �

Input: A graph G, a set R ⊆ V (G), and integers k and �

Question: Does there exist a set S ⊆ V (G) of size at most k that does not
contain any element from R, that is also an independent set in G, and G − S
is an �-forest?

Setting � = 0, R = ∅ we get the Independent FVS problem. A simple polynomial
time reduction, where we subdivide every edge and add all the subdivision vertices to
R, yields an instance of RIAFD, given an instance of Almost Forest Deletion.
The reduction leaves � and k unchanged.

To describe our results, we first summarize the method of Li and Nederlof [14](for
FVS) which we adopt accordingly. The main observation guiding the method is the
fact that after doing some simple preprocessing on the graph, we can ensure that a large
fraction of edges are incident on every solution to the problem. This leads to two-step
algorithms, one for the dense case and the other for the sparse case. In particular, if
we are aiming for an algorithm with running time O�(αk), then we do as follows.

Dense Case: In this case, the number of edges incident to any FVS of size k is super-
linear (in k), and we select a vertex into our solution with probability at least 1

α
.

Sparse Case: Once the dense case is done, we know that we have selected vertices,
say k1, with probability ( 1

α
)k1 . Now, we know that the number of edges incident to an

FVS of the graph is O(k) and the existence of solution S of size at most k, implies
that the input graph has treewidth at most k + 1. Now, using this fact and the fact that
deleting the solution leaves a graph of constant treewidth, we can actually show that
graph has treewidth (1 − �(1))k = γ k (in [14] as well as our paper, this is referred
to as the small separator lemma). This implies that if we have an algorithm on graphs
of treewidth (tw) with running time βtw, such that βγ ≤ α, then we get the desired
algorithm with running time O�(αk).

123



Algorithmica (2024) 86:1657–1699 1661

So a natural approach for our problems which are parameterized by solution size
is to devise an algorithm using another algorithm parameterized by treewidth with
an appropriate base in the exponent, along with probabilistic reductions with a good
success probability. However, to get the best out of methods of Li and Nederlof [14],
it is important to have an algorithm parameterized by treewidth that is based on Cut
& Count method [11]. However, for all the problems we consider, only non Cut &
Count algorithms were known. Thus, our first result is as follows.

Theorem 1.1 There exists an O�
(
3tw

)
time Monte-Carlo algorithm that given a tree

decomposition of the input graph of width tw solves the following problems:

1. Restricted- Independent Almost Forest Deletion in exponential space.
2. Pseudoforest Deletion in exponential space.

Note that a yes-instance of RIAFD has treewidth k + � + 1. Thus, as our first
result, we design a randomized algorithm based on Theorem 1.1 and iterative com-
pression with running timeO�(3k ·3�) for RIAFD. This yieldsO�(3k) andO�(3k ·3�)

running time algorithms for Independent FVS and Almost Forest Deletion,
respectively, which take polynomial space (though, these do not appear in literature).
Next, we devise probabilistic reduction rules to implement the first step in the method
of Li and Nederlof [14]. We analyze these rules by modifying the analysis of their
lemmas to get an O�(2.85k · 8.54�) time algorithm that takes polynomial space, and
an O�(2.7k · 36.61�) time algorithm that takes exponential space for solving RIAFD.
All these algorithms, while progressively improving the dependence on k slightly,
significantly worsen the dependence on �. Therefore, to obtain an algorithm with an
improved dependence on �, we describe a procedure to construct a tree decomposition
of treewidth at most k+ 3

5.769�+O(log(n)) given a solution of size k to an instance of
RIAFD. This procedure, when combined with an iterative compression routine, yields
an O�(3k · 1.78�) algorithm for RIAFD. This brings us to the following result.

Theorem 1.2 There exist Monte-Carlo algorithms that solves the RIAFD problem in

1. O�(3k · 3�) time and polynomial space.
2. O�(2.85k · 8.54�) time and polynomial space.
3. O�(2.7k · 36.61�) time and exponential space.
4. O�(3k · 1.78�) time and exponential space.

As a corollary to Theorem 1.2, we get the following result about Independent
FVS.

Theorem 1.3 There exist Monte-Carlo algorithms that solves the Independent FVS
in:

1. O�(3tw) time, given a tree decomposition of width tw.
2. O�(2.85k) time and polynomial space.
3. O�(2.7k) time and exponential space.

Although we have a deterministicO�(3k) algorithm for Pseudoforest deletion
given by Bodlaender et al. [26] which runs in exponential space, to make use of the

123



1662 Algorithmica (2024) 86:1657–1699

techniques from [14] we develop our Cut & Count algorithm which has the same
asymptotic running time. However, even with our Cut & Count algorithm, we cannot
make full use of the methods of Li and Nederlof [14] and only get the following
improvement.

Theorem 1.4 There exists a Monte-Carlo algorithm that solves Pseudoforest
Deletion in O�(2.85k) time and polynomial space.

2 Preliminaries

For a set A,
( A
·,·,·

)
denotes the set of all partitions of A into three subsets. LetG = (V , E)

be an undirected graph, where V is the set of vertices and E is the set of edges. We
also denote V (G) to be the vertex set and E(G) to be the edge set of graph G. Also,
|V | = n and |E | = m. For a vertex subset S ⊆ V (G), G[S] denotes the subgraph
induced on the vertex set S, and E[S] denotes the set of edges in G[S]. For S, T ⊆ V ,
E[S, T ] denotes the edges intersecting both S and T , i.e. the “cut edges”. For a vertex
subset V ′, the graph G − V ′ denotes the graph G[V \V ′]. For an edge subset E ′, the
graph G− E ′ denotes the graph G ′ = (V , E\E ′). For a vertex v ∈ V , deg(v) denotes
the degree of the vertex, i.e., the number of edges incident on v. For a vertex subset
S ⊆ V (G), deg(S) = ∑

v∈S deg(v). Given an edge e = (u, v), the subdivision of the
edge e is the addition of a new vertex between u and v, i.e., the edge e is replaced by
two edges (u, w) and (w, v), where w is the newly added vertex. Here, w is called a
“subdivision vertex”. Now, we make note of the following lemma on the number of
connected components of a forest.

Lemma 2.1 ([11]) A graph with n vertices and m edges is a forest iff it has at most
n − m connected components.

Definition 2.2 ([11]) A tree decomposition of a graph G = (V , E) is a pair T =
({Bx | x ∈ I }, T = (I , F)), where T is a tree and {Bx | x ∈ I } is a collection of
subsets (called bags) of V such that,

1.
⋃

x∈I Bx = V
2. For all (u, v) ∈ E there is an x ∈ I with {u, v} ⊆ Bx

3. For all v ∈ V , the set of nodes {x ∈ I | v ∈ Bx } forms a connected subtree in
T = (I , F).

The width of the tree decomposition T is maxx∈I |Bx | − 1. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all tree decompositions of G.

We sometimes abuse notation and use tw(T) to denote the width of the tree decom-
positionT. For the definition above, if there are parallel edges or self loops we can just
ignore them, i.e., a tree decomposition of a graph with parallel edges and self loops is
just the tree decomposition of the underlying simple graph (obtained by keeping only
one set of parallel edges and removing all self loops).

There is also the notion of a nice tree decomposition which is used in this paper.
In literature, there are a few variants of this notion that differ in details. We use the

123



Algorithmica (2024) 86:1657–1699 1663

one described by Cygan et al. [11], with introduce edge nodes and root bag and leaf
bags of size zero. A nice tree decomposition is a tree decomposition ({Bx | x ∈ I },
T = (I , F)) where T is a rooted tree and the nodes are one of the following five
types. With each bag in the tree decomposition, we also associate a subgraph of G;
the subgraph associated with bag x is denoted Gx = (Vx , Ex ). We give each type
together with how the corresponding subgraph is formed.

• Leaf nodes x . x is a leaf of T ; |Bx | = 0 and Gx = (∅, ∅) is the empty graph.
• Introduce vertex nodes x . x has one child, say y. There is a vertex v with Bx =

By ∪ {v}, v /∈ By and Gx = (Vy ∪ {v}, Ey), i.e., Gx is obtained by adding an
isolated vertex v to Gy .

• Introduce edge nodes x . x has one child, say y. There are two vertices v,w ∈ Bx ,
Bx = By and Gx = (Vy, Ey ∪ {(v,w)}), i.e., Gx is obtained from Gy by adding
an edge between these two vertices in Bx . If we have parallel edges, we have one
introduce edge node for each parallel edge. A self loop with endpoint v is handled
in the same way, i.e., there is an introduce edge node with v ∈ Bx and Gx is
obtained from Gy by adding the self loop on v.

• Forget vertex nodes x . x has one child, say y. There is a vertex v such that
Bx = By \ {v} and Gx and Gy are the same graph.

• Join nodes x . x has two children, say y and z. Bx = By = Bz , Vy ∩ Vz = Bx

and Ey ∩ Ez = ∅. Gx = (Vy ∪ Vz, Ey ∪ Ez), i.e., Gx is the union of Gy and Gz ,
where the vertex set Bx is the intersection of the vertex sets of these two graphs.

For the Cut & Count algorithms, the following lemma is essential. For a family of
sets F over a universe U , we say that a weight function w : U 	→ N isolates F , if
there is a unique set S in F with minimum weight w(S). Here, w(S) = ∑

x∈S w(x).

Lemma 2.3 ([30, Isolation Lemma]) Let F ⊆ 2U be a non-empty set family over
a universe U. For each u ∈ U, choose a weight ω ∈ {1, 2, . . .W } uniformly and
independently at random. Then Pr[ω isolates F] ≥ 1 − |U |/W.

In the Cut & Count algorithms and proofs, for a function f : S → T , given a
set R, f |R refers to the function f with its domain restricted to R. Formally, f |R is
a function from R to a subset of T such that f |R(r) = f (r) for all r ∈ R. Given
values u and v, f [u → v] refers to a function with u in domain and v in range with
all mappings from S to T preserved and u mapped to v. Formally, f [u → v] is a
function from S ∪ {u} to T ∪ {v} such that f [u → v](s) = f (s) for all s ∈ S and
f [u → v](u) = v. Also, we define f −1(s) := {x |x ∈ S ∧ f (x) = s}. We use the
Iverson’s bracket notation [b] for a Boolean predicate [b] which denotes 1 if b is True
and 0 otherwise.

In this paper, we will be dealing with randomized algorithms with one-sided
error-probability, i.e. only false negatives are possible. The success-probability of
an algorithm is the probability that the algorithm finds a solution, given that at least
one such solution exists. We define high-probability to be probability at least 1− 1

2c|x |
or sometimes 1− 1

|x |c , where |x | is the input size and c is a constant. Given an algorithm
with constant success-probability, we can boost it to high-probability by performing
O�(1) independent trials. We cite the following folklore observation:

123



1664 Algorithmica (2024) 86:1657–1699

Lemma 2.4 ([14, Folklore]) If a problem can be solved with success probability 1
S

and in expected time T , and its solutions can be verified for correctness in polynomial
time, then it can also be solved in O�(S · T ) time with high probability.

We will use the following notion of separations in a graph from [14]:

Definition 2.5 ([14, Simple Separator]) Given a graph G = (V , E), a partition
(A, B, S) ∈ (V (G)

·,·,·
)
of V is a (simple) separation if there are no edges between A

and B.

Definition 2.6 ([14, Three-Way Separator]) Given a graph G = (V , E), a three-way
separator is a partition (S{1}, S{2}, S{3}, S{1,2}, S{1,3}, S{2,3}, S{1,2,3}) of V such that
there are no edges between any two sets SI , SJ whose sets I and J are disjoint.

A β-separator for a graph G = (V , E) is a set of vertices whose removal from G
leaves no connected component of size larger than |V |

β
, where β > 0 is some constant.

Thus, a β-separator is a balanced separator of the graph. More generally, one can
define a β-separator with respect to a weight function on the vertices. It is a well-
known fact that a β-separator of cardinality β exists for forests and can be computed
in polynomial time (for e.g., see Lemma 3.1 in [14]). We now give a method, which
is a simple extension to the aforementioned construction, to construct a β-separator
of a graph G given a tree decomposition of width tw.

Lemma 2.7 Given a graph G = (V , E) on n vertices with vertex weights ω(v) and its
tree decomposition T of width tw, for any β > 0, we can delete a set S of β(tw + 1)
vertices so that every connected component of G − S has weight at most ω(V )

β
, in

polynomial time.

Proof Given a bag x of T, we define the weight of the subtree rooted at x (w(x)) to
be the sum of weights of vertices present in the set formed by union of all bags in the
subtree of x. Formally, w(x) := ∑

v∈Vx
ω(v). Start with an empty set S.

Exhaustively, select a bag x of maximal depth such thatw(x) >
ω(V )

β
, then remove

the bag x and its subtree and add all vertices in Bx to the set S. Also, delete the
vertices in Bx from all other bags. Note that the maximality condition assures us that
the subtrees rooted at the children of x have total weight at most ω(V )

β
each. Moreover,

by deleting the subtree rooted at x , we remove at least ω(V )
β

weight, which can happen
at most β times. Since each bag has size at most tw + 1, the total number of vertices
added to S is at most β(tw + 1).

To see how there are no connected components of weight more than ω(V )
β

in G− S,
suppose that the tree decomposition T is reduced to the tree decomposition T

′ after
the above algorithm. Now, assume that a connected component C of weight more
than ω(V )

β
exists in G − S. Then all of its vertices in their entirety must lie inside

T
′ (since all children of a deleted bag have weight at most ω(V )/β). Now, take the

vertex of C which is at the least depth in T
′ and say it belongs to the bag c. Then,

all the members of its connected component have to appear in the subtree rooted at c.
Therefore, w(c) >

ω(V )
β

which would mean that this is not the terminal condition for
our algorithm.

123



Algorithmica (2024) 86:1657–1699 1665

From the description of the algorithm it is easy to see that it runs in polynomial
time. 
�

In [14], the authors presented a method involving randomized reductions and small
separators to get faster randomized algorithms for FVS. It turns out that this method
can be generalized to work for a certain set of “vertex-deletion problems”. We will
now describe the basic structure of this method and will follow this outline wherever
this method is used in the rest of the paper.

Throughout this outline, assume that we are working on some vertex-deletion prob-
lemP . LetG = (V , E) be the graph involved in a given instance ofP . A valid solution
S ⊆ V is a set of vertices of G which solves the given problem instance of P .

The method is divided into two cases: a dense case and a sparse case.
Dense Case: The algorithm goes into this case when for a given instance all the
existing solution sets are of high average degree. In formal terms, every set S ⊆ V of
size k which is a valid solution of the given instance satisfies deg(S) > c · k, where
c = 	(1).

To handle this case, a vertex v ∈ V is sampled randomly based on a weight func-
tion ω(v) which depends on deg(v), deletes v and makes appropriate updates to the
parameters. In this paper, we use ω(v) = deg(v) − 2 for all the problems discussed.
This process acts like a probabilistic reduction rule for the problem as it may fail with
certain probability.
Sparse Case: The algorithm goes into this case when for a given instance there exists
a solution set which has low average degree. In formal terms, there exists a vertex
subset S ⊆ V of size k which is a valid solution of the given instance and satisfies
deg(S) ≤ c · k, where c = O(1). Due to this reason, the number of edges in the given
graph can be bounded, thus the input graph G is sparse.

The proof for the small separator lemma in [14] doesn’t require the remaining
graph, i.e. the graph obtained by deleting the solution set, to be a forest only. As
long as there is a good β-separator of the graph G − S, the proof works. Lemma 2.7
helps to construct such a β-separator of size β(tw + 1) for a graph with given tree
decomposition of width tw.

The small separator helps to construct a tree decomposition of small width, given
a solution set with bounded degree. The idea suggested in [14] was to use iterative
compression techniques to construct a solution utilizing the small separator. This also
requires solving a bounded degree version of the problem, which can be done using
Cut & Count based algorithms. Specific details for each problem will be explained in
the corresponding sections in due course.

123



1666 Algorithmica (2024) 86:1657–1699

3 Restricted-Independent Almost Forest Deletion

In this section we give our algorithm for RIAFD and prove Theorem 1.2 and the first
part of Theorem 1.1.We first formally show thatRIAFD is a generalization ofAlmost
Forest Deletion. For any instance G of Almost Forest Deletion, subdivide
the edges ofG and add all the newly created subdivision vertices to R. The parameters
k and � remain the same.

Lemma 3.1 Given an instance ofAlmost Forest Deletion (G = (V , E), k, �), an
equivalent instance of RIAFD, (G ′(V ′, E ′), k′, �′, R), can be constructed as follows:

1. Start with V ′ = V , E ′ = ∅, R = ∅.
2. For each e = (u, v) ∈ E, add a vertex ve to V ′ as well as to R. Add edge (u, ve)

and (ve, v) to E ′ (Essentially, subdivide e).
3. k′ = k, �′ = �.

In this section, we present fast randomized algorithms for RIAFD. In Sect. 3.1
we present an O�(3tw) running time algorithm based on the Cut & Count paradigm.
Using this, we give anO�(3k3�) time and polynomial space algorithm in Sect. 3.2. In
Sect. 3.3, we further improve the dependency on k by using modified techniques from
[14] to get an algorithm with running time O�(2.85k8.54�) and polynomial space as
well as an algorithmwith running timeO�(2.7k36.61�) but exponential space. Finally,
in Sect. 3.4, we improve the dependency on � by creating a tree decomposition of
width k + 3

5.769� + O(log(�)) to get an algorithm with running time O�(3k1.78�)

(with help of the Cut & Count algorithm presented in Sect. 3.1). Henceforth, the term
riafd-set corresponds to a solution for given instance of RIAFD and the term afd-set
corresponds to a solution for given instance of AFD.

3.1 3tw Algorithm

We use the Cut & Count technique [11] to solve RIAFD inO�(3tw) time. First of all,
we require the following lemma,

Lemma 3.2 A graph G = (V , E) with n vertices and m edges and a non-negative
integer � is an �-forest if and only if it has at most n − m + � connected components.

Proof Forward Direction: By definition of an �-forest, if we are given an �-forest
with n vertices and m edges, there exists a set S of � edges whose removal leaves a
forest with n vertices and m − � edges. By Lemma 2.1, this remaining forest has at
most n− (m − �) connected components. Adding back the edges from the set S to the
remaining forest cannot result in an increase in the number of connected components.
Therefore, the �-forest also has at most n − m + � connected components.

Reverse Direction: We are given a graph G = (V , E) with n vertices, m edges
and at most n − m + � connected components. Let the r connected components
be C1,C2, . . .Cr having n1, n2, . . . nr vertices each respectively. The subgraph con-
sisting of only the spanning trees of the connected components is a forest with
r∑

i=0
(ni − 1) = n − r ≥ n − (n − m + �) ≥ m − � edges. Let the edge set of

123



Algorithmica (2024) 86:1657–1699 1667

the subgraph be E ′. Therefore, E \ E ′ of cardinality at most � is the set of edges to be
removed from G to obtain a forest. Therefore, G is an �-forest. 
�

Moving on to the Cut & Count Algorithm. Firstly, we define the set U = V . We
assume that we are given a weight function ω : U → {1, . . . , N }, where N is some
fixed integer.
The Cut Part: For integers A, B,W we define:

1. RA,B
W to be the family of solution candidates:RA,B

W is the family of sets X , where
X ⊆ V , |X | = A, G[X ] contains exactly B edges, (V \X) ∩ R = ∅, G[V \X ] is
an independent set and ω(V \ X) = W ;

2. SA,B
W to be the set of solutions: the family of sets X , where X ∈ RA,B

W and G[X ]
is an �-forest;

3. CA,B
W to be the family of pairs

(
X , (XL , XR)

)
, where X ∈ RA,B

W and (XL , XR) is
a consistent cut1 of G[X ].

Observe that the graph G admits an Restricted Independent Almost Forest Deletion
set F ⊆ V of size k if and only if there exist integers B,W such that the set Sn−k,B

W
is non-empty.
The Count Part:Note that for any non-negative integers A, B,W and set X ∈ RA,B

W ,

there are 2cc(G[X ]) cuts (XL , XR) such that
(
X , (XL , XR)

) ∈ CA,B
W , where by

cc(G[X ]) we denote the number of connected components of G[X ].
Now we describe a procedure that, given a nice tree decomposition T, weight

function ω and integers A, B,W , t , computes |CA,B
W | modulo 2t using dynamic pro-

gramming.
For every bag x ∈ T, integers 0 ≤ a ≤ |V |, 0 ≤ b < |V |, 0 ≤ w ≤ ω(V ) and

s ∈ {F,L,R}Bx (called the coloring), define:

Rx (a, b, w) =
{
X

∣∣ X ⊆ Vx ∧ |X | = a ∧ |Ex ∩ E[X ]| = b ∧
(Vx \ X) ∩ R = ∅ ∧ |E[Vx \ X ]| = 0 ∧ ω(Vx \ X) = W

}

Cx (a, b, w) =
{(

X , (XL , XR)
) ∣

∣ X ∈ Rx (a, b, w) ∧
(
X , (XL , XR)

)
is a consistently cut subgraph of Gx

}

Ax (a, b, w, s) =
∣∣∣
{(

X , (XL , XR)
) ∈ Cx (a, b, w)

∣∣

(
s(v) ∈ {L,R} �⇒ v ∈ Xs(v)

) ∧ (
s(v) = F �⇒ v /∈ X

)}∣∣
∣

The algorithmcomputes Ax (a, b, w, s) for all bags x ∈ T in a bottom-up fashion for
all reasonable values of a, b,w and s. We now define the recurrence for Ax (a, b, w, s)
that is used by the dynamic programming algorithm. Let v denote the vertex introduced
(resp. forgotten) and contained in an introduce (resp. forget) vertex bag, (u, v) the edge
introduced in the introduce edge bag, and let y, z stand for the left and right child of
x ∈ T. Assume all computations to be modulo 2t .

1 A cut (V1, V2) of G = (V , E) is consistent if ∀u ∈ V1, v ∈ V2, (u, v) /∈ E

123



1668 Algorithmica (2024) 86:1657–1699

• Leaf bag:

Ax (0, 0, 0, ∅) = 1

• Introduce vertex bag:

Ax (a, b, w, s ∪ {(v,F)}) = [v /∈ R] Ay(a, b, w − ω(v), s)

Ax (a, b, w, s ∪ {(v,L)}) = Ay(a − 1, b, w, s)

Ax (a, b, w, s ∪ {(v,R)}) = Ay(a − 1, b, w, s)

• Introduce edge bag:

Ax (a, b, w, s) = [Z ] · Ay(a, b − [s(u) = s(v) �= F], w, s)

where Z := (s(u) �= s(v) ⇐⇒ (s(u) = F ∨ s(v) = F))

• Forget bag:

Ax (a, b, c, w, s) =
∑

α∈{F,L,R}
Ax (a, b, w, s[v → α])

• Join bag:

Ax (a, b, w, s) =
∑

a1+a2=a+|s−1({L,R})|
b1+b2=b

w1+w2=w+ω(s−1({F}))

Ay(a1, b1, w1, s) · Az(a2, b2, w2, s)

Let r ∈ T be the root bag. Therefore, Ar (A, B,W , ∅) ≡ |CA,B
W | (mod 2t ) which

is our required answer.

Lemma 3.3 Let G = (V , E) be a graph and d be an integer. Pick ω′(v) ∈ {1, . . . ,

2|V |} uniformly and independent at random for every v ∈ V , and define ω(v) :=
|V |2ω′(v) + deg(v) and n = |V |. The following statements hold:

1. If for some integers m′, W = i |V |2 + d, we have that |Cn−k,m′
W | �≡ 0 (mod

2n−k−m′+l+1), then G has a riafd-set F of size k satisfying deg(F) = d.
2. If G has a riafd-set F of size k satisfying deg(F) = d, then with probability at least

1/2 for some m′, W = i |V |2 + d, we have that |Cn−k,m′
W | �≡ 0 (mod 2n−k−m′+�+1).

Proof This proof is similar to the one for fvs in [14].
Item 1: Note that if |Cn−k,m′

W | �≡ 0 (mod 2n−k−m′+�+1), then there must be some
vertex subset F of size k such that F ∩ R = ∅, G[F] is an independent set and the
number of choices of XL , XR with (V \F, (XL , XR)) ∈ Cn−k,m′

W is not a multiple of

2n−k−m′+�+1. Due to independency in choice of cuts for connected components of
G[V \ F] on whether to put it in XL or XR , G[V \F]must have at most n−k−m′ +�

123



Algorithmica (2024) 86:1657–1699 1669

connected components. Therefore, by Lemma 3.2, G[V \ F] must be an �-forest,
making F a riafd-set of size k. The condition on degree follows from the weighting.

Item 2: First apply Lemma 2.3 with U = V and the set family F being the set
of all riafd-set F satisfying deg(F) = d with weighting done based on ω′. With
probability 1/2, there will be some weight i such that there is a unique riafd-set
F with deg(F) = d and weight i . Therefore, for the weight function ω, we have
W = ω(F) = i |V |2 + d. Since ω′ isolated F out of F and d < |V |2 (for k > 0), this
is the only F which has a contribution in Cn−k,m′

W that is not a multiple of 2n−k−m′+�+1

as it has 2cc(G[V \F]) ≤ 2n−k−m′+� valid cuts. 
�

While it is clear from the DP and Lemma 3.3 that we can getO�
(
3tw

)
running time,

we will provide the details of a slightly more generalized algorithm which is able to
utilize additional structure in the tree decomposition and improves the space bound.

3.2 3k+� Algorithm in Polynomial Space

The above Cut & Count algorithm utilizes exponential space. Notice that in all the
problems discussed in this paper, the tree decomposition that we have always has a
large set which is present in all bags of the tree decomposition. We will exploit this
structure to obtain a polynomial space algorithm.

Definition 3.4 Given a set S ⊆ V and a function f : S → {F,L,R}, we define the
quantity CA,B

W , f as follows:

CA,B
W , f =

{(
X , (XL , XR)

) ∣∣∣ X ∈ RA,B
W ∧ (XL , XR) is a consistent cut of G

[
X

] ∧
(∀v ∈ S, v agrees with f

)}
.

where “v agrees with f ” means that v ∈ V \ X if f (v) = F, v ∈ XL if f (v) = L
and v ∈ XR if f (v) = R.

Claim 3.5 Given a tree decomposition T with a set S ⊆ V which is present in all
its bags, a fixed integer t and a function f : S → {F,L,R}, there is a routine
RIAFD-FCCount(T, R, A, B,W , f , t) which can compute |CA,B

W , f | (mod 2t ) in time

O�
(
3tw−|S|).

Proof We will give a brief description of the routine RIAFD-FCCount as that will
suffice to prove this claim. In every entry of theDP table described for |CA,B

W |, just com-
pute all values of Ax (a, b, w, s), where s|Bx∩S = f |Bx∩S and ignore all computations
that do not agree to this condition. This means per bag, onlyO�(3tw−|S|) computations
are required (since in all bags at most tw+1−|S| values of s are not “fixed” by f ). The
required answer is in the root bag r as the entry Ar (A, B,W , ∅) ≡ |CA,B

W , f | (mod 2t ).

�

123



1670 Algorithmica (2024) 86:1657–1699

Now, given a tree decomposition T with a set S ⊆ V which is present in all its
bags, we can see that,

|CA,B
W | =

∑

All possible f :S→{F,L,R}
|CA,B

W , f |.

Now, we define a procedure RIAFDCutandCount which given a tree decompo-
sition T, a set S ⊆ V present in all bags of T uses the above fact to improve the space
bound from O�

(
3tw

)
to O�

(
3tw−|S|).

Algorithm 1 RIAFDCutandCount(T, R, k, �, S)

Input: Tree decomposition T, G = (V , E), set R, parameters k ≤ n and � = O(n2)
Output: A riafd-set F of size at most k or Infeasible
1: for n − k ≤ A ≤ n, 0 ≤ B ≤ A + � − 1, 0 ≤ W ≤ 2|V |4 + 2|E | do
2: t ← A − B + � + 1
3: for nO(1) iterations do
4: count ← 0
5: Randomly initialize ω as stated in Lemma 3.3 considering G = G
6: for all possible f : S → {F,L,R} do
7: count ← count +RIAFD − FCCount(T,R,A,B,W , f ,t)
8: end for
9: if count �≡ 0 (mod 2t ) then
10: F ← a riafd-set of G constructed using self-reduction
11: return F
12: end if
13: end for
14: end for
15: return Infeasible

Theorem 3.6 Given a tree decomposition T, a set S ⊆ V present in all bags of T,
a set R and parameters k and �, RIAFDCutandCount solves RIAFD in O�

(
3tw

)

time and O�
(
3tw−|S|) space with high probability.

Proof Wefirst prove the probability bound. ByLemma3.3 Item (2) if a riafd-set of size
at most k exists, then for some values satisfying n−k ≤ A ≤ |V |, 0 ≤ B ≤ A+�+1
and 0 ≤ W ≤ 2|V |4 + 2|E |, in each iteration of the for block starting at Line
3, count �≡ 0 (mod 2t ) with probability 1/2. Lemma 3.3 Item (1) makes it so that
wheneverwe havecount �≡ 0 (mod 2t ), there is guaranteed to be a riafd-set, i.e., there
are no false positives. Therefore, in nO(1) iterations, we obtain the required riafd-set,
if it exist, with high probability and if such a set doesn’t exist, RIAFDCutandCount
will always return Infeasible.

Now, to prove the time and space complexity bounds, we first take note of the
fact that by Claim 3.5, Line 7 takes O�

(
3tw−|S|) time and O�

(
3tw−|S|) space. Since

the number of possible f : S → {F,L,R} is 3|S|, Line 6 runs for O�
(
3tw

)
time

but since each run is independent it still requires only O�
(
3tw−|S|) space. All other

lines contribute at most polynomial cost overall to the total running time and space.
Therefore, the time and space bounds forLine 6 are the ones for the complete algorithm.

�

123



Algorithmica (2024) 86:1657–1699 1671

Lemma 3.7 Given a graph G = (V , E) and a riafd-set F of size k one can construct
a tree-decomposition T which contains a set S ⊇ F of size at most k + � in all bags
and has width at most |S| + 1 in polynomial time.

Proof Initially the set S = F . G[V \ F] is an �-forest. Now, find any spanning tree
of each connected component. We can see that the union of the spanning trees is the
forest with maximum number of edges that spans G[V \ F]. Therefore, there can be
at most � edges that were left out from the forest since G[V \ F] is an �-forest. Add
one end-point from each of these leftover edges to the set S. This set S is now an fvs of
G of size at most k + �. Therefore, we can construct a tree decomposition T of width
1 of the forest G[V \S]. Add the set S to all bags of T. Therefore, width of T is now
at most |S| + 1. This completes our construction. It’s easy to see from the description
of the construction procedure that it takes polynomial time. 
�

Algorithm 2 RIAFD3k3l(G, R, k, �)

Input: Graph G = (V , E), set R, parameters k ≤ n and � = O(n2).
Output: A riafd-set F of size at most k or Infeasible.
1: Order the vertices V arbitrarily as (v1, v2, . . . , vn)

2: F ← ∅

3: for i = 1, 2, . . . , n do
4: T ← Compute the tree decomposition of G

[{
v1, . . . , vi−1

}]
by

Lemma 3.7 on input F
5: S ← F
6: Add vi to all bags of T and to S
7: F ← RIAFDCutandCount(T,R,k,�,S)
8: if F is Infeasible then
9: return Infeasible
10: end if
11: end for
12: return F

Now, we prove the following theorem, which is a restatement of Theorem 1.2 (1).
Also, note that we set R = ∅ in all the cases except for when there is an explicit
requirement of a restricted set of vertices.

Theorem 3.8 (Restatement of Theorem 1.2 (1))
The randomized algorithm RIAFD3k3l solves Almost Forest Deletion in

O�
(
3k3�

)
time and polynomial space with high probability.

Proof Suppose that there exists a riafd-set F� of size at most k. Let (v1, . . . , vi ) be the
ordering from Line 1, and define Vi := {v1, . . . , vi }. Observe that F� ∩ Vi is a riafd-
set of G[Vi ], so RIAFD problem on Line 7 is feasible. Line 7 correctly computes a
riafd-setwith high probability on any given iteration. Therefore, with high probability,
such a riafd-set for G is returned by a union bound.

We now bound the running time and space complexity. On Line 4, the current set F
is a riafd-set of G[Vi−1], so Lemma 3.7 guarantees a tree decomposition T of width
at most k + � + 1, and adding vi to each bag on Line 6 increases the width by at most
1. Also Lemma 3.7 guarantees a set S with |S| ≤ k + � such that tw(T)−|S| ≤ 1 and

123



1672 Algorithmica (2024) 86:1657–1699

adding vi to the set S increases its size by 1. Therefore, by Theorem 3.6, Line 7 runs
in time O�(3k+�) and space O�(1) as desired. 
�

3.3 Improving the Dependency on k

In this subsection, we try to reduce the dependency on k by allowing an increase in
dependency on �. We use the method of [14] using the outline described in Sect. 2.
Following are some trivial reduction rules for RIAFD:

Definition 3.9 (Reduction 1) Apply the following rules exhaustively, until the remain-
ing graph has minimum vertex degree at least 2:

1. Delete all vertices of degree at most one in the input graph.
2. If k < 0, then we have a no instance. If k > 0 and G is an �-forest, we have a yes

instance. If k = 0, we have a yes instance iff G is an �-forest.

3.3.1 Dense Case

Now we give a probabilistic reduction for RIAFD that capitalizes on the fact that a
large number of edges are incident to the riafd-set. In particular, for a yes instance
we focus on obtaining a probabilistic reduction that succeeds with probability strictly
greater than 1/3 so as to achieve a randomized algorithm running in timeO�

(
(3 − ε)k

)

with high probability.

Definition 3.10 (Reduction 2 (P)) Assume that Reduction 1 does not apply andG has a
vertex of degree at least 3. Sample a vertex v ∈ V proportional toω(v) := (deg(v)−2)
if v /∈ R, else ω(v) := 0. That is, select each vertex with probability ω(v)

ω(V )
. Delete v

and add its neighbours to R. Decrease k by 1.

Claim 3.11 Let G be a graph, F an afd-set of G. Denote F := V \ F. We have that,

deg(F) ≤ deg(F) + 2(|F | − 1 + �)

Proof This proof is based on simple observations. Notice that deg(F) = 2|E[F]| +
|E[F, F]|. As G[F] is an �-forest, |E[F]| ≤ |F |−1+�. Also, |E[F, F]| ≤ deg(F).
Therefore,

deg(F) ≤ 2(|F | − 1 + �) + deg(F)


�
Lemma 3.12 Given a graphG, if there exists a riafd-set F of size k such that deg(F) ≥
4−2ε
1−ε

(k+�), then success of Reduction 2, which is the event of sampling a vertex v ∈ F,

occurs with probability at least 1
3−ε

.

Proof Let F ⊆ V is a riafd-set of G of size exactly k. For Reduction 2 to succeed
with probability at least 1

3−ε
, we need ω(F)

ω(F)
≥ 1

2−ε
.

123



Algorithmica (2024) 86:1657–1699 1673

The value of ω(F) can be rewritten as,

ω(F) =
∑

v∈F
(deg(v) − 2) = deg(F) − 2k.

By Claim 3.11 (as riafd-set is also an afd-set),

ω(F) ≤
∑

v∈F
(deg(v) − 2) = deg(F) − 2|F |

≤ deg(F) + 2(|F | − 1 + �) − 2|F | ≤ deg(F) + 2�.

Therefore,

ω(F)

ω(F)
≥ deg(F) − 2k

deg(F) + 2�
= 1 − 2(k + �)

deg(F) + 2�

(�≥0)≥ 1 − 2(k + �)

deg(F)
.

Hence, we need

1 − 2(k + �)

deg(F)
≥ 1

2 − ε
⇐⇒ deg(F) ≥ 4 − 2ε

1 − ε
(k + �).


�

3.3.2 Sparse Case

For the sparse case, we first construct a small separator. Due to the presence of two
variables (k and �), we have to modify the small separator lemma in [14, Lemma 3.2]
with a bivariate analysis. Also, though we are discussing RIAFD, we will show how
to construct a small separator assuming that we are given an afd-set, as a riafd-set is
also an afd-set.

Small Separator The main idea, as presented in [14], is to convert an afd-set with
small average degree into a good tree decomposition. In particular, suppose a graph G
has an afd-set F of size k with deg(F) ≤ d(k + �), where d = O(1). We show how
to construct a tree decomposition of width (1 − �(1))k + (2 − �(1))�. Note that d
is not exactly the average degree of F . This definition helps us to bound the width of
the tree decomposition well.

Before constructing this separator, we will first see a construction of a β-separator
of an �-forest. We could use Lemma 2.7, but the size of the separator obtained would
be � · o(k) which is huge (treewidth ≤ �). We now give a method to construct a
β-separator of size � + o(k).

Lemma 3.13 Given an �-forest T (V , E) on n vertices with vertex weights ω(v), for
any β > 0, we can delete a set S of β + � vertices in polynomial time so that every
connected component of T − S has total weight at most ω(V )

β
.

123



1674 Algorithmica (2024) 86:1657–1699

Proof Construct some spanning tree for each connected component of T , call this
resultant forest T ′. Let X be the set of remaining edges which are not in T ′. For each
edge in X , delete one vertex from T ′. As |X | ≤ �, we will delete at most � vertices.
The resultant will still be a forest, call it T ′′.

Using [14, Lemma 3.1], there exists a set S′ with |S′| = β in T ′′ such that every
connected component of T ′′ − S has total weight at most ω(V )

β
. Thus, we delete at

most β + � vertices overall. We present the proof of the aforementioned lemma for
the sake of completeness.

Root every component of the forest T ′′ at an arbitrary vertex. Iteratively select a
vertex v of maximal depth whose subtree has total weight more than ω(V )

β
, and then

remove v and its subtree. The subtrees rooted at the children of v have total weight
at most ω(V )

β
, since otherwise, v would not satisfy the maximal depth condition.

Moreover, by removing the subtree rooted at v, we remove at least ω(V )
β

total weight,
and this can only happen β times. 
�

With the help of Lemma 3.13, we will now proceed to the small separator lemma.

Lemma 3.14 (Small Separator) Given an instance (G, k, �) and an afd-set F of G
of size k, define d := deg(F)

k+�
, and suppose that d = O(1). There is a randomized

algorithm running in expected polynomial time that computes a separation (A, B, S)

of G such that:

1. |A ∩ F |, |B ∩ F | ≥ (2−d − o(1))(k + �) − �

2. |S| ≤ (1 + o(1))(k + �) − |A ∩ F | − |B ∩ F |
Proof The proof will be similar to [14] (Lemma 4). First, we fix a parameter ε :=
(k + �)−0.01 throughout the proof. Apply Lemma 3.13 to the �-forest G − F with
β = ε(k + �) and every vertex v ∈ V \F weighted by |E[v, F]|. Let Sε be the output.
Observe that:

|Sε | ≤ � + ε(k + �) = � + o(k + �),

and every connected component C of G − F − Sε satisfies,

|E[C, F]| ≤ |E[F, F]|
ε(k + �)

≤ deg(F)

ε(k + �)
≤ d(k + �)

ε(k + �)
= d

ε

Now form a bipartite graph H , as in [14], i.e., on the vertex bipartition F�R, where
F is the afd-set, and there are two types of vertices inR, the component vertices and
the subdivision vertices. For every connected component C in G − F − Sε , there is a
component vertex vC in R that represents that component, and it is connected to all
vertices in F adjacent to at least one vertex in C . For every edge e = (u, v) in E[F],
there is a vertex ve inR with u and v as its neighbours. Observe that:

• |R| ≤ |E[F, F]| + 2|E[F]| = deg(F).
• every component vertex inR has degree at most d

ε
.

• the degree of a vertex v ∈ F in H is at most deg(v).

123



Algorithmica (2024) 86:1657–1699 1675

The algorithm that finds a separator (A, B, S) works as follows. For each vertex inR,
color it red or blue uniformly and independently at random. Every component C in
G − F − Sε whose vertex vC is colored red is added to A in the separation (A, B, S),
and every component whose vertex vC is colored blue is added to B. Every vertex in
F whose neighbors are all colored red joins A, and every vertex in F whose neighbors
are all colored blue joins B. The remaining vertices in F , along with the vertices in
Sε , comprise S. It is easy to see that (A, B, S) is a separation.

Claim 3.15 (A, B, S) is a separation.

Wenow showwith good probability both conditions (1) and (2) hold. The algorithm
can then repeat the process until both conditions hold.

Claim 3.16 With probability at least 1 − 1
kO(1) condition (1) holds for (A, B, S).

Proof Firstly, notice that F has at most ε(k + �) vertices with degree at least d
ε
. These

can be ignored as they affect condition (1) only by an additive ε(k + �) = o(k + �)

factor. Let F ′ be the vertices with degree at most d
ε
. Now, consider the intersection

graph I on vertices of F ′ formed by connecting two vertices if they share a common
neighbour (inR). Since every vertex in F ′ and all the component vertices have degree

at most d
ε
, the maximum degree of I is at most

(
d
ε

)2
. Color the vertices of F ′ with

(
d
ε

)2 + 1 colors such that the vertices of the same color class form an independent

set in I , using the standard greedy algorithm. Note that, within each color class, the
outcome of each vertex whether it joins A, B or S is independent across vertices.

Let F ′
i be the set of vertices colored i . If |F ′

i | ≤ k0.9, then this color class can

be ignored since the sum of all such |F ′
i | is at most

((
d
ε

)2 + 1

)
k0.9 = o(k) and

this affects condition (1) by an additive o(k) factor. Henceforth, assume |F ′
i | ≥ k0.9.

Each vertex v ∈ F ′
i has at most deg(v) neighbours in H . So, it can join A with an

independent probability of at least 2−deg(v). Let Xi = |F ′
i ∩ A|, then by Hoeffding’s

inequality,2

Pr[Xi ≤ E[Xi ] − k0.8] ≤ 2 · exp
(

−2 ·
(
k0.8

)2

|F ′
i |

)

≤ 2 · exp
(

−2 · k
1.6

k

)
≤ 1

kO(1)

for large enough k.
By a union bound over all the ≤ k0.1 such color classes with |F ′

i | ≥ k0.9, the
probability that |F ′

i ∩ A| ≥ E[|F ′
i ∩ A|] − k0.8 for each F ′

i is at least 1− 1
kO(1) . In this

2 We use the notation exp(x) to denote the function ex .

123



1676 Algorithmica (2024) 86:1657–1699

case,

|F ∩ A| ≥
∑

i :|F ′
i |≥k0.9

(
E[|F ′

i ∩ A|] − k0.8
)

≥
∑

i :|F ′
i |≥k0.9

∑

v∈F ′
i

(
2−deg(v)

)
− k0.1 · k0.8

=
∑

v∈F ′
2−deg(v) +

�∑

j=1

20 − � − o(k)

≥ (|F ′| + �
) · 2− deg(F ′)

|F ′|+� − � − o(k),

where the last inequality follows from convexity of the function 2−x . Recall that
|F ′| ≥ k−o(k+�), and observe that deg(F ′)

|F ′|+�
≤ deg(F)

k+�
= d since the vertices in F\F ′

are vertices with degree greater than some threshold. Thus,

|F ∩ A| ≥ (k + � − o(k + �)) · 2−d − l − o(k) ≥
(
2−d − o(1)

)
(k + �) − �,

proving condition (1) for A. The argument for |B ∩ F | is analogous. 
�
Claim 3.17 With probability at least 1 − 1

kO(1) condition (2) holds for (A, B, S).

Proof Note that at most � + o(k + l) vertices in S are from Sε , and the other vertices
in S are from the set F\((F ∩ A) ∪ (F ∩ B)) which has size k − |A ∩ F | − |B ∩ F |.
Thus, |S| ≤ (1 + o(1)) (k + �) − |A ∩ F | − |B ∩ F | 
�


�
Lemma 3.18 LetG beagraphand F beaafd-setofG of size k, anddefined := deg(F)

k+�
.

There is a randomized algorithm that, given G and F, computes a tree decomposition
of G of width at most (1− 2−d + o(1))k + (2− 2−d + o(1))�, and runs in polynomial
time in expectation.

Proof Compute a separation (A, B, S) following Lemma 3.14. Notice that G[A ∪
S] − (F ∪ S) is a forest, as Sε (from proof of Lemma 3.14) includes the � vertices
corresponding to the � extra edges of the �-forest G − F . Thus, (A ∩ F) ∪ S is a fvs
of A ∪ S. The size of this fvs is,

|(A ∩ F) ∪ S| = |A ∩ F | + |S|
≤ (1 + o(1))(k + �) − |B ∩ F |
≤ (1 − 2−d + o(1))k + (2 − 2−d + o(1))�.

Therefore, we can compute a tree decomposition of G[A∪ S] of width (1− 2−d +
o(1))k + (2 − 2−d + o(1))� as follows: start with a tree decomposition of width 1 of

123



Algorithmica (2024) 86:1657–1699 1677

the forestG[A∪S]−(F∪S), and then add all vertices in (A∩F)∪S to each bag. Call
this tree decomposition of G[A ∪ S] as T1. Similarly, compute a tree decomposition
of G[B ∪ S] in the same way, call it T2.

Since there is no edge connecting A and B, and S is present in all bags of T1 and
T2, we can construct the tree decompositionT ofG by simply adding an edge between
an arbitrary node from T1 and T2. Thus, it is evident from the construction procedure
that T is a valid tree decomposition of G and it takes polynomial time to compute it.


�
Note 3.19 Using the tree decomposition obtained in Lemma 3.18, we can run the
Cut & Count algorithm from Sect.3.1. But this will utilize exponential space. To get
polynomial space, we use the idea fromClaim 3.5. In the proof of Lemma 3.18, observe
that the set (A∩ F)∪ S is present in every bag of T1. Similarly, (B ∩ F)∪ S is present
in every bag of T2. This observation is crucial for the proof of Lemma 3.20.

As we are in the sparse case, there exists a riafd-set F of size k with bounded
degree, i.e., deg(F) ≤ dk. We call this bounded version of the problem BRIAFD. As
we saw, the small separator helps in constructing a tree decomposition of small width,
but requires that we are given an afd-set of size k and bounded degree. To attain this,
we use an Iterative Compression based procedure which at every iteration constructs
a riafd-set of size at most k with bounded degree and uses it to construct the small
separator. Using this small separator we construct a tree decomposition of small width
and run a Cut & Count based procedure to solve bounded RIAFD problem for the
current induced subgraph, i.e, get a riafd-set of size at most k with bounded degree.

Now, we give the claimed BRIAFD1 algorithm, which is a Cut & Count based
algorithm which solves BRIAFD given a small separator.

Lemma 3.20 Given a graph G, a set R, an afd-set F of G of size at most k + 1,
parameter d, and a separation (A, B, S) as given by Lemma 3.14, the Algorithm
BRIAFD1 outputs an riafd-set F� of size at most k satisfying deg(F�) ≤ d(|F�|+�),

or Infeasible if none exists. The algorithm uses O�(3(1−2−d+o(1))k · 3(2−2−d+o(1))�)

time and polynomial space and succeeds with high probability.

Proof For the time bound, firstly notice that Lines 11 and 15 take polynomial time
due to the observation given in Note 3.19 and Claim 3.5. All other steps listed in the
algorithm BRIAFD1 are polynomial time except lines 7, 10 and 14, which jointly give
rise to 3|S|+|A∩F |+3|S|+|B∩F | iterations. By the conditions (1) and (2) of the separator
(A, B, S) in Lemma 3.14, we get the desired time bound. The space bound is evident
from the description of the algorithm BRIAFD1 and Claim 3.5. Also, by Line 3 and
Lemma 2.4, the algorithm succeeds with high probability.

For the correctness, first we claim that at Line 15, count = |Cn−k,B
W | for some

A, B and W = i · n2 + d (from Lemma 3.3). To see the claim, observe that we
are iterating over all possible mappings of S. For each mapping and every possible
split of the parameters W and B, the algorithm computes the number countA (resp.
countB) denoting the “extensions” of the mapping in G[A ∪ S] (resp. G[B ∪ S]) that
respect the split, and then multiplies countA and countB. To see why these counts
are multiplied, notice that there are no edges between A and B. So, extending into

123



1678 Algorithmica (2024) 86:1657–1699

Algorithm 3 BRIAFD1(G, R, k, �, F, A, B, S, d)

Input: Graph G = (V , E), a set R, an afd-set F of size at most k + 1, the parameters k, d ≤ n and � ≤ m
and a separation (A, B, S) from Lemma 3.14.

Output: Either output a riafd-set F� of size at most k satisfying deg(F�) ≤ d(|F�| + �), or conclude that
one does not exist (Infeasible).

1: for A ≥ n − k, 0 ≤ B ≤ A + � − 1, W = i |V |2 + d for some d ≤ d(n − A + �) do
2: t ← A − B + � + 1
3: for nO(1) iterations do
4: count ← 0
5: Randomly initialize ω as stated in Lemma 3.3
6: Generate tree decompositions T1 and T2 as defined in proof of

Lemma 3.18
7: for all possible f : S → {F,L,R} do
8: for W ′, A′, B′ s.t. 0 ≤ W ′ ≤ W , 0 ≤ A′ ≤ A, 0 ≤ B′ ≤ B do
9: countA ← 0
10: for all possible f A : (A ∩ F) → {F,L,R} do
11: countA ← countA +RIAFD − FCCount(T1,R,A′,B′,W ′,

f � f A ,t)
12: end for
13: countB ← 0
14: for all possible fB : (B ∩ F) → {F,L,R} do
15: countB ← countB + RIAFD − FCCount(T2, R, A − A′+

| f −1 ({L,R}) |, B − B′ +
∣∣∣E

[
f −1 ({L,R})

]∣∣∣, W − W ′+
ω( f −1(F)), f � fB , t)

16: end for
17: count ← count + countA · countB
18: end for
19: end for
20: if count �≡ 0 (mod 2t ) then
21: F� ← a riafd-set of G of size at most k satisfying deg(F�) ≤

d(|F�| + �) constructed using self-reduction
22: return F�

23: end if
24: end for
25: end for
26: return Infeasible

G[A ∪ S] is independent to extending into G[B ∪ S]. This along with the correctness
of RIAFD-FCCount proves the claim, thereby proving the correctness. 
�

And now we give the Iterative Compression routine RIAFD_IC1, as explained
above, which solves BRIAFD.

Lemma 3.21 Algorithm RIAFD_IC1 solves BRIAFD in time O�(3(1−2−d+o(1))k ·
3(2−2−d+o(1))�) with high probability and polynomial space.

Proof Suppose there exists a riafd-set F of size k satisfying deg(F) ≤ d(k + �). Let
(v1, . . . , vi ) be the ordering from Line 1, and define Vi := {v1, . . . , vi }. Observe that
F ∩ Vi is a riafd-set of G[Vi ] of size at most k. Let Fi = F ∩ Vi and |Fi | = ki ≤ k.
Due to the ordering from Line 1, Fi are the vertices of least degrees in F . Thus,
deg(Fi )
ki+�

≤ deg(F)
k+l ≤ d . Hence, BRIAFD problem on Line 7 is feasible.

123



Algorithmica (2024) 86:1657–1699 1679

Algorithm 4 RIAFD_IC1(G, R, k, �, d)

Input: Graph G = (V , E), a set R and parameters k, d ≤ n and � ≤ m where d = O(1).
Output: A riafd-set F� of G of size at most k satisfying deg(F�) ≤ d(|F�| + �) or Infeasible.
1: Order the vertices V in ascending order of degrees and call them (v1, v2, . . . , vn)

2: F� ← ∅

3: for i = 1, 2 . . . , n do
4: � Invariant: deg(F�) ≤ d(|F�| + �)

5: Compute a separation (A, B, S′) of G
[{

v1, . . . , vi−1
}]

by Lemma 3.14
using F�, d

6: S ← S′ ∪ {vi } so (A, B, S) is a separation of G
[{v1, . . . , vi }

]

7: F� ← BRIAFD1(G,R, k, �, F� ∪ {vi }, A, B, S, d)
8: if F� is Infeasible then
9: return Infeasible
10: end if
11: end for
12: return F�

Line 7 correctly computes a bounded degree riafd-set of size at most k with high
probability, by Lemma 3.20. Therefore, with high probability, a riafd-set of size k is
returned.

We now bound the running time. On Line 5, the current set F� is a riafd-set of
G[Vi−1] satisfying deg(F�) ≤ d(|F�| + �), so Lemma 3.18 guarantees tree decom-
positions T1 and T2 of width at most (1 − 2−d + o(1))k + (2 − 2−d + o(1))�, and
adding vi to each bag on Line 6 increases the width by at most 1. By Lemma 3.20,

Line 7 runs in timeO�
(
3(1−2−d+o(1))k · 3(2−2−d+o(1))�

)
, as desired. The space bound

is evident from the description of RIAFD_IC1 and Lemma 3.20. 
�
Three-Way Separator Similar to small separator, a bivariate analysis has to be

done in the case of the three-way separator too. The outline of the analysis is similar
to Lemma 3.14.

Lemma 3.22 (Three-Way Separator). Given an instance (G, k) and an afd-set F of
size k, define d := deg(F)

k+�
, and suppose that d = O(1). There is a randomized

algorithm running in expected polynomial time that computes a three-way separation
(S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) of G such that there exists values f1, f2 satisfying:

1. f1k ≥ (3−d − o(1))(k + �) − �

2. f1k − o(k + �) ≤ |Si ∩ F | ≤ f1k + o(k + �) for all i ∈ [3]
3. ( f2 + 2 f1)k ≥ (

( 23 )
d − o(1)

)
(k + �) − �

4. f2k − o(k + �) ≤ |Si, j | ≤ f2k + o(k + �) for all 1 ≤ i < j ≤ 3

Proof This proof is similar to [14](Lemma 14) and uses the idea from Lemma 3.14.
Indeed, the same choice of values for f1 and f2 considered by [14] works. Firstly, we
start out the same: fix ε := (k + �)−0.01, apply Lemma 3.13 on G − F (to construct
Sε), and construct the bipartite graph H on the bipartition F � R in the same way as
in Lemma 3.14. Recall that,

• |R| ≤ |E[F, F]| + 2|E[F]| = deg(F).
• every component vertex inR has degree at most d

ε
.

123



1680 Algorithmica (2024) 86:1657–1699

• the degree of a vertex v ∈ F in H is at most deg(v).

Now, instead of randomly two-coloring the vertex set R, the algorithm three-colors
it. That is, for each vertex in R, color it with a color in {1, 2, 3} chosen uniformly
and independently at random. For each subset I ⊆ 2[3]\{∅}, create a vertex set SI
consisting of all vertices v ∈ F whose neighborhood in H sees the color set I precisely.
More formally, let c(v) and N (v) be the color of v ∈ R and the neighbors of v in H ,
and define SI = {v ∈ F : ⋃

u∈N (v) c(u) = I }. Furthermore, if I is a singleton set {i},
then add (to SI ) all vertices in the connected components C whose component vertex
inR is colored i . We also add Sε to S{1,2,3}. Henceforth, we abuse notation, referring
to sets S{1}, S{1,2}, etc. as S1, S1,2, etc. Let F ′ denote the set of vertices in F whose
degree are at most d/ε, same as before. For each d ≤ d/ε, let F ′

d denote the set of
degree d vertices in F ′. Further, let p1,d be the probability that a vertex of degree d
joins S1, WLOG (since we will have the same values for S2 and S3). Also, let p2,d be
the probability that a vertex of degree d joins S1,2, WLOG. Observe that p1,d = 3−d .

Claim 3.23 (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) is a three-way separator.

Claim 3.24 For f1 :=
d/ε∑

d=1
p1,d |F ′

d |
|F ′| , condition (2) holds with probability at least 1 −

1
kO(1) .

Claim 3.25 For f2 :=
d/ε∑

d=1
p2,d |F ′

d |
|F ′| , condition (4) holds with probability at least 1 −

1
kO(1) .

The proofs of Claim 3.23, Claim 3.24 and Claim 3.25 are very similar to the proofs
in [14] and the proof of Lemma 3.14. Hence, they are omitted.

Claim 3.26 For the value of f1 defined in Claim 3.24, condition (1) holds with prob-
ability at least 1 − 1

kO(1)

Proof Observe that deg(F ′)
|F ′|+�

≤ deg(F)
k+�

= d , since the vertices in F\F ′ are precisely
vertices with degree exceeding some threshold, and |F ′| ≥ k − o(k + �). Also, due to
the convexity of the function 3−x , we get

f1k ≥ f1|F ′| =
∑

d

|F ′
d | · p1,d

=
∑

d

|F ′
d | · 3−d

=
∑

v∈F ′
3−deg(v) +

�∑

j=1

30 − �

≥ (|F ′| + �)3
− deg(F ′)

|F ′|+� − �

≥ (3−d − o(1))(k + �) − �,

123



Algorithmica (2024) 86:1657–1699 1681

proving condition (1). 
�
Claim 3.27 For the values of f1 and f2 defined in Claim 3.24 and Claim 3.25, respec-
tively, condition (3) holds.

Proof Let qd be the probability that a vertex v of degree d joins one of S1, S2 or S1,2
(WLOG). Since this is also the probability that no neighbour of v is colored 3, we
have qd = ( 2

3

)d . Also, observe that qd = 2p1,d + p2,d . Therefore,

2 f1k + f2k ≥ 2 f1|F ′| + f2|F ′| = 2 ·
∑

d

p1,d · |F ′
d | +

∑

d

p2,d · |F ′
d |

=
∑

d

|F ′
d | · qd

=
∑

v∈F ′

(
2

3

)deg(v)

+
�∑

j=1

30 − �

≥ (|F ′| + �)

(
2

3

) deg(F ′)
|F ′|+� − �,

where the last inequality follows from convexity of
( 2
3

)x
. Again, we have deg(F ′)

|F ′|+�
≤

deg(F)
k+�

= d, and |F ′| ≥ k − o(k + �). So,

( f2 + 2 f1)k ≥
((

2

3

)d

− o(1)

)

(k + �) − �,

proving condition (3). 
�

�

We now describe the structure of the three-way separator in more detail which
will help in designing the algorithm utilizing it. Let’s say we are given a graph
G = (V , E), an afd-set F of size at most k + 1 and a three-way separation
(S1, S2, S3, S1,2, S2,3, S2,3, S1,2,3) as in Lemma 3.22. Let f1 and f2 be from the
conditions of Lemma 3.22. Define f3 := 1− 3 f1 − 3 f2, so that f3k + �− o(k + �) ≤
|S1,2,3| ≤ f3k + � + o(k + �).

Notice that G[S1 ∪ S1,2 ∪ S1,3 ∪ S1,2,3] − (F ∪ S1,2,3) is a forest, as Sε (from
Lemma 3.22) includes the � vertices corresponding to the � extra edges of the �-forest
G − F . Thus, (S1 ∩ F) ∪ S1,2 ∪ S1,3 ∪ S1,2,3 is an fvs of S1 ∪ S1,2 ∪ S1,3 ∪ S1,2,3. The
size of this fvs is,

|(S1 ∩ F) ∪ S1,2 ∪ S1,3 ∪ S1,2,3| = |S1 ∩ F | + |S1,2| + |S1,3| + |S1,2,3|
≤ ( f3 + 2 f2 + f1)k + � + o(k + �)

Therefore, we can compute a tree decomposition of G[S1 ∪ S1,2 ∪ S1,3 ∪ S1,2,3] of
width ( f3 + 2 f2 + f1)k + � + o(k + �) as follows: start with a tree decomposition

123



1682 Algorithmica (2024) 86:1657–1699

of width 1 of the forest G[S1 ∪ S1,2 ∪ S1,3 ∪ S1,2,3] − (F ∪ S1,2,3), and then add all
vertices in (S1 ∩ F) ∪ S1,2 ∪ S1,3 ∪ S1,2,3 to each bag. Call this tree decomposition
T1. Similarly, we can compute a tree decomposition of G[S2 ∪ S1,2 ∪ S2,3 ∪ S1,2,3]
and G[S3 ∪ S1,3 ∪ S2,3 ∪ S1,2,3] in the same way, call them T2 and T3 respectively. It
is evident from the construction procedure it takes polynomial time to compute these
tree decompositions.

Note 3.28 Observe that there is no edge connecting any pair among S1, S2 and S3,
and Si, j has neighbours only in Si and S j . Also, the set (S1 ∩ F)∪ S1,2 ∪ S1,3 ∪ S1,2,3
is present in every bag of T1. Similarly, (S2 ∩ F)∪ S1,2 ∪ S2,3 ∪ S1,2,3 and (S3 ∩ F)∪
S1,3∪S2,3∪S1,2,3 are present in every bag ofT2 andT3 respectively. This observation
and the three decompositions obtained will be crucial for the proof of Lemma 3.30.

Similar to the two-way separator case, we now describe the routines BRIAFD2.
and RIAFD_IC2 which will utilize the three-way separator.

Note 3.29 InBRIAFD2, values of some variables are not assigned tomaintain clarity.
In the algorithm, w, a, b are variables to account for overcounting in S1,2,3. If we
define s1 = f −1({L,R}) thenw = 2 ·ω(S1,2,3\s1), a = 2 · |s1| and b = 2 · |E[s1, s1]|.
For the overcounting that takes place within S1,2, S2,3 and S1,3, we define the variables
wi , ai and bi for i ∈ [3]. We take w1 = a1 = b1 = 0. If we define s2 = f −1

2 ({L,R}),
then w2 = ω(S1,2\s2), a2 = |s2|, b2 = |E[s2, s2]|. If we define s3 = f −1

1 ({L,R}) �
f −1
2 ({L,R}), then w3 = ω((S2,3 � S1,3)\s3), a3 = |s3|, b3 = |E[s3, s3]|.

Lemma 3.30 Given a graphG, an afd-set F ofG of size atmost k+1, parameter d, and
a three-way separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) as given by Lemma 3.22,
the Algorithm BRIAFD2 outputs a riafd-set of size at most k satisfying deg(F) ≤
d(|F |+�), or Infeasible if none exists, with high probability. The algorithm runs in time

O�(3
(1−min{

(
2
3

)d
,(3−ω)

(
2
3

)d+(2ω−3)3−d }+o(1))k · 3(1+ω−((3−ω)
(
2
3

)d+(2ω−3)3−d )+o(1))�
),

where ω is the exponent of the matrix multiplication algorithm used.

Proof For the time bound, firstly notice that lines 14 takes polynomial time due to the
observation given in Note 3.28 and Claim 3.5. Let f1, f2 and f3 be from Lemma 3.22
and Note 3.28. For each of the O�(3 f3k+�+o(k+�)) iterations on Line 7, building the
graph H (Lines 9 − 19) takes time O�(3(2 f2+ f1)k+o(k+�)), and running matrix multi-
plication on Line 20 on a graph withO�(3 f2k+o(k+�)) vertices to compute the sum over
product of weights on the three edges of all triangles takes time O�(3ω f2k+o(k+�)).
Therefore, the total running time is

O�(3 f3k+�+o(k+�)(3(2 f2+ f1)k+o(k+�) + 3ω f2k+o(k+�)))

= O�(3( f3+2 f2+ f1)k+�+o(k+�)) + 3( f3+ω f2)k+l+o(k+�))

= O�(3(1− f2−2 f1)k+�+o(k+�)) + 3(1−(3−ω) f2−3 f1)k+l+o(k+�))

= O�(3(1−( f2+2 f1))k+�+o(k+�)) + 3(1−(3−ω)( f2+2 f1)−(2ω−3) f1)k+l+o(k+�))

≤ O�((3(1−( 23 )d+o(1))k + 3(1−((3−ω)( 23 )d+(2ω−3)3−d+o(1))k) ·
3(1+ω−((3−ω)( 23 )d+(2ω−3)3−d )+o(1))�),

123



Algorithmica (2024) 86:1657–1699 1683

Algorithm 5 BRIAFD2(G, R, k, �, F, S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3, d)

Input: Graph G = (V , E), a set R, an afd-set of size at most k + 1, the parameters k, d ≤ n and � ≤ m
and a separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) from Lemma 3.22.

Output: Either output a riafd-set F� of size at most k satisfying deg(F�) ≤ d(|F�| + �), or conclude that
one does not exist (Infeasible).

1: for A ≥ n − k, 0 ≤ B ≤ A + � − 1, W = i |V |2 + d for some d ≤ d(n − A + �) do
2: t ← A − B + � + 1
3: for nO(1) iterations do
4: count ← 0
5: Randomly initialize ω as stated in Lemma 3.3
6: Generate tree decompositions T1, T2 and T3 as stated in Note 3.28
7: for all possible g : S1,2,3 → {F,L,R} do
8: for nonnegativeWi , Ai , Bi , i ∈ [3] such that∑i Wi = W+w,

∑
i Ai = A+a,

∑
i Bi = B+b

do
9: H ← an empty graph with vertices indexed by

(S1,2
.,.,.

) ∪ (S2,3
.,.,.

)∪
(S1,3
.,.,.

)

10: for (i, j, k) in {(1, 2, 3), (2, 3, 1), (3, 1, 2)} do
11: for all possible g1 : Si, j → {F,L,R}, g2 : Si,k → {F,L,R} do
12: count3 ← 0
13: for all possible g3 : Si ∩ F → {F,L,R} do
14: count3 ← count3 + RIAFD − FCCount(Ti , R, Ai+

ai , Bi + bi , Wi + wi , g � g1 � g2 � g3)
15: end for
16: Add edge e between vertices (g−1

1 (F), g−1
1 (L),

g−1
1 (R)) and

(
g−1
2 (F), g−1

2 (L), g−1
2 (R)

)
of H

17: Assign weight count3 (mod 2t ) to edge e
18: end for
19: end for
20: count0 ← sum over the product of the three edges of all

triangles of H
21: count ← count + count0
22: end for
23: end for
24: if count �≡ 0 (mod 2t ) then
25: F� ← a riafd-set of G of size ≤ k satisfying deg(F�) ≤ d(|F�| + �)

constructed using self-reduction
26: return F�

27: end if
28: end for
29: end for
30: return Infeasible

where the last inequality uses the conditions (1) and (3) of Lemma 3.22, and the fact
that 2ω − 3 ≥ 0. This gives the desired time bound. Also, by Line 3 and Lemma 2.4,
the algorithm succeeds with high probability.

The proof of correctness is similar to proof of Lemma 15 in [14]. We claim that at
Line 21, count = |Cn−k,B

W | for some A, B and W = i · n2 + d (from Lemma 3.3).
First observe that there is no edge between S1 and S2,3. So, number of extensions of
S1 only depend on S1,2 and S1,3. For each mapping of S1,2 ∪ S1,3, imagine adding
an edge between the respective mappings in the graph H , with weight as the number
of extensions in S1. Proceed analogously in S2 and S3. Thus, H will be a tripartite
graph. Now, merging the solutions, i.e. finding the total number of extensions (for

123



1684 Algorithmica (2024) 86:1657–1699

a fixed mapping of S1,2,3), amounts to computing the sum over product of weights
of three edges forming triangles in H , which can be solved using a standard matrix
multiplication routine. This along with correctness of RIAFD-FCCount completes
the proof of the claim, thereby completing the proof of correctness. 
�

Algorithm 6 RIAFD_IC2(G, R, k, �, d)

Input: Graph G = (V , E), a set R and parameters k, d ≤ n and � ≤ m where d = O(1).
Output: A riafd-set F� of size at most k satisfying deg(F�) ≤ d(|F�| + �) or Infeasible.
1: Order the vertices V in ascending order of degrees and call them (v1, v2, . . . , vn)

2: F� ← ∅

3: for i = 1, 2, . . . , n do
4: � Invariant: deg(F�) ≤ d(|F�| + �)

5: Compute a separation (S1, S2, S3, S1,2, S1,3, S2,3, S
′
1,2,3) of

G
[{

v1, . . . , vi−1
}]

by Lemma 3.22 for given F�, d
6: S1,2,3 ← S′

1,2,3 ∪ {vi }, so (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) is a three-way

separation of G
[{v1, . . . , vi }

]

7: F� ← BRIAFD2(G, R, k, �, F� ∪ {vi }, S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3, d)
8: if F� is Infeasible then
9: return Infeasible
10: end if
11: end for
12: return F�

Lemma 3.31 Algorithm RIAFD_IC2 solves BRIAFD with high probability, in

O�(3(1−min{( 23 )d ,(3−ω)( 23 )d+(2ω−3)3−d }+o(1))k ·3(1+ω−((3−ω)( 23 )d+(2ω−3)3−d )+o(1))�) time.

The proof is similar to the proof of Lemma 3.21, hence it is omitted.

3.3.3 Algorithms forRIAFD

Having described the Dense and the Sparse Cases, we now combine them to give the
final randomized algorithms.

O�(2.85k8.54�) Algorithm in Polynomial Space Now, we give the Algorithm
RIAFD1, which is the complete randomized algorithm combining the Dense and
the Sparse Cases (small separator).

Lemma 3.32 Fix the parameter ε ∈ (0, 1) and d := 4−2ε
1−ε

, let ck := max
{
3 −

ε, 31−2−d }
and c� := 32−2−d

. Then RIAFD1 succeeds with probability at least
c−k
k c−�

�

k+1
and has O�(3o(k+�)) expected running time and uses polynomial space.

Proof Wewill focus on running time for each iteration of the outer loop. The computa-

tion till line 5 takes nO(1) time. Line 6 is executedwith probability 3−(1−2d )k′ ·3−(2−2d )�

and takes time O�(3(1−2d+o(1))k′ · 3(2−2d+o(1))�). So, in expectation, the total compu-
tation cost of Line 6 isO�(3o(k+�)) per value of k′, and alsoO�(3o(k+�)) overall. Note

123



Algorithmica (2024) 86:1657–1699 1685

Algorithm 7 RIAFD1(G, R, k, �)
Input: Graph G = (V , E), a set R, two parameters k ≤ n and � ≤ m.
Output: Either output a riafd-set F of size at most k, or (possibly incorrectly) conclude that one does not

exist (Infeasible).
1: for 0 ≤ k′ ≤ k do
2: Exhaustively apply Reduction 1 to (G, R, k′, �) to get the instance

(G′, R, k′, �)
3: d ← (4 − 2ε)/(1 − ε)

4: Flip a coin with Heads probability 3−(1−2d )k′ · 3−(2−2d )�

5: if coin flipped Heads then
6: F ← RIAFD_IC1 (G′,R,k′,�, d)
7: else
8: Apply Reduction 2 to (G′, R′, k′, �) to get vertex v ∈ V and instance

(G′′, R′′, k′ − 1, �)
9: F ← RIAFD1 (G′′,R′′, k′ − 1, �)∪ {v}
10: end if
11: if F is not Infeasible then
12: return F
13: end if
14: end for
15: return Infeasible

here that for all values of ε ∈ (0, 1), ck ≥ 2 and cl ≥ 1. The space bound follows
from Lemma 3.21.

Now, we prove that RIAFD1(G, k, �) succeeds with probability at least
c−k
k ·c−�

�

k+1 .
We use induction on k′. The statement is trivial when k′ = 0, since no probabilistic
reduction is used and hence it succeeds with probability 1. For the inductive step,
consider an instance RIAFD1(G, k′, �). Let (G ′, k′, �) be the reduced instance after
Line 2. Suppose that every riafd-set F ofG of size k′ satisfies the condition deg(F) ≤
d(k′ + l); here, we only need the existence of one such F . In this case, if Line 6
is executed, then it will correctly output a riafd-set F of size at most k′, with high
probability by Lemma 3.21. This happens with probability at least

3−(1−2d )k′ · 3−(2−2d )� ·
(
1 − 1

nO(1)

)
≥ c−k′

k · c−�
� · 1

k + 1
≥ c−k

k · c−�
�

k + 1
,

as desired.
Otherwise, suppose that the above condition doesn’t hold for every riafd-set F of

G ′ of size k′. This means that there exists a riafd-set F of size k′ such that deg(F) ≥
d(k′ + l). In this case, by Lemma 3.12, Reduction 2 succeeds with probability at least
1

3−ε
. This is assuming, of course, that Line 6 is not executed, which happens with

probability 1−c−k′
k ·c−�

� ≥ 1−c−k′
k ≥ 1−2−k′ ≥ 1− 1

k′ , since cl ≥ 1 and ck ≥ 2. By

induction, the recursive call on Line 9 succeeds with probability at least
c−(k′−1)
k ·c−�

�

(k′−1) .

123



1686 Algorithmica (2024) 86:1657–1699

So, the overall probability of success is at least,

(
1 − 1

k′

)
· 1

3 − ε
· c

−(k′−1)
k · c−�

�

(k′ − 1)
≥

(
k′ − 1

k′

)
· 1

ck
· c

−(k′−1)
k · c−�

�

(k′ − 1)

= c−k′
k · c−�

�

k′

≥ c−k
k · c−�

�

k + 1
,

as desired. Note that on line 9 adding the neighbours of v to R′ in the recursive call
ensures that F is independent on addition of v to it. 
�

Unless R is explicitly nonempty, we set R = ∅ to solve RIAFD. To optimize for
ck , we set ε ≈ 0.155433, giving ck ≤ 2.8446 and c� ≤ 8.5337. Theorem 1.2 (2) now
follows by combining Lemma 3.32 and Lemma 2.4.

O�(2.7k36.61�) Using Lemma 3.30 and Lemma 3.31 and the Dense Case, we now
prove the main result, Theorem 1.2 (3), restated below.

Theorem 3.33 (Restatement of Theorem 1.2 (3)) There is a randomized algorithm that
solves RIAFD in time O�(2.7k36.61�), with high probability.

Proof WerunRIAFD1, replacing everyoccurrenceof RIAFD_IC1withRIAFD_IC2.
We define d := 4−2ε

1−ε
for some ε > 0 (to be determined later); note that d ≥ 4 for any

ε > 0.ByLemma3.31,RIAFD_IC2 runs in timeO�(3(1−((3−ω)( 23 )d+(2ω−3)3−d )+o(1))k ·
3(1+ω−((3−ω)( 23 )d+(2ω−3)3−d )+o(1))�). Hence, RIAFD1 runs in time O�(ckk · c�

�),
by Lemma 2.4 to get a high success probability, for ck := max

{
3 − ε,

31−((3−ω)( 23 )d+(2ω−3)3−d )
}
and

c� := 31+ω−((3−ω)( 23 )d+(2ω−3)3−d ). Sinceω < 2.3728639 [31], we setω = 2.3728639
and optimize for ck and c�. By setting ε ≈ 0.3000237, we get ck ≤ 2.699977 and
c� ≤ 36.602, as desired. 
�

3.4 Improving Dependency on �

In this subsection, we will try to reduce the dependency on � in the Cut & Count algo-
rithm.To achieve this,wewill construct a tree decompositionwith reduced dependency
on �.

Lemma 3.34 Given a graph G = (V , E) and an riafd-set F of size k, there exists
a tree decomposition of width at most k + 3

5.769� + O(log(n)) for G and it can be
constructed in polynomial time.

Proof Given a graph G = (V , E) with n vertices and m edges, we define the graph
G ′(V ′, E ′) := G[V /F]. G ′ is an �-forest from the definition of riafd-set. We apply
the following reduction rules exhaustively on G ′:

123



Algorithmica (2024) 86:1657–1699 1687

• R0: If there is a v ∈ V ′ with deg(v) = 0, then remove v.
• R1: If there is a v ∈ V ′ with deg(v) = 1, then remove v.
• R2: If there is a v ∈ V ′ with deg(v) = 2, then contract v, i.e. remove v and insert
a new edge between its two neighbors, if no such edge exists.

For the safeness of the above reduction rules refer to [32]. Let the reduced graph
be called G ′′(V ′′, E ′′). If G ′′ is an empty graph, tw(G ′) ≤ 2 [32, Lemma 4.1] and a
tree decomposition of width at most O(log n) can be computed in polynomial time
[32, Lemma 4.3].

Otherwise, we have tw(G ′) > 2. It is trivial to see that after applying the above
reduction rules the G ′′ we get is also an �-forest. Therefore, after removing at most �
edges from G ′′, we are left with at most |V ′′| − 1 edges (since the remaining graph is
a forest). Therefore, we get that |E ′′| ≤ |V ′′| + � − 1. Since the degree of each vertex
in G ′′ is at least 3, |E ′′| ≥ 3|V ′′|/2. Therefore, 1.5|V ′′| ≤ |V ′′| + � − 1 from which
we obtain the bounds |V ′′| ≤ 2� and |E ′′| ≤ 3�. We need to use the following results
from [32].

Theorem 3.35 [32, Theorem4.7]Given a graphG(V , E), we can obtain a tree decom-
position of G of width at most |E |/5.769 + O(log(|V |)) in polynomial time.

This implies that, G ′′ has a tree decomposition of width at most 3
5.769�+O(log(n))

(since � = O(n2)) which can be computed in polynomial time.

Lemma 3.36 [32, Lemma 4.2] Given a connected graph G, with tw(G) > 2 and let
G ′ be a graph obtained from G by applying R0, R1 and R2 then tw(G) = tw(G ′)

Also, from proof of Lemma 4.2 of [32], it’s easy to see that this also works on
graphs which might not be connected. Given these facts, we see that we can obtain a
tree decomposition of G ′ with width at most 3

5.769� + O(log(n)) in polynomial time
from the tree decomposition of G ′′. Now to get the tree decomposition of the given
graph instance G, add F (of size k which we removed) to all the bags of the tree
decomposition of G ′. This finally gives the required tree decomposition of G of width
at most k + 3

5.769� + O(log(n)). 
�
We combine the treewidth bound that can be obtained from Lemma 3.34 with Itera-

tive Compression, together with the 3tw algorithm to obtain anO�(3k1.78�) algorithm
for solving RIAFD.

We now describe the working of the routine RIAFD_IC3. The iterative compres-
sion routine proceeds as follows. We start with an empty graph, and add the vertices
of G one by one, while always maintaining a riafd-set of size at most k in the current
graph. Maintaining a riafd-set for the current graph helps us utilize Lemma 3.34 to
obtain a small tree decomposition (of size k + 3

5.769� +O(log(n))). Then we can add
the next vertex in the ordering to all the bags in the tree decomposition to get a new
riafd-set of size k in O�(3tw). If we are unable to find such a riafd-set in a particular
iteration, we can terminate the algorithm early.

Now we restate Theorem 1.2 (4) and prove it.

Theorem 3.37 (Restatement of Theorem 1.2 (4)) RIAFD_IC3 solvesRIAFD problem
in time O�(3k1.78�) and exponential space with high probability.

123



1688 Algorithmica (2024) 86:1657–1699

Algorithm 8 RIAFD_IC3(G, R, k, �)

Input: Graph G = (V , E), a set R and parameters k ≤ n and � = O(n2).
Output: A riafd-set F of size at most k or Infeasible.
1: Order the vertices V arbitrarily as (v1, v2, . . . , vn)

2: F ← ∅

3: for i = 1, 2, . . . , n do
4: T ← Compute the tree decomposition of G

[{
v1, . . . , vi−1

}]
by

Lemma 3.34
5: Add vi to all bags of T

6: F ← a riafd-set of G
[{v1, . . . , vi }

]
with parameters k and �, computed

using RIAFDCutandCount on T

7: if F is Infeasible then
8: return Infeasible
9: end if
10: end for
11: return F

Proof Suppose that there exists a riafd-set F� of size at most k. Let (v1, v2, . . . , vn)

be the ordering from Line 1, and define Vi := {v1, . . . , vi }. We note that F� ∩ Vi is
a riafd-set of G [Vi ] so RIAFD problem on Line 6 will be feasible in each iteration
(and will be computed correctly with high probability in every iteration). Therefore,
with high probability, a riafd-set is returned successfully (by union bound).

We now bound the running time. On Line 4, the current set F is a riafd-set ofG [Vi ],
soLemma3.34guarantees a tree decomposition ofwidth atmost k+ 3

5.769�+O(log(n))

and adding vi to each bag on Line 5 increases the width by at most one. By the Cut

& Count algorithm from Sect. 3.1, Line 6 runs in time O�(3

(
k+ 3

5.769 �+O(log(n))
)

) =
O�(3

(
k+ 3

5.769 �
)

). This gives the desired time of O�(3k1.78�) on simplification. The
space bound follows directly from the description of RIAFD_IC3, Lemma 3.34 and
the space bound of the Cut & Count algorithm. 
�

4 Pseudoforest Deletion

In this sectionwepresent faster randomized algorithms for Pseudoforest Deletion.
In Sect. 4.1we present anO�(3tw)Cut&Count algorithm building on techniques from
[11] for FVS. Using this we give an O�(3k) time and polynomial space algorithm
in Sect. 4.2. In Sect. 4.3, we use the method in [14] to get an O�(2.85k) time and
polynomial space algorithm. Henceforth, the abbreviation pds denotes a pseudoforest
deletion set, i.e., a solution to an instance of Pseudoforest Deletion.

4.1 O�(3tw) Algorithm

Lemma 4.1 A graph G = (V , E) with n vertices and m edges is a pseudoforest if and
only if it has n − m connected components which are trees.

Proof We only consider cases where n ≥ m. Note that any graph G = (V , E) with n
vertices and m edges has at least n − m connected components which are trees. This

123



Algorithmica (2024) 86:1657–1699 1689

is because of a simple additive argument and the fact that for a connected component
other than a tree with n′ vertices and m′ edges, the term n′ − m′ ≤ 0.

Forward Direction: If G is a pseudoforest, then its connected components can be
either a tree or a tree plus an edge. For the “tree plus edge component”, n′ − m′ = 0.
Hence we have n − m trees.

ReverseDirection:Wewill prove the contrapositive, i.e., ifG is not a pseudoforest,
then it has strictly greater than n − m connected components which are trees. To see
this, consider the case when n−m = ∑

i∈[cc(G)]
ni −mi where ni andmi are the number

of vertices and the number of edges of the i th connected component, respectively. Since
ni −mi < 0 for all connected components that are not pseudotrees, we have n−m <

number of connected components that are trees, as required. 
�
We present a Cut & Count technique similar to the one for FVS in [11]. As the

universe we take U = V × {P, M1} + E × {M2}. The main difference between our
algorithm from the one for FVS is we account for additional M2 markers for the edges.
For each edge, we a priori decide one of its endpoints to represent the edge, which
we call the “representative vertex” of the edge. Also, given a set of marked edges M2,
ψ(M2) denotes the set of representative vertices of the edges in M2. When an edge
is marked, it is assumed to be deleted and it’s representative vertex is marked. This
assumption will be crucial in our algorithm.

We assign weights uniformly at random to the elements of our universe with the
weight function ω : U → {1, . . . , N }, where N = 2|U | = 4|V | + 2|E |.
The Cut Part: For integers A, B, C , D, W we define:

1. RA,B,C,D
W to be the family of solution candidates:RA,B,C,D

W is the family of triples
(X , M1, M2) where X ⊆ V , |X | = A, |E[X ]| = B + D of which D edges are
marked, i.e M2 ⊆ E[X ] and |M2| = D, M1 ⊆ X , |M1| = C and ω((V \X) ×
{P}) + ω(M1 × {M1}) + ω(M2 × {M2}) = W .

2. SA,B,C,D
W to be the set of solutions: the family of triples (X , M1, M2), where

(X , M1, M2) ∈ RA,B,C,D
W and every connected component of G[X ] − M2 is a

tree containing at least one M1 or M2 marker.
3. CA,B,C,D

W to be the family of pairs ((X , M1, M2), (XL , XR)) where (X , M1, M2)

∈ RA,B,C,D
W , M1 ⊆ XL , ψ(M2) ⊆ XL and (XL , XR) is a consistent cut of G[X ].

According to [11], a consistent cut (XL , XR) is one where there is no edge between
the cuts. But, as we stated that an edge marked with a marker M2 is deleted, these
edges are allowed to cross the cuts. However, the representative vertex must belong to
XL only.

Lemma 4.2 The graph G admits a pseudoforest deletion set of size k iff there exist
integers B, D, W such that Sn−k,B,n−k−B−D,D

W is nonempty.

Proof Forward direction: Let G have a pds P of size k. Then G ′ = G[V \ P] =
(V ′, E ′) is a pseudoforest with n − k vertices. Let G ′ have D connected components
which are “a tree plus an edge” and by Lemma 4.1 G ′ has n − k − B − D connected
components which are trees, where B = |E ′| − D. Then we can place one M1
marker each for all the tree components. Let M1 be the set of these marked vertices.

123



1690 Algorithmica (2024) 86:1657–1699

In each of the D “tree plus an edge components”, only one cycle exists. Choose
any edge belonging to that cycle as an M2 marker. Thus, by definition, this edge
is deleted making the component a tree. Also, as defined above, the representative
vertex of the deleted edge is marked. Let M2 be the set of all the marked edges. Also,
let W := ω((V \X) × {P}) + ω(M1 × {M1}) + ω(M2 × {M2}). We now see that
(X , M1, M2) ∈ Sn−k,B,n−k−B−D,D

W .

Reverse direction: We have that Sn−k,B,n−k−B−D,D
W is non-empty for some inte-

gers B, D and W . Let us consider some (X , M1, M2) ∈ Sn−k,B,n−k−B−D,D
W . Then,

the graph G[X ] has n − k vertices, B + D edges and every connected component
of G[X ] − M2 is a tree with at least one M1 or M2 marker, by definition. Since,
G[X ] − M2 is a forest with n − k vertices and B edges, it has exactly n − k − B
components which each need to have at least one of the n−k− B markers. Therefore,
every connected component of G[X ] − M2 is a tree with exactly one of M1 or M2
marker. Notice that if a tree component in G[X ] is marked by an M2 marker, then the
number of unmarked tree components remains the same, as on marking an edge, the
edge is deleted (by definition) marking it’s representative vertex. Thus, on deletion
we get two trees among which one is marked while the other is still unmarked. These
unmarked tree components necessarily have to be taken care of by M1 markers. There-
fore, the number of tree components has to be equal to the number of M1 markers, i.e.
the number of tree components is exactly n − k − B − D. Therefore, by Lemma 4.1
G[X ] is a pseudoforest. 
�
Lemma 4.3 |CA,B,C,D

W | ≡ |SA,B,C,D
W | (mod 2).

Proof Consider a triple (X , M1, M2) in RA,B,C,D
W . If G[X ] − M2 has c connected

components without any marker(M1 or M2), then it contributes 2c to |CA,B,C,D
W |.

Hence, if c ≥ 1, the triple (X , M1, M2) contributes 2c ≡ 0 (mod 2) to |CA,B,C,D
W |

(mod 2). A triple (X , M1, M2) ∈ SA,B,C,D
W iffG[X ]−M2 has no unmarked connected

components. Thus, it contributes 1 (mod 2) to both SA,B,C,D
W and CA,B,C,D

W . Hence,

|CA,B,C,D
W | ≡ |SA,B,C,D

W | (mod 2). 
�
TheCountPart:Nowwedescribe adynamicprogrammingprocedureCountC(ω, A,

B,C, D,W , T), that given a nice tree decomposition T, weight function ω and inte-
gers A, B,C, D,W , computes |CA,B,C,D

W | mod 2. For every bag x ∈ T, a ≤ |V |,
b ≤ |V |, c ≤ |V |, d ≤ |V |, w ≤ 3N |V | and s ∈ {F, L, R}Bx (called the colouring),
define

Rx (a, b, c, d, w) =
{
(X , M1, M2)

∣∣ X ⊆ Vx ∧ |X | = a ∧ |Ex ∩ E[X ]| = b +
d ∧ M1 ⊆ X ∧ M2 ⊆ Ex ∩ E[X ] ∧ |M1| = c ∧ |M2| =
d ∧ ω((V \ X) × {P}) + ω(M1 × {M1}) + ω(M2 × {M2})
= w

}

Cx (a, b, c, d, w) =
{
((X , M1, M2), (XL , XR))

∣∣ (X , M1, M2) ∈ Rx (a, b, c, d, w)

∧M1 ⊆ XL ∧ ψ(M2) ⊆ XL ∧ (X , (XL , XR)) is a consistently

123



Algorithmica (2024) 86:1657–1699 1691

cut subgraph of Gx

}

Ax (a, b, c, d, w, s) =
∣∣∣
{
((X , M1, M2), (XL , XR)) ∈ Cx (a, b, c, d, w)

∣∣(s(v) = L

�⇒ v ∈ XL) ∧ (s(v) = R �⇒ v ∈ XR) ∧ (s(v) = F �⇒
v /∈ X)

}∣∣∣

Note that we may assume b ≤ |V | and d ≤ |V | because the number of edges in a
pseudoforest cannot exceed the number of vertices. The accumulators a, b, c, d, w

keep track of the number of vertices, edges of X , M1 markers, M2 markers and
the target weight respectively. Hence Ax (a, b, c, d, w, s) is the number of pairs in
Cx (a, b, c, d, w) having a fixed interface with vertices in Bx . Note that we choose a
vertex to be an M1 marker in its respective forget bag. For the M2 marker for an edge
we make the choice in the introduce edge bag, where we decide to not include it in
G[X ] if it is chosen as a M2 marker. Also note that the endpoints in this case for this
edge can be on opposite sides of the cut.
The algorithm computes Ax (a, b, c, d, w, s) for each bag x ∈ T and for all reasonable
values of a, b, c, d, w and s. We now give the recurrence for Ax (a, b, c, d, w, s) used
by the dynamic programming algorithm. In order to simplify notation let v be the
vertex introduced and contained in an introduce bag, (u, v) the edge introduced in an
introduce edge bagwith u being the representative of the edge (i.e.ψ({(u, v)}) = {u}),
and let y, z denote the left and right child of x respectively in T if present.

• Leaf bag:

Ax (0, 0, 0, 0, 0, ∅) = 1

• Introduce vertex bag:

Ax (a, b, c, d, w, s ∪ {(v, F)}) = Ay(a, b, c, d, w − ω((v, P)), s)

Ax (a, b, c, d, w, s ∪ {(v, L)}) = Ay(a − 1, b, c, d, w, s)

Ax (a, b, c, d, w, s ∪ {(v, R)}) = Ay(a − 1, b, c, d, w, s)

• Introduce edge bag:

• If s(u) = L ∧ s(v) = R

Ax (a, b, c, d, w, s) = Ay(a, b, c, d − 1, w − ω((u, v), M2))

• If s(u) = F ∨ s(v) = F ∨ s(u) = s(v) = R

Ax (a, b, c, d, w, s) = Ay(a, b − [s(u) = s(v) �= F], c, d, w, s)

• If s(u) = s(v) = L

Ax (a, b, c, d, w, s) = Ay(a, b − 1, c, d, w, s)

123



1692 Algorithmica (2024) 86:1657–1699

+ Ay(a, b, c, d − 1, w − ω((u, v), M2), s)

Here we remove table entries not consistent with the edge (u, v), and update the
accumulator b storing the number of edges in the induced subgraph and we mark
the edge (u, v) keeping u in XL updating the accumulator d (even in the case when
u and v are in XL and XR respectively) of edges in the induced subgraph.

• Forget vertex bag:

Ax (a, b, c, d, w, s) = Ay(a, b, c − 1, d, w − ω((v, M1)), s[v → L])
+

∑

α∈{F,L,R}
Ay(a, b, c, d, w, s[v → α])

If the vertex v was in XL then we can mark it and update the accumulator c. If we
do not mark the vertex v then it can have any of the three states with no additional
requirements imposed.

• Join bag:

Ax (a, b, c, d, w, s) =
∑

a1+a2=a+|s−1({L,R})|
b1+b2=b
c1+c2=c
d1+d2=d

w1+w2=w+ω(s−1(F)×{P})

Ay(a1, b1, c1, d1, w1, s)·

Az(a2, b2, c2, d2, w2, s)

The only valid combinations to achieve the colouring s is the same colouring in
both the children bags. Since the vertices coloured F according to s are present in
both y and z, their contribution to the weight w and the number of the vertices a
needs to be accounted for.

Since |CA,B,C,D
W | ≡ Ar (A, B,C, D,W , ∅) (mod2),we compute Ar (A, B,C, D,W ,

∅) for all reasonable values of the parameters as mentioned before using the
dynamic programming procedure, which takes O�(3tw|V |O(1)) time. This concludes
the description of the Cut & Count algorithm for pds.

We state the following equivalent of Lemma 3.3. The proof is omitted as it is very
similar to the equivalent proof given for RIAFD.

Lemma 4.4 Let G = (V , E) be a graph and d be an integer. Set the universe U =
V × {P, M1} ∪ E × {M2}. Pick ω′(u) ∈ {1, . . . , 2|U |} uniformly and independent at
random for every u ∈ U.Defineω : U → N such thatω((v, P)) := |V |2ω′((v, P))+
deg(v) for all v ∈ V and ω(u) = |V |2ω′(u) for all other u ∈ U. The following
statements hold:

1. If for some integers m′, D, W = i |V |2 + d we have that |Cn−k,m′,n−k−m′−D,D
W | �≡

0 (mod 2), then G has a Pseudoforest Deletion set P of size k satisfying deg(F) =
d.

2. If G has a Pseudoforest Deletion set P of size k satisfying deg(P) = d, then
with probability at least 1/2 for some m′, D, W = i |V |2 + d we have that

|Cn−k,m′,n−k−m′−D,D
W | �≡ 0 (mod 2).

123



Algorithmica (2024) 86:1657–1699 1693

4.2 O�(3k) Algorithm in Polynomial Space

In this section, we present an O�(3k) algorithm using polynomial space for solving
Pseudoforest Deletion. First,we state the equivalent ofClaim3.5 andTheorem3.6
for Pseudoforest Deletion problem. Their proofs are omitted since they work
by replacing the Cut & Count algorithm for RIAFD with Cut & Count for PDS
described above, replacing RIAFD-FCCount with PF-FCCount, taking modulo
with 2 instead of 2t and following a similar line of reasoning.

Claim 4.5 Given a tree decomposition T with a set S ⊆ V which is present in all
its bags and a vertex assignment function f : S → {F, L, R}, there is a routine
PF-FCCount(T, R, A, B,C, D,W , f ) which can compute |CA,B,C,D

W | (mod 2) in
time O�

(
3tw−|S|).

Theorem 4.6 Given a tree decomposition T, a set S ⊆ V present in all bags of T,
parameter k, CutandCountPF solves the pseudoforest deletion problem in
O�

(
3tw

)
time and O�

(
3tw−|S|) space with high probability.

Lemma 4.7 Given a graph G = (V , E) and a pds P of size k, you can construct a
tree decomposition T which contains the set P in all bags and has width at most k+2
in polynomial time.

Proof G[V \ P] is a pseudoforest. Let G[V \ P] have c connected components. Let
us consider the i th component Ci and denote their individual tree decomposition as
Ti . Note that Ci is either a tree or a pseudoforest. If Ci is a tree there is a trivial tree
decomposition Ti of width 1. If not, then Ci is a pseudotree. Remove any edge (u, v)

from the only cycle in Ci and construct the tree decomposition of the remaining tree.
Add the vertex u in all bags of that tree decomposition to get Ti of width 2 for the
pseudotree Ci . Now, make an empty bag as the root and connect the root of all Ti to
it and call the resulting tree decomposition (of width 2) T

′
i . Now, adding P to all bags

of T
′
i gives the desired tree decomposition Ti of width k+2. The time bound is trivial

from the description of the procedure. 
�
Now, we state the following lemma and prove it.

Lemma 4.8 There exists an algorithm PF3k that solves Pseudoforest Deletion
in O�(3k) time and polynomial space with high probability.

Proof In algorithm RIAFD3k3l from Sect. 3.2, replace RIAFDCutandCountwith
CutandCountPF. Also replace the equivalent lemmas, theorems and claims. Denote
this algorithm as PF3k. The proof of correctness and success-probability is similar
to Theorem 1.2 (1) in Sect. 3.2. The running time and space bound follow by similar
arguments in the proof of Theorem 1.2 (1), Theorem 4.6 and Lemma 4.7. 
�

4.3 O�(2.85k) Algorithm in Polynomial space

In this section, we present aO�(2.85k) algorithm using polynomial space. We use the
method from [14], dividing the problem into sparse and dense cases. Following are a
few basic reduction rules for Pseudoforest Deletion [27].

123



1694 Algorithmica (2024) 86:1657–1699

Definition 4.9 Reduction 1: Apply the following reduction rules exhaustively until
there is no edge of multiplicity larger than 3, no vertex with at most one loop, and
degree of all vertices is at least 3.

1. If there is more than one self-loop at a vertex v, delete v and decrease k by 1; add
v to the output pds.

2. If there is an edge of multiplicity larger than 3, reduce its multiplicity to 3.
3. If there is a a vertex v of degree at most 1, delete v.
4. If there is a vertex v of degree 2, delete v and join its neighbours with an edge.
5. If k < 0, then we have a no instance. If k > 0 and G is a pseudoforest, then we

have a yes instance. If k = 0, we have a yes instance iff G is a pseudoforest.

4.3.1 Dense Case

In this case, we apply a probabilistic reduction that capitalises on the fact that a large
number of edges are incident to the pds. We will use the same ideas as of Reduction
2 for RIAFD in Sect. 3.3. Thus, even here we aim to obtain a reduction that succeeds
with probability strictly greater than 1/3 so as to achieve a randomized algorithm
running in O�(3 − ε)k time that succeeds with high probability.

Definition 4.10 Reduction 2 (P):Assume that Reduction 1 does not apply andG has a
vertex of degree at least 3. Sample a vertexv ∈ V proportional toω(v) := (deg(v)−2).
That is, select each vertex with probability ω(v)

ω(V )
. Delete v and decrease k by 1.

Claim 4.11 Let G be a graph, P a pds of G. Denote P := V \P. We have that,

deg(P) ≤ deg(P) + 2(|P|).

Lemma 4.12 Given a graph G, if there exists a pds P of size k such that deg(P) ≥
4−2ε
1−ε

k, then success of Reduction 2 which is essentially picking a vertex v from the

pds P occurs with probability at least 1
3−ε

.

The proofs of the above claim and lemma follow a similar line of reasoning as the
proofs of Claim 3.11 and Lemma 3.12, hence they are omitted.

4.3.2 Sparse Case

In this case, since deg(P)/|P| ≤ d and d = O(1), it is possible to get a tree decom-
position of size (1 − �(1))k.

We state this without proof through the following lemmas since they use the same
ideas from [14], Lemma 3.14 and Lemma 3.18.

Lemma 4.13 Given (G, k) and a pds P of G of size exactly k, define d := deg(P)
k ,

and suppose that d = O(1). There is a randomized algorithm running in expected
polynomial time that computes a separation (A, B, S) of G such that:

1. |A ∩ P|, |B ∩ P| ≥ (2−d − o(1))k

123



Algorithmica (2024) 86:1657–1699 1695

2. |S| ≤ (1 + o(1))k − |A ∩ P| − |B ∩ P|
Proof The proof is similar to that in [14]. The only difference is in the first step i.e
construction of a β-separator Sε . For this we can use Lemma 2.7 which gives a β-
separator of size at most 3β (tw of any pseudoforest is at most 2), and as β = εk =
o(k), |Sε | = o(k). All other steps and bounds remain exactly the same. 
�

Lemma 4.14 Let G be a graph and P be a pds of G of size k, and define d := deg(P)
k .

There is an algorithm that, given G and P, computes a tree decomposition of G of
width at most (1 − 2−d + o(1))k, and runs in polynomial time in expectation.

As we are in the sparse case, which means that there exists a pds P of size k with
bounded degree, i.e., deg(P) ≤ dk. We call this bounded version of the problem,
BPDS. As we saw, the small separator helps in constructing a tree decomposition of
small width, but requires that we are given a pds of size k and bounded degree. To
attain this, we use an Iterative Compression based procedure which at every iteration
considers a pds of size at most k with bounded degree and uses it to construct the small
separator. Using this small separator we construct a tree decomposition of small width
and employ a Cut & Count based procedure to solve BPDS for the current induced
subgraph, i.e, get a bpds of size at most k with bounded degree. This bpds is used for
the next iteration, and so on.

Note 4.15 Using the tree decomposition obtained in Lemma 4.14, we can run the
Cut & Count algorithm from Sect.4.1. But this will utilize exponential space. To get
polynomial space, we use the following idea.

Given an (A, B, S) separation of a graph G according to Lemma 4.13 along with a
pds P of size atmost k of bounded average degree d, we construct a tree decomposition
T

′ of G as follows: Since (A ∩ P) ∪ S is a pds for A ∪ S, we construct a nice tree
decomposition T1 of A∪ S which forgets all vertices in S at the last(going from a leaf
bag to the root bag). Hence there is a bag By which contains all the vertices v ∈ S
and nothing else. Upto this bag, no edge e ∈ E[S, S] is introduced. Consider this part
of the tree decomposition of T1(denote as T

′
1) up to node y. Similarly we construct a

tree decomposition T2 for partition B as we did for A. There is a bag Bz in T2 which
contains all vertices v ∈ S and nothing more. Denote the tree decomposition up to
node z for T2 as T

′
2. The final tree decomposition T for G is constructed by joining

T
′
1 and T

′
2 via a join node and then going toward the root we have the introduce edge

bags and forget vertex bags for v ∈ S. We use this tree decomposition T
′ for proving

the polynomial space bound in Algorithm BPDS.

Now,we give the claimed BPDS algorithm, which is aCut&Count based algorithm
that solves bounded degree PDS given a small separator.

Lemma 4.16 There is an Algorithm BPDS that, given G, a pds P of G of size at most
k + 1, parameter d, and a separation (A, B, S) as given by Lemma 4.13, outputs a
pds of size at most k satisfying deg(P)/|P| ≤ d, or Infeasible if none exists. The

algorithm uses O�(3(1−2−d+o(1))k) time and polynomial space.

123



1696 Algorithmica (2024) 86:1657–1699

Algorithm 9 BPDS(G, P, k, A, B, S)

Input: Graph G = (V , E), pds P of size at most k + 1, parameters k, d ≤ n and a separation (A, B, S)

from Lemma 4.13.
Output: A pds P of size at most k satisfying deg(P)/|P| ≤ d or Infeasible if no such set exists.
1: Set the universe U = V × {P, M1} ∪ E × {M2}
2: Pick ω uniformly and independently at random as defined in Lemma 4.4
3: Construct the tree decomposition T

′ as stated earlier in Note 4.15

4: Compute CA,B,C,D
W for all reasonable values of A,B,C,D,W using CutandCountPF

5: return A pds P with |P| ≤ k and deg(P)/|P| ≤ d

Proof Note that we reorder the computation of algorithm CutandCountPF in a
slightly different way on tree decomposition T

′ to achieve polynomial space. Fol-
low the notations according to Note 4.15. The way we reorder the computation of
CutandCountPF on tree decomposition T

′ is as follows: For a fixed colouring s
of S, we compute Ay(a, b, c, d, w, s) and Az(a, b, c, d, w, s) in polynomial space
according to Claim 4.5. Now the remaining tree decomposition has bags only con-
sisting of vertices in S. Using Ay(a, b, c, d, w, s) and Az(a, b, c, d, w, s) for some
colouring s of S we can computeCA,B,C,D

W forT
′ in polynomial space by Theorem 4.6.

The algorithm is clearly correct since it uses CutandCountPF as a subroutine
with reordered computation. By Lemma 4.4, the pds P of size at most k is found
using CutandCountPF with bounded average degree d with success probabil-
ity at least 1/2. The success probability can be easily boosted by nO(1) runs of
the algorithm. The width of the tree decomposition from the input according to
Lemma 4.14 is (1 − 2−d + o(1))k. Thus the time bound follows the time bound of
the CutandCountPF algorithm. 
�

Now, we give the Iterative Compression routine which solves BPDS, as explained
above.

Lemma 4.17 There exists an algorithm PFIC1 that solves BPDS in running time

O�(3(1−2−d+o(1))k) and polynomial space with high probability.

Proof PFIC1 can be constructed by replacing every occurrence of BRIAFD1 with
BPDS and constructing the separator using Lemma 4.13. The proofs of correctness,
space bound and success-probability are similar to Lemma 3.21. 
�

4.3.3 Combining the Sparse and Dense Cases

Having described the Dense and the Sparse Cases, we now combine them to give the
final randomized algorithm.

Lemma 4.18 Fix the parameter ε ∈ (0, 1) and let cε := max

{
3 − ε, 31−2

− 4−2ε
1−ε

}
.

If cε ≥ 2, there exists an algorithm PDS1 that succeeds with probability at least
c−k
ε . Moreover Algorithm PDS1 has expected polynomial running time and requires
polynomial space.

123



Algorithmica (2024) 86:1657–1699 1697

Proof In algorithm RIAFD1, replace every occurrence of RIAFDIC1 with PFIC1.
Also, replace the Reduction rules with the ones given for Pseudoforest Deletion. This
modified algorithm is PDS1. The running time, space bound and success probability
analysis are similar to the analysis in proof of Lemma 3.32. 
�

Note that the outer loop on k is not required here. If there exists a pds of size at
most k, we can add arbitrary vertices to get a pds of size exactly k.

To optimize for cε , we set ε ≈ 0.155433, giving cε ≈ 2.8446. Using Lemma 2.4
we can boost the success probability to be sufficiently high. Theorem 1.4 thus follows
from Lemma 4.18 and Lemma 2.4.

5 Conclusion

In this paper, we applied the technique of Li and Nederlof [14] to other problems
around the Feedback Vertex Set problem. The technique of Li and Nederlof is
inherently randomized, and it uses the Cut & Count technique, which is also ran-
domized. Designing matching deterministic algorithms for these problems, as well as
for Feedback Vertex Set, is a long standing open problem. However, there is a
deterministic algorithm for Pseudoforest Deletion running in time O�(3k) [26].
So obtaining a deterministic algorithm for Pseudoforest Deletion running in time
O�(ck) for a constant c < 3 is an interesting open question. Further, can we design
an algorithm for Pseudoforest Deletion running in time O�(2.7k), by designing
a different Cut & Count based algorithm for this problem? Finally, could we get a
O�(ck2o(�)) algorithm for Almost Forest Deletion, for a constant c possibly less
than 3?

Acknowledgements The authors are grateful to the anonymous reviewers for their valuable and construc-
tive comments. This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 819416) and
Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

References

1. Festa, P., Pardalos, P.M., Resende,M.G.C.: In: Du, D.-Z., Pardalos, P.M. (eds.) Feedback Set Problems,
pp. 209–258. Springer, Boston, MA (1999). https://doi.org/10.1007/978-1-4757-3023-4_4

2. Bodlaender, H.L.: On disjoint cycles. In: Schmidt, G., Berghammer, R. (eds.) Graph-Theoretic Con-
cepts in Computer Science, pp. 230–238. Springer, Berlin, (1992). https://doi.org/10.1007/3-540-
55121-2_24

3. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote, P., Remmel, J.B.
(eds.) Feasible Mathematics II, pp. 219–244. Birkhäuser Boston, Boston, MA (1995). https://doi.org/
10.1007/978-1-4612-2566-9_7

123

https://doi.org/10.1007/978-1-4757-3023-4_4
https://doi.org/10.1007/3-540-55121-2_24
https://doi.org/10.1007/3-540-55121-2_24
https://doi.org/10.1007/978-1-4612-2566-9_7
https://doi.org/10.1007/978-1-4612-2566-9_7


1698 Algorithmica (2024) 86:1657–1699

4. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for undirected
feedback vertex set. In: Bose, P., Morin, P. (eds.) Algorithms and Computation, pp. 241–248. Springer,
Berlin, (2002). https://doi.org/10.1007/3-540-36136-7_22

5. Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2O(k)n3)
FPT algorithm for the undirected feedback vertex set problem. Theory Comput. Syst. 41(3), 479–492
(2007). https://doi.org/10.1007/11533719_87

6. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter
algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396
(2006). https://doi.org/10.1016/j.jcss.2006.02.001

7. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem. J. Artif.
Int. Res. 12(1), 219–234 (2000). https://doi.org/10.5555/1622248.1622256

8. Cao, Y.: A naive algorithm for feedback vertex set. In: Seidel, R. (ed.) 1st Symposium on simplic-
ity in algorithms (SOSA 2018). Open Access Series in Informatics (OASIcs), vol. 61, pp. 1–119.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2018). https://doi.org/10.
4230/OASIcs.SOSA.2018.1

9. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: New measure and new structures. Algorithmica
73(1), 63–86 (2015). https://doi.org/10.1007/s00453-014-9904-6

10. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set
problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008). https://doi.org/10.1016/j.jcss.2008.05.002

11. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Rooij, J.M.M.v., Wojtaszczyk, J.O.: Solving
connectivity problems parameterized by treewidth in single exponential time. In: 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, pp. 150–159 (2011). https://doi.org/10.
1109/FOCS.2011.23

12. Iwata, Y., Kobayashi, Y.: Improved analysis of highest-degree branching for feedback vertex set.
Algorithmica 83(8), 2503–2520 (2021). https://doi.org/10.1007/s00453-021-00815-w

13. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10),
556–560 (2014). https://doi.org/10.1016/j.ipl.2014.05.001

14. Li, J., Nederlof, J.: Detecting feedback vertex sets of size k in O�(2.7k ) time. ACM Trans. Algorithms
18(4) (2022) https://doi.org/10.1145/3504027

15. Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex
set. J. Combinat. Opt. 24(2), 131–146 (2012). https://doi.org/10.1007/s10878-011-9394-2

16. Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and combinatorial bounds for
independent feedback vertex set. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on
Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 63, pp. 2–1214. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2017). https://doi.org/10.4230/LIPIcs.IPEC.2016.2

17. Li, S., Pilipczuk,M.: An improved FPT algorithm for independent feedback vertex set. TheoryComput.
Syst. 64(8), 1317–1330 (2020). https://doi.org/10.1007/s00224-020-09973-w

18. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set.
Theor. Comput. Sci. 461, 65–75 (2012). 17th International Computing and Combinatorics Conference
(COCOON 2011). https://doi.org/10.1016/j.tcs.2012.02.012 .

19. Agrawal,A., Lokshtanov,D.,Mouawad,A.E., Saurabh, S.: Simultaneous feedback vertex set:A param-
eterized perspective. ACM Trans. Comput. Theory 10(4) (2018) https://doi.org/10.1145/3265027

20. Ye, J.: A note on finding dual feedback vertex set. CoRR abs/1510.00773 (2015) arXiv:1510.00773
21. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-

parameter tractable. SIAM J. Disc. Math. 27(1), 290–309 (2013). https://doi.org/10.1137/110843071
22. Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching, and FPT algorithms. SIAM J.

Comput. 45(4), 1377–1411 (2016). https://doi.org/10.1137/140962838
23. Iwata, Y., Yamaguchi, Y., Yoshida, Y.: 0/1/all CSPs, half-integral A-path packing, and linear-time FPT

algorithms. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp.
462–473. IEEE Computer Society, Los Alamitos, CA, USA (2018). https://doi.org/10.1109/FOCS.
2018.00051

24. Kawarabayashi, K.-I., Kobayashi, Y.: Fixed-parameter tractability for the subset feedback set problem
and the S-cycle packing problem. J. Comb. Theory Ser. B 102(4), 1020–1034 (2012). https://doi.org/
10.1016/j.jctb.2011.12.001

25. Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms for subset feed-
back vertex set. ACM Trans. Algorithms 14(1) (2018) https://doi.org/10.1145/3155299

123

https://doi.org/10.1007/3-540-36136-7_22
https://doi.org/10.1007/11533719_87
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.5555/1622248.1622256
https://doi.org/10.4230/OASIcs.SOSA.2018.1
https://doi.org/10.4230/OASIcs.SOSA.2018.1
https://doi.org/10.1007/s00453-014-9904-6
https://doi.org/10.1016/j.jcss.2008.05.002
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1007/s00453-021-00815-w
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.1145/3504027
https://doi.org/10.1007/s10878-011-9394-2
https://doi.org/10.4230/LIPIcs.IPEC.2016.2
https://doi.org/10.1007/s00224-020-09973-w
https://doi.org/10.1016/j.tcs.2012.02.012
https://doi.org/10.1145/3265027
http://arxiv.org/abs/1510.00773
https://doi.org/10.1137/110843071
https://doi.org/10.1137/140962838
https://doi.org/10.1109/FOCS.2018.00051
https://doi.org/10.1109/FOCS.2018.00051
https://doi.org/10.1016/j.jctb.2011.12.001
https://doi.org/10.1016/j.jctb.2011.12.001
https://doi.org/10.1145/3155299


Algorithmica (2024) 86:1657–1699 1699

26. Bodlaender, H.L., Ono, H., Otachi, Y.: A faster parameterized algorithm for pseudoforest deletion.
Discret. Appl. Math. 236, 42–56 (2018) https://doi.org/10.1016/j.dam.2017.10.018

27. Philip, G., Rai, A., Saurabh, S.: Generalized pseudoforest deletion: Algorithms and uniform kernel.
SIAM J. Discret. Math. 32(2), 882–901 (2018). https://doi.org/10.1137/16M1100794

28. Rai, A., Saurabh, S.: Bivariate complexity analysis of almost forest deletion. Theor. Comput. Sci. 708,
18–33 (2018) https://doi.org/10.1016/j.tcs.2017.10.021

29. Lin, M., Feng, Q., Wang, J., Chen, J., Fu, B., Li, W.: An improved FPT algorithm for almost forest
deletion problem. Inf. Process. Lett. 136, 30–36 (2018) https://doi.org/10.1016/j.ipl.2018.03.016

30. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica
7(1), 105–113 (1987). https://doi.org/10.1007/bf02579206

31. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th Interna-
tional Symposium on Symbolic and Algebraic Computation. ISSAC ’14, pp. 296–303. Association
for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2608628.2608664

32. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: A bound on the pathwidth of sparse graphs with
applications to exact algorithms. SIAM J. Discrete Math. 23, 407–427 (2009) https://doi.org/10.1137/
080715482

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1016/j.dam.2017.10.018
https://doi.org/10.1137/16M1100794
https://doi.org/10.1016/j.tcs.2017.10.021
https://doi.org/10.1016/j.ipl.2018.03.016
https://doi.org/10.1007/bf02579206
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1137/080715482
https://doi.org/10.1137/080715482

	Improved FPT Algorithms for Deletion to Forest-Like Structures
	Abstract
	1 Introduction
	1.1 Our Problems, Results and Methods

	2 Preliminaries
	3 Restricted-Independent Almost Forest Deletion
	3.1 3tŵ Algorithm
	3.2 3k+l̂ Algorithm in Polynomial Space
	3.3 Improving the Dependency on k
	3.3.1 Dense Case
	3.3.2 Sparse Case
	3.3.3 Algorithms for RIAFD

	3.4 Improving Dependency on l

	4 Pseudoforest Deletion
	4.1 O*̂(3tŵ) Algorithm
	4.2 O*̂(3k̂) Algorithm in Polynomial Space
	4.3 O*̂(2.85k̂) Algorithm in Polynomial space
	4.3.1 Dense Case
	4.3.2 Sparse Case
	4.3.3 Combining the Sparse and Dense Cases


	5 Conclusion
	Acknowledgements
	References




