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Abstract
In the Determinant Maximization problem, given an n × n positive semi-definite
matrixA inQn×n and an integer k, we are required to find a k×k principal submatrix of
A having the maximum determinant. This problem is known to be NP-hard and further
proven to beW[1]-hard with respect to k by Koutis (Inf Process Lett 100:8–13, 2006);
i.e., a f (k)nO(1)-time algorithm is unlikely to exist for any computable function f .
However, there is still room to explore its parameterized complexity in the restricted
case, in the hope of overcoming the general-case parameterized intractability. In this
study, we rule out the fixed-parameter tractability of Determinant Maximization

even if an input matrix is extremely sparse or low rank, or an approximate solution is
acceptable. We first prove that Determinant Maximization is NP-hard and W[1]-
hard even if an input matrix is an arrowhead matrix; i.e., the underlying graph formed
by nonzero entries is a star, implying that the structural sparsity is not helpful. By
contrast, Determinant Maximization is known to be solvable in polynomial time
on tridiagonal matrices (Al-Thani and Lee, in: LAGOS, 2021). Thereafter, we demon-
strate the W[1]-hardness with respect to the rank r of an input matrix. Our result is
stronger than Koutis’ result in the sense that any k × k principal submatrix is sin-
gular whenever k > r . We finally give evidence that it is W[1]-hard to approximate
Determinant Maximization parameterized by k within a factor of 2−c

√
k for some

universal constant c > 0. Our hardness result is conditional on the Parameterized
Inapproximability Hypothesis posed by Lokshtanov et al. (in: SODA, 2020), which
asserts that a gap version of Binary Constraint Satisfaction Problem isW[1]-
hard. To complement this result, we develop an ε-additive approximation algorithm
that runs in ε−r2 · rO(r3) · nO(1) time for the rank r of an input matrix, provided that
the diagonal entries are bounded.

A preliminary version of this paper appeared in Proc. 33rd Int. Symp. on Algorithms and Computation
(ISAAC), 2022 [39]. This full version contains all missing proofs.
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1 Introduction

Background.We study the following Determinant Maximization problem: Given
an n × n positive semi-definite matrix A in Qn×n and an integer k in [n] denoting
the solution size, find a k × k principal submatrix of A having the maximum deter-
minant; namely, maximize det(AS) subject to S ∈ ([n]

k

)
. One motivating example for

this problem is a subset selection task. Suppose we are given n items (e.g., images or
products) associated with feature vectors v1, . . . , vn and required to select a “diverse”
set of k items among them. We can measure the diversity of a set S of k items using
the principal minor det(AS) of the GrammatrixA defined by feature vectors such that
Ai, j � 〈vi , v j 〉 for all i, j ∈ [n], resulting in Determinant Maximization. This
formulation is justifiedby the fact that det(AS) is equal to the squaredvolumeof thepar-
allelepiped spanned by {vi : i ∈ S}; that is, a pair of vectors at a large angle is regarded
as more diverse. See Fig. 1 for an example of Determinant Maximization and its
volume interpretation. In artificial intelligence and machine learning communities,
Determinant Maximization is also known as MAP inference on a determinantal
point process [8, 32], and has found many applications over the past decade, includ-
ing tweet timeline generation [44], object detection [30], change-point detection [45],
document summarization [10, 28], YouTube video recommendation [43], and active
learning [7]. See the survey of Kulesza and Taskar [29] for further details. Though
Determinant Maximization is known to be NP-hard to solve exactly [26], we can
achieve an e−k-factor approximation in polynomial time [37], which is nearly optimal
because a 2−ck-factor approximation for some constant c > 0 is impossible unless
P = NP [13, 16, 27].

Having known a nearly tight hardness-of-approximation result in the polynomial-
time regime, we resort to parameterized algorithms [15, 18, 20].We say that a problem
is fixed-parameter tractable (FPT) with respect to a parameter k ∈ N if it can be
solved in f (k)|I|O(1) time for some computable function f and instance size |I|.
One very natural parameter is the solution size k, which is expected to be small in
practice. By enumerating all k×k principal submatrices, we can solveDeterminant
Maximization in nk+O(1) time; i.e., it belongs to the class XP. Because FPT � XP
[18], it is even more desirable if an FPT algorithm exists. Unfortunately, Koutis [27]
has already proven that Determinant Maximization is W[1]-hard with respect to
k, which in fact follows from the reduction due to Ko et al. [26]. Therefore, under the
widely-believed assumption that FPT �= W[1], an FPT algorithm for Determinant
Maximization does not exist.

However, there is still room to explore the parameterized complexity of Deter-
minant Maximization in the restricted case, in the hope of circumventing the
general-case parameterized intractability. Here, we describe three possible scenarios.
One can first assume an input matrixA to be sparse. Of particular interest is the struc-
tural sparsity of the symmetrized graph of A [11, 14] defined as the underlying graph
formed by nonzero entries ofA, encouraged by numerous FPT algorithms for NP-hard
graph-theoretic problems parameterized by the treewidth [15, 21]. For example, in
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Fig. 1 Example of Determinant Maximization with n = 4 and k = 3

change-point detection applications, Zhang and Ou [45] observed a small-bandwidth
matrix and developed an efficient heuristic for Determinant Maximization. In
addition, one may adopt a strong parameter. The rank of an input matrix A is such a
natural candidate.We often assume thatA is low-rank in applications; for instance, the
feature vectors vi are inherently low-dimensional [9] or the largest possible subset is
significantly smaller than the ground set size n. Since any k×k principal submatrix of
A is singular whenever k > rank(A), we can ensure that k � rank(A); namely, param-
eterization by rank(A) is considered stronger than that by k. Intriguingly, the partition
function of product determinantal point processes is FPT with respect to rank while
#P-hard in general [41]. The last possibility to be considered is FPT-approximability.
Albeit W[1]-hardness of Determinant Maximization with parameter k, it could
be possible to obtain an approximate solution in FPT time. It has been demonstrated
that several W[1]-hard problems can be approximated in FPT time, such as Partial
Vertex Cover andMinimum k- Median [23] (refer to the survey of Marx [35] and
Feldmann et al. [19]). One may thus envision the existence of a 1/ρ(k)-factor FPT-
approximation algorithm for Determinant Maximization for a small function ρ.
Alas, we refute the above possibilities under a plausible assumption in parameterized
complexity.

Our Results. We improve the W[1]-hardness of Determinant Maximization due
to Koutis [27] by showing that it is stillW[1]-hard even if an input matrix is extremely
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Fig. 2 Structure of arrowhead
matrices, where “∗” denotes
nonzero entries

Fig. 3 Structure of tridiagonal
matrices, where “∗” denotes
nonzero entries

sparse or low rank, or an approximate solution is acceptable, along with some tractable
cases.

We first prove that Determinant Maximization is NP-hard and W[1]-hard with
respect to k even if the input matrix A is an arrowhead matrix (Theorem 3.1). An
arrowhead matrix is a square matrix that can include nonzero entries only in the first
row, the first column, or the diagonal; i.e., its symmetrized graph is a star (cf. Fig. 2).
Our hardness result implies that the “structural sparsity” of input matrices is not
helpful; in particular, it follows from Theorem 3.1 that this problem is NP-hard even if
the treewidth, pathwidth, and vertex cover number of the symmetrized graph are all 1.
The proof is based on a parameterized reduction from k- Sum, which is a parameterized
version of Subset Sum known to beW[1]-complete [1, 17], and involves a structural
feature of the determinant of arrowhead matrices. On the other hand, Determinant
Maximization is known tobe solvable in polynomial timeon tridiagonalmatrices [2],
whose symmetrized graph is a path graph (cf. Fig. 3). Though an extended abstract of
this paper appearing in ISAAC’22 includes a polynomial-time algorithmon tridiagonal
matrices, Lee pointed out to us that Al-Thani and Lee already proved the polynomial-
time solvability on tridiagonal matrices in LAGOS’21 [2] and on spiders of bounded
legs [3]. We thus omitted the proof for tridiagonal matrices from this article.

Thereafter, we demonstrate thatDeterminant Maximization isW[1]-hardwhen
parameterized by the rank of an input matrix (Corollary 4.3). In fact, we obtain
the stronger result that it is W[1]-hard to determine whether an input set of n d-
dimensional vectors includes k pairwise orthogonal vectors when parameterized by
d (Theorem 4.2). Unlike the proof of Theorem 3.1, we are allowed to construct only
a f (k)-dimensional vector in a parameterized reduction. Therefore, we reduce from
a different W[1]-complete problem called Grid Tiling due to Marx [34, 36]. In
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Grid Tiling, we are given k2 nonempty sets of integer pairs arranged in a k × k
grid, and the task is to select k2 integer pairs such that the vertical and horizontal
neighbors agree respectively in the first and second coordinates (see Problem 4.4 for
the precise definition). Grid Tiling is favorable for our purpose because the con-
straint consists of simple equalities, and each cell is adjacent to (at most) four cells. To
express the consistency between adjacent cells using only a f (k)-dimensional vector,
we exploit Pythagorean triples. It is essential in Theorem 4.2 that the input vectors can
include both positive and negative entries in a sense that we can find k d-dimensional
nonnegative vectors that are pairwise orthogonal in FPT time with respect to d (Obser-
vation 4.6).

Our final contribution is to give evidence that it isW[1]-hard to determine whether
the optimal value of Determinant Maximization is equal to 1 or at most 2−c

√
k

for some universal constant c > 0; namely, Determinant Maximization is FPT-
inapproximable within a factor of 2−c

√
k (Theorem 5.1). Our result is conditional on

the Parameterized Inapproximability Hypothesis (PIH), which is a conjecture posed
by Lokshtanov et al. [31] asserting that a gap version of Binary Constraint Sat-

isfaction Problem is W[1]-hard when parameterized by the number of variables.
PIH can be thought of as a parameterized analogue of the PCP theorem [4, 5]; e.g.,
Lokshtanov et al. [31] show that assuming PIH and FPT �= W[1], Directed Odd

Cycle Transversal does not admit a (1 − ε)-factor FPT-approximation algo-
rithm for some ε > 0. The proof of Theorem 5.1 involves FPT-inapproximability
of Grid Tiling under PIH, which is reminiscent of Marx’s work [34] and might
be of some independent interest. Because we cannot achieve an exponential gap by
simply reusing the parameterized reduction from Grid Tiling of the second hard-
ness result (as inferred from Observation 5.11 below), we apply a gadget invented
by Çivril and Magdon-Ismail [13] to construct an O(k2n2)-dimensional vector for
each integer pair of a Grid Tiling instance. We further show that the same kind
of hardness result does not hold when parameterized by the rank r of an input
matrix. Specifically, we develop an ε-additive approximation algorithm that runs in
ε−r2 · rO(r3) ·nO(1) time for any ε > 0, provided that the diagonal entries are bounded
(Observation 5.11).
More Related Work. Determinant Maximization is not only applied in artificial
intelligence andmachine learning but also in computational geometry [22] anddiscrep-
ancy theory; refer to Nikolov [37] and references therein. On the negative side, Ko et
al. [26] prove that Determinant Maximization is NP-hard, and Koutis [27] proves
that it is further W[1]-hard. NP-hardness of approximating Determinant Maxi-

mization has been investigated in [13, 16, 27, 40]. On the algorithmic side, a greedy
algorithm achieves an approximation factor of 1/k! [12]. Subsequently, Nikolov [37]
gives an e−k-factor approximation algorithm; partition constraints [38] and matroid
constraints [33] are also studied. Several #P-hard computation problems over matri-
ces including permanents [11, 14], hyperdeterminants [11], and partition functions of
product determinantal point processes [41] are efficiently computable if the treewidth
of the symmetrized graph or the matrix rank is bounded.
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2 Preliminaries

Notations and Definitions. For two integers m, n ∈ N with m � n, let [n] �
{1, 2, . . . , n} and [m .. n] � {m,m + 1, . . . , n − 1, n}. For a finite set S and an
integer k, we write

(S
k

)
for the family of all size-k subsets of S. For a statement P ,

[[P]] is 1 if P is true, and 0 otherwise. The base of logarithms is 2. Matrices and
vectors are written in bold letters, and scalars are unbold. The Euclidean norm is

denoted ‖ · ‖; i.e., ‖v‖ �
√∑

i∈[d](v(i))2 for a vector v ∈ Rd . We use 〈·, ·〉 for the
standard inner product; i.e., 〈v,w〉 �

∑
i∈[d] v(i) · w(i) for two vectors v,w ∈ Rd .

For an n × n matrix A and an index set S ⊆ [n], we use AS to denote the principal
submatrix of A whose rows and columns are indexed by S. For an m × n matrix A,
the spectral norm ‖A‖2 is defined as the square root of the maximum eigenvalue of
A
A and the max norm is defined as ‖A‖max � maxi, j |Ai, j |. It is well-known that
‖A‖max � ‖A‖2 � √

mn ·‖A‖max. The symmetrized graph [11, 14] of an n×nmatrix
A is defined as an undirected graph G that has each integer of [n] as a vertex and an
edge (i, j) ∈ ([n]

2

)
if Ai, j �= 0 or A j,i �= 0; i.e., G = ([n], {(i, j) : Ai, j �= 0}). For a

matrix A ∈ Rn×n , its determinant is defined as follows:

det(A) �
∑

σ∈Sn

sgn(σ )
∏

i∈[n]
Ai,σ (i), (2.1)

where Sn denotes the symmetric group on [n], and sgn(σ ) denotes the sign of a
permutation σ . We define det(A∅) � 1. For a collection V = {v1, . . . , vn} of n
vectors in Rd , the volume of the parallelepiped spanned by V is defined as follows:

vol(V) � ‖v1‖ ·
∏

2�i�n

d(vi , {v1, . . . , vi−1}). (2.2)

Here, d(v,P) denotes the distance of v to the subspace spanned by P; i.e., d(v,P) �
‖v − projP(v)‖, where projP(·) is an operator of orthogonal projection onto the
subspace spanned by P. We define vol(∅) � 1 for the sake of consistency to the
determinant of an empty matrix (i.e., det([ ]) = 1 = vol2(∅)). Note that any sym-
metric positive semi-definite matrix is a Gram matrix. Then, if A is the Gram matrix
defined as Ai, j � 〈vi , v j 〉 for all i, j ∈ [n], we have a simple relation between the
principal minor and the volume of the parallelepiped that

det(AS) = vol2({vi : i ∈ S}) (2.3)

for every S ⊆ [n]; see [12] for the proof. We formally define the Determinant

Maximization problem as follows,1

Problem 2.1 Given a positive semi-definite matrix A in Qn×n and a positive integer
k ∈ [n], Determinant Maximization asks to find a set S ∈ ([n]

k

)
such that the

1 Note that if we consider the decision version of Determinant Maximization we are additionally
given a target number τ and are required to decide if maxdet(A, k) � τ .
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determinant det(AS) of a k × k principal submatrix is maximized. The optimal value
is denoted maxdet(A, k) � maxS∈([n]

k ) det(AS).

Due to the equivalence between squared volume and determinant in Eq. 2.3,
Determinant Maximization is equivalent to the following problem of volume
maximization: Given a collection of n vectors in Qd and a positive integer k ∈ [n],
we are required to find k vectors such that the volume of the parallelepiped spanned
by them is maximized. We shall use the problem definition based on the determinant
and the volume interchangeably.
Parameterized Complexity. Given a parameterized problem � consisting of a pair
〈I, k〉 of instance I and parameter k ∈ N, we say that � is fixed-parameter tractable
(FPT) with respect to k if it is solvable in f (k)|I|O(1) time for some computable func-
tion f , and slice-wise polynomial (XP) if it is solvable in |I| f (k) time; it holds that
FPT � XP [18]. The value of parameter k may be independent of the instance size
|I| and may be given by some computable function k = k(I) on instance I (e.g., the
rank of an input matrix). Our objective is to prove that a problem (i.e., Determinant
Maximization) is unlikely to admit an FPT algorithm under plausible assumptions
in parameterized complexity. The central notion for this purpose is a parameterized
reduction, which is used to demonstrate that a problem of interest is hard for a par-
ticular class of parameterized problems that is believed to be a superclass of FPT. We
say that a parameterized problem �1 is parameterized reducible to another parame-
terized problem �2 if (i) an instance I1 with parameter k1 for �1 can be transformed
into an instance I2 with parameter k2 for �2 in FPT time and (ii) the value of k2
only depends on the value of k1. Note that a parameterized reduction may not be a
polynomial-time reduction and vice versa.W[1] is a class of parameterized problems
that are parameterized reducible to k- Clique, and it is known that FPT ⊆ W[1] ⊆ XP.
This class is often regarded as a parameterized counterpart to NP of classical com-
plexity; in particular, the conjecture FPT �= W[1] is a widely-believed assumption in
parameterized complexity [18, 20]. Thus, the existence of a parameterized reduction
from a W[1]-complete problem to a problem � is a strong evidence that � is not in
FPT. In Determinant Maximization, a simple brute-force search algorithm that
examines all

([n]
k

)
subsets of size k runs in nk+O(1) time; hence, this problem belongs

to XP. On the other hand, it is proven to be W[1]-hard [27].

3 W[1]-Hardness and NP-Hardness on ArrowheadMatrices

We first prove the W[1]-hardness with respect to k and NP-hardness on arrowhead
matrices. A square matrix A in R[0..n]×[0..n] is an arrowhead matrix if Ai, j = 0 for
all i, j ∈ [n] with i �= j . In the language of graph theory, A is arrowhead if its
symmetrized graph is a star K1,n . See Fig. 2 for the structure of arrowhead matrices.

Theorem 3.1 Determinant Maximization on arrowhead matrices is NP-hard and
W[1]-hard when parameterized by k.

The proof of Theorem 3.1 requires a reduction from k- Sum, a natural parameter-
ized version of the NP-complete Subset Sum problem, whose membership of W[1]
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and W[1]-hardness was proven by Abboud et al. [1] and Downey and Fellows [17],
respectively.

Problem 3.2 (k- Sum due to Abboud et al. [1]) Given n integers x1, . . . , xn ∈
[0 .. n2k], a target integer t ∈ [0 .. n2k], and a positive integer k ∈ [n], we are
required to decide if there exists a size-k set S ∈ ([n]

k

)
such that

∑
i∈S xi = t .

Here, we introduce a slightly-modified version of k- Sum such that the input num-
bers are rational and their sum is normalized to 1, without affecting its computational
complexity.

Problem 3.3 (k- Sum modified from [1]) Given n rational numbers x1, . . . , xn in
(0, 1)∩Q+, a target rational number t in (0, 1)∩Q+, and a positive integer k ∈ [n] such
that xi ’s are integermultiples of some rational number at least 1

n2k+1 and
∑

i∈[n] xi = 1,

k- Sum asks to decide if there exists a set S ∈ ([n]
k

)
such that

∑
i∈S xi = t .

Hereafter, for any set S ⊆ [0 .. n] including 0, we denote S−0 � S \ {0}.

3.1 Reduction from k-SUM and Proof of Theorem 3.1

In this subsection, we give a parameterized, polynomial-time reduction from k- Sum.
We first use an explicit formula of the determinant of arrowhead matrices.

Lemma 3.4 Let A be an arrowhead matrix in R[0..n]×[0..n] such that Ai,i �= 0 for all
i ∈ [n]. Then, for any set S ⊆ [0 .. n], it holds that

det(AS) =
{∏

i∈S−0
Ai,i ·

(
A0,0 −∑i∈S−0

A0,i ·Ai,0
Ai,i

)
if 0 ∈ S,

∏
i∈S Ai,i if 0 /∈ S.

(3.1)

Proof The case of 0 /∈ S is evident because AS is diagonal. Showing the case of
S � [0 .. n] suffices to complete the proof. Here, we enumerate permutations σ ∈ SS

such that Ai,σ (i) is possibly nonzero for all i ∈ S by the case analysis of σ(0).

Case 1 If σ(0) = 0: we must have σ(i) = i for all i ∈ [n] and sgn(σ ) = +1.
Case 2 If σ(0) = i for i �= 0: we must have σ(i) = 0, and thus, it holds that

σ( j) = j for all j ∈ S\{i} and sgn(σ ) = −1.

Expanding det(AS), we derive

det(AS) =
∑

σ∈SS

sgn(σ )
∏

i∈S
Ai,σ (i)

=
∏

i∈S
Ai,i −

∑

i∈[n]
A0,i · Ai,0

∏

j∈[n]\{i}
A j, j

=
∏

i∈S−0

Ai,i ·
⎛

⎝A0,0 −
∑

i∈S−0

A0,i · Ai,0

Ai,i

⎞

⎠ ,

(3.2)

completing the proof. �
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Lemma 3.4 shows us a way to express the product of exp
(∑

i∈S−0
xi
)
and 1 −

C · ∑i∈S−0
xi for some constant C , which is a key step in proving Theorem 3.1.

Specifically, given n rational numbers x1, . . . , xn and a target rational number t as a
k- Sum instance, we construct n + 1 2n-dimensional vectors v0, . . . , vn in R2n+ , each
entry of which is defined as follows:

v0( j) =
{

γ · √
x j if j � n,

0 otherwise,
vi ( j) =

⎧
⎪⎨

⎪⎩

√
α · exi if j = i,√
β · exi if j = i + n,

0 otherwise,

for all i ∈ [n],

(3.3)

where α, β, and γ are parameters, whose values are positive and will be determined
later. We calculate the principal minor of the Gram matrix defined by v0, . . . , vn as
follows.

Lemma 3.5 Let A be the Gram matrix defined by n + 1 vectors v0, . . . , vn that are
constructed from an instance of k- Sum by Eq. 3.3. Then, A is an arrowhead matrix,
and for any set S ⊆ [0 .. n], it holds that

det(AS) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(α + β)|S|−1 · γ 2 · exp
⎛

⎝
∑

i∈S−0

xi

⎞

⎠ ·
⎛

⎝1 − α

α + β

∑

i∈S−0

xi

⎞

⎠ if 0 ∈ S,

(α + β)|S| · exp
(
∑

i∈S
xi

)

if 0 /∈ S.

(3.4)

Moreover, if we regard the principal minor det(AS) in the case of 0 ∈ S as a function
in X �

∑
i∈S−0

xi , it is maximized when X = β
α
.

Proof Observe first that the inner product between each pair of the vectors (i.e., each
entry of A) is calculated as follows:

〈v0, v0〉 = A0,0 = γ 2
∑

i∈[n]
xi = γ 2,

〈v0, vi 〉 = A0,i = Ai,0 = γ ·√α · xi · exi for all i ∈ [n],
〈vi , vi 〉 = Ai,i = (α + β) · exi for all i ∈ [n],
〈vi , v j 〉 = Ai, j = 0 for all i �= j ∈ [n].

(3.5)

Thus, A is an arrowhead matrix. According to Lemma 3.4, for any set S ⊆ [0 .. n]
including 0, we have
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det(AS) =
∏

i∈S−0

Ai,i ·
⎛

⎝A0,0 −
∑

i∈S−0

A0,i · Ai,0

Ai,i

⎞

⎠

=
⎛

⎝
∏

i∈S−0

(α + β) · exi
⎞

⎠ ·
⎛

⎝γ 2 −
∑

i∈S−0

γ 2 · α · xi · exi
(α + β) · exi

⎞

⎠

= (α + β)|S|−1 · γ 2 · exp
⎛

⎝
∑

i∈S−0

xi

⎞

⎠ ·
⎛

⎝1 − α

α + β

∑

i∈S−0

xi

⎞

⎠ .

(3.6)

On the other hand, if 0 /∈ S, we have

det(AS) =
∏

i∈S
Ai,i = (α + β)|S| · exp

(
∑

i∈S
xi

)

. (3.7)

Setting the derivative of Eq. 3.6 by a variable X �
∑

i∈S xi equal to 0, we obtain

∂

∂X

{
(α + β)|S|−1 · γ 2 · eX ·

(
1 − α

α + β
X

)}
= 0

�⇒ eX
(
1 − α

α + β
X

)
+ eX

(
− α

α + β

)
= eX · β − αX

α + β
= 0

�⇒ X = β

α
.

(3.8)

This completes the proof. �
We now determine the values of α, β, and γ . Since Lemma 3.5 demonstrates that

the principal minor for S including 0 is maximized when
∑

i∈S−0
xi = β

α
, we fix α � 1

and β � t . We define δ � 1
n2k+1 , denoting a lower bound on the minimum possible

absolute difference between any sum of xi ’s; i.e., |∑i∈S xi −∑i∈T xi | � δ for any
S, T ⊆ [n] whenever∑i∈S xi �=∑i∈T xi . For the correctness of the value of δ, refer
to the definition of Problem 3.3. We finally fix the value of γ as γ � 5, so that

(1 + t)2 · e1−t · 1

e−δ · (1 + δ)
� 22 · e · 1

e− 1
2 · 1

< 25 = γ 2. (3.9)

The above inequality ensures that det(AS) is “sufficiently” small whenever 0 /∈ S, as
validated in the following lemma.

Lemma 3.6 LetA be the Gram matrix defined by n+1 vectors constructed according
to Eq. 3.3, where α = 1, β = t , and γ = 5. Define OPT � (1 + t)k−1 · γ 2 · et . Then,
for any set S ∈ ([0..n]

k+1

)
,

det(AS) is

{
equal to OPT if 0 ∈ S and

∑
i∈S−0

xi = t,
at most e−δ(1 + δ) · OPT otherwise,

(3.10)

123



Algorithmica (2024) 86:1731–1763 1741

where δ = 1
n2k+1 . In particular, maxdet(A, k + 1) is OPT if k- Sum has a solution,

and is at most e−δ(1 + δ) · OPT < OPT otherwise.

Proof For any set S ∈ ([0..n]
k+1

)
such that 0 ∈ S and

∑
i∈S−0

xi = t (i.e., k- Sum has a
solution), Lemma 3.5 derives that

det(AS) = (α + β)k · γ 2 · exp(t) ·
(
1 − α

α + β
· t
)

= OPT, (3.11)

which is the maximum possible principal minor under 0 ∈ S. For any set S ∈ ( [n]
k+1

)

excluding 0, by definition of γ and Eq. 3.9, we obtain

det(AS) = (1 + t)k+1 · exp
⎛

⎝
∑

i∈S−0

xi

⎞

⎠

� (1 + t)k+1 · e ·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ 2 · 1

(1 + t)2
· et−1 · e−δ · (1 + δ)

︸ ︷︷ ︸
�γ −2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= e−δ(1 + δ) · (1 + t)k−1 · et · γ 2
︸ ︷︷ ︸

=OPT

= e−δ(1 + δ) · OPT.

(3.12)

We now bound det(AS) for any set S ∈ ([0..n]
k+1

)
such that 0 ∈ S and

∑
i∈S−0

xi �= t .
Consider first that

∑
i∈S−0

xi is greater than t ; i.e.,
∑

i∈S−0
xi = t+� for some� > 0.

By Lemma 3.5, we have

det(AS) = (1 + t)k · γ 2 · exp(t + �) ·
(
1 − t + �

1 + t

)

= e�(1 − �) · OPT � e−δ(1 − δ) · OPT,
(3.13)

where we used the fact that � � δ by definition of δ and e�(1 − �) is a decreasing
function for � > 0. Consider then that

∑
i∈S−0

xi = t − � for some � > 0, which
yields that

det(AS) = (1 + t)k · γ 2 · exp(t − �) ·
(
1 − t − �

1 + t

)

= e−�(1 + �) · OPT � e−δ(1 + δ) · OPT,
(3.14)

where we used the fact that� � δ and e−�(1+�) is a decreasing function for� > 0.
By combining Eqs. 3.12–3.14, if S ∈ ([0..n]

k+1

)
satisfies that 0 /∈ S or

∑
i∈S−0

xi �= t , its
principal minor is bounded as follows:
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det(AS) � max
{
e−δ(1 + δ), eδ(1 − δ)

}
· OPT = e−δ(1 + δ) · OPT. (3.15)

Observing that e−δ(1 + δ) < 1 for any δ > 0 accomplishes the proof. �
We complete our reduction by approximating the Gram matrix A of n + 1 vectors

defined in Eq. 3.3 by a rational matrix B whose maximum determinant maintains
sufficient information to solve k- Sum.

Lemma 3.7 Let B be the Gram matrix in Q(n+1)×(n+1) defined by n + 1 vectors
w0, . . . ,wn inQ2n, each entry of which is a (1±ε)-factor approximation to the corre-
sponding entry of n+1 vectors v0, . . . , vn defined by Eq. 3.3, where ε = 2−O(k log(nk)).
Then,

maxdet(B, k + 1) is

{
at least

( 2
3 + 1

3e
−δ(1 + δ)

) · OPT if k-Sum has a solution,

at most
( 1
3 + 2

3e
−δ(1 + δ)

) · OPT otherwise.

(3.16)

Moreover, we can calculate B in polynomial time.

The crux of its proof is to approximate A within a factor of ε = 2−O(k log(nk)). To this
end, we use the following lemma.

Lemma 3.8 (cf. [6], page 107) For two complex-valued n × n matrices A and B, the
absolute difference in the determinant of A and B is bounded from above by

|det(A) − det(B)| � n · max{‖A‖2, ‖B‖2}n−1 · ‖A − B‖2. (3.17)

Proof of Lemma 3.7 Let n rational numbers x1, . . . , xn , a target rational number t ,
and a positive integer k be an instance of k- Sum. Suppose we are given the Gram
matrix A defined by n + 1 vectors v0, . . . , vn constructed according to Eq. 3.3 and
the rational Gram matrix B defined by n + 1 rational vectors w0, . . . ,wn , each entry
of which is a (1 ± ε)-factor approximation to the corresponding entry of vi ’s. If the
absolute difference between AS and BS is at most 1

3 (OPT − e−δ(1 + δ) · OPT) for
every S ∈ ([0..n]

k+1

)
, we can use Lemma 3.6 to ensure that

det(BS) �
(
2

3
+ 1

3
e−δ(1 + δ)

)
· OPT if 0 ∈ S and

∑

i∈S−0

xi = t, (3.18)

det(BS) �
(
1

3
+ 2

3
e−δ(1 + δ)

)
· OPT otherwise. (3.19)

In particular, we can use either the optimal value or solution forDeterminant Max-

imization defined by (B, k + 1) to determine whether k- Sum has a solution.
Wedemonstrate that this is the case if ε = 2−O(k log(nk)). Owing to the nonnegativity

of vi ’s and wi ’s, we have (1 − ε)vi (e) � wi (e) � (1 + ε)vi (e) for every i ∈ [0 .. n]
and e ∈ [2n], implying that:
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(1 − ε)2 · vi (e)v j (e) � wi (e)w j (e) � (1 + ε)2 · vi (e)v j (e)

�⇒ (1 − ε)2 · 〈vi , v j 〉︸ ︷︷ ︸
=Ai, j

� 〈wi ,w j 〉︸ ︷︷ ︸
=Bi, j

� (1 + ε)2 · 〈vi , v j 〉︸ ︷︷ ︸
=Ai, j

. (3.20)

Because it holds that (1 + ε)2 � 1 + 3ε and (1 − ε)2 � 1 − 3ε for any ε ∈ (0, 1
3 ),

there exists a number ρi, j ∈ [1 − 3ε, 1 + 3ε] such that Bi, j = ρi, j · Ai, j for each
i, j ∈ [0 .. n]. By applying Lemma 3.8, we can bound the absolute difference between
the determinant of AS and BS for any set S ∈ ([0..n]

k+1

)
as:

|det(AS) − det(BS)| � (k + 1) · max{‖AS‖2, ‖BS‖2}k · ‖AS − BS‖2. (3.21)

Each term in the above inequality can be bounded as follows:

‖AS‖2 � (k + 1) · ‖AS‖max � (k + 1) · ‖A‖max, (3.22)

‖BS‖2 � (k + 1) · ‖BS‖max

� (k + 1) · ‖A‖max · max
i, j

|ρi, j |
� (k + 1)(1 + 3ε) · ‖A‖max,

(3.23)

‖AS − BS‖2 � (k + 1) · ‖AS − BS‖max

� (k + 1) · max
i, j∈S |Ai, j − ρi, j Ai, j |

� (k + 1)3ε · ‖A‖max.

(3.24)

Here, ‖A‖max is bounded using its definition (see the beginning of the proof of
Lemma 3.5):

‖A‖max = max

{
max
i∈[n] (1 + t) · exi , γ 2,max

i∈[n] γ
√

α · xi · exi
}

� max
{
2e, 25, 5

√
e
}

= 25.

(3.25)

Putting it all together, we get

|det(AS) − det(BS)| � (k + 1) · {(k + 1) · 25 · (1 + 3ε)}k · (k + 1) · 25 · 3ε
= (k + 1)k+2 · 25k+1 · (1 + 3ε)k · 3ε.

(3.26)

Therefore, for the absolute difference of the determinant between AS and BS to be
less than 1

3 (1 − e−δ(1 + δ)) · OPT, the value of ε should be less than

ε <
{
(k + 1)k+2 · 25k+1 · (1 + 3ε)k · 3

}−1 · 1
3
(1 − e−δ(1 + δ)) · OPT. (3.27)
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Observe that each term in Eq. 3.27 can be bounded as follows:

{
(k + 1)k+2 · 25k+1 · (1 + 3ε)k · 3

}−1
> (100000k)−k for all k � 1 if ε � 1,

(3.28)

1 − e−δ(1 + δ) � δ2

2
− δ3

3
> 0 for any δ > 0, (3.29)

OPT � 1. (3.30)

Consequently, we can set the value of ε so as to satisfy Eq. 3.27; thus, Eqs. 3.18
and 3.19:

ε � (100000k)−k ·
(

δ2

2
− δ3

3

)
= 2−O(k log(nk)). (3.31)

We finally claim that each entry ofwi ’s can be computed in polynomial time. Because
of the definition of vi ’s in Eq. 3.3, it suffices to compute a (1± ε

2 )-approximate value
of exp(x) and

√
x for a rational number x in polynomial time in the input size and

log ε−1 = O(k log(nk)), completing the proof.2 �
What remains to be done is to prove Theorem 3.1 using Lemma 3.7.

Proof of Theorem 3.1 Our parameterized reduction is as follows. Given n rational
numbers x1, . . . , xn ∈ (0, 1) ∩ Q, a target rational number t ∈ (0, 1) ∩ Q, and a
positive integer k ∈ [n] as an instance of k- Sum, we construct n + 1 rational vectors
w0, . . . ,wn in Q2n+ , each of which is an entry-wise (1 ± ε)-factor approximation to
v0, . . . , vn defined by Eq. 3.3, where ε = 2−O(k log(nk)). This construction requires
polynomial time owing to Lemma 3.7. Thereafter, we compute the Gram matrix B
in Q(n+1)×(n+1) defined by w0, . . . ,wn . Consider Determinant Maximization

defined by (B, k + 1) with parameter k + 1. According to Lemma 3.7, the maximum
principal minor maxdet(B, k + 1) is at least ( 23 + 1

3e
−δ(1 + δ)) · OPT if and only

if k- Sum has a solution. Moreover, if this is the case, the optimal solution S∗ for
Determinant Maximization satisfies that

∑
i∈S∗−0

xi = t . The above discussion

ensures the correctness of the parameterized reduction from k- Sum toDeterminant
Maximization, finishing the proof. �

3.2 Note on Polynomial-Time Solvability for Tridiagonal Matrices and Spiders of
Bounded Legs [2, 3]

Here, we mention some tractable cases of Determinant Maximization due to Al-
Thani and Lee [2, 3]. Recall that a tridiagonal matrix is a square matrix A such that
Ai, j = 0 whenever |i − j | � 2; i.e., its symmetrized graph is a path graph (and thus

2 Indeed, we can simply take the sum of the first O(log ε−1 + x) terms of a Taylor series of exp(x) to
calculate its (1± ε)-approximation; we can use a bisection search, of which number of iterations is at most
O(log ε−1 + log x−1), to approximate

√
x within a (1 ± ε)-factor.
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a linear forest). A graph is called a spider if it is a tree having at most one vertex of
degree greater than 2, and its leafs are called legs.

Observation 3.9 (Al-Thani and Lee [2, 3]) Determinant Maximization can be
solved in polynomial time if an input matrix is a tridiagonal matrix, or its symmetrized
graph is a spider with a constant number of legs.

4 W[1]-HardnessWith Respect to Rank

We then prove theW[1]-hardness of Determinant Maximizationwhen parameter-
ized by the rank of an input matrix. In fact, we obtain the stronger hardness result on
the problem of finding a set of pairwise orthogonal rational vectors, which is formally
stated below.

Problem 4.1 Given n d-dimensional vectors v1, . . . , vn in Qd and a positive integer
k ∈ [n], we are required to decide if there exists a set of k vectors that is pairwise
orthogonal, i.e., a set S ∈ ([n]

k

)
such that 〈vi , v j 〉 = 0 for all i �= j ∈ S.

Theorem 4.2 Problem 4.1 is W[1]-hard when parameterized by the dimension d of
the input vectors. Moreover, the same hardness result holds even if every vector has
the same Euclidean norm.

The following is immediate from Theorem 4.2.

Corollary 4.3 Determinant Maximization is W[1]-hard when parameterized by
the rank of an input matrix.

Proof LetA be the Grammatrix defined by any n d-dimensional vectors v1, . . . , vn ∈
Qd having the same Euclidean norm, say, c ∈ Q+. Consider Determinant Maxi-

mization defined by (A, k). For any S ∈ ([n]
k

)
, the principal minor det(AS) is equal

to c2k if the set of k vectors {vi : i ∈ S} is pairwise orthogonal and is strictly less than
c2k otherwise. Observing that rank(A) � d completes the proof. �

Unlike the proof of Theorem 3.1, f (k)-dimensional vectors can only be used in
a parameterized reduction. The key tool to bypass this difficulty is Grid Tiling

introduced in the next subsection.

4.1 GRID TILING and Pythagorean Triples

We first define Grid Tiling due to Marx [34].

Problem 4.4 (Grid Tiling due to Marx [34]) For two integers n and k, given a
collection S of k2 nonempty sets Si, j ⊆ [n]2 for each i, j ∈ [k], Grid Tiling asks
to find an assignment σ : [k]2 → [n]2 with σ(i, j) ∈ Si, j such that

(1) Vertical neighbors agree in the first coordinate; i.e., if σ(i, j) = (x, y) and
σ(i, ( j + 1) mod k) = (x ′, y′), then x = x ′, and
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Table 1 Example of Grid Tiling with k = 3 and n = 4

S1,1 S2,1 S3,1
(1, 1) (1,2) (1, 2)
(3,2) (2, 2) (4,2)
S1,2 S2,2 S3,2
(3,4) (1,4) (2, 1)
(4, 3) (3, 1) (4,4)
S1,3 S2,3 S3,3
(3,2) (1,2) (3, 3)
(4, 1) (1, 3) (4,2)

The bold pairs form a solution; i.e., σ(1, 1) = (3, 2), σ(2, 1) = (1, 2), σ(3, 1) = (4, 2), σ(1, 2) = (3, 4),
σ(2, 2) = (1, 4), σ(3, 2) = (4, 4), σ(1, 3) = (3, 2), σ(2, 3) = (1, 2), and σ(3, 3) = (4, 2). Observe that
the first coordinate of the selected pairs in the first column is 3, the second coordinate of the selected pairs
in the first row is 2, and so on

(2) Horizontal neighbors agree in the second coordinate; i.e., if σ(i, j) = (x, y) and
σ((i + 1) mod k, j) = (x ′, y′), then y = y′,

where we define (k + 1) mod k � 1, and hereafter omit the symbol mod for modulo
operator. Each pair (i, j) ∈ [k]2 will be referred to as a cell.

See also Table 1 for an example. Grid Tiling parameterized by k is proven to be
W[1]-hard by Marx [34, 36]. We say that two cells (i1, j1) and (i2, j2) are adjacent if
the Manhattan distance between them is 1. Let I be the set of all pairs of two adjacent
cells; i.e.,

I �
{
(i1, j1, i2, j2) ∈ [k]4 : |i1 − i2| + | j1 − j2| = 1

}
. (4.1)

Note that |I| = 2k2.Grid Tiling has the two useful properties that (i) the constraint to
be satisfied is the equality on the first and second coordinates, which is pretty simple,
and (ii) there are only k2 cells and each cell is adjacent to (at most) four cells. To
represent the consistency between adjacent cells using only f (k)-dimensional vectors,
we use a rational point ( ac ,

b
c ) on the unit circle generated from a Pythagorean triple

(a, b, c). A Pythagorean triple is a triple of three positive integers (a, b, c) such that
a2 + b2 = c2; e.g., (a, b, c) = (3, 4, 5). It is further said to be primitive if (a, b, c)
are coprime; i.e., gcd(a, b) = gcd(b, c) = gcd(c, a) = 1. We assume for a while that
we have n primitive Pythagorean triples, denoted (a1, b1, c1), . . . , (an, bn, cn).

4.2 Reduction fromGRID TILING and Proof of Theorem 4.2

We are now ready to describe a parameterized reduction from Grid Tiling to Prob-
lem 4.1. Given an instance S = (Si, j )i, j∈[k] of Grid Tiling, we define a rational
vector for each (x, y) ∈ Si, j , whose dimension is bounded by some function in k.
Each vector consists of |I| = 2k2 blocks (indexed by an element of I), each of which
is two dimensional and is either a rational point on the unit circle or the origin O.
Hence, each vector is of dimension 2|I| = 4k2. Let v(i, j)

x,y denote the vector for an

element (x, y) ∈ Si, j of cell (i, j) ∈ [k]2, let v(i, j)
x,y (i1, j1, i2, j2) denote the block of
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v(i, j)
x,y corresponding to each pair of adjacent cells (i1, j1, i2, j2) ∈ I. Each block is

defined as follows:

v(i, j)
x,y (e) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
− bx

cx
, ax
cx

]
if e = (i, j − 1, i, j),

[
ax
cx

, bx
cx

]
if e = (i, j, i, j + 1),

[
− by

cy
,
ay
cy

]
if e = (i − 1, j, i, j),

[
ay
cy

,
by
cy

]
if e = (i, j, i + 1, j),

[0, 0] otherwise.

(4.2)

Because each vector contains exactly four points on the unit circle, its squared norm is
equal to 4.We denote byV(i, j) the set of vectors corresponding to the elements of Si, j ;

i.e.,V(i, j) � {v(i, j)
x,y : (x, y) ∈ Si, j }.We now define an instance (V, K ) of Problem 4.1

as V �
⋃

i, j∈[k] V(i, j) and K � k2. Note that V consists of N �
∑

i, j∈[k] |Si, j |
vectors.We prove that the existence of a set of pairwise orthogonal k2 vectors yields the

answer of Grid Tiling. The key property of the above construction is that
[
− bx

cx
, ax
cx

]

and
[
ax ′
cx ′

,
bx ′
cx ′

]
are orthogonal if and only if x = x ′.

Lemma 4.5 Let V be the set of vectors constructed from an instance S = (Si, j )i, j∈[k]
of Grid Tiling according to Eq. 4.2. Then, Grid Tiling has a solution if and only
if Problem 4.1 has a solution.

Proof We first prove the only-if direction. Suppose the Grid Tiling instance S has
a solution denoted σ : [k]2 → [n]2. We show that the set S � {v(i, j)

x,y : i, j ∈
[k], (x, y) = σ(i, j)} of k2 vectors is pairwise orthogonal. Observe easily that any two
vectors corresponding to nonadjacent cells are orthogonal. We then verify the orthog-
onality of two vectors corresponding to vertically adjacent cells (i, j) and (i, j + 1)
for any i, j ∈ [k]. Calculating the inner product between v(i, j)

x,y and v(i, j+1)
x,y′ in S, where

(x, y) = σ(i, j) and (x, y′) = σ(i, j + 1) for some x, y, y′ ∈ [n] by assumption, we
obtain that

〈
v(i, j)
x,y , v(i, j+1)

x,y′
〉
=
〈[

ax
cx

,
bx
cx

]
,

[
−bx
cx

,
ax
cx

]〉
= axbx − axbx

c2x
= 0. (4.3)

Similarly, for two horizontally adjacent cells (i, j) and (i + 1, j), we derive that
〈v(i, j)

x,y , v(i+1, j)
x ′,y 〉 = 0, where (x, y) = σ(i, j) and (x ′, y) = σ(i + 1, j) for some

x, x ′, y ∈ [n] by assumption. This accomplishes the proof for the only-if direction.
We then prove the if direction. Suppose S is a set of k2 vectors from V that is

pairwise orthogonal. Observe first that S must include exactly one vector from each
V(i, j), because otherwise it includes a pair of vectors v(i, j)

x,y and v(i, j)
x ′,y′ for some distinct

(x, y) �= (x ′, y′) ∈ Si, j , which is nonorthogonal. Indeed, their inner product is
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〈
v(i, j)
x,y , v(i, j)

x ′,y′
〉
= 2 · axax ′ + bxbx ′

cxcx ′
+ 2 · ayay′ + byby′

cycy′
> 0. (4.4)

We can thus define the unique assignment σ(i, j) � (x, y) ∈ Si, j such that v
(i, j)
x,y ∈ S

for each cell (i, j) ∈ [k]2. We show that σ is a solution of Grid Tiling. Calculating
the inner product between v(i, j)

x,y and v(i, j+1)
x ′,y′ for two vertically adjacent cells (i, j)

and (i, j + 1), where (x, y) = σ(i, j) and (x ′, y′) = σ(i, j + 1), we have

〈
v(i, j)
x,y , v(i, j+1)

x ′,y′
〉
= ax ′bx − axbx ′

cxcx ′
= 0, (4.5)

i.e., it must hold that ax ′bx = axbx ′ as cxcx ′ > 0. Since ax and bx are coprime, ax ′
must divide ax and bx ′ must divide bx ; since ax ′ and bx ′ are coprime, ax must divide
ax ′ and bx must divide bx ′ , implying that ax = ax ′ and bx = bx ′ . Consequently,
x = x ′; i.e., the vertical neighbors agree in the first coordinate. Similarly, for two
horizontally adjacent cells (i, j) and (i + 1, j), we can show that ay = ay′ and
by = by′ , where (x, y) = σ(i, j) and (x ′, y′) = σ(i + 1, j), and thus y = y′; i.e., the
horizontal neighbors agree in the second coordinate. This accomplishes the proof for
the if direction. �
Proof of Theorem 4.2 Our parameterized reduction is as follows. Given an instance
S = (Si, j )i, j∈[k] of Grid Tiling, we first generate n primitive Pythagorean
triples (a1, b1, c1), . . . , (an, bn, cn). This can be done efficiently by simply letting
(ax , bx , cx ) � (2x + 1, 2x2 + 2x, 2x2 + 2x + 1) for all x ∈ [n]. We then construct a
setV of N 4k2-dimensional rational vectors fromS according to Eq. 4.2 in polynomial
time, where N �

∑
i, j∈[k] |Si, j |. According to Lemma 4.5, S has a solution of Grid

Tiling if and only if there exists a set of k2 pairwise orthogonal vectors in V. Since
Grid Tiling is W[1]-hard with respect to k, Problem 4.1 is also W[1]-hard when
parameterized by dimension d(= 4k2). Note that every vector is of squared norm 4,
completing the proof. �

4.3 Problem 4.1 on Nonnegative Vectors is FPT

We note that Problem 4.1 is FPT with respect to the dimension if the input vectors
are nonnegative. Briefly speaking, Problem 4.1 on nonnegative vectors is equivalent
to Set Packing parameterized by the size of the universe, which is easily shown to
be FPT.

Observation 4.6 Problem 4.1 is FPTwith respect to the dimension if every input vector
is entry-wise nonnegative.

Proof Let v1, . . . , vn be n d-dimensional nonnegative vectors in Qd+ and k ∈ [n]
a positive integer. Without loss of generality, we can assume that k � d because
otherwise, there is always no solution. For each vector vi , we denote by nz(vi ) the set
of coordinates of positive entries; i.e., nz(vi ) � {e ∈ [d] : vi (e) > 0}. Then, the vector
set {vi : i ∈ S} for any S ⊆ [n] is pairwise orthogonal if and only if nz(vi )∩nz(v j ) = ∅
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for every i �= j ∈ S; i.e., the problem of interest is Set Packing in which we want
to find k pairwise disjoint sets from the family F � {nz(vi ) : i ∈ [n]}. Observing that
|F| � 2d because duplicates (i.e., nz(vi ) = nz(v j ) for some i �= j) are discarded,
there are atmost

(|F|
k

)
� 2dk possible subsets of size k. Hence,we constructF inO(nd)

time and perform an exhaustive search in time 2dk · dO(1) � 2d
2 · dO(1), completing

the proof. �

5 W[1]-Hardness of Approximation

Our final result is FPT-inapproximability of Determinant Maximization as stated
below.

Theorem 5.1 Under the Parameterized Inapproximability Hypothesis, it isW[1]-hard
to approximate Determinant Maximization within a factor of 2−c

√
k for some

universal constant c > 0 when parameterized by the number k of vectors to be
selected. Moreover, the same hardness result holds even if the diagonal entries of
an input matrix are restricted to 1.

Since the above result relies on the Parameterized Inapproximability Hypothesis,
Sect. 5.1 begins with its formal definition.

5.1 Inapproximability ofGRID TILING Under Parameterized Inapproximability
Hypothesis

We first introduce Binary Constraint Satisfaction Problem, for which the
Parameterized Inapproximability Hypothesis asserts FPT-inapproximability. For two
integers n and k, we are given a set V � [k] of k variables, an alphabet  � [n]
of size n, and a set of constraints C = (Ci, j )i, j∈V such that Ci, j ⊆ 2.3 Each
variable i ∈ V may take a value from . Each constraint Ci, j specifies the pairs of
values that variables i and j can take simultaneously, and it is said to be satisfied by an
assignmentψ : V →  of values to the variables if (ψ(i), ψ( j)) ∈ Ci, j . For example,
for a graph G = (V , E), define Ci, j � {(1, 2), (2, 1), (2, 3), (3, 2), (3, 1), (1, 3)} for
all edge (i, j) of G. Then, any assignment ψ : V → [3] is a 3-coloring of G if and
only if ψ satisfies all constraints simultaneously.

Problem 5.2 Given a set V of k variables, an alphabet set of size n, and a set of con-
straints C = (Ci, j )i, j∈V , Binary Constraint Satisfaction Problem (BCSP)
asks to find an assignment ψ : V →  that satisfies the maximum fraction of con-
straints.

It is well known that BCSP parameterized by the number k of variables is W[1]-
complete from a standard parameterized reduction from k- Clique. Lokshtanov et al.
[31] posed a conjecture asserting that a constant-factor gap version of BCSP is also
W[1]-hard.

3 Though each constraint is actually indexed by an unordered pair of variables {i, j}, we use the present
notation Ci, j for sake of clarity and assume that Ci, j = C j ,i without loss of generality.
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Hypothesis 5.3 (Parameterized Inapproximability Hypothesis (PIH) [31]) There
exists some universal constant ε ∈ (0, 1) such that it is W[1]-hard to distinguish
between BCSP instances that are promised to either be satisfiable, or have a property
that every assignment violates at least ε-fraction of the constraints.

Here, we prove that an optimization version of Grid Tiling is FPT-inapproximable
assuming PIH. Given an instance S = (Si, j )i, j∈[k] of Grid Tiling and an assignment
σ : [k]2 → [n]2, σ(i, j) and σ(i ′, j ′) for a pair of adjacent cells (i, j, i ′, j ′) ∈ I are
said to be consistent if they agree on the first coordinate when i = i ′ or on the second
coordinate when j = j ′, and inconsistent otherwise. The consistency of σ , denoted
cons(σ ), is defined as the number of pairs of adjacent cells that are consistent; namely,

cons(σ ) �
∑

(i1, j1,i2, j2)∈I

[[
σ(i1, j1) and σ(i2, j2) are consistent

]]
. (5.1)

The inconsistency of σ is defined as the number of inconsistent pairs of adjacent cells.
The optimization version of Grid Tiling asks to find an assignment σ such that
cons(σ ) is maximized.4 Note that the maximum possible consistency is |I| = 2k2.
We will use opt(S) to denote the optimal consistency among all possible assignments.
We now demonstrate that Grid Tiling is FPT-inapproximable in an additive sense
under PIH, whose proof is reminiscent of [34].

Lemma 5.4 Under PIH, there exists some universal constant δ ∈ (0, 1) such that it is
W[1]-hard to distinguish Grid Tiling instances between the following cases:

• Completeness: the optimal consistency is 2k2.
• Soundness: the optimal consistency is at most 2k2 − δk.

Proof We show a gap-preserving parameterized reduction from BCSP to Grid

Tiling. Given an instance of BCSP (V , , C = (Ci, j )i, j∈V ), where V = [k] and
 = [n], we define S to be a collection of k2 nonempty subsets Si, j ⊆ [n]2 such
that Si,i � [n]2 for all i ∈ [k] and Si, j � Ci, j ⊆ [n]2 for all i �= j ∈ [k]. Suppose
first there exists a satisfying assignment ψ : V →  for the BCSP instance; i.e.,
(ψ(i), ψ( j)) ∈ Ci, j for all i �= j ∈ V . Constructing another assignment σ : [k]2 →
[n]2 for Grid Tiling defined by S such that σ(i, j) � (ψ(i), ψ( j)) ∈ Si, j for each
i, j ∈ [k], we have cons(σ ) = 2k2, proving the completeness part.

Suppose then we are given an assignment σ : [k]2 → [n]2 for Grid Tiling whose
inconsistency is at most δk for some δ ∈ (0, 1). Define a subset A ⊆ [n] as follows:

A � [k] \
({

i ∈ [k] : ∃ j ∈ [k] s.t. σ(i, j) and σ(i, j + 1) are inconsistent
}
∪

{
j ∈ [k] : ∃i ∈ [k] s.t. σ(i, j) and σ(i + 1, j) are inconsistent

})
.

(5.2)

4 Our definition is different fromMarx [34] in that the latter seeks a partial assignment such that the number
of defined cells is maximized while the former requires maximizing the number of consistent adjacent pairs.
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It follows from the definition that |A| � (1 − δ)k and the restriction of σ on A2 is of
zero inconsistency. Thus, if we define an assignment ψ : V →  for BCSP as

ψ(i) � z such that σ(i, i) = (z, z) for each i ∈ V , (5.3)

then it holds that (ψ(i), ψ( j)) ∈ Si, j = Ci, j for all i �= j ∈ A. The fraction of
constraints in the BCSP instance satisfied by ψ is then at least

(|A|
2

)

(k
2

) = (k − δk)(k − δk − 1)

2

2

k(k − 1)

= (1 − δ)

(
1 − δk

k − 1

)

� (1 − δ)

(
1 − 3

2
δ

)
(for k � 3)

�
(
1 − 3

2
δ

)2

� 1 − 3δ.

(5.4)

Consequently, if the optimal consistency opt(S) is at least 2k2−δk for some δ ∈ (0, 1),
then the maximum fraction of satisfiable constraints of BCSP instance must be at least
1 − 3δ, which completes (the contraposition of) the soundness part. Under PIH, it is
W[1]-hard to decide if the optimal consistency of a Grid Tiling instance is equal
to 2k2 or less than 2k2 − δk, where δ � ε

3 and ε ∈ (0, 1) is a constant appearing in
Hypothesis 5.3. �

It should be noted that we may not be able to significantly improve the additive
termO(k) owing to a polynomial-time εk2-additive approximation algorithm for any
constant ε > 0:

Observation 5.5 Given an instance of Grid Tiling and an error tolerance parameter
ε > 0, we can find an assignment whose consistency is at least opt(S) − εk2 in
ε2k2nO(1/ε2) time.

Proof Given an instance S = (Si, j )i, j∈[k] of Grid Tiling and ε > 0, if εk < 4,
we can use a brute-force search algorithm to find an optimal assignment in time

nO(k2) = nO(1/ε2). Hereafter, we safely assume that εk � 4. Defining � �
⌊

εk

2
− 1

⌋

and B �
⌈
k

�

⌉
, we observe that

1 ≤ � ≤ εk

2
and B ≤

⌈
k

εk
2 − 1

⌉

≤
⌈

k
εk
4

⌉

=
⌈
4

ε

⌉
. (5.5)
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We partition k2 cells of S into �2 blocks, denoted {Pı̂,ĵ }ı̂,ĵ∈[�], each of which is of
size at most B2 and defined as follows:

Pı̂,ĵ �
[
B(ı̂ − 1) + 1 .. min{Bı̂, k}

]
×
[
B(ĵ − 1) + 1 .. min{Bĵ , k}

]

for all ı̂, ĵ ∈ [�]. (5.6)

Consider for each ı̂, ĵ ∈ [�], a variant of Grid Tiling denoted by Sı̂,ĵ � {Si, j :
(i, j) ∈ Pı̂,ĵ }, which requires maximizing the number of consistent pairs of adjacent
cells of Pı̂,ĵ in I, where I is defined in Eq. 4.1. Because each instance Sı̂,ĵ contains at
most B2 cells, we can solve this variant exactly by exhaustive search in nB2+O(1) time.
Denote byσı̂ ,ĵ : Pı̂,ĵ → [n]2 the obtainedpartial assignment on Pı̂ ,ĵ . Concatenating all
σı̂,ĵ ’s, we can construct an assignment σ : [k]2 → [n]2 to the original Grid Tiling

instance S. Because each partial assignment σı̂,ĵ is optimal on Sı̂,ĵ , the number of
consistent pairs of adjacent cells within the same block is at least opt(S). By contrast,
the number of (possibly inconsistent) pairs of adjacent cells across different blocks is
2k�. Accordingly, the consistency of σ is cons(σ ) � opt(S) − 2k� � opt(S) − εk2.
Note that the entire time complexity is bounded by �2 · nB2+O(1) = ε2k2nO(1/ε2)

completing the proof. �

Our technical result is a gap-preserving parameterized reduction fromGrid Tiling

to Determinant Maximization, whose proof is presented in the subsequent sub-
section.

Lemma 5.6 There is a polynomial-time, parameterized reduction froman instanceS =
(Si, j )i, j∈[k] of Grid Tiling to an instance (A, k2) of Determinant Maximization

such that all diagonal entries of A are 1 and the following conditions are satisfied:

• Completeness: If opt(S) = 2k2, then maxdet(A, k2) = 1.
• Soundness: If opt(S) � 2k2 − δk for some δ > 0, thenmaxdet(A, k2) � 0.999δk .

Using Lemma 5.6, we can prove Theorem 5.1.

Proof of Theorem 5.1 Our gap-preserving parameterized reduction is as follows. Given
an instance S = (Si, j )i, j∈[k] of Grid Tiling, we construct an instance (A ∈
QN×N , K � k2) of Determinant Maximization in polynomial time according
to Lemma 5.6, where N �

∑
i, j∈[k] |Si, j |. The diagonal entries of A are 1 by defi-

nition. Since K is a function only in k, this is a parameterized reduction. According
to Lemma 5.4 and 5.6, it is W[1]-hard to determine whether maxdet(V, K ) = 1
or maxdet(V, K ) � 0.999δk under PIH, where δ ∈ (0, 1) is a constant appearing
Lemma 5.4. In particular, Determinant Maximization is W[1]-hard to approxi-
mate within a factor better than 0.999δk = 2−c

√
K when parameterized by K , where

c ∈ (0, 1) is some universal constant. This completes the proof. �
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5.2 Gap-Preserving Reduction fromGRID TILING and Proof of Lemma 5.6

To prove Lemma 5.6, we describe a gap-preserving parameterized reduction from
Grid Tiling to Determinant Maximization. Before going into its details, we
introduce a convenient gadget due to Çivril and Magdon-Ismail [13].

Lemma 5.7 (Çivril andMagdon-Ismail [13], Lemma 13)For any positive even integer
�, we can construct a set of 2� rational vectorsB(�) = {b1, . . . ,b2�} of dimension 2�+1

in O(4�) time such that the following conditions are satisfied:

• Each entry of vectors is either 0 or 2− �
2 ; ‖bi‖ = 1 for all i ∈ [2�].

• 〈bi ,b j 〉 = 1
2 for all i, j ∈ [2�] with i �= j .

• 〈bi ,b j 〉 = 1
2 for all i, j ∈ [2�] with i �= j , where b j � 2− �

2 · 1 − b j .

By definition of B(�), we further have the following:

〈bi ,bi 〉 = 2− �
2 〈1,bi 〉 − 〈bi ,bi 〉 = 0, (5.7)

〈bi ,b j 〉 = 〈2− �
2 1 − bi , 2− �

2 1 − b j 〉
= 2−�〈1, 1〉 − 2− �

2 〈1,bi + b j 〉 + 〈bi ,b j 〉
= 〈bi ,b j 〉. (5.8)

Our reduction strategy is very similar to that of Theorem 4.2. Given an instance
S = (Si, j )i, j∈[k] of Grid Tiling, we construct a rational vector v(i, j)

x,y for each element
(x, y) ∈ Si, j of cell (i, j) ∈ [k]2. Each vector consists of |I| = 2k2 blocks indexed
by I, each of which is either a vector in the set B(2�log n�) or the zero vector 0. Hence,
the dimension of the vectors is 2k2 · 22�log n�+1 = O(k2n2). Let v(i, j)

x,y (i1, j1, i2, j2)

denote the block of v(i, j)
x,y corresponding to a pair of adjacent cells (i1, j1, i2, j2) ∈ I.

Each block is subsequently defined as follows:

v(i, j)
x,y (e) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

bx if e = (i, j − 1, i, j),

bx if e = (i, j, i, j + 1),

by if e = (i − 1, j, i, j),

by if e = (i, j, i + 1, j),

0 otherwise.

(5.9)

Hereafter, two vectors v(i, j)
x,y and v(i ′, j ′)

x ′,y′ are said to be adjacent if (i, j) and (i ′, j ′) are
adjacent, and two adjacent vectors are said to be consistent if (x, y) and (x ′, y′) are
consistent (i.e., x = x ′ whenever i = i ′ and y = y′ whenever j = j ′) and inconsistent
otherwise. Since each vector contains exactly four vectors chosen from B(2�log n�), its
squared norm is equal to 4. In addition, v(i, j)

x,y and v(i ′, j ′)
x ′,y′ are orthogonal whenever

(i, j) and (i ′, j ′) are not identical or adjacent. Observe further that if two cells are
adjacent, the inner product of two vectors in V is calculated as follows:
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〈
v(i, j)
x,y , v(i, j+1)

x ′,y′
〉
= 〈bx ,bx ′ 〉 =

{
0 if they are consistent (i.e., x = x ′),
1
2 otherwise (i.e., x �= x ′),

(5.10)

〈
v(i, j)
x,y , v(i+1, j)

x ′,y′
〉
= 〈by,by′ 〉 =

{
0 if they are consistent (i.e., y = y′),
1
2 otherwise (i.e., y �= y′). (5.11)

On the other hand, the inner product of two vectors in the same cell is as follows:

〈
v(i, j)
x,y , v(i, j)

x ′,y′
〉
= 2 · 〈bx ,bx ′ 〉 + 2 · 〈by,by′ 〉

=

⎧
⎪⎨

⎪⎩

4 if x = x ′ and y = y′,
3 if x = x ′ xor y = y′,
2 if x �= x ′ and y �= y′.

(5.12)

We denote by V(i, j) the set of vectors corresponding to the elements of Si, j ; i.e.,

V(i, j) � {v(i, j)
x,y : (x, y) ∈ Si, j } for each i, j ∈ [k]. We now define an instance (V, K )

of Determinant Maximization as V �
⋃

i, j∈[k] V(i, j) and K � k2. Note that V

contains N �
∑

i, j∈[k] |Si, j | vectors.
We now proceed to the proof of (the soundness argument of) Lemma 5.6. Let S be

a set of k2 vectors from V. Define S(i, j) � V(i, j) ∩ S = {v(i, j)
x,y ∈ S : (x, y) ∈ Si, j }

for each i, j ∈ [k]2. Denote by cov(S) the number of cells (i, j) ∈ [k]2 such that S
includes v(i, j)

x,y for some (x, y); i.e., cov(S) � {(i, j) ∈ [k]2 : S(i, j) �= ∅}, and we
also define dup(S) � {(i, j) ∈ [k]2 : S(i, j) = ∅}. It follows from the definition that
cov(S) + dup(S) = k2 and dup(S) counts the total number of “duplicate” vectors in
the same cell. We first present an upper bound on the volume of S in terms of dup(S),
implying that we cannot select many duplicate vectors from the same cell.

Lemma 5.8 If dup(S) � k2
2 , then it holds that

vol2(S) � 4k
2 ·
(
3

4

)dup(S)

. (5.13)

Proof Wefirst introduceFischer’s inequality. SupposeA andB are respectivelym×m
and n × n positive semi-definite matrices, and C is an m × n matrix. Then, it holds

that det

([
A C
C
 B

])
� det(A) · det(B). As a corollary, we have the volume version

of Fischer’s inequality stating that for any two sets of vectors P,Q,

vol(P � Q) � vol(P) · vol(Q). (5.14)

Because we have

vol(S) �
∏

i, j∈[k]
vol(S(i, j)) (5.15)
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by Fischer’s inequality in Eq. 5.14, we consider bounding vol(S(i, j)) from above for
each i, j ∈ [k]. We will show the following:

vol2(S(i, j)) =
{
1 if S(i, j) = ∅,

4 · 3|S(i, j)|−1 otherwise.
(5.16)

Suppose S(i, j) = {v1, . . . , vm} form � |S(i, j)|. By the definition of volume in Eq. 2.2,
we have

vol2(S(i, j)) = ‖v1‖2 ·
∏

2�i�m

∥∥∥vi − proj{v1,...,vi−1}(vi )
∥∥∥
2

� 4 ·
∏

2�i�m

∥∥∥vi − proj{v1}(vi )
∥∥∥
2
.

(5.17)

Because the projection of each vi with i �= 1 onto v1 is calculated as

proj{v1}(vi ) = 〈v1, vi 〉
‖v1‖2 v1 = 〈v1, vi 〉

4
v1, (5.18)

we obtain

∥
∥∥vi − proj{v1}(vi )

∥
∥∥
2 = ‖vi‖2 +

∥∥
∥∥
〈v1, vi 〉

4
v1

∥∥
∥∥

2

− 2 ·
〈
vi ,

〈v1, vi 〉
4

v1

〉

= 4 + 〈v1, vi 〉2
16

· 4 − 〈v1, vi 〉2
2

= 4 − 1

4
· 〈v1, vi 〉2.

(5.19)

By Eq. 5.12, 〈v1, vi 〉 with i �= 1 is either 2 or 3; hence, it holds that
∥
∥∥vi −

proj{v1}(vi )
∥∥∥
2

� 3, ensuring Eq. 5.16 as desired. Consequently, we get

vol2(S) �
∏

i, j∈[k]
vol2(S(i, j)) �

∏

i, j∈[k]:S(i, j) �=∅
4 · 3|S(i, j)|−1

=
(
4

3

)cov(S)

·
∏

i, j∈[k]
3|S(i, j)| = 4k

2 ·
(
3

4

)dup(S)

,

(5.20)

completing the proof. �

We then present another upper bound on the volume of S in terms of the inconsis-
tency of a partial solution of Grid Tiling constructed from the selected vectors. For
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a set S of k2 vectors from V, a partial assignment σS : [k]2 → [n]2 ∪ {�} for Grid
Tiling is defined as

σS(i, j) �
{
any (x, y) s.t. v(i, j)

x,y ∈ S(i, j) if such (x, y) exists,

� otherwise (i.e., S(i, j) = ∅), (5.21)

where the symbol “�” means undefined and the choice of (x, y) is arbitrary. The
inconsistency of a partial assignment σS is defined as

∑

(i1, j1,i2, j2)∈I

[[
σ(i1, j1) �= �; σ(i2, j2) �= �;

σ(i1, j1) and σ(i2, j2) are inconsistent

]]

. (5.22)

Note that the sum of the consistency and inconsistency of σS is no longer necessar-
ily 2k2. Using σS, we define a partition (P,Q) of S as P � {v(i, j)

x,y ∈ S : i, j ∈
[k], σS(i, j) = (x, y)} and Q � S \ P. We further prepare an arbitrary ordering ≺
over [k]2; e.g., (i, j) ≺ (i ′, j ′) if i < i ′, or i = i ′ and j < j ′. We abuse the notation

by writing v(i, j)
x,y ≺ v(i ′, j ′)

x ′,y′ for any two vectors of V whenever (i, j) ≺ (i ′, j ′). Define
now P≺v � {u ∈ P : u ≺ v}. The following lemma states that the squared volume
of k2 vectors exponentially decays in the minimum possible inconsistency among all
assignments of S.

Lemma 5.9 Suppose opt(S) � 2k2 − δk for some δ > 0 and cov(S) � k2 − γ k for
some γ > 0. If δk − 4γ k is positive, then it holds that

vol2(S) � 4k
2 ·
(
63

64

) δ−4γ
4 k

. (5.23)

The proof of Lemma 5.9 involves the following claim.

Claim 5.10 Suppose the same conditions as in Lemma 5.9 are satisfied. Then, the
inconsistency of σS is at least δk − 4γ k. Moreover, the number of vectors v in P such
that v is inconsistent with some adjacent vector of P≺v is at least

δk−4γ k
4 .

Proof Assuming that the inconsistency of σS is less than δk − 4γ k, we can construct
a (complete) assignment σ : [k]2 → [n]2 from σS by filling in undefined values (i.e.,
“�”) with an arbitrary integer pair in the corresponding cell. The inconsistency of σ

is clearly less than δk, which is a contradiction. �
On the other hand, assume that there are only less than δk−4γ k

4 vectors v in P that
are inconsistent with some adjacent vector of P≺v. Then, the inconsistency of σS must
be less than δk−4γ k

4 · 4,5 which is a contradiction.

5 Note that double counting of inconsistent pairs of adjacent cells does not occur.
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Proof of Lemma 5.9 By applying Eq. 5.14, we have vol2(S) � vol2(P) · vol2(Q).
Observe easily that

vol2(Q) � 4|Q| and vol2(P) =
∏

v∈P
d2(v,P≺v). (5.24)

Thereafter, we bound d2(v,P≺v) for each v ∈ P using the following case analysis:

Case 1 v is consistent with all adjacent vectors in P≺v: because 〈u, v〉 = 0 for all
u ∈ P≺v, we have projP≺v

(v) = 0, implying that

d2(v,P≺v) =
∥∥∥v − projP≺v

(v)
∥∥∥
2 = ‖v‖2 = 4. (5.25)

Case 2 There exists a vector u in P≺v that is inconsistent with v: because 〈u, v〉 = 1
2

by Eqs. 5.10 and 5.11, the projection of v on u is equal to

proj{u}(v) = 〈u, v〉
‖u‖2 · u = 1

8
· u. (5.26)

Therefore, we have

d2(v,P≺v) � d2(v, {u}) =
∥∥∥v − proj{u}(v)

∥∥∥
2

= ‖v‖2 +
∥∥∥∥
1

8
· u
∥∥∥∥

2

− 2 · 1
8
〈u, v〉

= 4 + 4

64
− 2 · 1

16
= 63

16
.

(5.27)

As illustrated in Lemma 5.10, at least δ−4γ
4 k vectors of P fall into the latter case; it

thus turns out that

vol2(P) =
∏

v∈P
d2(v,P≺v) � 4|P|− δ−4γ

4 k ·
(
63

16

) δ−4γ
4 k

= 4|P| ·
(
63

64

) δ−4γ
4 k

. (5.28)

Consequently, the squared volume of S can be bounded as

vol2(S) � 4|P|+|Q| ·
(
63

64

) δ−4γ
4 k

= 4k
2 ·
(
63

64

) δ−4γ
4 k

, (5.29)

which completes the proof. �
Using Lemmas 5.8 and 5.9, we can easily conclude the proof of Lemma 5.6 as

follows.
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Proof of Lemma 5.6 Observe that the reduction described inSect. 5.2 is a parameterized
reduction as it requires polynomial time and an instance S = (Si, j )i, j∈[k] of Grid
Tiling is transformed into an instance (V, k2) of Determinant Maximization. In
addition, the construction of B(2�log n�) completes in time O(42�log n�) = O(n4) by
Lemma 5.7.

We now prove the correctness of the reduction. Let us begin with the completeness
argument. Suppose opt(S) = 2k2; i.e., there is an assignment σ of consistency 2k2.
Then, k2 vectors in the set S � {v(i, j)

σ (i, j) : i, j ∈ [k]} are orthogonal to each other,

implying that vol2(S) = 4k
2
. On the other hand, because every vector of V is of

squared norm 4, the maximum possible squared volume among k2 vectors inV is 4k
2
;

namely, maxdet(V, k2) = 4k
2
.

We then prove the soundness argument. Suppose opt(S) � 2k2 − δk for some

constant δ > 0. Then, for any setS of k2 vectors fromV such that dup(S) >
log 0.999−1

log( 34 )−1 ·
δk,we have that by Lemma 5.8, vol2(S) < 4k

2 ·0.999δk . It is thus sufficient to consider
the case that

dup(S) � log 0.999−1

log( 34 )
−1

· δk ≈ 0.0035 · δ. (5.30)

In particular, it suffices to assume that dup(S) � γ k for some γ ∈ (0, δ
4 ). Simple

calculation using Lemmas 5.8 and 5.9 derives that

vol2(S) � min

⎧
⎨

⎩
4k

2 ·
(
3

4

)γ k

, 4k
2 ·
(
63

64

) δ−4γ
4 k
⎫
⎬

⎭

� 4k
2 · min

⎧
⎨

⎩

(
63

64

)γ k

,

(
63

64

) δ−4γ
4 k
⎫
⎬

⎭

� 4k
2 ·
(
63

64

)
min

{
γ,

δ − 4γ

4

}

︸ ︷︷ ︸
♥

·k

� 4k
2 ·
(
63

64

) δ
8 k

� 4k
2 · 0.999δk,

(5.31)

where the second-to-last inequality is due to the fact that ♥ is maximized when γ =
δ−4γ
4 ; i.e., γ = δ

8 > 0.
Because the diagonal entries of the Gram matrix A defined by the vectors of V are

4, we can construct another instance of Determinant Maximization as (Ã, k2),
where Ã � 1

4A. Observe finally that the diagonal entries of Ã are 1 and det(ÃS) =
4−|S| · det(AS) for any S, which completes the proof. �
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5.3 �-Additive FPT-Approximation Parameterized by Rank

Here, we develop an ε-additive FPT-approximation algorithm parameterized by the
rank of an input matrix A, provided that A is the Gram matrix of vectors of infinity
norm at most 1. Our algorithm complements Lemma 5.6 in a sense that we can solve
the promise problem in FPT time with respect to rank(A). The proof uses the standard
rounding technique.

Observation 5.11 Let v1, . . . , vn be n d-dimensional vectors inQd such that ‖vi‖∞ �
1 for all i ∈ [n], A the Gram matrix defined by the vectors, k ∈ [d] a positive integer,
and ε > 0 an error tolerance parameter. Then, we can compute an approximate
solution S ∈ ([n]

k

)
to Determinant Maximization in ε−d2 · dO(d3) · nO(1) time such

that det(AS) � maxdet(A, k) − ε.

Proof Let v1, . . . , vn be n d-dimensional vectors in Qd such that ‖vi‖∞ � 1 for all
i ∈ [n], and A be the Gram matrix in Qn×n defined by them; i.e., Ai, j = 〈vi , v j 〉 for
all i, j ∈ [n]. We introduce a parameter � > 0, which is a reciprocal of some positive
integer. The value of � is determined later based on d, k, and ε. We then define the
set I� of rational numbers equally spaced on the interval [−1, 1] as follows:

I� �
{
−1,−1 + �, . . . ,−2�,−�, 0,�, 2�, . . . , 1 − �, 1

}
. (5.32)

Subsequently, we construct n d-dimensional vectors w1, . . . ,wn from v1, . . . , vn as
follows: for each i ∈ [n] and e ∈ [d], wi (e) is defined to be a number of I� closest to
vi (e). Observe that |vi (e) − wi (e)| � � and ‖wi‖∞ � 1. Let B ∈ Qn×n be the Gram
matrix defined by w1, . . . ,wn . The absolute difference of the determinant between
A and B is bounded as shown below, whose proof is based on the application of
Lemma 3.8. �
Claim For n d-dimensional vectors v1, . . . , vn such that ‖vi‖∞ � 1 for all i ∈ [n]
and n d-dimensional vectors w1, . . . ,wn constructed from vi ’s and � according to
the procedure described above, letA and B be the Gram matrices defined respectively
by vi ’s and wi ’s. Then, for any set S ∈ ([n]

k

)
for k � d, it holds that,

|det(AS) − det(BS)| � 3 · d2d+1 · �. (5.33)

Moreover, the number of distinct vectors in the set {w1, . . . ,wn} is at most ( 2
�

+ 1)d .

Proof To apply Lemma 3.8, we first bound the matrix norm of A, B, and A − B. The
max norm of A and B can be bounded as follows:

‖A‖max = max
i, j

|Ai, j | � max
i, j

⎧
⎨

⎩

∑

e∈[d]
|vi (e) · v j (e)|

⎫
⎬

⎭
� d, (5.34)

‖B‖max = max
i, j

|Bi, j | � max
i, j

⎧
⎨

⎩

∑

e∈[d]
|wi (e) · w j (e)|

⎫
⎬

⎭
� d, (5.35)
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where we used the fact that ‖vi‖∞ � 1 and ‖wi‖∞ � 1. For each i ∈ [n] and e ∈ [d],
let wi (e) = vi (e) + �i,e for some |�i,e| � �. We then bound the absolute difference
between vi (e) · v j (e) and wi (e) · w j (e) for each i, j ∈ [n] and e ∈ [d] as

|vi (e) · v j (e) − wi (e) · w j (e)|
= |vi (e) · v j (e) − (vi (e) + �i,e) · (v j (e) + � j,e)|
= |�i,e · v j (e) + � j,e · vi (e) + �i,e · � j,e|
� 2� + �2 � 3�,

(5.36)

where we used the fact that �i,e � � � 1. Consequently, the max norm of the
difference between A and B can be bounded as

‖A − B‖max = max
i, j

|Ai, j − Bi, j |
= max

i, j
|〈vi , v j 〉 − 〈wi ,w j 〉|

�
∑

e∈[d]
|vi (e) · v j (e) − wi (e) · w j (e)|

� 3d�.

(5.37)

Calculation using Lemma 3.8 derives that for any set S ∈ ([n]
k

)
for k � d,

|det(AS) − det(BS)|
� k · max{‖AS‖2, ‖BS‖2}k−1 · ‖AS − BS‖2
� k · max{k · ‖A‖max, k · ‖B‖max}k−1 · k · ‖A − B‖max

� k · (kd)k−1 · k · 3d�

� 3 · d2d+1 · �.

(5.38)

Since every vector wi is in I d�, the number of distinct vectors in the set {w1, . . . ,wn}
is bounded by |I d�| = ( 2

�
+ 1)d , completing the proof. �

Our parameterized algorithm works as follows. Given the Gram matrix A ∈ Qn×n

of n d-dimensional rational vectors v1, . . . , vn ∈ Qd and an error tolerance parameter
ε > 0, we set the value of � as

� � �ε−1�−1

6 · d2d+1 = ε · dO(d). (5.39)

Since 1/� is a positive integer by definition, I� is defined; we construct n d-
dimensional rational vectors W � {w1, . . . ,wn} in Qd according to the procedure
described above and the GrammatrixB ∈ Qn×n defined byW. We claim that Deter-
minant Maximization on B can be solved exactly in FPT time with respect to ε−1

and d. Observe that if W includes at most k − 1 distinct vectors, we can return an
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arbitrary set S ∈ ([n]
k

)
whose principal minor is always det(BS) = 0; therefore, we

can safely consider the case |W| � k only. According to the claim above, it holds that
|W| � ( 2

�
+ 1)d . We can thus enumerate the set of k distinct vectors in W in time

(
( 2
�

+ 1)d

k

)
�
(
2

�
+ 1

)dk

�
(
1

ε

)d2

· dO(d3). (5.40)

Calculating the principal minor in O(k3) time for each Gram matrix defined by k
distinct vectors, we can find the one, denoted S∗

B , having themaximum principal minor

and return S∗
B as a solution. The overall time complexity is bounded by (1/ε)d

2 ·dO(d3) ·
O(k3) · nO(1) = ε−d2 · dO(d3) · nO(1). We finally prove an approximation guarantee
of S∗

B . Let S
∗ be the optimal solution for Determinant Maximization on A; i.e.,

S∗ � argmaxS∈([n]
k ) det(AS). By the claim above, we have for any set S ∈ ([n]

k

)
,

|det(AS) − det(BS)| � 3 · d2d+1 · � � 3 · d2d+1 · ε

6 · d2d+1 = ε

2
. (5.41)

In particular, it holds that

det(AS∗
B
) � det(BS∗

B
) − ε

2
(by Eq.(5.41))

� det(BS∗) − ε

2
(by optimality of S∗

B)

� det(AS∗) − ε. (by Eq.(5.41))

(5.42)

This completes the proof. �

6 Open Problems

We investigated the W[1]-hardness of Determinant Maximization in the three
restricted cases, improving upon the result due to Koutis [27]. Our parameterized
hardness results leave a few natural open problems: For what kinds of sparse matri-
ces is Determinant Maximization FPT? Is there a (1 − ε)-factor (rather than
“additive”) FPT-approximation algorithm with respect to the matrix rank? Quantita-
tive lower bounds can be also proved; e.g., due to the lower bound of k- Sum [42],
Determinant Maximization on tridiagonal matrices cannot be solved in no(k) time,
unless Exponential Time Hypothesis [24, 25] fails.
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