
Algorithmica (2024) 86:1293–1334
https://doi.org/10.1007/s00453-023-01197-x

MaximumWeighted Independent Set: Effective Reductions
and Fast Algorithms on Sparse Graphs

Mingyu Xiao1 · Sen Huang1 · Xiaoyu Chen2

Received: 27 February 2023 / Accepted: 24 November 2023 / Published online: 15 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The maximum independent set problem is one of the most important problems in
graph algorithms and has been extensively studied in the line of research on the worst-
case analysis of exact algorithms for NP-hard problems. In the weighted version, each
vertex in the graph is associated with a weight and we are going to find an independent
set of maximum total vertex weight. Many reduction rules for the unweighted version
have been developed that can be used to effectively reduce the input instance without
loss the optimality. However, it seems that reduction rules for the weighted version
have not been systemically studied. In this paper, we design a series of reduction
rules for the maximum weighted independent set problem and also design a fast exact
algorithm based on the reduction rules. By using the measure-and-conquer technique
to analyze the algorithm,we show that the algorithm runs in O∗(1.1443(0.624x−0.872)n′

)

time and polynomial space, where n′ is the number of vertices of degree at least 2 and
x is the average degree of these vertices in the graph. When the average degree is
small, our running-time bound beats previous results. For example, on graphs with the
minimum degree at least 2 and average degree at most 3.68, our running time bound
is better than that of previous polynomial-space algorithms for graphs with maximum
degree at most 4.
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1 Introduction

The Maximum Independent Set problem on unweighted graphs belongs to the
first batch of 21 NP-hard problems proved by Karp [17]. This problem is so important
in graph algorithms that it is often introduced as the first problem in textbooks and
lecture notes of exact algorithms. In the line of research on the worst-case analysis of
exact algorithms for NP-hard problems,Maximum Independent Set, as one of the
most fundamental problems, is used to test the efficiency of new techniques of exact
algorithms.

There is a long list of contributions to exact algorithms for Maximum Inde-

pendent Set in unweighted graphs. Tarjan and Trojanowski [26] designed the first
nontrivial algorithm in 1977, which runs in O∗(2 n

3 ) time and polynomial space. Later,
Jian [16] obtained anO∗(1.2346n)-time algorithm.Robson [24] gave anO∗(1.2278n)-
time polynomial-space algorithm and an O∗(1.2109n)-time exponential-space algo-
rithm. By using the measure-and-conquer technique, Fomin et al. [12] obtained
a simple O∗(1.2210n)-time polynomial-space algorithm. Based on this method,
Kneis et al. [18] and Bourgeois et al. [4] improved the running time bound to
O∗(1.2132n) and O∗(1.2114n), respectively. Currently, the best algorithm is the
O∗(1.1996n)-time polynomial-space algorithm introduced in [34], which even breaks
the bound 1.2 in the base of the exponential part of the running time.

For Maximum Independent Set in degree-bounded graphs, there is also a
considerable amount of contributions in the literature [3, 5, 7, 32]. For Maximum

Independent Set in degree-3 graphs, let us quote the O∗(1.1254n)-time algorithm
by [7], the O∗(1.1034n)-time algorithm by [29], the O∗(1.0977n)-time algorithm by
[5], the O∗(1.0892n)-time algorithmby [23], the O∗(1.0885n)-time algorithmby [28],
the O∗(1.0854n)-time algorithm by [4], the O∗(1.0836n)-time algorithm by [32], and
theO∗(1.0821n)-time algorithmby [15]. Furthermore,Maximum Independent Set

in degree-4 graphs can be solved in O∗(1.1376n) time [31], and Maximum Inde-

pendent Set in degree-5 graphs can be solved in O∗(1.1736n) time [33].
In this paper, we will consider the weighted version of Maximum Independent

Set, calledMaximum Weighted Independent Set, where each vertex in the graph
has a nonnegative weight and we are asked to find an independent set with maximum
total vertexweight.Most known results forMaximum Weighted Independent Set

were obtained via two counting problems: Counting Maximum Weighted Inde-

pendent Set and Counting Weighted 2SAT. Most of these counting algorithms
can also list out all independent sets and thenwe can find amaximumone by increasing
only a polynomial factor. Dahllöf et al. [8] presented an O∗(1.3247n)-time algorithm
for Counting Maximum Weighted Independent Set. Later, the running time
bound was improved to O∗(1.2431n) by Fomin et al. [10]. Counting Maximum

Weighted Independent Set can also be reduced to Counting Weighted 2SAT,
preserving the exponential part of the running time. In the reduction, we construct a
clause u ∨ v for each edge uv in the graph (See [9] for more details). For Counting
Weighted 2SAT, the running time bound was improved from O∗(1.2561n) [9] to
O∗(1.2461n) [14] and then to O∗(1.2377n) [27]. Wahlström [27] also showed that the
running time bound could be further improved to O∗(1.1499n) and O∗(1.2117n) if the
maximum degree of the variables or the vertices in the graph is bounded by 3 and 4,
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respectively. Most of the above algorithms use only polynomial space. If exponential
space is allowed, dynamic programming algorithms based on tree decompositions can
achieve a better running time bound. On graphs of treewidth at most t , Maximum

Weighted Independent Set can be solved in O∗(2t ) time and space by a standard
dynamic programming algorithm. It is known that the treewidth of graphs with max-
imum degree 3 and 4 is roughly bounded by n/6 and n/3, respectively [11]. Thus,
Maximum Weighted Independent Set in graphs of maximum degree 3 (resp., 4)
can be solved in O∗(1.1225n) time (resp., O∗(1.2600n) time) and exponential space.
We also note that the due problem Minimum Weighted Vertex Cover has been
extensively studied in parameterized complexity. By taking the weight valueW of the
vertex cover as the parameter, some parameterized algorithms have been proposed in
[10, 22]. By taking the size s of the minimum weighted vertex cover as the parameter,
there are also some known parameterized algorithms [25].

Maximum Weighted Independent Set is an important problem with many
applications in various real-world problems. For example, the dynamic map labeling
problem [2, 20] can be naturally encoded as Maximum Weighted Independent

Set. Some experimental algorithms, such as the algorithms in [19, 30] have been
developed to solve instances from realworld andknownbenchmarks. These algorithms
run fast even on large scale sparse instances but lack running time analysis. On the other
hand, the fast algorithms for Counting Maximum Weighted Independent Set

and Counting Weighted 2SAT and the DP algorithm based tree decompositions
do not rely on the structural properties of Maximum Weighted Independent Set.

In this paper, we will focus on exact algorithms specifying for Maximum

Weighted Independent Set. We develop structural properties and design reduc-
tion rules for the problem, and then design a fast exact algorithm based on them. By
using the measure-and-conquer technique, we can prove that the algorithm runs in
O∗(1.1443(0.624x−0.872)n′

) time and polynomial space, where n′ is the number of ver-
tices of degree at least 2 and x is the average degree of these vertices in the graph. Note
that wewill have simple reduction rules to remove degree-0 and degree-1 vertices from
the graph without increasing the degree of other vertices. For some sparse graphs, our
result beats the known bounds. The running time bound of our algorithm in graphs
with the average degree at most three is O∗(1.1443n), which improves the previously
known bound of O∗(1.1499n) using polynomial space [27]. When the value of x is
slightly greater than three, wemay still get a good running time bound. For graphs with
minimum degree at least 2 and average degree at most 3.68, the running time of our
algorithm is strictly better than the running time bound O∗(1.2117n) for Maximum

Weighted Independent Set in degree-4 graphs [27].

2 Preliminaries

LetG = (V , E, w) denote an undirected vertex-weighted graph with |V | = n vertices
and |E | = m edges, where each vertex v ∈ V is associated with a nonnegative weight
wG(v), where the subscript G may be omitted if it is clear from the context. We will
also use n′ to denote the number of vertices of degree at least 2 in the graph. Although
our graphs are undirected, we may use an arc to denote the relation of the weights of
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the two endpoints of an edge. An arc −→uv from vertex u to vertex v means that there is
an edge between u and v and it holds that w(u) ≥ w(v).

For a vertex subset V ′ ⊆ V , we let w(V ′) = ∑
v∈V ′ w(v). For a vertex subset

V ′ ⊆ V , we let NG(V ′) denote the open neighborhood V ′, i.e., NG(V ′) = {v|v is
adjacent to some vertex in V ′ and v /∈ V ′}. We also let dG(V ′) = |NG(V ′)| and
NG [V ′] = NG(V ′) ∪ V ′, where NG [V ′] is the closed neighborhood of V ′. When the
graphG is clear from the context, wemay omit the subscript and simplywrite NG(V ′),
dG(V ′) and NG [V ′] as N (V ′), d(V ′) and N [V ′], respectively. When V ′ = {v} is a
singleton, we may simply write it as v. We also use G[V ′] to denote the subgraph of
G induced by V ′ and use G − V ′ to denote G[V \V ′]. For a graph G ′, we use C(G ′)
to denote the set of connected components of G ′. A chain is an induced path such that
the degree of each vertex except the two endpoints of the path is exactly 2. One vertex
is a chain-neighbor of another vertex if they are connected by a chain.

A path (or cycle) is said to be a k-path (or k-cycle) if there are k edges. A
set S of vertices in graph G is called an independent set if for any pair of ver-
tices in S there is no edge between them. For a vertex-weighted graph, a maximum
weighted independent set is an independent set S such that w(S) is maximized
among all independent sets in the graph. We use S(G) to denote a maximum
weighted independent set in graph G and α(G) to denote the total vertex weight
of S(G). The Maximum Weighted Independent Set problem is defined below.

Maximum Weighted Independent Set (MWIS)

Input: An undirected vertex-weighted graph G = (V , E, w), where the weight is
nonnegative.
Output: the weight of a maximum weighted independent set in G., i.e., α(G).

2.1 Branch-and-Search andMeasure-and-Conquer

2.1.1 Branch-and-Search Paradigm

Our branch-and-search algorithm contains several reduction rules and branching rules.
Each reduction rule will reduce the instance without exponentially increasing the
running time. We will first apply reduction rules to reduce this instance and then apply
branching rules to search for a solution when the instance can not be further reduced.

The exponential part of the running time depends on the size of the “search tree” in
the algorithm, which is generated by the branching operations. To evaluate the size of
the search tree, we should use a measure. The measure can be the number of vertices
or edges of the graph, the size of the solution, and so on. Usually, when the parameter
becomes zero or less than zero, the instance can be solved in polynomial time directly.
Let parameter p be the measure adopted in the algorithm. We use T (p) to denote
the maximum number of leaves in the search tree generated in the algorithm for any
instance with the measure being at most p. Assume that at a branching operation, the
algorithm branches on the current instance into l branches. If in the i-th branch the
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measure decreases by at least ai , i.e., the i-th substance has the parameter at most
pi = p − ai , then we obtain a recurrence relation

T (p) ≤ T (p − a1) + T (p − a2) + · · · + T (p − al).

The recurrence relation can be represented by a branching vector [a1, a2, . . . , al ]. The
largest root of the function f (x) = 1 − ∑l

i=1 x
−ai is called the branching factor of

the recurrence. Let γ be the maximum branching factor among all branching factors in
the algorithm. The size of the search tree that represents the branching process of the
algorithm applied to an instance with parameter p is given by O∗(γ p). More details
about the analysis and how to solve recurrences can be found in the monograph [13].

For two branching vectors a = [a1, a2, . . . , al ] and b = [b1, b2, . . . , bl ], if ai ≥ bi
holds for all i = 1, 2 . . . , l, then the branching factor of a is not greater than this of
b. For this case, we say b dominates a. This property will be used in many places to
simplify some arguments in the paper.

2.1.2 Measure-and-Conquer Technique

The Measure-and-conquer technique, introduced in [12], is a powerful tool to analyze
branch-and-search algorithms. The main idea of the measure-and-conquer technique
is to use a non-traditional measure to evaluate the size of the search tree generated by
the branch-and-search algorithm. In this paper, we will use the measure-and-conquer
technique to analyze our algorithm. Our measure p is a combination of several param-
eters defined below. This measure may catch more structural properties of the problem
and then we can analyze the running time by using amortization. Let ni denote the
number of vertices of degree i in the graph. We associate a cost δi ≥ 0 for each
degree-i vertex in the graph. Our measure is set as follows:

p :=
n∑

i=0

niδi . (1)

The cost δi in this paper is given by

δi =

⎧
⎪⎪⎨

⎪⎪⎩

0 if i ≤ 1
0.376 if i = 2
1 if i = 3
1 + 0.624(i − 3) if i ≥ 4.

(2)

We also define

δ<−k>
i := δi − δi−k,

for each integer k ≥ 0. In our analysis, we may use the following inequalities and
equalities to simplify some arguments:

δ<−1>
i = δ<−1>

3 for each i ≥ 4; (3)
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δ3 ≥ 2.5δ2; (4)

3δ2 ≥ δ3. (5)

With the above setting,weknow thatwhen p ≤ 0, the instance contains only degree-
0 and degree-1 vertices and it can be solved directly. We will design an algorithm with
a running time bound O∗(cp) for some constant c. If the initial graph has degree at
most 3, then we have that p ≤ n and then the running time bound of the algorithm is
O∗(cn). In general, if we have p ≤ f (n) for some function f on n, then we can get a
running time bound of O∗(c f (n)). We have the following lemma.

Lemma 1 For a graph such that the number of vertices of degree at least 2 is n′ and
the average degree of these vertices is at most x, the measure p of the graph is at most
(0.624x − 0.872)n′.

Proof According to the definition of the measure, we have that

p =
n∑

i=0

niδi =
n∑

i=2

niδi

=
n∑

i=2

niδ2 +
n∑

i=2

ni (i − 2)δ<−1>
3 .

Since the average degree of vertices of degree at least 2 is at most x , we have that

n∑

i=2

ni i ≤ x
n∑

i=2

ni .

Thus,

p ≤
n∑

i=2

niδ2 +
n∑

i=2

ni (x − 2)δ<−1>
3 ≤ n′ (δ2 + (x − 2)δ<−1>

3

)

= n′ + (x − 3)δ<−1>
3 n′ = (0.624x − 0.872)n′.

��

3 Reduction Rules

We first introduce some reduction rules, which can be applied to reduce the instance
directly by eliminating some local structures of the graph. Reduction rules for the
unweighted case have been extensively studied. However, most of they do not work
in weighted graphs. In weighted graphs, we may not be able to reduce all degree-2
vertices, which is an easy case in unweighted graphs. Two previous papers [19, 30]
used reduction rules for the weighted case in their experimental algorithms. Here we
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Fig. 1 An independent S of G,
where vertices u and u′ are
children of S, vertex u is an
extending child and v is a
satellite of S

try to contribute more reduction rules based on degree-2 vertices, small vertex-cuts,
and some other special local structures.

Some reduction rules may include a set S of vertices in the solution set directly. We
use Mc to store the weight of the vertices that have been included in the solution set.
When a set S of vertices is included in the solution set, we will remove N [S] from the
graph and update Mc by adding w(S).

3.1 General Reductions for Some Special Structures

We use several reduction rules based on unconfined vertices, twins, vertices with a
clique neighborhood, and heavy vertices. Some of these reduction rules were intro-
duced in [19, 30].

3.1.1 Unconfined Vertices

A vertex v in G is called removable if α(G) = α(G − v), i.e., there is a maximum
weighted independent set in G that does not contain v. We can say that a vertex v

is removable if a contradiction is obtained from the assumption that every maximum
weighted independent set in G contains v. A sufficient condition for a vertex to be
removable in unweighted graphs has been studied in [32]. We extend this concept to
weighted graphs.

For an independent set S of G, a vertex u ∈ N (S) is called a child of S if w(u) ≥
w(S ∩ N (u)). A child u is called an extending child if it holds that |N (u)\N [S]| = 1,
and the only vertex v ∈ N (u)\N [S] is called a satellite of S. See Fig. 1 for an
illustration.

Lemma 2 Let S be an independent set that is contained in any maximum weighted
independent set in G. Then every maximum weighted independent set contains at
least one vertex in N (u)\N [S] for each child u of S.

Proof Assume to the contrary that there is a maximum weighted independent set SG
in G such that SG ∩ (N (u)\N [S]) = ∅ for some child u of S. We have that S ⊆ SG
by the assumption on the independent set S. Thus, we could replace S ∩ N (u) with
u to obtain another independent set S′

G = (SG\N (u)) ∪ {u} in G. Furthermore, since
u is a child of S, we have that w(u) ≥ w(S ∩ N (u)). Thus, S′

G is also a maximum
weighted independent set in G. However S′

G does not contain S, contradicting that S
is contained in any maximum weighted independent set in G. ��
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Fig. 2 a The graph G, where vertex v is dominated by vertex u, and v is removable; b the graph G′ that is
obtained from G by deleting the removable vertex v

Lemma 2 provides a sufficient condition for a vertex set contained in any maximum
weighted independent set. Next, we introduce a method based on Lemma 2 to find
some possible removable vertices.

Let v be an arbitrary vertex in the graph. After starting with S := {v}, we repeat
(1) until (2) or (3) holds:

(1) If S has some extending child in N (S), then let S′ be the set of satellites. Update
S by letting S := S ∪ S′.

(2) If S is not an independent set or there is a child u such that N (u)\N [S] = ∅, then
halt and conclude that v is unconfined.

(3) If |N (u)\N [S]| ≥ 2 for all children u ∈ N (S), then halt and return Sv = S.

Obviously, the procedure can be executed in polynomial time for any starting set S
of a vertex. If the procedure halts in (2), we say vertex v unconfined. If the procedure
halts in (3), then we say that the set Sv returned in (3) confines vertex v and vertex v

is also called confined. Note that the set Sv confining v is uniquely determined by the
procedure with starting set S := {v}. It is easy to observe the following lemma.

Lemma 3 Any unconfined vertex is removable.

Proof Assume that vertex v is contained in all maximum weighted independent sets.
By Lemma 2, we know that after each execution of (1) of the above procedure, the
set S should also be contained in all maximum weighted independent sets. However,
when the procedure halts in (2), the final set S could not be contained in any maximum
weighted independent set by Lemma 2. So v is removable. ��

Reduction Rule 1 (R1). If a vertex v is unconfined, remove v from G.

We here observed some structures that are involved in unconfined vertices. We say
that a vertex v dominated by a neighbor u of it if v is adjacent to all neighbors of u,
i.e., N [u] ⊆ N [v]. Clearly, any dominated vertex v with w(v) ≤ w(u) is unconfined,
since S = {v} has a child u with N (u)\N [S] = ∅. See Fig. 2 for an illustration of this
case. For a degree-1 vertex u with the unique neighbor v, if w(v) ≤ w(u), then vertex
v is unconfined. For a degree-2 vertex u with two adjacent neighbors, if one neighbor,
say v, holds that w(v) ≤ w(u), then vertex v is unconfined. R1 can deal with some
degree-1 and degree-2 vertices, but not all of them.
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Fig. 3 a The graph G that has a twin {u, v}; b the graph G′ after deleting v from G and updating the weight
of u by letting w(u) = w(u) + w(v)

Fig. 4 a The graph G, where vertex v has a clique neighborhood and the weight of v is less than the weight
of any neighbor of it; b the graph G′ after deleting v from G and updating the weightw(u) := w(u)−w(v)

for all u ∈ NG (v)

3.1.2 Twins

A set A = {u, v} of two non-adjacent vertices is called a twin if they have the same
neighbor set, i.e., N (u) = N (v). Reductions based on twins are used not only for
independent sets [1, 19] but also for feedback sets and other problems [21]. Clearly,
a vertex in a twin is in a maximum weighted independent set if and only if the other
vertex in the twin is also in the same maximum weighted independent set. So we can
treat the two vertices in a twin as a single vertex.

Reduction Rule 2 (R2). [19] If there is a twin A = {u, v}, delete v and update the
weight of u by letting w(u) := w(u) + w(v).

See Fig. 3 for an illustration of R2.

3.1.3 Clique Neighborhood

A vertex v has a clique neighborhood if the graph G[N (v)] induced by the open
neighbor set of v is a clique, which was introduced as isolated vertices in [19].

Reduction Rule 3 (R3). [19] If there is a vertex v having a clique neighborhood and
w(v) < w(u) holds for all u ∈ N (v), then remove v from the graph, update the weight
w(u) := w(u) − w(v) for all u ∈ NG(v), and add w(v) to Mc.

An illustration of which is shown in Fig. 4.
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3.1.4 Heavy Vertices

A vertex v is called a heavy vertex if its weight is not less the weight of the maximum
weighted independent set in subgraph induced by the open neighborhood of it, i.e.,

w(v) ≥ α(G[N (v)]).

We can see that for each heavy vertex, there is a maximum weighted independent
set contain it. Note that if there is a maximum weighted independent set S does not
contain v, then we can replace N (v)∩ S with v in S to get another maximumweighted
independent set, where w(N (v)∩ S) ≤ w(v) since v is a heavy vertex. Dealing heavy
vertices is a simple but very efficient method to reduce the graph that have been used
in some experimental algorithms [19, 30]. Whether a vertex is a heavy vertex can be
checked in constant time if the degree of the vertex is bounded by a constant. In this
paper, we will only check heavy vertices of degree bounded by 5. Note that degree-0
vertices are heavy vertices and we can reduce degree-0 vertices in this step.

Reduction Rule 4 (R4). If there is a heavy vertex v of degree at most 5, then delete
N [v] from the graph and add w(v) to Mc.

3.2 Reductions Based on Degree-2 Vertices

For unweighted graphs, we have good reduction rules to deal with all degree-2 vertices
(see the reduction rule in [6]). However, for weighted graphs, it becomes much more
complicated. Although we have several reduction rules, we can not deal with all
degree-2 vertices.

Our first rule is generalized from the concept of folding degree-2 vertices in
unweighted graphs introduced in [6], which has been also used in some experimental
algorithms. A proof of the correctness can be found in [19, 30].

Reduction Rule 5 (R5). If there is a degree-2 vertex v with two neighbors {u1, u2}
such that w(u1) + w(u2) > w(v) ≥ max{w(u1), w(u2)}, then delete {v, u1, u2}
from the graph G, introduce a new vertex v′ adjacent to NG({v, u1, u2}) with weight
w(v′) := w(u1) + w(u2) − w(v), and add w(v) to Mc.

Figure 5 gives an illustration of R5.
The following two reductions are special cases of alternative sets introduced in

[30]. We also use them to reduce some degree-2 vertices in the graph.

Reduction Rule 6 (R6). If there is a path v1v2v3v4 such that dG(v2) = dG(v3) = 2
and w(v1) ≥ w(v2) ≥ w(v3) ≥ w(v4), then remove v2 and v3 from the graph,
add an edge v1v4 if it does not exist, update the weight of v1 by letting w(v1) :=
w(v1) + w(v3) − w(v2), and add w(v2) to Mc.

Figure 6 gives an illustration of R6. A proof of the correctness of this reduction
rule is given below.
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Fig. 5 aThe graphG having a degree-2 vertex v with two neighbors u1 and u2; b the graphG′ after deleting
{v, u1, u2} and introducing the new vertex v′

Fig. 6 a The graph G, where v2 and v3 are two adjacent degree-2 vertices; b the graph G′ after deleting v2
and v3 and adding the edge v1v4

Lemma 4 Let G ′ be a graph obtained from G by applying R6, then α(G) = α(G ′) +
w(v2).

Proof Let S be a maximum weighted independent set in G. If S contains v1, we can
assume that S also contains v3, because S must contain one of v3 and v4 due to the
maximality of S and if S contains v4 we can replace v4 with v3 without decreasing
the total weight of the independent set. For this case, S′ = S\{v3} is an independent
set in G ′ with weight wG ′(S′) = wG(S) − wG(v2). If S does not contain v1, we can
assume that S contains v2. For this case, S′ = S\{v2} is an independent set in G ′ with
weight wG ′(S′) = wG(S) − wG(v2).

On the other hand, for any maximum weighted independent set S′ in G ′, we can
construct a weighted independent set S of G such that wG(S) = wG ′(S′) + wG(v2).
If v1 ∈ S′, then S = S′ ∪ {v3} is an independent set in G with weight wG(S) =
wG ′(S′) + wG(v2). If v1 /∈ S′, then S = S′ ∪ {v2} is an independent set in G with
weight wG(S) = wG ′(S′) + wG(v2). ��
Reduction Rule 7 (R7). If there is a 4-cycle v1v2v3v4 such that dG(v2) = dG(v3) = 2
and w(v1) ≥ w(v2) ≥ w(v3), then remove v2 and v3, update the weight of v1 by
letting w(v1) := w(v1) + w(v3) − w(v2), and add w(v2) to Mc.

Figure 7 gives an illustration of R7. A proof of the correctness of this reduction
rule is given below.

Lemma 5 Let G ′ be a graph obtained from G by applying R7, then α(G) = α(G ′) +
w(v2).

123



1304 Algorithmica (2024) 86:1293–1334

Fig. 7 a The graph G, where v2 and v3 are two adjacent degree-2 vertices in a 4-cycle v1v2v3v4; b the
graph G′ after deleting v2 and v3 from G

Fig. 8 a The graph G with three adjacent degree-2 vertices v2, v3 and v4 in a 4-path; b the graph G′ after
deleting v2 and v4 and adding edges v2v3 and v3v4

Proof This lemma can be proved analogously with the proof of Lemma 4.
Let S be a maximum weighted independent set in G. If S contains v1, we can

assume that S also contains v3, because S can not contain v1 and v4 now. For this case,
S′ = S\{v3} is an independent set in G ′ with weight wG ′(S′) = wG(S) − wG(v2). If
S does not contain v1, we can assume that S contains v2, since S must contain at least
one of v1 and v2 and w(v1) ≥ w(v2). For this case, S′ = S\{v2} is an independent set
in G ′ with weight wG ′(S′) = wG(S) − wG(v2).

On the other hand, for any maximum weighted independent set S′ in G ′, we can
construct a weighted independent set S of G such that wG(S) = wG ′(S′) + wG(v2).
If v1 ∈ S′, then S = S′ ∪ {v3} is an independent set in G with weight wG(S) =
wG ′(S′) + wG(v2). If v1 /∈ S′, then S = S′ ∪ {v2} is an independent set in G with
weight wG(S) = wG ′(S′) + wG(v2). ��

Next, we introducemore rules for degree-2 vertices in some complicated structures.

Reduction Rule 8 (R8). If there is a 4-path v1v2v3v4v5 such that dG(v2) = dG(v3) =
dG(v4) = 2 and w(v1) ≥ w(v2) ≥ w(v3) ≤ w(v4) ≤ w(v5), then remove v2 and
v4, add edges v1v3 and v3v5, update the weight of v1 by letting w(v1) := w(v1) +
w(v3)−w(v2) and the weight of v5 by letting w(v5) := w(v5)+w(v3)−w(v4), and
add w(v2) + w(v4) − w(v3) to Mc.

Figure 8 gives an illustration of R8. The correctness of this reduction rule is based
on the following lemma.

123



Algorithmica (2024) 86:1293–1334 1305

Lemma 6 Let G ′ be a graph obtained from G by applying R8, then α(G) = α(G ′) +
w(v2) + w(v4) − w(v3).

Proof Let S be a maximumweighted independent set in G. We consider the following
four cases.

Case 1. S contains both of v1 and v5: For this case, we can assume that v3 is also
in S by the maximality of S. We can see that S′ = S\{v3} is an independent set in G ′
with weightwG ′(S′) = wG(S)+wG(v3)−wG(v2)+wG(v3)−wG(v4)−wG(w3) =
wG(S) + wG(v3) − wG(v2) − wG(v4).

Case 2. S contains v1 but not v5: For this case, we can assume that S also contains
v4, because S must contain one of v3 and v4 due to the maximality of S and w(v3) ≤
w(v4). For this case, S′ = S\{v4} is an independent set in G ′ with weight wG ′(S′) =
wG(S) + wG(v3) − wG(v2) − wG(v4).

Case 3. S contains v5 but not v1: For this case, we can assume that S also contains
v2, because S must contain one of v3 and v2 due to the maximality of S and w(v3) ≤
w(v2). For this case, S′ = S\{v2} is an independent set in G ′ with weight wG ′(S′) =
wG(S) + wG(v3) − wG(v2) − wG(v4).

Case 4. S contains none of v1 and v5: For this case, we can assume that S contains
both of v2 and v4. For this case, S′ = S ∪ {v3}\{v2, v4} is an independent set in G ′
with weight wG ′(S′) = wG(S) + wG(v3) − wG(v2) − wG(v4).

On the other hand, for any maximum weighted independent set S′ in G ′, we can
construct a weighted independent set S in G such that wG(S) = wG ′(S′)+wG(v2)+
wG(v4)−wG(v3). If S′ does not contain any of v1 and v5, then it must contain v3 due
to the maximality of S. For this case, S = S′ ∪{v2, v4}\{v3} is an satisfied independent
set inG. If S′ contains both of v1 and v5, then S = S′ ∪{v3} is an satisfied independent
set in G. If S′ contains v1 but not v5, then S = S′ ∪ {v4} is an satisfied independent
set in G. If S′ contains v5 but not v1, then S = S′ ∪ {v2} is an satisfied independent
set in G. ��

Reduction Rule 9 (R9). For a 5-cycle v1v2v3v4v5 such that dG(v2) = dG(v3) =
dG(v5) = 2, min{d(v1), d(v4)} ≥ 3, and w(v1) ≥ w(v2) ≥ w(v3) ≤ w(v4),

(1) If w(v3) > w(v5), then remove v5, update the weight of vi by letting w(vi ) :=
w(vi ) − w(v5) for i = 1, 2, 3, 4, and add 2w(v5) to Mc.

(2) If w(v3) ≤ w(v5), then remove v2 and v3, update the weight of v1 by letting
w(v1) := w(v1) − w(v2), the weight of v4 by letting w(v4) := w(v4) − w(v3)

and the weight of v5 by letting w(v5) := w(v5) − w(v3), and add w(v2) + w(v3)

to Mc.

Figure 9 gives an illustration of R9. The correctness of this reduction rule is based
on the following lemma.

Lemma 7 Let G ′ be the graph obtained from G by applying R9. If (1) of R9 is applied,
then

α(G) = α(G ′) + 2w(v5);
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Fig. 9 a The graph G containing a 5-cycle v1v2v3v4v5 with three degree-2 vertices v2, v3 and v5; b the
graph G′ after applying (1) in R9 on G; c the graph G′ after applying (2) in R9 on G

If (2) of R9 is applied, then

α(G) = α(G ′) + w(v2) + w(v3).

Proof It is easy to observe that any maximumweighted independent set S will contain
exactly two non-adjacent vertices in the 5-cycle v1v2v3v4v5. There are only five pos-
sible cases. If {v3, v5} ⊆ S, then S ∪ {v2}\{v3} is another independent set in G with
the weight at least w(S). So we can assume that S contains one of {v1, v4}, {v1, v3},
{v2, v4} and {v2, v5}.

Case (1):We assume that (1) of R9 is applied, wherew(v3) > w(v5). Let S∗ denote
one of {v1, v4}, {v1, v3} and {v2, v4}. If S∗ ⊆ S, then S′ = S is an independent set
in G ′ such that wG ′(S′) = wG(S\S∗) + wG ′(S∗) = wG(S) − 2wG(v5). Otherwise,
{v2, v5} ⊆ S. For this case, S′ = S\{v5} is a weighted independent set in G ′ such that
wG ′(S′) = wG(S′\{v2}) + wG ′(v2) = wG(S) − 2wG(v5).

On the other hand, for any maximum weighted independent set S′ in G ′, we can
construct a weighted independent set S in G such that wG(S) = wG ′(S′) + 2wG(v5).
We can assume that S′ ∩ {v1, v2, v3, v4} is one of {v1, v3}, {v2, v4}, {v1, v4} and {v2},
because if S′ contains v1 then S′ also contains one of v3 and v4 and if S′ does not
contain v1 then we can assume that S′ contains v2.

Let S∗ denote one of {v1, v4}, {v1, v3} and {v2, v4}. If S∗ ⊆ S′, then S = S′ is an
independent set inG such thatwG(S) = wG ′(S′\S∗)+wG(S∗) = wG ′(S′)+2wG(v5).
Otherwise, v2 ∈ S′ but v4 /∈ S′. For this case, S = S′ ∪ {v5} is an independent set in
G such that wG(S) = wG ′(S′\{v2}) + wG({v2, v5}) = wG ′(S′) + 2wG(v5).

Case (2):We assume that (2) of R9 is applied, wherew(v3) ≤ w(v5). Let S∗ denote
one of {v1, v4}, {v1, v3} and {v2, v4}. If S∗ ⊆ S, then S′ = S\{v2, v3} is an independent
set in G ′ such thatwG ′(S′) = wG(S\(S∗ ∪{v2, v3}))+wG ′(S∗\{v2, v3}) = wG(S)−
wG({v2, v3}). Otherwise, {v2, v5} ⊆ S. For this case, S′ = S\{v2} is an independent
set in G ′ such that wG ′(S′) = wG(S′\{v5}) + wG ′(v5) = wG(S) − wG({v2, v3}).

On the other hand, for anymaximumweighted independent set S′ inG ′, we can con-
struct a weighted independent set S in G such that wG(S) = wG ′(S′)+wG({v2, v3}).
If {v1, v4} ⊆ S′, then S = S′ is an independent set in G such that wG(S) =
wG ′(S′\{v1, v4}) + wG({v1, v4}) = wG ′(S′) + wG({v2, v3}). If exactly one vertex of
v1 and v4, say v is in S′, then S = S′ ∪({v2, v3}\N (v)) is an independent set inG such
that wG(S) = wG ′(S′\{v}) + wG({v} ∪ {v2, v3}\N (v)) = wG ′(S′) + wG({v2, v3}).
Otherwise, v5 ∈ S′. For this case, S = S′ ∪ {v2} is an independent set in G such that
wG(S) = wG ′(S′\{v5}) + wG({v2, v5}) = wG ′(S′) + wG({v2, v3}). ��
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Fig. 10 a The graph G containing a 6-cycle v1v2v3v4v5v6 with four degree-2 vertices v2, v3, v5 and v6;
b the graph G′ after applying (1) in R10 on G; c the graph G′ after applying (2) in R10 on G

Reduction Rule 10 (R10). For a 6-cycle v1v2v3v4v5v6 such that dG(v2) = dG(v3) =
dG(v5) = dG(v6) = 2, w(v1) ≥ max{w(v2), w(v6)}, w(v4) ≥ max{w(v3), w(v5)},
and w(v6) ≥ w(v5),

(1) if w(v2) ≥ w(v3), then remove v5 and v6, and update the weight of v2 by letting
w(v2) := w(v2)+w(v6) and the weight of v3 by lettingw(v3) := w(v3)+w(v5);

(2) if w(v2) < w(v3), then remove v6, add edge v1v5, and update the weight of
v2 by letting w(v2) := w(v2) + w(v6), the weight of v3 by letting w(v3) :=
w(v3) + w(v5), and the weight of v5 by letting w(v5) := w(v6) + w(v3) −
max{w(v2) + w(v6), w(v3) + w(v5)}.
Figure 10 gives an illustration of R10. The correctness of this reduction rule is

based on the following lemma.

Lemma 8 Let G ′ be the graph obtained from G by applying R10, then α(G) = α(G ′).

Proof Case (1): We assume that (1) of R10 is applied, where w(v2) ≥ w(v3). Let S
be a maximum weighted independent set in G.

We show that, without loss of generality, we can assume that S contains both of
v2 and v6 or none of them (resp., both of v3 and v5 or none of them). The reason is
based on the following observation. If S contains v2 but not v6, then S must contain
v5, otherwise v6 should be added to S directly by the maximality of S. For this case,
we can replace v5 with v6 in S to get another maximum weighted independent set
sincew(v6) ≥ w(v5). If S contains v6 but not v2, then S must contain v3, otherwise v2
should be added to S directly by the maximality of S. For this case, we can replace v3
with v2 in S to get another maximum weighted independent set since for this case we
have thatw(v2) ≥ w(v3). So we can assume that S contains either both of v2 and v6 or
none of them. If S contains v3 but not v5, then S must contain v6, otherwise v5 should
be added to S directly by the maximality of S. For this case, we can replace v3 with v2
in S to get another maximum weighted independent set since w(v2) ≥ w(v3). Now
the set S contains both of v2 and v6 but none of v3 and v5. If S contains v5 but not v3,
then S must contain v2, otherwise v3 should be added to S directly by the maximality
of S. For this case, we can replace v5 with v6 in S to get another maximum weighted
independent set since w(v6) ≥ w(v5). We also get a maximum weighted independent
set that contains both of v2 and v6 but none of v3 and v5.

If {v2, v6} ⊆ S, then S′ = S\{v6} is a weighted independent set in G ′ with weight
wG ′(S′) = w(S). If {v3, v5} ⊆ S, then S′ = S\{v5} is a weighted independent set in
G ′ with weight wG ′(S′) = w(S).
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On the other hand, for any maximum weighted independent set S′ in G ′, we can
construct a weighted independent set S in G such that wG(S) = wG ′(S′). If v2 ∈ S′,
then S = S′ ∪ {v6} is an independent set in G such that wG(S) = wG ′(S′). If v3 ∈ S′,
then S = S′ ∪ {v5} is an independent set in G such that wG(S) = wG ′(S′).

Case (2): We assume that (2) of R10 is applied, where w(v2) < w(v3). Let S be a
maximum weighted independent set in G.

If S contains v1, then S will contain either v4 or both of v3 and v5 (after deleting
N [v1] from the graph {v3, v5} will be a twin). If S does not contain v1, then we can
assume that S contain v6 since w(v6) ≥ w(v5). For this case, S must contain one of
v2 and v3 due to the maximality of S. Furthermore, if S ∩ {v1, v2, v3, v4, v5, v6} =
{v2, v6}, then we can replace v2 with v3 in S to get another maximum independent set.
So we can assume that SΔ = S∩{v1, v2, v3, v4, v5, v6} is one of {v1, v3, v5}, {v1, v4},
{v2, v4, v6}, and {v3, v6}.

If SΔ is {v1, v3, v5} or {v2, v4, v6}, then S′ = S\{v5, v6} is an independent set in G ′
such thatwG ′(S′) = wG(S′\{v2, v3})+wG ′({v2, v3}∩S′) = wG(S). If SΔ = {v1, v4},
then S′ = S is an independent set in G ′ such that wG ′(S′) = wG(S). Otherwise
SΔ = {v3, v6}. For this case, S′ = (S\{v3, v6}) ∪ {v∗, v5} is an independent set in
G ′, where v∗ is the vertex in {v2, v3} with the larger weight in G ′. We have that
wG ′(S′) = wG(S\{v3, v6}) + wG ′({v∗, v5}) = wG(S).

On the other hand, for any maximum weighted independent set S′ in G ′, we can
construct a weighted independent set S in G such that wG(S) = wG ′(S′). In G ′, there
is a 5-cycle v1v2v3v4v5 and any maximum weighted independent set in G ′ contains
exactly two vertices in the 5-cycle. Recall that v∗ is the vertex in {v2, v3} with the
larger weight in G ′. Let {v�, v∗} = {v2, v3}. We have that wG ′(v∗) ≥ wG ′(v�). If
S′ contains {v�, v5}, then we can replace v� with v∗ in S′. So we can assume that
S′
Δ = S′ ∩ {v1, v2, v3, v4, v5} is one of the four cases {v1, v3}, {v2, v4}, {v1, v4} and

{v∗, v5}.
If S′

Δ = {v1, v3}, then S = S′ ∪ {v5} is an independent set in G such that wG(S) =
wG(S′\{v1, v3}) + wG({v1, v3, v5}) = wG ′(S′). If S′

Δ = {v2, v4}, then S = S′ ∪ {v6}
is an independent set in G such that wG(S) = wG(S′\{v2, v4}) + wG({v2, v4, v6}) =
wG ′(S′). If S′

Δ = {v1, v4}, then S = S′ is an independent set in G such that wG(S) =
wG ′(S′). Otherwise, S′

Δ = {v∗, v5}. For this case, S = (S′\{v∗, v5}) ∪ {v3, v6} is an
independent set in G such that wG(S) = wG ′(S′\{v, v5}) + wG({v3, v6}) = wG ′(S′).

��

3.3 Reductions Based on Small Cuts

We also have some reduction rules to deal with vertex-cuts of size one or two, which
can even be used to design a polynomial-time divide-and-conquer algorithm.However,
a graph may not always have vertex-cuts of small size.

3.3.1 Vertex-Cuts of Size One

We first introduce the reduction rule based on vertex-cuts of size one.
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Fig. 11 A graph G with a
vertex-cut {u}

Lemma 9 Let {u} be a vertex-cut of size one in G and G∗ be a connected component
in G − u.

(1) If w(u) + α(G∗ − N [u]) ≤ α(G∗), then α(G) = α(G1) + α(G∗), where G1 is
the remaining graph after removing G∗ and u from G;

(2) If w(u) + α(G∗ − N [u]) > α(G∗), then α(G) = α(G2) + α(G∗), where G2 is
the remaining graph after removing G∗ from G and updating the weight of u by
letting w(u) := w(u) + α(G∗ − N [u]) − α(G∗).

Proof LetG ′ = G−G∗ −N [u] andG ′′ = G∗ −N [u]. Let S be a maximumweighted
independent set in G.

Case (1): α(G ′′)+w(u) ≤ α(G∗). If u ∈ S, then we can see that α(G) = α(G ′)+
α(G ′′) + w(u). Recall that we use S(G) to denote a maximum independent set in G.
We can replace S ∩ ({u} ∪ V (G ′′)) with S(G∗) in S to get another independent set
without decreasing the total weight since α(G ′′) + w(u) ≤ α(G∗). Furthermore, we
can replace S ∩ V (G ′) with S(G1) in S to get another independent set in G. Thus,
w(S ∩ V (G ′)) = α(G1) and then α(G) = α(G1) + α(G∗). Otherwise u /∈ S and it
directly holds that α(G) = α(G∗) + α(G1).

Case (2): α(G ′′)+w(u) > α(G∗). If u ∈ S, then S′ = S\V (G∗) is an independent
set in G2 with weight wG2(S

′) = wG(S′\{u}) + wG2(u) = wG(S′\{u}) + wG(u) +
α(G ′′) − α(G∗) = α(G) − α(G∗). If u /∈ S, then S′ = S\V (G∗) is an independent
set in G ′ with wG2(S

′) = wG(S′) = α(G) − α(G∗).
On the other hand, for any maximum weighted independent set S′ in G2, we can

construct an independent set S0 in G such that wG(S0) = wG2(S
′) + α(G∗) =

α(G2) + α(G∗). For the case that u ∈ S′, S0 = S′ ∪ S(G ′′) is an independent set in
G. By wG2(u) = wG(u) + α(G ′′) − α(G∗), we get that wG(S0) = wG(S′\{u}) +
wG(u) + α(G ′′) = wG2(S

′) + α(G∗) = α(G2) + α(G∗). For the case that u /∈ S′,
S0 = S′ ∪ S(G∗) is an independent set in G with wG(S0) = wG2(S

′) + α(G∗) =
α(G2) + α(G∗). ��

Figure 11 shows a graph G with a vertex-cut {u}. Lemma 9 provides a divide-and-
conquer method based on vertex-cuts of size one. In our algorithm, we will only use
it to deal with cuts that can split a connected component G∗ of bounded total vertex
cost.
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Reduction Rule 11 (R11). For a vertex-cut {u} with a connected component G∗ in
G − u such that 2δ3 − δ2 ≤ ∑

v∈G∗ δdG (v) ≤ 10,

(1) If w(u) + α(G∗ − N [u]) ≤ α(G∗), then remove G∗ and {u} from G and add
α(G∗) to Mc;

(2) If w(u) + α(G∗ − N [u]) > α(G∗), then remove G∗ from G, update the weight of
u by letting w(u) := w(u) + α(G∗ − N [u]) − α(G∗), and add α(G∗) to Mc.

3.3.2 Vertex-Cuts of Size Two

For vertex-cuts of size two, we have a similar result. However, it will become much
more complicated.

Lemma 10 Let {u, u′} be a vertex-cut of size two in G and G∗ be a connected compo-
nent in G − {u, u′}, where we assume w.l.o.g. that α(G∗ − N [u]) ≥ α(G∗ − N [u′]).
We construct a new graph G ′ from G as follows: remove G∗; add three new ver-
tices {v1, v2, v3} with weight w(v1) = α(G∗ − N [u′]) − α(G∗ − N [{u, u′}]),
w(v2) = α(G∗ − N [u])−α(G∗ − N [{u, u′}]) and w(v3) = α(G∗)−α(G∗ − N [u]),
and add five new edges uv1, v1v2, v2u′, uv3 and u′v3. It holds that

α(G) = α(G ′) + α(G∗ − N [{u, u′}]).

Proof Let G ′′ = G∗ − N [{u, u′}]. Let S be a maximum weight set in G.
First, we show that G ′ can be obtained from G with α(G ′) = α(G) − α(G ′′). If

u ∈ S but u′ /∈ S, then S′ = (S\V (G∗)) ∪ {v2} is a weighted independent set in
G ′ with weight wG ′(S′) = wG(S\V (G∗)) + wG ′(v2) = α(G) − α(G ′′). If u /∈ S
but u′ ∈ S, then S′ = (S\V (G∗)) ∪ {v1} is a weighted independent set in G ′ with
weight wG ′(S′) = wG(S\V (G∗)) + wG ′(v1) = α(G) − α(G ′′). If u ∈ S and u′ ∈ S,
then S′ = (S\V ′(G∗)) is a weighted independent set in G ′ with weight wG ′(S′) =
wG(S\V (G∗)) = α(G) − α(G ′′). Otherwise, u /∈ S and u′ /∈ S. For this case, we let
S′ = (S\V ′) ∪ {v2, v3}, then S′ is a weighted independent set in G ′ with the weight
wG ′(S′) = wG(S\V (G∗)) + wG ′({v2, v3}) = α(G) − α(G ′′).

On the other hand, for any maximum weighted independent set S′ of G ′, we can
construct a weighted independent set S0 ofG such thatwG(S0) = wG ′(S′)+α(G ′′) =
α(G ′) + α(G ′′). If u ∈ S′ but u′ /∈ S′, let S1 be the maximum weighted independent
set in G∗ − NG [u], then S0 = (S1 ∪ S′)\{v1, v2, v3} is a weighted independent set
in G with weight wG(S0) = wG(S′\{v2}) + wG(S1) = α(G ′) + α(G ′′). If u /∈ S′
but u′ ∈ S′, let S2 be the maximum weighted independent set in G∗ − NG[u′], then
S0 = (S2 ∪ S′)\{v1, v2, v3} is a weighted independent set in G with weightwG(S0) =
wG(S′\{v1})+wG(S3) = α(G ′)+α(G ′′). If u ∈ S′ but u′ ∈ S′, let S3 be themaximum
weighted independent set in G ′′, then S0 = (S3 ∪ S′)\{v1, v2, v3} is a weighted
independent set inGwithweightwG(S0) = wG(S′\{v2})+wG(S1) = α(G ′)+α(G ′′).
Otherwise, u /∈ S′ but u′ /∈ S′. For this case, we let S4 be the maximum weighted
independent set in G∗, then S0 = (S′ ∪ S4)\{v1, v2, v3} is a weighted independent set
in G such that wG(S0) = wG(S′\{v1, v2, v3}) + wG(S4) = α(G ′) + α(G ′′). ��

Please see Fig. 12 for an illustration of the construction of G ′ in Lemma 10. Based
on Lemma 10, we have the following branching rule.
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Fig. 12 a The graphG with a vertex-cut {u, u′} of size two; b the graphG′ constructed fromG by removing
G∗ and introducing three new vertices {v1, v2, v3}

Reduction Rule 12 (R12). For a vertex-cut {u, u′} of size two with a connected com-
ponent G∗ in G − {u, u′} such that 2δ3 + δ2 ≤ ∑

v∈G∗ δdG (v) ≤ 10, we construct the
graph G ′ in Lemma 10, replace G with G ′, and add α(G∗ − N [{u, u′}]) to Mc.

3.4 Analyzing Reduction Rules

It is easy to see that all structures in our reduction rules are local structures that can be
found in polynomial time. Each application of our reduction rules is to either remove
some part of the graph or replace some part with a smaller structure, which can also
be done in polynomial time. In this part, we mainly analyze how much the measure
p can be reduced in each reduction rule. Since we will apply these reduction rules in
order, we assume without loss of generality that when one reduction rule is applied,
no reduction rule with a smaller index can be applied.

Lemma 11 Each application of our reduction rules can be executed in polynomial
time.

Each application of R1–4 will remove some vertices from the graph. The update of
the vertex weight will not increase the measure p. Hence, we can get

Lemma 12 Each application of R1–3 decreases the measure p by at least δd(v) +
∑

u∈N (v) δ<−1>
d(u) , where v is the vertex on which the reduction rule is applied.

Lemma 13 Each application of R4 decreases the measure p by at least
∑

u∈N [v] δd(u),
where v is the vertex on which the reduction rule is applied.

For a degree-1 vertex v with the unique neighbor u, if w(v) < w(u) then we can
apply R3 to reduce it, otherwise w(v) ≥ w(u) and we can apply R4 to reduce it. So
we know that

Lemma 14 If R1–4 can not be applied and the graph is not empty, then the minimum
degree of the graph is at least 2.
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Let C be a cycle that has a degree-2 vertex v. If |C | = 3, then either one of
neighbors of v is unconfined or v can be reduced by R3. If |C | = 4 and there is a pair
of nonadjacent degree-2 vertices, then R2 can be applied. So, we can get that

Lemma 15 If R1–4 can not be applied and the graph is not empty, then there is no trian-
gle containing degree-2 vertices and no 4-cycle containing two nonadjacent degree-2
vertices.

Lemma 16 If R1–5 can not be applied to G, then each connected component of the
graph contains at least one vertex of degree ≥ 3.

Proof By Lemma 14, we know that the graph has no degree-1 vertex. If there is a
connected component containing only vertices of degree ≤ 2, then the component
can only be a cycle C containing degree-2 vertices. By Lemma 15, we know that
|C | ≥ 5. Let C = {v1, v2, . . . , v|C|}. Since R5 can not be applied, we know that for
each 1 ≤ i ≤ |C |, it holds thatw(vi ) < max{w(vi+1), w(vi−1)}, where v0 = v|C| and
v|C|+1 = v1. However, it will not hold for the vertex v∗ with the maximum weight in
the cycle, a contradiction. So the cycle C containing only degree-2 vertices does not
exist. ��
Lemma 17 If R1–6 can not be applied to G, then each cycle C contains at least two
vertices of degree ≥ 3.

Proof Let C = {v0, v1, v2, . . . , v|C|−1} be a cycle in the graph G. By Lemma 16,
we know that C must contain at least one vertex of degree ≥ 3. Assume that there
is exactly one vertex of degree ≥ 3 in C , which is assumed to be v0 without loss
of generality. By Lemma 15, we know that |C | ≥ 5. Since R5 can not be applied
now, we know that w(vi ) < max{w(vi+1), w(vi−1)} holds for all 1 ≤ i < |C |,
where v|C| = v0. Then, we can get thatw(v0) ≥ max{w(v1), w(v|C|−1)}. Thus, either
w(v0) ≥ w(v1) ≥ w(v2) ≥ w(v3) orw(v|C|) ≥ w(v|C|−1) ≥ w(v|C|−2) ≥ w(v|C|−3)

holds, where implies that R6 can be applied. SoC must contain more than one vertices
of degree ≥ 3 and this lemma holds. ��
Lemma 18 If R1–4 can not be applied, then each application of R5–8 decreases the
measure p by at least 2δ2.

Proof Assume thatR1–4 can not be applied.ByLemma14,we know that theminimum
degree of G is at least 2. We use G ′ to denote the resulting graph after executing one
application of Ri (5≤ i ≤ 8).

Case 1:R5 is applied. A degree-2 vertex v with two neighbors u1 and u2 are deleted
from the graph, and a new vertex v′ of degree at most d(u1)+d(u2)−2 is introduced.
For all other vertices, the degree will not increase. So the measure p decreases by at
least δ2 + δd(u1) + δd(u2) − δd(u1)+d(u2)−2. Note that min{d(u1), d(u2)} ≥ 2. We have
that δd(u1) + δd(u2) − δd(u1)+d(u2)−2 ≥ δ2 + δ2 − δ2+2−2 = δ2.

Case 2: R6 is applied. We replace a chain of two degree-2 vertices with an edge.
Hence, the measure p decreases by p(G) − p(G ′) ≥ 2δ2.

Case 3:R7 is applied. In this case, we remove two degree-2 vertices from the graph.
Hence, the measure p decreases by at least 2δ2.

Case 4: R8 is applied. In this case, two degree-2 vertices are replaced with an edge
respectively. Hence, the measure p decreases by 2δ2. ��
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Lemma 19 If R1–6 can not be applied, then each application of R9 decreases the
measure p by at least 2δ3 − δ2.

Proof Let v1v2v3v4v5 be the 5-cycle that R9 is applied to, where v2, v3 and v5 are
degree-2 vertices, as shown inFig. 9.ByLemma17,weknow thatmin{d(v1), d(v4)} ≥
3. In this reduction rule, we will remove either a degree-2 vertex v5 or two adjacent
degree-2 vertices {v2, v3} from the graph. So, we can reduce the measure by at least
δ2 from the removed vertices and at least 2δ<−1>

3 from the neighbors of them. ��
Lemma 20 If R1–6 can not be applied, then each application of R10(1) decreases the
measure p by at least 2δ3 and each application of R10(2) decreases the measure p by
at least δ2.

Proof Let v1v2v3v4v5v6 be the 6-cycle that R10 is applied to, where v2, v3, v5
and v6 are degree-2 vertices, as shown in Fig. 10. By Lemma 17, we know that
min{d(v1), d(v4)} ≥ 3. In this reduction rule, we will either remove two adjacent
degree-2 vertices {v5, v6} or replace a degree-2 vertex v6 with an edge. For the first
case, the measure will decrease by at least 2δ3. For the second case, the measure will
decrease by at least δ2. ��
Lemma 21 Each application of R11 decreases the measure p by at least 2δ3 − δ2.

Proof At least a subgraphG∗ with total cost at least 2δ3−δ2 is deleted from the graph.
So the measure decreases by at least 2δ3 − δ2. ��
Lemma 22 Each application of R12 will not increase the measure p.

Proof In an application of this rule, a subgraph G∗ will be replaced by three degree-2
vertices and the degree of the two vertices u and u′ in the cut can increase by at most
1. So R12 decreases the measure by at least

∑
v∈G∗ δdG (v) − 2δ3 − δ2 ≥ 0. ��

Although an application of R12 may not decrease the measure directly, it will create
a 5-cycle with exactly two vertices of degree ≥ 3, which can be further reduced
by applying other reduction rules. By putting all these together, we still can strictly
decrease the measure.

Lemma 23 Assume that R1–4 can not be applied. If there is a chain containing at least
three degree-2 vertices, then we can apply reduction rules to decrease the measure p
by at least 2δ2.

Proof Let v0v1v2v3v4 be the chain such that d(vi ) = 2 for i = 1, 2, 3. If R5
can not be applied, then we know that for i ∈ 1, 2, 3, it holds that w(vi ) ≤
max{w(vi−1), w(vi+1)}. So, either w(v0) ≥ w(v1) ≥ w(v2) ≥ w(v3) or w(v4) ≥
w(v3) ≥ w(v2) ≥ w(v1) or w(v0) ≥ w(v1) ≥ w(v2) ≤ w(v3) ≤ w(v4). Hence, one
of R5–8 can be applied. By Lemma 18, we know that the measure will decrease by at
least 2δ2. ��
Lemma 24 Let G be a graph where R1–4 can not be applied. Let G ′ be the graph
after an application of one of R5–8. The minimum degree of G ′ is at least 2.
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Proof By Lemma 14, we know that the minimum degree of G is at least 2.
Case 1: R5 is applied. We will delete a degree-2 vertex v and its two neighbors u1

and u2, and introduce a new vertex v′ adjacent to all vertices in N (N (v)). If a degree-1
vertex u is created, then the degree-1 vertex u will be a vertex in N (N (v)). Thus, in
G, u is a degree-2 vertex, and u and v will form a twin. However, we have assumed
that R2 can not be applied on G. So G ′ can not contain a vertex of degree 1.

Case 2: one of R6 and R8 is applied. Here, we will reduce a chain to a smaller one
and do not decrease the degree of the two endpoints of the chain. Hence, the minimum
degree of G ′ is still at least 2.

Case 3: R7 is applied. Let v1v2v3v4 be the cycle that R7 is applied to, as shown in
Fig. 7. By Lemma 15, we know that min{d(v1), d(v4)} ≥ 3. Since we will delete v2
and v3 to obtain G ′, the operation will only decrease the degree of v1 and v2 exactly
1 respectively. So, it holds that the minimum degree of G ′ is at least 2. ��
Lemma 25 Let G be a graph where R1–4 can not be applied. If there is a 4-cycle C
containing exactly two degree-2 vertices, then the measure p can be decreased by at
least 5δ2 by applying reduction rules.

Proof Let C = v1v2v3v4 be a 4-cycle in the graph. By Lemma 15, we know that
the two degree-2 vertices must be adjacent. We assume that v2 and v3 are degree-2
vertices. If R5 and R6 can not be applied on the graph, then R7 must be applied. We
consider the three cases. Let G ′ be the resulting graph after executing one of R5–7.
By Lemma 24, we know that the minimum degree of G ′ is at least 2.

Case 1: R5 is applied on a degree-2 vertex v. If v ∈ {v2, v3}, then the structure
of G ′ is isomorphic to the graph obtained from G by deleting {v2, v3}. So we have
that p(G) − p(G ′) ≥ 2δ3 ≥ 5δ2. Otherwise, after applying R5, the 4-cycle C is still
left in G ′. For this case, we have that p(G) − p(G ′) ≥ 2δ2 by Lemma 18. We can
further apply reduction rules on the graph since the 4-cycle C still exists. If R1–4 can
be applied to G ′, then by Lemmas 12 and 13, we can decrease the measure p by at
least 3δ2 more. Otherwise, by induction, we know that the measure p will eventually
decrease by at least 5δ2.

Case 2: R6 is applied on a path v′
1v

′
2v

′
3v

′
4, where v′

2 and v′
3 are degree-2 vertices.

The two degree-2 vertices v′
2 and v′

3 will be replaced with an edge v′
1v

′
4 if it does not

exist. If edge v′
1v

′
4 exists, then the reduction rule simply deletes v′

2 and v′
3 from the

graph and the p will decrease by at least 2δ2 + 2δ<−1>
3 = 2δ3 ≥ 5δ2. If edge v′

1v
′
4

does not exist, then v′
1v

′
2v

′
3v

′
4 is different from v1v2v3v4 and the 4-cycle C is still left

in G ′. By induction, we know that the measure p will eventually decrease by at least
5δ2.

Case 3: R7 is applied on a path v′
1v

′
2v

′
3v

′
4, where v′

2 and v′
3 are degree-2 vertices.

We will remove two degree-2 vertices {v′
2, v

′
3} from G to obtain G ′. So, the measure

p will decrease by at least 2δ2 + 2δ<−1>
3 = 2δ3 ≥ 5δ2.

��
Lemma 26 Let G be a graph where R1–4 can not be applied. If there is a cycle C with
|C | ≥ 5 containing at most two vertices of degree at least 3, then applying reduction
rules can decrease the measure p by at least 2δ3 − δ2.
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Proof By Lemma 14, we know that the minimum degree of G is 2. Let G ′ be the
resulting graph after executing one of R5–10 on G and let G∗ be the resulting graph
after executing all the reduction rules onG ′. We consider howmany vertices of degree
≥ 3 in the cycle C .

Case 1: C contains no vertex of degree ≥ 3. By Lemma 16, we know that whole
component C will be reduced. So, p(G) − p(G∗) ≥ 5δ2 ≥ 2δ3 − δ2.

Case 2: C contains exactly one vertex of degree ≥ 3. Since |C | ≥ 5, there is a
chain that contains at least 3 vertices of degree 2. By Lemma 23, we know that one of
R5–8 can be applied to some vertices of C to obtained G ′ and p(G) − p(G ′) ≥ 2δ2.
Since R5, R6 and R8 will reduce a chain to a smaller one with decreasing the length
at most 2 and R7 will remove 2 adjacent vertices of degree 2 that are in a 4-cycle,
there still exists a cycle C ′ with at most 2 vertices of degree ≥ 3 in G ′ and G ′ has a
minimum degree at least 2. If R1–4 can be applied to G ′, by Lemmas 12 and 13, we
know that p(G ′) − p(G∗) ≥ 3δ2. Otherwise, by Lemma 15, we know that |C ′| ≥ 4.
Now, we consider the cases of |C ′|. If |C ′| = 4, then by Lemma 25, we know that
p(G ′)− p(G∗) ≥ 5δ2. Otherwise, |C ′| ≥ 5. For this case, by induction, we know that
p(G ′) − p(G∗) ≥ 2δ3 − δ2.

Case 3: C contains exactly two vertices of degree ≥ 3. Clearly, one of R5–10 can
be applied to G.

When one of R5–8 is applied to G, the discussion is similar to the above case.
When one of R9–10(1) is applied to G, by Lemmas 19 and 20, we know that

p(G) − p(G ′) ≥ 2δ3 − δ2.
When R10(2) is applied to G to obtain G ′, by R10(2) and Lemma 17, we know

that there is a 5-cycle that contains at most two vertices of degree ≥ 3 and there is
no cycle containing at most one vertex of degree ≥ 3. If R1–4 can be applied to G ′,
then by Lemmas 12 and 13, we know that p(G ′) − p(G∗) ≥ 2δ3 − δ2. Otherwise, by
induction, we can get p(G ′) − p(G∗) ≥ 2δ3 − δ2.

Since 5δ2 ≥ 2δ3 − δ2, we know that this lemma holds.
��

Definition 27 An instance is called reduced, if none of our reduction rules can be
applied.

Lemma 28 In a reduced instance, any two degree-2 vertices in different chains have
at most one common chain-neighbor of degree at least 3, and each cycle contains at
least three vertices of degree ≥ 3.

Proof Assume there are two degree-2 vertices in different chains that have two com-
mon chain-neighbors of degree at least 3. Then there is a cycle C contains exactly two
vertices of degree ≥ 3. By Lemmas 15 and 26, we know that there is no such cycle in
a reduced instance. ��
Lemma 29 For a triangle C in a reduced instance, each vertex in C is a vertex of
degree at least 3 and it has a chain-neighbor of degree at least 3 not in C.

Proof By Lemma 15, we know that all the vertices in triangles are of degree at least 3.
If a vertex in C does not have a chain-neighbor of degree at least 3 out of C , then there
is a cycle containing at most two vertices of degree ≥ 3, a contradiction to Lemma 28.

��
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4 Branching Rules

Next, we introduce our branching rules, which will only be applied to reduced
instances. After applying a branching rule, the algorithm will apply reduction rules as
much as possible on each sub instance. In our analysis, we will consider the following
applications of reduction rules together.

4.1 Two Branching Rules

We use two branching rules. The first branching rule is to branch on a vertex v by
considering two cases: (i) there is a maximum weighted independent set in G which
does not contain v; (ii) every maximumweighted independent set in G contains v. For
the former case, we simply delete v from the graph. For the latter case, by Lemma 2
we know that we can include the set Sv confining v in the independent set. So we
delete N [Sv] from the graph.

Branching Rule 1 (Branching on a vertex) Branch on a vertex v to generate two sub
instances by either deleting v from the graph or deleting N [Sv] from the graph and
adding w(Sv) to Mc.

The following property of 4-cycles has been used to design an effective branching
rule for unweighted versions [32], which also holds in weighted graphs.

Lemma 30 Let v1v2v3v4 be a cycle of length 4 in the graph G. Then for any indepen-
dent set S in G, either v1, v3 /∈ S or v2, v4 /∈ S.

Proof Since any independent set contains at most two non-adjacent vertices in a 4-
cycle, we know that this lemma holds. ��

Based on Lemma 30, we get the second branching rule.

Branching Rule 2 (Branching on a 4-cycle) Branch on a 4-cycle v1v2v3v4 to generate
two sub instances by deleting either {v1, v3} or {v2, v4} from the graph.

4.2 The Analysis and Some Properties

The hardest part is to analyze how much we can decrease the measure in each sub-
branch of a branching operation. Usually, we need to deeply analyze the local graph
structure and use case-analysis. Here we try to summarize some common properties.
The following notations will be frequently used in the whole paper.

Let S be a vertex subset in a reduced graphG. We useG−S to denote the graph after
deleting S from G and iteratively applying R1–4 until none of them can be applied.
We use RS to denote the set of deleted vertices during applying R1–4 on G − S.

Then G−S = G− (S∪ RS). We also use eS to denote the number of edges between
S ∪ RS and V \(S ∪ RS) in G. We have the following lemmas for some bounds on
p(G) − p(G−S).

Note that G−S may not be a reduced graph because of reduction rules from R5–12
and we may further apply reduction rules to further decrease the measure p.
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Lemma 31 It holds that

p(G) − p(G−S) ≥
∑

u∈S∪RS

δdG (u) + eSδ
<−1>
3 . (6)

Proof Since S ∪ RS will be removed from G, we can reduce the measure by at least∑
u∈S∪RS

δdG (u) from them. For each vertex in N (S ∪ RS), it must be a vertex of
degree ≥ 2 in G−S , otherwise R1–4 can be further applied on G−S . Thus, deleting
each edge between S ∪ RS and V \(S ∪ RS) will decrease the measure p by δ<−1>

3
from N (S∪RS). In total, we can decrease themeasure p by eSδ

<−1>
3 from N (S∪RS).

��
In some cases, we can not use the bound in (6) directly since we may not know the

vertex set RS . So we also consider some special cases and relaxed bounds.

Lemma 32 Let S = {v} be a set of a single vertex of degree ≥ 3. We have that

p(G) − p(G−S) ≥ δd(v) +
∑

u∈N (v)

δ<−1>
d(u) + q2δ

<−1>
3 ,

where q2 is the number of degree-2 vertices in N (v).

Proof After removing v, we can reduce the measure p by δd(v) from the vertex v itself
and

∑
u∈N (v) δ<−1>

d(u) from N (v) since the degree of each vertex in N (v) will decrease
by 1. Furthermore, each degree-2 vertexw ∈ N (v) inG will become a degree-1 vertex
in G − v. By Lemma 28, we know that w has two different chain-neighbors of degree
≥ 3. Let they be v and v′. By Lemmas 15, 17, 25 and 26, we know that there is no
cycle that contains at most two vertices of degree ≥ 3. So, we know that v′ /∈ N (v).
Furthermore, it holds that dG−v(v

′) = dG(v′). After iteratively applyingR1–4 inG−v

to reduce degree-1 vertices, either v′ will be deleted or the degree of v′ will decrease by
1. Thus, we can further reduce p by at least min{δd(v′), δ

<−1>
d(v′) } = δ<−1>

d(v′) = δ<−1>
3 .

By Lemma 28, we know that for each degree-2 vertex w ∈ N (v) in G, the other
chain-neighbor v′ of degree ≥ 3 is different. Thus, we can further reduce p by at least
q2δ

<−1>
3 from these vertices. ��

Lemma 33 If S ∪ RS contains N [v] for some vertex v of degree ≥ 3, then we have
that

p(G) − p(G−S) ≥
∑

u∈N [v]
δd(u) + q2δ

<−1>
3 ,

where q2 is the number of degree-2 vertices in N (v).

Proof The proof is similar to the proof of Lemma 32. At least N [v] ⊆ S is removed
and we can reduce the measure p by

∑
u∈N [v] δd(u) from N [v] directly. Each degree-

2 vertex w ∈ N (v) in G has a different chain-neighbor v′ �= v of degree ≥ 3 by
Lemma 28, which will be deleted or the degree of v′ will decrease by at least 1 after
iteratively applying R1–4 to reduce degree-1 vertices. Thus, we can further reduce p
by at least q2δ

<−1>
3 . ��
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Recall that we use C(G ′) to denote the set of connected components of the graph
G ′. We can easily observe the following lemma, which will be used to prove several
bounds on p(G) − p(G−S).

Lemma 34 Let S be a vertex subset. Let S′ be a subset of S∪ RS and R′ = S∪ RS\S′.
The number of edges between S ∪ RS and V \(S ∪ RS) is eS, and the number of edges
between S′ and V \S′ is k. For any component H ∈ C(G[R′]), the number of edges
between S′ and H is lH and the number of edges between H and N (S ∪ RS) is rH .
We have that

k − eS =
∑

H∈C(G[R′])
(lH − rH ).

Furthermore, for any component H ∈ C(G[R′]) containing only vertices v with
dG(v) = 2, the value lH − rH can only be an even number of -2, 0, or 2.

Lemma 35 For any subset S′ ⊆ S ∪ RS with k edges between S′ and V \S′, it holds
that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + eSδ

<−1>
3 +

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, k − eS ≤ 0
δ3, k − eS = 1
δ2, k − eS = 2
δ3, k − eS = 3
2δ2, k − eS > 3.

Proof By Inequality (6), we know that this lemma holds for k − eS ≤ 0. Next, we
consider the cases where k − eS ≥ 1. Let R′ = S ∪ RS\S′. If k − eS = 1, then by
Lemma 34, we know that there is a component H ∈ C(G[R′]) containing at least one
vertex of degree ≥ 3. If k − eS = 2, then R′ is nonempty and contains at least one
vertex of degree ≥ 2. If k − eS = 3, then R′ contains at least one vertex of degree ≥ 3
similar to the case of k − eS = 1. If k − eS > 3, then R′ contains at least one vertex
of degree ≥ 3 or at least two vertices of degree 2. So, by Inequality (6), this lemma
holds. ��
Corollary 36 For any subset S′ ⊆ S ∪ RS with k edges between S′ and V \S′, it holds
that either p(G) − p(G−S) > 10 or

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) +

⎧
⎪⎪⎨

⎪⎪⎩

kδ<−1>
3 , if k ≤ 4

δ2 + 3δ<−1>
3 , if k = 5

δ3 + 3δ<−1>
3 , if k = 6

2δ2 + 3δ<−1>
3 , if k > 6.

Proof The instance G is reduced. So R11 and R12 can not be applied. If∑
v∈S∪RS

δdG (v) ≤ 10 and there are atmost two edges between S∪RS and V \(S∪RS),
then the condition in R11 or R12 would hold. So we have either p(G)− p(G−S) > 10
or eS ≥ 3. For the latter case, by Lemma 35, this corollary also holds. ��
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Lemma 37 Assume that a reduced graph G has a maximum degree 3 and has no 3 or
4-cycles. For any subset S′ ⊆ S∪RS with k edges between S′ and V \S′, if the diameter
of the induced graph G[S′] is 2, then it holds that either p(G) − p(G−S) > 10 or

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + 3δ<−1>

3 +

⎧
⎪⎪⎨

⎪⎪⎩

0, k ≤ 3
δ<−1>
3 , k = 4
2δ2, k = 5
δ2 + δ3, k = 6.

Proof Let R′ = (S ∪ RS)\S′. Note that any vertex v ∈ R′ is adjacent to at most one
vertex in S′, otherwise v and some vertices in S′ would form a cycle of length at most
4 since the diameter of G[S′] is 2, a contradiction to the assumption that there is no
cycle of length at most 4. Thus, any component H ∈ C(G[R′]) contains at least lH
vertices, and R′ contains at least k − eS vertices.

We first consider the value of k − eS .
If k − eS = 1, then by Lemma 34, we know that there is a vertex of degree ≥ 3 in

R′. So, by Inequality (6), we know that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + eSδ

<−1>
3 + δ3. (7)

If k − eS = 2, then R′ contains at least k ≥ 2 vertices. So, by Inequality (6), we
know that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + eSδ

<−1>
3 + 2δ2. (8)

If k − eS = 3, then R′ contains at least k ≥ 3 vertices. By Lemma 34, we know
that at least one vertex in R′ is of degree ≥ 3. Hence, by Inequality (6), we know that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + eSδ

<−1>
3 + 2δ2 + δ3. (9)

Next, we prove the lemma by considering the value of k.
Case 1: k ≤ 3. This lemma holds by Corollary 36.
Case 2: k = 4. If k − eS = 0, by Lemma 35, we get that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + 4δ<−1>

3 .

If k − eS = 1, 2 and 3, then we will get (7), (8) and (9), respectively. It is impossible
that eS = 0 and then it is impossible that k−eS = 4. The worst case is that k−eS = 0.

Case 2: k = 5. Similar to Case 2, we consider all possible values of k − eS . The
worst case is that k − eS = 2, where by (8) we get that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + 3δ<−1>

3 + 2δ2.
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Case 3: k = 6. Similar to Case 2, we consider all possible values of k − eS . The
worst case is that k − eS = 2, where by (9) we get that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + 4δ<−1>

3 + 2δ2.

��
Lemma 38 Assume that a reduced graph G has a maximum degree 3, and each cycle
C in it contains at least five vertices, where at least four vertices are degree-3 vertices.
For any subset S′ ⊆ S ∪ RS with k edges between S′ and V \S′, if each path P in the
induced graph G[S′] contains either at most three vertices or at most two degree-3
vertices, then it holds that either p(G) − p(G−S) > 10 or

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) +

{
kδ<−1>

3 , k ≤ 5
δ3 + 2δ2 + 3δ<−1>

3 , k = 6.

Proof The proof is similar to the proof of Lemma 37. Let R′ = S∪ RS\S′. Any vertex
v ∈ R′ is adjacent to at most one vertex in S′, otherwise v would be in a 4-cycle or
a cycle containing at most three degree-3 vertices since each path P in G[S′] either
contains at most three vertices or contains at most two degree-3 vertices. However,
these cycles would not appear by the assumption. Thus, R′ contains at least k − eS
vertices.

We first consider the value of k − eS .
If k − eS = 1, then by Lemma 34, we know that there is a vertex of degree ≥ 3 in

R′. So, by Inequality (6), we know that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + eSδ

<−1>
3 + δ3. (10)

If k − eS = 2, then R′ will contain at least two vertices of degree 3. The reason
is below. If R′ contains at most one degree 3, then there will be a cycle containing at
most three degree-3 vertices, a contradiction to the assumption. So, by Inequality (6),
we know that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + eSδ

<−1>
3 + 2δ3. (11)

If k − eS = 3, then R′ contains at least k ≥ 3 vertices. By Lemma 34, we know
that at least one vertex in R′ is of degree ≥ 3. Hence, by Inequality (6), we know that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + eSδ

<−1>
3 + 2δ2 + δ3. (12)

Next, we prove the lemma by considering the value of k.
Case 1: k ≤ 4. This lemma holds by Corollary 36.
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Case 2: k = 5. If k − eS = 0, by Lemma 35, we get that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + 5δ<−1>

3 .

If k−eS = 1, 2 and 3, thenwewill get (10), (11) and (12), respectively. It is impossible
that eS ≤ 1 sinceG has no cut of size atmost 2, and then it is impossible that k−eS ≥ 4.
The worst case is that k − eS = 0.

Case 3: k = 6. Similar to Case 2, we consider all possible values of k − eS . The
worst case is that k − eS = 3, where by (8) we get that

p(G) − p(G−S) ≥
∑

u∈S′
δdG (u) + 3δ<−1>

3 + 2δ2 + δ3.

��

5 The Algorithm

Now we are ready to describe the whole algorithm.
The algorithm will first apply reduction rules and also solve connected components

of size bounded by a constant (or the measure is bounded by a constant) directly.
Second, the algorithm will branch on vertices of degree ≥ 5 if any. Note that even the
input graph has no high-degree vertices, some reduction rules may create them during
the algorithm. Third, the algorithm will deal with 4-cycles and degree-4 vertices. Last
is to deal with degree-3 vertices, which is the most complicated part of the algorithm.
When the algorithm executes one step, we assume that all previous steps can not be
applied now.

Step 1 (Applying Reductions) If the instance is not reduced, iteratively apply reduc-
tion rules in order, i.e., when one reduction rule is applied, no reduction rule with a
smaller index can be applied on the graph.

Step 2 (Solving Small Components) If there is a connected component G∗ of G such
that p(G∗) ≤ 10, solve the component G∗ directly and return α(G − G∗) + α(G∗).

Note that p(G∗) ≤ 10, the number of vertices of degree ≥ 3 is at most 10. We can
enumerate all subsets of vertices of degree ≥ 3 and let them in the independent set,
and the remaining graph has a maximum degree at most 2, which can be solved in
polynomial time by Lemma 16. So this step can be solved in polynomial time.

Step 3 (Branching onVertices of Degree≥ 5) If there is a vertex v of degree d(v) ≥ 5,
then branch on v with Branching Rule 1 by either excluding v from the independent
set or including Sv in the independent set.

Lemma 39 Step 3 followed by applications of reduction rules creates a branching
vector covered by

[δd(v) + d(v)δ<−1>
3 , δd(v) + d(v)δ3]. (13)
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Proof For the first branching, a single vertex v is deleted from the graph.ByLemma32,
we get δd(v) + d(v)δ<−1>

3 + q2δ2 ≥ δd(v) + d(v)δ<−1>
3 , where q2 ≥ 0 is the number

of degree-2 vertices in N (v).
For the second branching, N [v] ⊆ N [Sv] is deleted from the graph. By Lemma 33,

we know that the measure will be decreased by at least
∑

u∈N [v] δd(u) + q2δ
<−1>
3 ,

which is at least δd(v) + d(v)δ3. ��
For the worst case that d(v) = 5, the branching vector (13) will become

[δ5 + 5δ<−1>
3 , δ5 + 5δ3] = [5.368, 7.248].

Next, we assume that the maximum degree of the graph is at most 4.

Step 4 (Branching on 4-Cycles with Chords) If there is a 4-cycle C = v1v2v3v4 with
a chord v1v3 ∈ E, then branch on the 4-cycle with Branching Rule 2 by excluding
either {v1, v3} or {v2, v4} from the independent set.

Note that it is impossible that both of v1 and v3 are of degree 3, since otherwise one
of v1 and v3 is an unconfined vertex and R1 should be applied. Then one of v1 and
v3 is of degree 4. Without loss of generality, we assume that v1 is a degree-4 vertex.
Since v1 and v3 are adjacent, we know that none of v2 and v4 can be a degree-2 vertex,
otherwise R1–4 can be applied.

Lemma 40 Step 4 followed by applications of reduction rules creates a branching
vector covered by one of

[3δ4 + δ<−1>
3 , 4δ4 + 2δ<−1>

3 ] = [5.496, 7.744] and

[4δ4, 2δ4 + 2δ3 + 2δ2] = [6.496, 6].

Proof We use Δ1 and Δ2 to denote the amount of measure decreased in the two sub
branches. We analyze Δ1 and Δ2 by considering several different cases.

Case 1: v2v4 ∈ E . Now {v1, v2, v3, v4} from a clique. None of them can be a
degree-3 vertex in G, otherwise the vertex would have a clique neighborhood and R4
should be applied. Thus, all of the four vertices in C are degree-4 vertices. For each
vertex in the cycle C , a neighbor not in C is called an out-neighbor. We can see that
the out-neighbor of v1 is different from the out-neighbor of v3 (resp., the out-neighbor
of v2 is different from the out-neighbor of v4), otherwise one of v1 and v3 (resp., one
of v2 and v4) would be unconfined.

In the first branching, {v1, v3} is deleted from the graph. We can reduce the
measure p by 2δ4 from {v1, v3}, 2δ<−2>

4 from {v2, v4}, and at least 2min{δ<−1>
2 ,

δ<−1>
3 , δ<−1>

4 } = 2δ2 from the out-neighbors of {v1, v3}. In total, it is at least
2δ4 + 2δ<−2>

4 + 2δ2 = 4δ4. In the second branching, the measure can be reduced by
the same amount. We get a branching vector:

[4δ4, 4δ4].

Next, we assume that v2v4 /∈ E .
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Case 2: d(v3) = 3 and at least one of v2 and v4, say v2 is a degree-3 vertex. In the
first branching, after deleting {v1, v3}, vertex v2 will become a degree-1 vertex andwill
be removed by applying R1–4. Thus, by Corollary 36 (setting S′ = {v1, v2, v3} with
k = 4), we know that themeasure p decreases by at least

∑
u∈{v1,v2,v3} δdu +4δ<−1>

3 =
2δ3 + δ4 + 4δ<−1>

3 = 4δ4 − δ2.
In the second branching, all the four vertices in the cycle C will be deleted after

applying R1–4. By Corollary 36 (setting S′ = {v1, v2, v3, v4} with k ≥ 3), we know
that the measure p decreases by at least

∑
u∈{v1,v2,v3,v4} δdu + 3δ<−1>

3 = 3δ3 + δ4 +
3δ<−1>

3 = 4δ4. We get a branching vector

[4δ4 − δ2, 4δ4].

Case 3: d(v3) = 3 and d(v2) = d(v4) = 4. In the first branching of deleting
{v1, v3}, we can reduce the measure p by δ4 +δ3 from {v1, v3}, 2δ<−2>

4 from {v2, v4},
and at least δ2 from the fourth neighbor of v1. In total, we get 3δ4 + δ<−1>

3 .
The second branching is similar to the second branching in Case 2. all the four

vertices in the cycle C will be deleted in this branching. By Corollary 36 (setting
S′ = {v1, v2, v3, v4} with k ≥ 3), we know that the measure p decreases by at least∑

u∈{v1,v2,v3,v4} δdu + 3δ<−1>
3 = 4δ4 + 2δ<−1>

3 . We get a branching vector

[
3δ4 + δ<−1>

3 , 4δ4 + 2δ<−1>
3

]
.

Case 4: d(v3) = 4. We show that in the first branching of deleting {v1, v3}, the
measure p will decrease by at least 4δ4. If both of v2 and v4 are degree-4 vertices, we
reduce themeasure p by 2δ4 from {v1, v3}, 2δ<−2>

4 from {v2, v4}, and at least 2δ2 from
the two different out-neighbors of {v1, v3}. In total, it is 2δ4 + 2δ<−2>

4 + 2δ2 = 4δ4.
Else at least one of v2 and v4, say v2 is a degree-3 vertex. After deleting {v1, v3},
vertex v2 will become a degree-1 vertex and will be removed by applying R1–4. Thus,
by Corollary 36 (setting S′ = {v1, v2, v3} with k = 5), we know that the measure p
decreases by at least

∑
u∈{v1,v2,v3} δdu + δ3 + 3δ<−1>

3 = 4δ4 + δ<−1>
3 > 4δ4.

In the second branching of deleting {v2, v4}, we reduce themeasure p by at least 2δ3
from {v2, v4}, 2δ<−2>

4 from {v1, v3}, and at least 2δ2 from two different out-neighbors
of {v2, v4}. In total, it is 2δ4 + 2δ3 + 2δ2. We get a branching vector

[4δ4, 2δ4 + 2δ3 + 2δ2].

Note that 2δ4 + 2δ3 + 2δ2 < 4δ4 − δ2 < 4δ4. We know that all branching vectors
will be covered by one of [3δ4 + δ<−1>

3 , 4δ4 + 2δ<−1>
3 ] and [4δ4, 2δ4 + 2δ3 + 2δ2]. ��

Step 5 (Branching on Degree-4 Vertices) If there is a degree-4 vertex v, then branch
on it with Branching Rule 1 by either excluding v from the independent set or including
Sv in the independent set.
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We use qi to denote the number of degree-i neighbors of v in G. In the first branching
of deleting v, by Lemma 32, we can reduce the measure p by at least

δ4 +
4∑

i=2

qiδ
<−1>
i + q2δ

<−1>
3 ≥ δ4 + q2δ3 + (1 − q2)δ

<−1>
3 .

Weconsider the second branching of deleting N [Sv].We can see that N [v] ⊆ N [Sv]
will be deleted. Note that each degree-2 vertex in N (v) is adjacent to a vertex not
in N [v] otherwise v would have a clique neighborhood and reduction rules can be
applied. For the case that q2 = 4, by Lemma 33, we know that the measure p will
decrease by at least δ4 + 4δ2 + 4δ<−1>

3 = δ4 + 4δ3. For the case that 0 ≤ q2 ≤ 3, the
number of edges between N [v] and V \N [v] is at least 4 since otherwise there would
be a vertex having a clique neighbor or a 4-cycle having a chord. By Corollary 36
(setting S′ = N [v] with k ≥ 4), we know that the measure p decreases by at least
δ4 + q2δ2 + (4 − q2)δ3 + 3δ<−1>

3 + δ2 = 4δ4 + (1 − q2)δ3 + (q2 + 1)δ2.
The above analysis gives the following lemma.

Lemma 41 Step 5 followed by applications of reduction rules creates a branching
vector covered by one of

[δ4 + 4δ3, δ4 + 4δ3] = [5.624, 5.624] (q2 = 4),
[
δ4 + 3δ3 + δ<−1>

3 , 4δ4 − 2δ3 + 4δ2
]

= [5.248, 6] (q2 = 3),
[
δ4 + 2δ3 + 2δ<−1>

3 , 4δ4 − δ3 + 3δ2
]

= [4.872, 6.624] (q2 = 2),
[
δ4 + 1δ3 + 3δ<−1>

3 , 4δ4 + 2δ2
]

= [4.496, 7.248] (q2 = 1), and
[
δ4 + 4δ<−1>

3 , 4δ4 + δ3 + δ2

]
= [4.12, 7.872] (q2 = 0).

Next, we assume the maximum degree of the graph is 3.

Step 6 (Branching onOther 4-Cycles) If there is a 4-cycle C = v1v2v3v4, then branch
on the 4-cycle with Branching Rule 2 by excluding either {v1, v3} or {v2, v4} from the
independent set.

Lemma 42 Step 6 followed by applications of reduction rules creates a branching
vector covered by

[6δ3 − 2δ2, 6δ3 − 2δ2] = [5.248, 5.248].

Proof All the four vertices in the cycle C are degree-3 vertices or degree-2 vertices
since there are no vertices of degree ≥ 4 now. We can see that there is at most one
degree-2 vertex in the cycle C . If there are two nonadjacent degree-2 vertices in a 4-
cycle, then there is a twin and R2 should be applied. If there are two adjacent degree-2
vertices in a 4-cycle, then either R5 or R7 can be applied. So there is at most one
degree-2 vertex in the cycle C .
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Case 1: one vertex in C , say v1 is of degree 2 and all other vertices in C are of
degree 3.

In each branching, all the four vertices in the cycle C will be deleted after applying
R1–4. By Corollary 36 (setting S′ = {v1, v2, v3, v4} with k = 3), we know that the
measure p decreases by at least

∑
u∈{v1,v2,v3,v4} δdu +3δ<−1>

3 = 3δ3+δ2+3δ<−1>
3 =

6δ3 − 2δ2. We get a branching vector

[6δ3 − 2δ2, 6δ3 − 2δ2].

Case 2: all the four vertices in C are degree-3 vertices. In each branching, all the
four vertices in the cycle C will be deleted after applying R1–4. By Corollary 36
(setting S′ = {v1, v2, v3, v4} with k = 4), we know that the measure p decreases
by at least

∑
u∈{v1,v2,v3,v4} δdu + 4δ<−1>

3 = 4δ3 + 4δ<−1>
3 = 8δ3 − 4δ2. Note that

8δ3 − 4δ2 > 6δ3 − 2δ2. So it is covered by the above case. ��
From now on, we assume that the graph has a maximum degree 3 and there is no

4-cycle. Next, we will first consider triangles in the graph. For a triangleC in the graph
after Step 6, each vertex in C is of degree 3 by Lemma 15 and is chain-adjacent to a
degree-3 vertex not in C by Lemma 29.

Step 7 (Branching on Triangles) If there is a triangle C = v1v2v3, where we assume
without loss of generality that w(v1) ≥ max{w(v2), w(v3)} and v1 is chain-adjacent
to a degree-3 vertex u �= v2, v3, then branch on u with Branching Rule 1.

Lemma 43 Step 7 followed by applications of reduction rules creates a branching
vector covered by one of

[6δ3 − 3δ2, 7δ3 + δ2] = [4.872, 7.376] and

[6δ3 − 2δ2, 5δ3 + 2δ2] = [5.248, 5.752].

Proof We analyze the branching vector by considering the length of the chain between
v1 and u.

Case 1: v1 and u are adjacent. In the first branching of excluding u from the
independent set, all vertices C will be removed by applying R1–4 since w(v1) ≥
max{w(v2), w(v3)} and v2 and v3 will become unconfined vertices. By Corollary 36
(setting S′ = {v1, v2, v3, u} with k = 4), we know that the measure p decreases by at
least 4δ3 + 4δ<−1>

3 .
In the second branching of including u ∈ Su in the independent set, we will delete

N [u] at least. By Corollary 36 (setting S′ = N [u] with k = 6 − q2, where q2 is the
number of degree-2 neighbors of u), we know that the measure p decreases by at least
6δ3 − 2δ2. We get a branching vector

[8δ3 − 4δ2, 6δ3 − 2δ2].

Case 2: the chain between v1 and u is of length 2. We let w be the degree-2 vertex
in the chain. In the first branching of excluding u from the independent set, w will
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become a degree-1 vertex and then w and v1 will be deleted by applying R1–4. By
Corollary 36 (setting S′ = {v1, w, u} with k = 4), we know that the measure p
decreases by at least 2δ3 + δ2 + 4δ<−1>

3 = 6δ3 − 3δ2.
In the second branching of including u ∈ Su in the independent set, we will delete

N [u]. Furthermore, v2 and v3 will become unconfined vertices after deleting N [u]
and all the three vertices in C will be deleted by applying R1–4. Since there is no
4-cycle now, we know that {v1, v2, v3} ∩ N [u] = ∅. By Corollary 36 (setting S′ =
{v1, v2, v3} ∪ N [u] with k ≥ 4), we know that the measure p decreases by at least
4δ3 + 3δ2 + (3δ<−1>

3 + δ2) = 7δ3 + δ2. We get a branching vector

[6δ3 − 3δ2, 7δ3 + δ2].

Case 3: the chain between v1 and u is of length 3. We let w1 and w2 be the
two degree-2 vertices in the chain. In the first branching of excluding u from the
independent set,w1 andw2 will be removed by reducing degree-1 vertices, and v1 will
also be removed since it will become a degree-2 vertex in a triangle. By Corollary 36
(setting S′ = {v1, w1, w2, u} with k = 4), we know that the measure p decreases by
at least 2δ3 + 2δ2 + 4δ<−1>

3 = 6δ3 − 2δ2.
In the second branching of including u ∈ Su in the independent set, we will delete

N [u]. Furthermore, w1 and v1 will also be removed. By Corollary 36 (setting S′ =
{v1, w1} ∪ N [u] with k ≥ 4), we know that the measure p decreases by at least
2δ3 + 4δ2 + (3δ<−1>

3 + δ2) = 5δ3 + 2δ2. We get a branching vector

[6δ3 − 2δ2, 5δ3 + 2δ2].

Note that in a reduced graph, the length of each chain is at most 3. So the above three
cases cover all cases. Since 5δ3+2δ2 < 8δ3−4δ2, we know that [8δ3−4δ2, 6δ3−2δ2]
is covered by [6δ3 − 2δ2, 5δ3 + 2δ2]. ��

Next, we assume that the maximum degree of the graph is at most 3 and all cycles
in the graph have a length of at least 5. We still need to deal with some long cycles
that contain exactly three degree-3 vertices.

Step 8 (Branching onCycles Containing ThreeDegree-3Vertices) If there is a cycle C
containing exactly three degree-3 vertices {v1, v2, v3}, where we assume without loss
of generality that v1 is chain-adjacent to a degree-3 vertex u �= v2, v3, then branch
on u with Branching Rule 1.

Lemma 44 Step 8 followed by applications of reduction rules can create a branching
vector covered by one of

[6δ3 − 4δ2, 8δ3 − 2δ2] = [4.496, 7.248],
[6δ3 − 3δ2, 6δ3 − δ2] = [4.872, 5.624], and

[6δ3 − 2δ2, 6δ3 − 2δ2] = [5.248, 5.248].

Proof Let q2 denote the number of degree-2 vertices in N (u). We first consider the
branching of excluding u from the independent set, where we delete u from the graph.
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Let S = {u}. Recall that RS is the set of deleted vertices during applying R1–4 on
G − S. Let G−S be the graph obtained from G by removing S ∪ RS from G. We
distinguish two cases by considering whether v1 ∈ RS or not.

For the case that v1 /∈ RS , wewill have that v1 ∈ N (S∪RS) and v1 is left as a degree-
2 vertex inG−S since v1 and u are chain-adjacent. Furthermore, we can see that S∪RS

does not contain any vertex in the cycle C , otherwise all the vertices in C (including
v1) should be included in RS by applying R1–4. So the cycleC is left inG−S . First, by
Lemma 32, we have that p(G)− p(G−S) ≥ δ3 +q2δ2 +3δ<−1>

3 = 4δ3 + (q2 −3)δ2.
Second,we consider the cycleC in the remaining graphG−S . Now the cycleC contains
at most two degree-3 vertices (v1 becomes a degree-2 vertex). If it contains exactly two
degree-3 vertices, then by Lemma 26, we can further reduce the measure by at least
2δ3−δ2 by further applying reduction rules onG−S . IfC contains atmost one degree-3
vertex, then all the vertices in the cycle will be reduced by further applying reduction
rules. Thus, we can further reduce the measure by at least δ3 + 4δ2 > 2δ3 − δ2. In
total, the measure p will decrease by at least

6δ3 + (q2 − 4)δ2.

For the case that v1 ∈ RS , we apply Corollary 36 by letting S′ be the set containing
u, v1, all degree-2 vertices in N (u) and all vertices in the chain between u and v1,
and k = 4. Now S′ contains exactly 2 degree-3 vertices and q2 degree-2 vertices. We
know that the measure p decreases by at least

2δ3 + q2δ2 + 4δ<−1>
3 = 6δ3 + (q2 − 4)δ2.

So, in the first branching, we can always decrease the measure p by at least 6δ3 +
(q2 − 4)δ2.

Next, we analyze the second branching of including Su in the independent set,
where we will delete N [u] at least. We let S = N [Su]. We distinguish two cases by
considering whether v1 ∈ S ∪ RS or not.

First, we consider the case that v1 /∈ S ∪ RS . Since v1 /∈ S ∪ RS and S = N [Su],
we know that v1 is not adjacent to u, where q2 > 0. As in the analysis for the first
branching, we know that all vertices in the cycle C are left in the graph G−S , where v1
will become a degree-2 vertex inG−S . By Lemma 37,we know that p(G)− p(G−S) ≥
(4−q2)δ3+q2δ2+3δ<−1>

3 = 4δ3. By further reducing the cycleC inG−S , themeasure
will further decrease by at least 2δ3−δ2. In total, the measure will decrease by at least

6δ3 − δ2.

Second, we consider the case that v1 ∈ S∪ RS . Let S′ be the set of vertices in N [u]
and vertices in the chain between u and v1.

If u and v1 are not adjacent, then S′ contains 5 − q2 degree-3 vertices and at least
q2 degree-2 vertices, and there are k = 7 − q2 edges between S′ and V \S′, where
1 ≤ q2 ≤ 3. By applying Corollary 36 with S′ and k, we know that the measure will
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decrease by at least

(5 − q2)δ3 + q2δ2 + 4δ<−1>
3 ≥ 6δ3 − δ2.

If u and v1 are adjacent, then S′ contains 4− q2 degree-3 vertices and q2 degree-2
vertices, and there are k = 6 − q2 edges between S′ and V \S′, where 0 ≤ q2 ≤ 2.
Note that S′ = N [u] now. For this case, by applying Lemma 37 with S′ and k, we
know that the measure will decrease by at least

(4 − q2)δ3 + q2δ2 + f (q2),

where f (q2) = 4δ<−1>
3 if q2 = 2, f (q2) = 3δ<−1>

3 + 2δ2 if q2 = 1, and
f (q2) = 3δ<−1>

3 + δ2 + δ3 if q2 = 0.
Thus, in this step,we can always branchwith one of the following branching vectors

[6δ3 − 4δ2, 8δ3 − 2δ2] (q2 = 0),

[6δ3 − 3δ2, 6δ3 − δ2] (q2 = 1),

[6δ3 − 2δ2, 6δ3 − 2δ2] (q2 = 2), and

[6δ3 − δ2, 6δ3 − δ2] (q2 = 3).

The last case is covered by the second case. The lemma holds. ��
After this step, we can see that the graph has a maximum degree 3 and a minimum

degree 2. The length of any cycle in the graph is at least 5 and each cycle contains at
least four degree-3 vertices. Next, we are going to eliminate degree-3 vertices in the
graph according to the following order: first deal with degree-3 vertices with exactly
two degree-2 neighbors (Step 9); then deal with the connected components containing
both degree-3 vertices with three degree-2 neighbors and degree-3 vertices with at
most one degree-2 neighbors (Step 10); last, all degree-3 vertices in each connected
component are either having three degree-2 neighbors or having at most one degree-
2 neighbor, and we deal with these two kinds of connected components separately
(Steps 11 and 12).

Step 9 (Branching on Degree-3 Vertices with Two Degree-2 Neighbors) If there is
degree-3 vertex u having two degree-2 neighbors and one degree-3 neighbor v, then
branch on v with Branching Rule 1.

Lemma 45 Step 9 followed by applications of reduction rules creates a branching
vector covered by one of

[4δ3 − δ2, 8δ3 − δ2] = [3.624, 7.624],
[4δ3, 8δ3 − 4δ2] = [4, 6.496], and

[4δ3 + δ2, 6δ3] = [4.376, 6].

Proof Weuse q2 to denote the number of degree-2 vertices in N (v), where 0 ≤ q2 ≤ 2.
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In the first branching of excluding v from the independent set, we let S = {v}.
Recall that RS is the set of deleted vertices during applying R1–4 on G − S. We
distinguish two cases by considering whether u is in RS or not. If u ∈ RS , we apply
Corollary 36 with S′ being the set including u and v and all degree-2 neighbors of u
and v (note that after deleting u and v all the degree-2 neighbors of them will become
degree-1 vertices and will be deleted by applying R1–4). We know that the measure
p decreases by at least

2δ3 + (q2 + 2)δ2 + 4δ<−1>
3 = 6δ3 + (q2 − 2)δ2.

Otherwise, u is not in RS and then u ∈ N (S ∪ RS). Let G−S be the graph obtained
from G by removing S ∪ RS from G. For the worst case that RS = ∅, by Lemma 32,
we know that p(G) − p(G−S) ≥ δ3 + q2δ2 + 3δ<−1>

3 . Since u is left in G−S , we
know that the two degree-2 neighbors of u in G are also left in G−S . Thus, there is a
chain containing at least three degree-2 vertices (including u) in G−S , by Lemma 23,
we can further decrease the measure p by at least 2δ2 by applying reduction rules on
G−S . In total, the measure p decreases by at least

δ3 + q2δ2 + 3δ<−1>
3 + 2δ2 = 4δ3 + (q2 − 1)δ2.

Note that 6δ3 + (q2 − 2)δ2 ≥ 4δ3 + (q2 − 1)δ2. In this branching, we can always
reduce the measure p by at least 4δ3 + (q2 − 1)δ2.

In the second branching, v is included in the independent set and at least N [v] is
deleted. First, we consider the case that q2 = 0. We apply Lemma 38 with S′ = N [v]
and k = 6. The measure p decreases by at least 4δ3 + 3δ<−1>

3 + δ3 + 2δ2 = 8δ3 − δ2.
For the case that q2 = 1, we also apply Lemma 38 with S′ = N [v] and k = 5. The
measure p decreases by at least 3δ3 + δ2 + 5δ<−1>

3 = 8δ3 − 4δ2. For the case that
q2 = 2, we apply Corollary 36 with S′ = N [v] ∪ N [u] and k = 4. Now S′ contains
two degree-3 vertices and four degree-2 vertices. The measure p decreases by at least
2δ3 + 4δ2 + 4δ<−1>

3 = 6δ3.
Therefore, we can get the three claimed branching vectors. ��

Step 10 (Branching on Degree-3 Vertices of a Mixed Case) If a degree-3 vertex u
without degree-3 neighbors is chain-adjacent to a degree-3 vertex v with exactly two
degree-3 neighbors, then branch on v with Branching Rule 1.

Lemma 46 Step 10 followed by applications of reduction rules creates a branching
vector covered by

[4δ3, 8δ3 − 2δ2] = [4, 7.248].

Proof In the first branching of excluding v from the independent set, we let S = {v}.
Recall that RS is the set of deleted vertices during applying R1–4 on G − S. We
distinguish two cases by considering whether u is in RS or not. If u ∈ RS , we apply
Lemma 38 by letting S′ be the set of vertices N [u] and all vertices in the chain from
u to v (including v) and k = 4. Now S′ contains at most two degree-3 vertices and

123



1330 Algorithmica (2024) 86:1293–1334

satisfies the conditions in Lemma 38. We know that the measure p decreases by at
least

2δ3 + 3δ2 + 4δ<−1>
3 = 6δ3 − δ2.

Otherwise, u is not in RS and then u ∈ N (S ∪ RS). Let G−S be the graph obtained
fromG by removing S∪RS fromG. For the worst case that RS = ∅, by Lemma 32, we
know that p(G) − p(G−S) ≥ δ3 + 2δ<−1>

3 + δ3 = 4δ3 − 2δ2. Since u is left in G−S ,
we know that the two degree-2 neighbors of u in G are also left in G−S . Thus, there is
a chain containing at least three degree-2 vertices (including u) inG−S , by Lemma 23,
we can further decrease the measure p by at least 2δ2 by applying reduction rules on
G−S . In total, the measure p decreases by at least

4δ3 − 2δ2 + 2δ2 = 4δ3.

Note that 6δ3 − δ2 ≥ 4δ3. In this branching, we can always reduce the measure p by
at least 4δ3.

In the second branching, v is included in the independent set and at least N [v] is
deleted. We let S = N [v] and consider whether u ∈ S ∪ RS or not. If u ∈ S ∪ RS , we
apply Corollary 36 with S′ being the vertex set N [v] ∪ N [u] plus all the vertices in
the chain between u and v. Now S′ contains at least four degree-3 vertices and three
degree-2 vertices and k = 6. The measure p decreases by at least

4δ3 + 3δ2 + (3δ<−1>
3 + δ2) = 7δ3 + δ2.

If u /∈ S ∪ RS , then u ∈ N (S ∪ RS). We apply Lemma 38 by letting S′ = N [v] and
k = 5. Then p(G) − p(G−S) ≥ 3δ3 + δ2 + 5δ<−1>

3 = 8δ3 − 4δ2. Furthermore, u is
left in a chain of length at least four inG−S . by Lemma 23, we can further decrease the
measure p by at least 2δ2 by applying reduction rules on G−S . In total, the measure
p decreases by at least

8δ3 − 4δ2 + 2δ2 = 8δ3 − 2δ2.

Note that 7δ3 + δ2 ≥ 8δ3 − 2δ2. In this branching, we can always reduce the measure
p by at least 8δ3 − 2δ2. We get the claimed branching vector. ��
Lemma 47 Let G be the graph after Step 10. For any connected component H of G,
all degree-3 vertices in H either have no degree-3 neighbors or have at least two
degree-3 neighbors.

Proof First, the graph G has no degree-3 vertex with exactly one degree-3 neighbor
since Step 9 could not be applied now. If there is a degree-3 vertex u having no degree-3
neighbor and a degree-3 vertex v having at least two degree-3 neighbors in a connected
component H , then there is a path between u and v. We can always choose u and v

such that the path between u and v does not contain any degree-3 vertices, i.e., the
path is a chain. Thus u and v is chain-adjacent, which means the condition of Step 10
holds, a contradiction to the fact that Step 10 can not be applied now. ��
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Step 11 (Branching on Degree-3 Vertices With At Least Two Degree-3 Neighbors)
If there is a connected component H containing a degree-3 vertex with at least two
degree-3 neighbors, we let u be the vertex of the maximum weight in H and let v be a
degree-3 neighbor of u, and branch on v with Branching Rule 1.

Note that the vertex u of the maximum weight in H can not be a degree-2 vertex,
otherwise R5 can be applied on the degree-2 vertex. So u is a degree-3 vertex. By
Lemma 47, we know that all degree-3 vertices in H must have at least two degree-3
neighbors, and then we can find a degree-3 neighbor v of u, where v also has at least
two degree-3 neighbors.

Lemma 48 Step 11 followed by applications of reduction rules creates a branching
vector covered by one of

[4δ3 − δ2, 8δ3 − δ2] = [3.624, 7.624], and

[4δ3, 8δ3 − 4δ2] = [4, 6.496].

Proof Let q2 be the number of degree-2 neighbors of v. Then q2 = 0 or 1.
In the first branching of excluding v from the independent set, we let S = {v}.

We distinguish two cases by considering whether u is in RS or not. If u ∈ RS , we
apply Corollary 36 by letting S′ = {u, v} and k = 4. The measure p decreases by at
least 2δ3 + 4δ<−1>

3 = 6δ3 − 4δ2. If u /∈ RS , by Lemma 32, the measure p decreases
by δ3 + (3 − q2)δ

<−1>
3 + q2δ3 = 4δ3 − (3 − q2)δ2. Furthermore, vertex u is left as

a degree-2 vertex. Since u has the maximum weight in H , we know that R5 can be
applied on u to further decrease the measure p by 2δ2. Thus, in this branching, the
measure p decreases by at least min{4δ3 − (1− q2)δ2, 6δ3 − 4δ2} = 4δ3 − (1− q2)δ2
for q2 = 0 or 1.

In the second branching, v is included in the independent set and at least N [v] is
deleted. For the case that q2 = 0, we apply Lemma 38 by letting S′ = N [v] and k = 6.
The measure p decreases by at least 4δ3 + δ3 + 2δ2 + 3δ<−1>

3 = 8δ3 − δ2. For the
case that q2 = 1, we apply Lemma 38 by letting S′ = N [v] and k = 5. The measure
p decreases by at least 3δ3 + δ2 + 5δ<−1>

3 = 8δ3 − 4δ2. So, we get the two claimed
branching vectors. ��

By Lemma 47, we know that after Step 12, no pair of degree-3 vertices are adjacent.

Step 12 (Branching on Other Degree-3 Vertices) Pick up an arbitrary degree-3 vertex
v and branch on it with Branching Rule 1.

Lemma 49 Step 12 followed by applications of reduction rules creates a branching
vector covered by

[4δ3 + 6δ2, 4δ3 + 6δ2] = [6.256, 6.256].

Proof Let {u1, u2, u3} be the three degree-3 chain-neighbors of v. By Lemma 28 we
know that the three degree-3 vertices are different.
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In the first branch S = {v} and in the second branch S = Sv ⊇ N [v]. Recall
that we use RS to denote the set of deleted vertices during applying R1–4 on G − S
and let G−S = G − (S ∪ RS). In each branch, all vertices in N [v] will be deleted
in G−S . If at least one vertex in {u1, u2, u3}, say u1 is deleted in G−S , then we
apply Corollary 36 by letting S′ being the vertex set N [v] ∪ N [u1] together with all
degree-2 vertices in the chain between v and u. Then S′ contains at least two degree-3
vertices and five degree-2 vertices, and k = 4. The measure p decreases by at least∑

u∈S′ δd(u) + 4δ<−1>
3 = 2δ3 + 5δ2 + 4δ<−1>

3 = 6δ3 + δ2. If all the three vertices
in {u1, u2, u3} are left in G−S , then all of them will become degree-2 vertices in
G−S . For this case, we apply Corollary 36 by letting S′ = N [v] and k = 3. The
measure p decreases by at least

∑
u∈S′ δd(u) + 3δ<−1>

3 = 4δ3. However, each vertex
in {u1, u2, u3} has two degree-2 neighbors inG−S . InG−S , reduction rules on degree-
2 vertices can be applied for at least three times to reduce chains of length ≥ 4 (even
when two vertices in {u1, u2, u3} are in the same chain and have a common degree-2
neighbor). So the measure p can be further reduced by 6δ2. In total, the measure p
will decrease by at least 4δ3+6δ2. Note that 4δ3+6δ2 < 6δ3+δ2. We get the claimed
branching vector. ��

It is easy to see that above steps cover all the cases. Among all the branching vectors,
the bottleneck ones are [4δ3, 8δ3 − 4δ2] = [4, 6.496] in Lemma 45, [4δ3 + δ2, 6δ3] =
[4.376, 6] in Lemma 45, and [4δ3, 8δ3 − 4δ2] = [4, 6.496] in Lemma 48. All of them
have a branching factor of 1.14427. So we get that

Theorem 50 Maximum Weighted Independent Set canbe solved in O∗(1.1443p)
time and polynomial space.

By Lemma 1 and Theorem 50, we get that

Corollary 51 Maximum Weighted Independent Set can be solved in O∗
(1.1443(0.624x−0.872)n′

) time and polynomial space, where n′ is the number of ver-
tices of degree at least 2 and x is the average degree of these vertices in the graph.

Let x = 3 in Lemma 1, we get that p ≤ n′ ≤ n. Since our reduction rules can
directly remove degree-0 and degree-1 vertices from the graph without increasing the
degree of the other vertices, we have that

Theorem 52 Maximum Weighted Independent Set in graphs with the average
degree at most three can be solved in O∗(1.1443n) time and polynomial space.

6 Conclusion

In this paper, we first design a series of reduction rules for Maximum Weighted

Independent Set by deeply studying structural properties. Then based on these
reduction rules, we design an exact algorithm for Maximum Weighted Inde-

pendent Set. With the help of the measure-and-conquer technique, we analyze a
nontrivial running time bound for the algorithm, which has a good performance on
sparse graphs. For graphs with minimum degree at least 2 and average degree at most
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3.68, our algorithm is faster then the previous algorithm for degree-4 graphs. For
graphs with an average degree at most three, our running time bound is O∗(1.1443n),
also improving previous running time bounds for the problem in cubic graphs using
polynomial space. Although the improvement is incremental, such improvements on
classic problems have became harder and harder. Any further improvement may need
new observations on the structural properties or new techniques to design and analyze
the algorithms. For unweighted Maximum Independent Set on degree-3 graphs,
the running time bound was improved for several times [4, 5, 7, 15, 23, 28, 29, 32].
Each improvement is small, but each improvement reveals new properties and new
analysis. Our algorithm is analyzed by the measure-and-conquer technique and the
framework of the analysis may also provide a way to analyze other related problems.
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