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Abstract
Over the last two decades, a significant line of work in theoretical algorithms has made
progress in solving linear systems of the formLx = b, whereL is the Laplacianmatrix
of a weighted graphwith weightsw(i, j) > 0 on the edges. The solution x of the linear
system can be interpreted as the potentials of an electrical flow in which the resistance
on edge (i, j) is 1/w(i, j). Kelner et al. (in: Proceedings of the 45th Annual ACM
Symposium on the Theory of Computing, pp 911–920, 2013. https://doi.org/10.1145/
2488608.2488724) give a combinatorial, near-linear time algorithm that maintains the
Kirchoff Current Law, and gradually enforces the Kirchoff Potential Law by updating
flows around cycles (cycle toggling). In this paper, we consider a dual version of
the algorithm that maintains the Kirchoff Potential Law, and gradually enforces the
Kirchoff Current Law by cut toggling: each iteration updates all potentials on one side
of a fundamental cut of a spanning tree by the same amount. We prove that this dual
algorithm also runs in a near-linear number of iterations. We show, however, that if we
abstract cut toggling as a natural data structure problem, this problem can be reduced
to the online vector–matrix-vector problem, which has been conjectured to be difficult
for dynamic algorithms (Henzinger et al., in: Proceedings of the 47th Annual ACM
Symposium on the Theory of Computing, pp 21–30, 2015. https://doi.org/10.1145/
2746539.2746609). The conjecture implies that the data structure does not have an
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O(n1−ε) time algorithm for any ε > 0, and thus a straightforward implementation of
the cut-toggling algorithm requires essentially linear time per iteration. To circumvent
the lower bound, we batch update steps, and perform them simultaneously instead of
sequentially. An appropriate choice of batching leads to an ˜O(m1.5) time cut-toggling
algorithm for solving Laplacian systems. Furthermore, we show that if we sparsify the
graph and call our algorithm recursively on the Laplacian system implied by batching
and sparsifying, we can reduce the running time to O(m1+ε) for any ε > 0. Thus, the
dual cut-toggling algorithm can achieve (almost) the same running time as its primal
cycle-toggling counterpart.

Keywords Laplacian solver · Electrical flow · Data structure

1 Introduction

Over the last two decades, a significant line of work in theoretical algorithms has
made progress in solving linear systems of the form Lx = b, where L is the Laplacian
matrix of a weighted graph with weights w(i, j) > 0 on the edges. Starting with
the work of Spielman and Teng [1], researchers have devised a number of algorithms
that run in near-linear time in the number of edges of the graph (corresponding to
the number of non-zeros in the matrix L). The solution x of the linear system can be
interpreted as the potentials of an electrical flow in which the resistance of each edge
is r(i, j) = 1/w(i, j), and the current supplied to each node i is b(i). There have been
many nice algorithmic ideas introduced using this interpretation of the linear system,
as well as many applications of the fast algorithms for solving this system to other
flow problems, such as the maximum flow problem [2–6].

Since the initial work of Spielman and Teng, a number of different near-linear time
algorithms have been proposed. In this paper, we focus on a particular simple, combi-
natorial algorithm by Kelner et al. [7], hereafter referred to as the KOSZ algorithm; this
algorithm has been the subject of several implementation studies [8–11]. The KOSZ
algorithm uses the idea of an electrical flow in solving the linear system Lx = b.
An electrical flow f is one that obeys the flow conservation constraints at each node
i , saying that the net flow out of i is b(i) (sometimes known in this context as the
Kirchoff Current Law, or KCL), and Ohm’s law, which says that there exists a vector
x such that the flow from i to j , f (i, j), equals (x(i) − x( j))/r(i, j). There exists
a flow f that satisfies these two properties, and the corresponding potential vector x
solves Lx = b. Ohm’s Law is known to be equivalent to the Kirchoff Potential Law
(KPL), which says that the flow f satisfies the property that around any directed cycle
C ,
∑

(i, j)∈C r(i, j) f (i, j) = 0. Given KPL, potentials satisfying Ohm’s law can be
constructed by picking any spanning tree T rooted at a vertex r , setting x(r) to 0, and
x(k) to the sum of f (i, j)r(i, j) on the path in T from k to r ; these potentials are
known as tree-induced potentials.

The KOSZ algorithm starts by picking a spanning tree T ; for the running time of the
algorithm, it is important that the tree has low stretch; its definition is otherwise not
crucial to the description of the algorithm. The algorithm starts by constructing a flow
f that satisfies flow conservation using only the edges in T . For a near-linear number
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of iterations, the algorithm picks at random a non-tree edge (i, j) and considers the
fundamental cycle C closed by adding (i, j) to T ; it then alters the flow f along
C to satisfy KPL (and such that KCL continues to be satisfied). By picking (i, j)
with the appropriate probability, Kelner et al. show that the energy of the resulting
flow decreases by a factor 1 − 1

τ
in expectation, where τ is a parameter related to the

stretch. The algorithm then returns the tree-induced potentials x associated with T and
the flow f. Kelner et al. [7] show that the resulting potentials are close to the potentials
of the associated electrical flow for the graph. The KOSZ algorithm has the pleasing
properties that it is easy to understand both the algorithm and the analysis, and it is
also close in spirit to known network flow algorithms; in particular, it resembles the
primal network simplex algorithm for the minimum-cost flow problem.

The primal network simplex algorithm for the minimum-cost flow problem has a
natural dual algorithm in the dual network simplex algorithm, in which node potentials
are altered on one side of a fundamental cut of a tree (the cut induced by removing an
edge in the tree). Similarly, polynomial-time cycle-canceling algorithms forminimum-
cost flow (e.g. Goldberg and Tarjan [12]) have natural dual analogs of polynomial-
time cut-cancelling algorithms (e.g. Ervolina and McCormick [13]). We refer to the
first type of algorithm as a cycle-toggling algorithm, and the dual analog as a cut-
toggling algorithm. Thus, the KOSZ algorithm is a cycle-toggling algorithm for solving
Laplacian linear systems. However, no corresponding cut-toggling algorithm exists in
the literature, leading immediately to the following question:

Does there exist a cut-toggling algorithm for solving Laplacian linear
systems/computing near-minimum energy flows, and how efficiently can it be

implemented?

1.1 Our Contributions

We propose a dual analog of the KOSZ algorithm which performs cut-toggling rather
than cycle-toggling.We refer to this algorithm asDual KOSZ, andwe show it converges
in a nearly-linear number of cut-toggling steps. Thus, Dual KOSZ would be a nearly-
linear time algorithm if each cut-toggling operation could be implemented to run in
polylogarithmic time.

Our next contribution is to show that the natural data structure abstraction of this cut-
toggling process can be reduced to the online matrix–vector (OMv) problem, which
has been conjectured to be hard [14]. This implies that it is unlikely for there to be a
black-box data structure that implements a single cut-toggling operation in sublinear
time, unlike cycle toggling.

This result initially seems to present an insurmountable difficulty to obtaining a
nearly-linear time algorithm. However, we show that we can exploit the offline nature
of the cut toggles, obtaining an exact data structure for computing a sequence of K cut-
toggles in O(K

√
m) time total, which yields an algorithm that runs in Õ(m1.5) time

overall. Interestingly, Boman, Deweese, and Gilbert [9] explored an implementation
of KOSZ that also batched its cycle-toggling updates by looking for collections of
edge-disjoint cycles.
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We further show that by incorporating sparsification and its associated approxima-
tions, we can reduce the running time to almost-linear, which means the cut toggling
algorithm can still be implemented in almost-linear time.

Our result demonstrates that graph optimization algorithms and dynamic graph
data structures can—and sometimes need to—interact in more intricate fashion than
optimization in the outer loop and black-box data structure in the inner loop.

The remainder of the paper is structured as follows. In Sect. 1.2, we give a high-
level overview of Dual KOSZ and our implementation ideas to obtain almost linear
time. Section2 describes some notation and concepts we will use. Section3 gives the
Dual KOSZ in detail and shows that it can be implemented in a near-linear number
of cut-toggling iterations, with each iteration running in linear time. In Sect. 4, we
abstract the problem of toggling a cut to a data structure problem, and show that given
the OMv conjecture of [14], we cannot implement the operations needed in sublinear
time. In Sect. 5, we show how to overcome this difficulty by batching the cut-toggle
operations, and further speed up the algorithm through sparsification and recursion.

1.2 Technical Overview

As the KOSZ algorithm maintains a flow f and implicitly tree-induced potentials x,
its natural dual is to maintain potentials x, which implicitly define a flow f.1 The
Dual KOSZ algorithm starts by choosing a low-stretch spanning tree T . It maintains
a set of potentials x (initially zero), and the corresponding (infeasible) flow f implied
by Ohm’s Law. In each iteration, we sample a fundamental cut S of the tree T and
perform a cut-toggling update so that the net flow leaving S is

∑

i∈S b(i), as required
in every feasible flow. Following arguments dual to those made in Kelner et al. we
show that this algorithm also performs a near-linear number of iterations in order to
find a near-optimal set of potentials x and flow f.

Theorem 1 Let τ be the total stretch of T . After K = τ ln( τ
ε
) iterations, Dual KOSZ

returns xK ∈ R
V and fK ∈ R

�E such that E
∥

∥x∗ − xK
∥

∥

2
L ≤ ε

τ
‖x∗‖2L and E[E(fK )] ≤

(1 + ε)E(f∗), for f∗ and x∗ optimal primal and dual solutions respectively.

Here ‖y‖L =
√

y�Ly, and E(f) is the energy of flow f.
However, unlike Kelner et al., we cannot show that each individual cut-toggling

update can be made to run in polylogarithmic time. If we abstract the desired cut-
toggling update step as a natural data structure problem, we show that such a data
structure cannot be implemented in O(n1−ε) time for any ε > 0 given a conjecture
about the online matrix–vector multiplication problem (OMv) made by Henzinger,
Krinninger, Nanongkai and Saranurak [14]. They have conjectured that this problem
does not have any algorithm that can carry out an online sequence of n Booleanmatrix–
vector multiplications in time O(n3−ε), and show that if the conjecture is false, then
various long-standing dynamic graph problems will have faster algorithms. We show
that a single Boolean matrix–vector multiply can be carried out as a sequence of O(n)

1 To make matters somewhat confusing, the Laplacian solver literature treats the space of potentials as
primal due to its origins in numerical analysis.
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operations of our desired data structure. Given the conjecture, then, we cannot imple-
ment the data structure operations in O(n1−ε) time. Thus there is not a straightforward
near-linear time version of the Dual KOSZ algorithm.2

In a bit more detail, the data structurewe define is given as input an undirected graph
with a spanning tree T , edge resistances and a supply b(v) and a potential value(v)

at every vertex v. The data structure supports two operations: 1) additively update the
value of all the vertices in a given subtree of T , and 2) query the value of the flow
induced by the potential values across any given fundamental cut of T . We show that
even if the data structure can only decide whether the value of the flow is non-zero
or not, it would refute the OMV conjecture. Therefore, we obtain a lower bound for
this data structure conditional on the OMv conjecture [14]. This even holds if all edge
resistances are 1 and all b(v) are 0.

Nevertheless, we circumvent this data structural lower bound by exploiting the fact
that the sequence of cuts to be updated can be sampled in advance and, thus, the
updates can be batched, circumventing the “online” (or “sequential”) requirement in
OMv. This is possible because both the spanning tree T and the probability distribution
over cuts of T are fixed at the beginning of the algorithm. More precisely, denote the
number of iterations of Dual KOSZ by K (which is ˜O(m)). Instead of sampling the
fundamental cuts one at a time, consider sampling the next l cuts that need to be
updated for some l 	 K . In each “block" of size l 	 K , we contract all the edges
of T that do not correspond to one of the l fundamental cuts to be updated. In this
way, we work with a contracted tree of size O(l) in each block (instead of the full
tree, which has size O(n)). This makes the updates faster. However, the price we pay
is that at the end of each block, we need to propagate the updates we made (which
were on the contracted tree), back to the entire tree. Overall, we show that each block
takes O(l2 +m) time. Since there are ˜O(ml ) blocks, the total runtime is ˜O(ml + m2

l ).

Choosing l = √
m thus gives a Õ(m1.5) time algorithm.

By augmenting the batching idea with sparsification and recursion, one can further
improve the running time of Dual KOSZ to ˜O(m1+δ) for any δ > 0. To do this, observe
that l cut-toggling updates effectively break the spanning tree into l + 1 components.
After contracting the components to get a graph H with l+1 vertices, we can show that
solving an appropriate Laplacian system on H gives a single update step that makes
at least as much progress as the sequence of l updates performed by the straightfor-
ward unbatched algorithm. A natural approach is to solve this Laplacian system by
recursively calling the algorithm. However, this by itself does not give an improved
running time. Instead, we first spectrally sparsify H and then call the algorithm recur-
sively to solve the sparsified Laplacian system. Here we use a combinatorial spectral
sparsifier [16] because it does not require calling Laplacian solvers as a subroutine
(e.g. [17]). By carefully analyzing the error incurred by sparsification, we are able to
show that the update step using sparsification makes about as much progress as the
update step without sparsification. The total running time of the recursive algorithm
is then obtained by bounding the time taken at each layer of the recursion tree.

2 In a personal communication, Sherman [15] said he also had worked out a dual version of the KOSZ
algorithm, but was unable to solve the data structure problem for the updates to potentials. Our result
explains why this might be difficult to do.
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Theorem 2 For any δ ∈ (0, 1) and ε > 0, Dual KOSZ with batching, sparsification,

and recursion finds x with E ‖x∗ − x‖2L ≤ ε ‖x∗‖2L in O(m1+δ(log n)
8
δ (log 1

ε
)
1
δ ) time.

2 Notation and Problem Statement

In this section, we give some notation and define concepts wewill use in our algorithm.
We are given as input an undirected graph G = (V , E), with positive resistances
r ∈ R

E+. Although our graph is undirected, it will be helpful for us notationally to
direct the edges. To that end, fix an arbitrary orientation of the edges, and denote the
set of directed edges by �E .

In addition to G and the resistances r, we are given a supply vector b ∈ R
V .

The Laplacian matrix ofG with respect to the resistances r is thematrixL ∈ R
V×V

defined by

L =
∑

i j∈E

1

r(i, j)
(ei − ej)(ei − ej)�,

where ei is the i th unit basis vector. We note then that x�Lx = ∑

(i, j)∈E 1
r(i, j) (x(i)−

x( j))2 for any vector x.
Our goal is to solve the system of linear equations Lx = b for x. However, we will

not be able to solve Lx = b exactly, so we will solve it approximately instead. It is
usual to measure the quality of a solution x in terms of the matrix norm induced by L.
In other words, if x is the vector of potentials returned by our algorithm and x∗ is an
actual solution to Lx∗ = b, then the error of our solution x is

∥

∥x∗ − x
∥

∥

2
L := (

x∗ − x
)�L

(

x∗ − x
)

.

Hence, our objective is to find x ∈ R
V that minimizes ‖x∗ − x‖2L. A precise statement

of this is given below.

Goal: Given ε > 0, find potentials x ∈ R
V that satisfy ‖x∗ − x‖2L ≤ ε ‖x∗‖2L.

Of course, the algorithm does not know the actual solution x∗. The place where x∗
appears is in the analysis.

Equations of the formLx = b, whereL is the Laplacianmatrix of a graph, are called
Laplacian systems, and are found in a wide variety of applications in computer science
and other fields. When interpreted as an optimization problem, solving a Laplacian
linear system has the following nice interpretation: it is the dual of the problem of
finding an electrical flow. The primal problem below is that of finding an electrical
flow; here A is the vertex-arc incidence matrix of (V , �E). The optimal solution to the
primal is called the electrical flow in G defined by the resistances r. The dual problem
is equivalent to solving Lx = b; this fact can be seen by setting the gradient of the
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dual objective to equal 0 since the dual is concave.

(P) min
1

2

∑

(i, j)∈ �E
r(i, j) f (i, j)2 (D) max b�x − 1

2
x�Lx

s.t. Af = b s.t. x ∈ R
V unconstrained

Let E(f) denote the primal objective and B(x) denote the dual objective. The primal
objective is sometimes referred to as the energy of the electrical flow f. Also, let f∗
denote the optimal primal solution and let x∗ denote an optimal dual solution. Note
that there are infinitely many dual solutions, because the dual objective is invariant
under adding a constant to every component of x. By strong duality (note that Slater’s
condition holds), E(f∗) = B(x∗). Moreover, the KKT conditions give a primal-dual
characterization of optimality.

Fact 1 (KKT Conditions for Electrical Flow) Consider f ∈ R
�E and x ∈ R

V . Then
f is optimal for the primal and x is optimal for the dual if and only if the following
conditions hold:

1. f is a feasible b-flow;
2. (Ohm’s Law) f (i, j) = x(i)−x( j)

r(i, j) for all (i, j) ∈ �E.
Thus solving Lx = b and finding the electrical b-flow in G are equivalent: Given a
solution x to Lx = b, we can calculate the electrical flow f using f (i, j) = x(i)−x( j)

r(i, j) .
On the other hand, given the electrical flow f, we can recover corresponding potentials
x by setting x(v) = 0 for some arbitrary vertex v, and using the equation f (i, j) =
x(i)−x( j)
r(i, j) to solve for the potentials on every other vertex.
A b-flow satisfies Ohm’s Law if and only if it satisfies the Kirchoff Potential Law

(KPL): KPL states that for every directed cycle C ,
∑

(i, j)∈C f (i, j)r(i, j) = 0.
Both the Kelner et al. algorithm and our algorithm use a low-stretch spanning tree

T . Given resistances r, the stretch of a tree is defined as

stT (G) =
∑

(i, j)∈ �E
stT (i, j) =

∑

(i, j)∈ �E

1

r(i, j)

∑

(k,l)∈P(i, j)

r(k, l),

where P(i, j) is the unique path from i to j in T . We can find a spanning tree T with
stretch stT (G) = O(m log n log log n) in O(m log n log log n) time [18].

We use the notation1 to stand for the vector of all 1 s, and1X to be the characteristic
vector of a set X that has 1 s in the entries corresponding to the elements of X and 0s
elsewhere.

3 A Cut-Toggling Algorithm for Solving Laplacian Linear Systems

Wepresent a cut-toggling algorithm for computing an approximate solution toLx = b,
and also an approximate minimum-energy b-flow. The goal of this section is to show
that the cut-toggling algorithm converges in a near-linear number of iterations, and
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Algorithm 1 The KOSZ algorithm for solving Lx = b.
1: Compute a tree T with low stretch with respect to resistances r
2: Find flow f0 in T satisfying supplies b
3: Let x0 be tree-defined potentials for f0 with respect to tree T
4: for t ← 1 to K do
5: Pick an (i, j) ∈ E − T with probability Pi j
6: Update ft−1 to satisfy KPL on the fundamental cycle closed by (i, j)
7: Let ft be resulting flow
8: Let xt be tree-defined potentials for ft

9: end for
10: return fK , xK

that each iteration runs in linear time. Later in Sect. 5, we will show how to speed up
the algorithm to an almost-linear total running time. Since our algorithm is dual to the
cycle-toggling algorithm of Kelner et al. [7] (which we call KOSZ in this paper), we
will begin by describing the KOSZ algorithm.

The KOSZ algorithm works by maintaining a feasible b-flow f, and iteratively
updates f along cycles to satisfy Kirchkoff’s Potential Law on the cycle. It starts
by choosing a spanning tree T that has low stretch, and computes a b-flow f0 that uses
only edges in the tree T . Then for a number of iterations K that depends on the stretch
of the tree, it chooses a non-tree edge (i, j) ∈ E − T according to a probability dis-
tribution, and for the fundamental cycle closed by adding edge (i, j) to T , it modifies
the flow f so that Kirchoff’s Potential Law is satisfied on the cycle. The probability
Pi j that edge (i, j) gets chosen is proportional to the total resistance around the cycle
closed by (i, j) divided by r(i, j). Given the tree T with root r and the current flow
ft in iteration t , there is a standard way to define a set of potentials xt (called the tree-
induced or tree-defined potentials): set x(r) to 0, and x(k) to the sum of f (i, j)r(i, j)
on the path in T from k to r . We summarize KOSZ in Algorithm 1.

Our algorithm, which we will call Dual KOSZ, works by maintaining a set of poten-
tials x. It iteratively samples cuts in the graph, updating potentials on one side of the
cut to satisfy flow conservation across that cut. Following KOSZ, we choose a spanning
tree T of low stretch. Then for a number of iterations K that depends on the stretch
of tree T , we repeatedly sample a fundamental cut from the spanning tree (i.e. a cut
induced by removing one of the tree edges). We update all of the potentials on one
side of the cut by an amount � so that the amount of flow crossing the cut via Ohm’s
Law is what is required by the supply vector. We summarize Dual KOSZ in Algorithm
2. The main result of this section is a bound on the iteration complexity of Dual KOSZ.

Theorem 1 Let τ be the total stretch of T . After K = τ ln( τ
ε
) iterations, Dual KOSZ

returns xK ∈ R
V and fK ∈ R

�E such that E
∥

∥x∗ − xK
∥

∥

2
L ≤ ε

τ
‖x∗‖2L and E[E(fK )] ≤

(1 + ε)E(f∗), for f∗ and x∗ optimal primal and dual solutions respectively.

Nextwegive the algorithm in somewhatmoredetail. Let R(C)=(
∑

(k,l)∈δ(C)
1

r(k,l) )
−1

for C ⊂ V , where δ(C) is the set of edges with exactly one endpoint in C . Note that
R(C) has units of resistance. For every tree edge (i, j), let C(i, j) be the set of ver-
tices on one side of the fundamental cut defined by (i, j), such that i ∈ C(i, j) and
j /∈ C(i, j). We set up a probability distribution Pi j on edges (i, j) in the spanning
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Algorithm 2 Algorithm Dual KOSZ for solving Lx = b.
1: Compute a spanning tree T with low stretch with respect to resistances r
2: Set x0(i) = 0 for all i ∈ V
3: for t ← 1 to K do
4: Pick edge (i, j) ∈ T with probability Pi j ∝ r(i, j)

R(C(i, j) and let C = C(i, j)

5: �t ← (b(C) − f t (C)) · R(C)

6: xt+1(v) ←
{

xt (v) + �t , ifv ∈ C,

xt (v), ifv /∈ C .

7: end for
8: Let fK be the tree-defined flow with respect to xK and T
9: return xK , fK

tree T , where Pi j ∝ r(i, j)
R(C(i, j)) . We initialize potentials x0(i) to 0 for all nodes i ∈ V .

In each iteration, we sample edge (i, j) ∈ T according to the probabilities Pi j . Let
b(C) = b�1C be the total supply of the nodes in C . Note that b(C) is also the amount
of flow that should be flowing out of C in any feasible b-flow.

Let f t (C) be the total amount of flow going out of C in the flow induced by xt .
That is,

f t (C) =
∑

i j∈E
i∈C, j /∈C

xt (i) − xt ( j)

r(i, j)
.

Note that f t (C) can be positive or negative. In any feasible b-flow, the amount of
flow leaving C should be equal to b�1C = b(C). Hence, we define �t = (b(C) −
f t (C)) · R(C).Observe that�t is precisely the quantity by which we need to increase
the potentials of every node in C so that flow conservation is satisfied on δ(C). We
then update the potentials, so that

pt+1(v) =
{

pt (v) + �t , ifv ∈ C,

pt (v), ifv /∈ C .

After K iterations, we return the final potentials xK . The last step is to convert xK to a

feasible flow by taking a tree-defined flow with respect to T : f K (i, j) = xK (i)−xK ( j)
r(i, j)

on all non-tree edges, and fK routes the unique flow on T to make fK a feasible b-flow.

3.1 Analysis ofDual KOSZ

Recall that E(f) = 1
2

∑

e∈E f (e)2 and B(x) = bT x − 1
2x

TLx. By convex duality,
we have B(x) ≤ E(f) for any x ∈ R

V and b-flow f. Moreover, x maximizes B(x) if
and only if Lx = b. (See e.g. [19, Lemma 8.9]). Thus solving the Laplacian system
Lx = b is equivalent to finding a vector of potentials thatmaximizes the dual objective.
In what follows, we present the lemmas that form the bulk of the analysis. Their proofs
are deferred to the “Appendix”. These lemmas (and their proofs) are similar to their
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counterparts in Kelner et al. [7], because everything that appears here is dual to what
appears there.

First, we show that each iteration of the algorithm increases B(x).

Lemma 1 Let x ∈ R
V be a vector of potentials and let C ⊂ V . Let x′ be the potentials

obtained from x as in the algorithm (that is, by adding � to the potential of every
vertex in C so that flow conservation is satisfied across δ(C)). Then

B(x′) − B(x) = �2

2R(C)
.

The second ingredient in the analysis is to introduce an upper bound on how large
the potential bound B(x) can become. This will allow us to bound the number of
iterations the algorithm takes.

Definition 1 (Gap) Let f be a feasible b-flow and let x be any vertex potentials. Define

gap(f, x) := E(f) − B(x) = 1

2

∑

e∈E
r(e) f (e)2 −

(

b�x − 1

2
x�Lx

)

.

This same notion of a gap was introduced in the analysis of the Kelner et al.
algorithm, and was also used to bound the number of iterations of the algorithm.

The electrical flow f∗ minimizesE(f)over allb-flows f, and the correspondingvertex
potentials x∗ maximize B(x∗) over all vertex potentials x. Moreover, E(f∗) = B(x∗).
Therefore, for any feasible flow f, gap(f, x) is an upper bound on optimality:

gap(f, x) ≥ B(x∗) − B(x).

The lemma below gives us another way to write gap(f, x), and will be useful to us
later. This relation is shown in Kelner et al. [7, Lemma 4.4].

Lemma 2 We have gap(f, x) = 1
2

∑

(i, j)∈ �E r(i, j)
(

f (i, j) − x(i)−x( j)
r(i, j)

)2
.

The analysis of Kelner et al. [7] relies on measuring progress in terms of the above-
defined duality gap between primal flow energy and dual potential bound. The high-
level idea of the analysis is that one can show that the duality gap decreases by a
constant factor each iteration, which implies a linear convergence rate. In the analysis
of their algorithm, they maintain a feasible b-flow f at each iteration, and measure
gap(f, x) against corresponding tree-defined potentials x.

One difference between their algorithmand ours is thatwe do notmaintain a feasible
b-flow at each iteration. However, for gap(f, x) to be a valid bound on distance to
optimality, we need f to be a feasible b-flow. To this end, we introduce the definition
of “tree-defined flow” below.

Definition 2 (Tree-defined flow) Let T be a spanning tree, x ∈ R
V vertex potentials,

and b ∈ R
V satisfying 1�b = 0 be a supply vector. The tree-defined flow with
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respect to T , x and b is the flow fT ,x defined by

fT ,x(i, j) = x(i) − x( j)

r(i, j)
if(i, j) /∈ T ,

and for (i, j) ∈ T , fT ,x(i, j) is the unique value such that the resulting fT ,x is a
feasible b-flow. That is, for (i, j) ∈ T , if C = C(i, j) is the fundamental cut defined
by (i, j) and b(C) = b�1C is the amount of flow that should be flowing out of C in
a feasible b-flow, then

fT ,x(i, j) = b(C) −
∑

k∈C, l /∈C
kl∈E−i j

fT ,x(k, l) = b(C) −
∑

k∈C, l /∈C
kl∈E−i j

x(k) − x(l)

r(k, l)
.

In other words, fT ,x is a potential-defined flow outside of the tree T , and routes the
unique flow on T to make it a feasible b-flow.

The below lemma expresses gap(fT ,x, x) in a nice way.

Lemma 3 Let T be a spanning tree, x vertex potentials, and b a supply vector. Let fT ,x
be the associated tree-defined flow. Then

gap(fT ,x, x) = 1

2

∑

(i, j)∈T
r(i, j) · �(C(i, j))2

R(C(i, j))2
.

Suppose we have a probability distribution (Pi j : (i, j) ∈ T ) on the edges in T . If
the algorithm samples an edge (i, j) ∈ T from this distribution, then by Lemma 1 the
expected increase in the dual objective is

E[B(x′)] − B(x) = 1

2

∑

(i, j)∈T
Pi j · �(C(i, j))2/R(C(i, j)).

We want to set the Pi j to cancel terms appropriately so that the right-hand side is a
multiple of the gap. Looking at Lemma 3, we see that an appropriate choice is to set

Pi j := 1

τ
· r(i, j)

R(C(i, j))
,

where τ := ∑

(i, j)∈T
r(i, j)

R(C(i, j)) is the normalizing constant. For this choice of proba-
bilities,

E[B(x′)] − B(x) = 1

2τ

∑

(i, j)∈T
r(i, j) · �(C(i, j))2

R(C(i, j))2
= 1

τ
gap(fT ,x, x),

where fT ,x is the tree-defined flow associated with potentials x. As a consequence, we
have:
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Lemma 4 If each iteration of the algorithm samples an edge (i, j) ∈ T according to
the probabilities Pi j = 1

τ
· r(i, j)
R(C(i, j)) , then we have

B(x∗) − E[B(xt+1)] ≤
(

1 − 1

τ

)

(B(x∗) − B(xt )
)

.

Corollary 1 After K = τ ln( 1
ε
) iterations, B(x∗) − E[B(xK )] ≤ ε · B(x∗).

We now use the previous lemmas to bound the number of iterations Dual KOSZ
takes. Lemma 4 shows that the quantity B(x∗) − B(xt ) decreases multiplicatively by
(1 − 1

τ
) each iteration. Thus, a smaller value of τ gives faster progress. Moreover, it

is not difficult to show that τ = stT (G, r) (see Lemma 12 in the “Appendix”), which
is why T is chosen to be a low-stretch spanning tree.

We also need to argue that rounding xK to fK via a tree-defined flow preserves
approximate optimality. One can show that for any distribution over x such that
Ex[B(x)] ≥ (1− ε

τ
)B(x∗), we haveEx[E(fT ,x)] ≤ (1+ε)E(f∗). Combining everything

together, we conclude:

Theorem 1 Let τ be the total stretch of T . After K = τ ln( τ
ε
) iterations, Dual KOSZ

returns xK ∈ R
V and fK ∈ R

�E such that E
∥

∥x∗ − xK
∥

∥

2
L ≤ ε

τ
‖x∗‖2L and E[E(fK )] ≤

(1 + ε)E(f∗), for f∗ and x∗ optimal primal and dual solutions respectively.

We end this section with a naïve bound on the running time of Dual KOSZ.

Lemma 5 Dual KOSZ can be implemented to run in ˜O(mn log 1
ε
) time.

Proof We can find a spanning tree T with total stretch τ = O(m log n log log n) in
O(m log n log log n) time [18].

For concreteness, fix an arbitrary vertex to be the root of T , and direct all edges in
T towards the root. The set of fundamental cuts we consider will be the vertex sets of
subtrees of T .

To compute b(C) for these n − 1 fundamental cuts C , we can work our way from
the leaves up to the root. If C = {v} is a leaf of T , then b(C) = b(v). Otherwise, C
is a subtree rooted at v, and b(C) = b(v) + ∑

C ′ b(C ′), where the sum is over the
subtrees of C . Hence we can compute b(C) for all fundamental cuts C in O(n) time.

To compute R(C) for the fundamental cuts C , we can maintain n − 1 variables,
one for each fundamental cut. The variable corresponding to cut C will represent
R(C)−1 = ∑

e∈δ(C)
1

r(e) , and the variables are initialized to 0. We then iterate through

all the edges in the graph, and for each such edge e, add 1
r(e) to the value of each variable

that represents a cut C such that e ∈ δ(C). Although this naive implementation takes
O(mn) time in theworst-case, it is possible to improve this running time to O(m log n)

using link-cut trees [20]. One can also achieve this running time using the same data
structure as the one used in [7].

The last part of the running time is the time it takes to run a single iteration of
the algorithm. In each iteration of the algorithm, we need to compute � = (b(C) −
f (C)) · R(C), where C is the fundamental cut selected at that iteration. In the above
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two paragraphs, we described how to precompute the values of b(C) and R(C) for
every fundamental cut C ; note that these values are fixed at the beginning and do not
change during the course of the algorithm. Hence, it remains to compute f (C). One
way to compute f (C) is to simply iterate over all the edges in δ(C), summing each
edge’s contribution to f (C). This takes time proportional to |δ(C)|, which could be
O(m) in the worst case. We can get this down to O(n) per iteration by maintaining
the values of f (C) for every fundamental cut C , and updating these values each time
the algorithm updates potentials. Since there are n − 1 cuts, to do this in O(n) time
requires us to be able to update f (C) for a single cut in O(1) time. To do this, we can
precompute an (n − 1) × (n − 1) table with a row/column for each fundamental cut,
where the (C1,C2) entry is the amount by which the flow out of C2 increases if we
add 1 to the potential of every node in C1. Let H(C1,C2) denote this value. With this
table, updating the value of f (C) after a potential update step essentially reduces to a
single table lookup, which takes O(1) time.

Finally, note that one can construct the H(C1,C2) table in O(n2) time using results
from [21]. In the language of Definitions 5.3 and 5.5 in that paper, we are trying to
compute C(v↓, w↓) for all vertices v,w in the tree, where the edge weights are the
reciprocals of the resistances. At the bottom of page 11, it states that the n2 values
C(v,w↓) can be computed in O(n2) time. At the top of Page 12, it then says that we
get the values of C(v↓, w↓) using n treefix sums. (Each treefix sum is the procedure
described in Lemma 5.8, and takes O(n) time.))

To summarize, we can run each iteration of the algorithm in O(m) time, which
can be reduced to O(n) time if we precompute the H(C1,C2) table, which incurs an
overhead of O(n2) storage and O(n2) preprocessing time.

Suppose each iteration of the algorithm takes O(I ) time, and the algorithm uses
O(L) preprocessing time (not including the time needed to compute the low-stretch
spanning tree). Then the total running time of the algorithm is O(L + I τ ln( τ

ε
) +

m log n log log n) = O(L + mI log n log log n log τ
ε
).

If we use the version which uses O(n2) preprocessing time and O(n) time per
iteration, then L = O(n2) and I = O(n). This gives the running time of Dual KOSZ
to be O(mn log n log log n log τ

ε
). ��

In Sect. 4, we argue that given a natural abstraction of the data structure problem
we use in computing f (C) and updating potentials, it appears unlikely that we can
implement each iteration in o(n1−ε) time, if each iteration is to be processed one-by-
one in an online fashion. In Sect. 5, we show how to overcome this data structure lower
bound by taking advantage of the fact that the sequence of updates that we perform
can be generated in advance.

4 Lower Bound on the Per-Iteration Complexity of the Algorithm

Recall that each single iteration of KOSZ can be implemented in logarithmic time. In
this section we show that assuming the OMv conjecture (see below) each single iter-
ation of Dual KOSZ cannot be implemented in linear time. This implies that in order
to speed up our algorithm we need to “batch-up” iterations, which is the approach we
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use in the next section. We first present a natural data structure, called the TreeFlow
data structure, such that each iteration of the algorithm requires only two operations
of the TreeFlow data structure and then prove that assuming the OMv conjecture [14]
it is impossible to implement the TreeFlow data structure such that each operation of
the data structure takes O(n1−ε) time. To simplify the reduction we reduce from a
closely related problem called the Online Vector–Matrix-Vector Multiplication Prob-
lem (OuMv).

Definition 3 (Online Vector–Matrix-Vector Multiplication Problem) We are given a
positive integer n, and a Boolean n × n matrixM. At each time step t = 1, . . . , n, we
are shown a pair of Boolean vectors (ut, vt), each of length n. Our task is to output
u�
t Mvt using Boolean matrix–vector operations. Specifically, “addition" is replaced

by the OR operation, so that 0 + 0 = 0, and 0 + 1 = 1 + 0 = 1 + 1 = 1. Hence,
u�
t Mvt is always either 0 or 1.

The OMv conjecture implies that no algorithm for the OuMv problem can do
substantially better than naively multiplying u�

t Mvt at time step t . Specifically, it says
the following:

Lemma 6 ( [14]) Let ε > 0 be any constant. Assuming the OMv conjecture, there
is no algorithm for the online vector–matrix-vector multiplication problem that uses
preprocessing time O(n3−ε) and takes total time O(n3−ε) with error probability at
most 1/3 in the word-RAM model with O(log n) bit words.

Thus we will reduce the OuMv problem to the TreeFlow data structure such that
computing u�

t Mvt requires two operations in the TreeFlow data structure. The lower
bound then follows from Lemma 6.

4.1 The TreeFlowData Structure

The TreeFlow data structure is given as input (1) an undirected graph G = (V , E)

with n = |V |, (2) a spanning tree T of G that is rooted at a fixed vertex x , (3) a value
r(u, v) for each edge (u, v) ∈ E (representing the resistance of (u, v)), and (4) a value
b(v) for each vertex v ∈ V (representing the supply at v). The quantities r(u, v) and
b(v) are given at the beginning and will remain unchanged throughout the operations.
For any set C ⊂ V , let b(C) := ∑

v∈C b(v).
Furthermore, each vertex v has a non-negative value, denoted value(v), which can

be seen as the “potential” of v. It is initially 0 and can be modified. For any set C ⊂ V
we define the flow out of C to be the quantity

f (C) :=
∑

(u,v)∈E,u∈C,v /∈C
(value(u) − value(v)) /r(u, v).

The TreeFlow data structure supports the following operations.

• addvalue(vertex v, real x): Add x to the value of every vertex in the subtree of
T rooted at v.
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• findflow(vertex v): Return b(C) − f (C), where C is the set of vertices in the
subtree of T rooted at v.

The TreeFlow data structure implements exactly the operations we require for each
iteration of Dual KOSZ: The addvalue operation allows us to update the potentials
on a fundamental cut, and findflow computes b(C) − f (C), thereby allowing us to
compute � at each iteration. Note that if all b(v)-values are zero, the TreeFlow data
structure simply returns − f (C), which gives it its name.

We even show the lower bound for a “relaxed” version defined as follows: In an α-
approximate TreeFlow data structure the operation addvalue remains as above and the
operation findflow(v) returns a value that is within a multiplicative factor α ≥ 1 (that
can be a function of n) of the correct answer, i.e., a value between (b(C) − f (C))/α

and (b(C) − f (C)) · α. The hardness of approximation is interesting, because it turns
out that even an approximation of this quantity is sufficient to obtain an algorithm
for Lx = b. (Albeit with a convergence rate that deteriorates with the approximation
factor.)

Lemma 7 Let ε > 0 be any constant and let α ≥ 1 be any value. Assuming the OMv
conjecture, no implementation of the α-approximate TreeFlow data structure exists
that uses preprocessing time O(n3−ε) and where the two operations addvalue and
findflow both take O(n1−ε) time, such that over a polynomial number of operations
the error probability is at most 1/3 in the word-RAM model with O(log n) bit words.
This even holds if all r(u, v) values are 1 and if all b(v) are 0.

Proof Given an n × n Boolean matrix M, we create the following TreeFlow data
structure. The graph contains 2n + 1 nodes, namely a special node x , one node c j for
each column j with 1 ≤ j ≤ n and one node di for each row i with 1 ≤ i ≤ n. There
is an edge (di , c j ) if entry Mi j = 1. Additionally, every node c j and every node di has
an edge to x . These edges are added to guarantee that the graph is connected. We set
r(c, d) = 1 for every edge (c, d) and denote this graph by G. Let T be the spanning
tree of G that is rooted at x and consists of all the edges incident to x . Note that the
subtree of T rooted at any node y �= x consists of a single node y.

Now consider the sequence of n vector pairs (ut , vt ) of the OuMv problem. Let
(u, v) be any such pair. We show below how to compute u�Mv with O(n) operations
in the TreeFlow data structure. Thus the sequence of n vector pairs leads to O(n2)
operations. It then follows from the OMv conjecture and Lemma 6 that this sequence
of O(n2) operations in the TreeFlow data structure cannot take time O(n3−ε), i.e., that
it is not possible that the complexity of both the addvalue operation and the findflow
operation are O(n1−ε).

It remains to show how to compute u�Mv with O(n) operations in the TreeFlow
data structure. Initially the value value(v) of all nodes v is 0. Let Z be a large enough
constant that we will specify later. First, increase the value of all nodes to Z by calling
addvalue(x, Z).

When given (u, v) we decrease the value of each row node di with ui = 1 to 0
by calling addvalue(di ,−Z). Then, we perform a findflow(c j ) operation for each
column node c j with v j = 1. Afterwards we undo these operations again, so that
every node has value Z again. (Alternatively, we could also increase the value of every
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node c j with v j = 1 and every node di with ui = 0 to 2Z , and instead of undoing the
operations, we increase after the query the value of every node to 2Z . In which way
we never execute an addvalue operation with negative second parameter.)

Note that u�Mv = 1 iff there exists an edge between a column node c j with v j = 1
(i.e. value(c j ) = Z ) and a row node di with ui = 1 (i.e. value(di ) = 0).

We now show that u�Mv = 1 iff f (c j ) > 0 for some column node c j with v j = 1.
(a) Assume first that u�Mv = 1 and let c∗ denote a node c j and d∗ denote a node
di such that v j = 1, ui = 1 and Mi j = 1. We will show that f (c∗) > 0. Recall
that the subtree of c∗ consists only of c∗. The edge (c∗, d∗) leaves the subtree of c∗,
contributing a positive amount to f (c∗) because value(c∗) = Z and value(d∗) = 0.
All other edges leaving the subtree of c∗ contribute a non-negative amount to f (c∗),
since value(c∗) = Z and value(dk) for other k �= i is either Z or 0. Thus f (c∗) > 0.
(b) Assume next that u�Mv = 0. In this case every node c j with u j = 1 (and value Z )
only has edges to nodes di with vi = 0 (and value Z ). As before the subtree of every
node c j only consists of c j and, thus, all edges leaving the subtree of c j contribute 0 to
the flow out of the subtree. Thus, for every node c j with u j = 1 we have f (c j ) = 0.

To summarize we have shown above that u�Mv = 1 iff f (c j ) > 0 for some
column node c j with value(c j ) = Z . We will now show how to use the results of the
findflow queries returned by an α-approximate TreeFlow data structure to determine
if f (c j ) is positive or zero.

Here is where we will choose the value of Z . The idea is to make Z large enough
so that if f (c j ) > 0, then f (c j ) is very large. The idea is that this will allow us to
distinguish between f (c j ) = 0 versus f (c j ) > 0, even if we only have access to an
α-approximation of S(c j ) − f (c j ) = b(c j ) − f (c j ).

It will suffice to choose Z large enough so that if f (c j ) > 0, then f (c j ) >

max{b(c j ), b(c j )(1−α2)} (As (1−α2) < 0, the second term makes sense if b(c j ) <
0.) The value of Z depends on α, the supplies b, and the resistances r. For instance, it
suffices to choose Z > ‖r‖∞ ‖b‖∞ α2. For this choice of Z , we have that if f (c j ) > 0
then (since it must have an edge to some di with value(di ) = 0),

f (c j ) ≥ value(c j ) − value(di )

r(c j , di )
= Z − 0

r(c j , di )
>
∣

∣b(c j )
∣

∣α2 > max{b(c j ), b(c j )(1 − α2)}.

Having chosen Z this way, we have the following:

• If b(c j ) ≥ 0, then b(c j ) − f (c j ) is non-negative if f (c j ) = 0, and negative
otherwise (because f (c j ) > b(c j ) when f (c j ) > 0.) Any α-approximation of
b(c j ) − f (c j ) allows us to correctly deduce the sign of b(c j ) − f (c j ), hence also
whether b(c j ) − f (c j ) ≥ 0 or whether b(c j ) − f (c j ) < 0. From this we can
deduce whether f (c j ) = 0 or f (c j ) > 0.

• Suppose b(c j ) < 0. If f (c j ) = 0, the approximate data structure returns an answer

in the interval [b(c j ) · α,
b(c j )

α
]. If f (c j ) > 0, it returns an answer in the interval

[(b(c j )− f (c j )) ·α,
b(c j )− f (c j )

α
]. Note that the left endpoint of the first interval is

to the right of the right endpoint of the second interval as f (c j ) > b(c j )
(

1 − α2
)
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implies that

�⇒ b(c j ) · α >
b(c j ) − f (c j )

α
.

Since the two intervals for f (c j ) = 0 and f (c j ) > 0 do not overlap, we can
correctly distinguish the two cases using the approximate data structure.

To summarize, each findflow query on c j allows us to determine if f (c j ) > 0
or f (c j ) = 0. If the flow is positive for some c j , then the answer is u�Mv = 1,
otherwise it is 0. Note that it requires O(n) operations in the TreeFlow data structure
to determine one u�Mv value, which completes the proof. ��
Remark 1 Note that the proof can bemodified to bemore similar to the update sequence
generated by Dual KOSZ which alternates between addvalue and findflow operations
by inserting after each addvalue operation a findflow operation (whose answer might
be ignored for the logic of the proof).

As mentioned, the proof can also be adapted so that the values stored at the nodes
are only increased, but this is not necessary for our application.

5 Speeding Up Dual KOSZ

We now show how to surmount the OMv lower bound by taking advantage of the fact
that the sequence of updates that Dual KOSZ performs can be generated in advance.
In Sect. 5.1, we show that batching the updates yields a modification of the algorithm
that runs in ˜O(m1.5) time. Then in Sect. 5.2, we use sparsification and recursion to
further improve the runtime to ˜O(m1+α) for any α > 0.

5.1 A Faster Algorithm Using Batching

First, we show that it is possible to speed up the running time to ˜O(m1.5) time by
batching the updates performed by Dual KOSZ. In Lemma 5, we showed that the
algorithm can be implemented to run in time ˜O(mn). (Here the tilde hides a factor of
log n log log n log 1

ε
.) This running time essentially comes from ˜O(m) iterations, and

O(n) time per iteration. Recall that each iteration of Dual KOSZ involves sampling
a fundamental cut C of the low-stretch spanning tree T from a fixed probability
distribution P , and then adding a constant to the potential of every vertex in C so that
the resulting potential-defined flow satisfies flow conservation across C .

The main idea of batching is as follows. Denote the number of iterations by K
(which is ˜O(m)). Instead of sampling the fundamental cuts one at a time, consider
sampling the next l cuts that need to be updated for some l 	 K . We can perform this
sampling in advance because both the tree T and the probability distribution over cuts
of T are fixed over the entire course of the algorithm. In each “block" of size l 	 K ,
we contract all the edges of T that do not correspond to one of the l fundamental cuts
to be updated. In this way, we work with a contracted tree of size O(l) in each block
(instead of the full tree, which has size O(n)). This makes the updates faster. However,
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the price we pay is that at the end of each block, we need to propagate the updates we
made (which were on the contracted tree), back to the entire tree. We will show that
by choosing l = √

m, we can balance this tradeoff and get an improved running time
of ˜O(m1.5). Pseudocode for Dual KOSZ with batching is given in Algorithm 3. Note
that the correctness of this algorithm follows directly from the correctness of Dual
KOSZ: Algorithm 3 samples cuts from exactly the same distribution as Dual KOSZ,
and if we fix the same sequence of cuts to be used by both algorithms, then the output
of the two algorithms is identical.

Algorithm 3 Dual KOSZ with batching
1: Compute a tree T with low stretch with respect to resistances r.
2: Compute b(C) and R(C) for all fundamental cuts C of T .
3: Set x0(i) = 0 for all i ∈ V . Set f (C) = 0 for all fundamental cuts C of T .

4: for t ← 1 to
⌈

K
l

⌉

do

5: Sample l edges (i1, j1), . . . , (il , jl ) with replacement from T , according to the distribution P .
6: Contract all edges in T that were not sampled in step 5.
7: Let ˜G be the resulting graph and ˜T be the resulting tree.
8: For each 1 ≤ k ≤ l, let Ck denote the fundamental cut in T determined by edge (ik , jk ). Let ˜Ck

denote the fundamental cut in ˜T determined by (ik , jk ).
9: y(ṽ) ← 0 for all ṽ ∈ V (˜G).
10: for k ← 1 to l do
11: Compute �k = (b(Ck ) − f (Ck )) · R(Ck ). � Requires f (Ck ) to be
12: already computed
13: y(ṽ) ← y(ṽ) + �k for all ṽ ∈ ˜Ck .
14: Update values of f (C j ) for all j ∈ {k + 1, . . . , l}.
15: end for
16: for i ∈ V do
17: Let ṽ(i) be the vertex in ˜G that i was contracted to.
18: xt (i) ← xt−1(i) + y(ṽ(i)).
19: end for
20: Recompute f (C) for all fundamental cuts C of T .
21: end for
22: Let f�K/l� be the tree-defined flow with respect to x�K/l� and T .
23: return x�K/l�, f�K/l�

Theorem 3 The running timeof Dual KOSZwithbatching is O(m1.5 log n log log n log 1
ε
).

This is achieved by choosing l = √
m.

Proof At the beginning of the algorithm, we compute the values of b(C) (O(n) time
via a dynamic program) and R(C) (O(m log n) time via link-cut trees), just as in the
proof of Lemma 5.

Consider a batch of l updates. Note that the contracted tree ˜T has at most l + 1
vertices. After contracting, we need to perform l updates. This involves, for each
k ∈ {1, 2, . . . , l}:
• Computing �k := (b(Ck) − f (Ck)) · R(Ck),

– This takes O(1) time assuming f (Ck) has already been computed. (Recall
that the values b(Ck) and R(Ck) are computed at the very beginning of the
algorithm.)
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• Adding �k to y(ṽ) for every ṽ ∈ ˜Ck .

– This takes O(l) time, because the contracted tree has size O(l).

• Updating the values f (Ck+1), f (Ck+2), . . . , f (Cl) so they can be used in the later
iterations of the inner loop.

– If each f (C j ) can be updated in O(1) time, this takes O(l) time.
– To update each f (C j ) in O(1) time, we can precompute at the beginning of
the block the H(Ci ,C j ) table for i, j ∈ {1, 2, . . . , l}, just as in the proof of
Lemma 5. The difference now is that we only need to compute the table for
the cuts that will be updated in the block. There are l such cuts, so the total
time to compute the table is O(l2), again using Karger’s method.

At the end of each block, we propagate the updates we made on the contracted
graph back to the original graph. This involves

• Determining the new potential of each node in G.

– This takes O(n) time by iterating over the nodes of G.

• Determining the value of f (C) for each fundamental cut determined by T . (By
convention, assume the edges of T are directed toward the root, and that the
fundamental cuts we consider are the vertex sets of the subtrees of T .)

– This can be done in O(m) time using a dynamic program that works from the
leaves to the root. First, we compute f (C) at each leaf of the tree. Next, suppose
we have are at a non-leaf node v, and let C be the set of vertices in the subtree
rooted at v. Suppose we have already computed f (D1), f (D2), . . . , f (Dk),
where D1, . . . , Dk are the proper subtrees of v. Then we can compute f (C)

as follows:

f (C) =
k
∑

i=1

f (Di ) +
∑

w:vw∈E

p(v) − p(w)

r(v,w)
.

This sum correctly counts the flow leavingC . This is because any edge leaving
C is counted once. On the other hand, if an edge is between Di and Dj , then
it is counted once in the f (Di ) term, and once with the opposite sign in the
f (Dj ) term, so it zeros out. Similarly, if an edge is between Di and v, it also
zeros out.
The running time of this dynamic program is O(m), because the time taken at
each node is proportional to its degree, and the sum of all the node degrees is
equal to 2m.

To summarize, there are K iterations, divided into blocks of size l. In each block,
we pay the following.

• Start of block O(m) time to contract the tree, and O(l2) time to compute the
H(C,C ′) table for the cuts that will be updated in the block.

• During the block O(l) time per iteration. Since each block consists of l iterations,
this is O(l2) in total.
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• End of block O(m) time to propagate the changes from the contracted tree to the
original tree.

Hence, each block takes O(m+ l2) time. Multiplying by the number of blocks, which
is K/l, this gives a running time of O(K (ml + l)). Choosing l = √

m to minimize this
quantity, we get O(K

√
m).

The final running time is therefore O(K
√
m) plus the preprocessing time. Prepro-

cessing consists of finding a a low-stretch spanning tree (O(m log n log log n)), plus
computing the values of R(C) (O(m log n)), and f (C) (O(n)).

Thus, the preprocessing time is dominated by the time it takes to run the iterations.
So, the total running time is now: O(K

√
m) = O(m1.5 log n log log n log 1

ε
). ��

5.2 A Still Faster Algorithm via Batching, Sparsification, and Recursion

We now show that we can further speed up the algorithm using sparsification and
recursion. The goal is to show that we can we can obtain a running time of the form

O(A
1
δ m1+δ(log n)

B
δ (log 1

ε
)
1
δ ) for any δ > 0, where A and B are numerical constants.

Consider batching the iterations of the algorithm as follows. Pick a positive integer
d, and repeat K times:

• Sample the next d updates to be performed by the algorithm. These correspond to
d edges of the spanning tree T .

• Let V0, V1, . . . , Vd be the vertex sets that T is partitioned into by the d tree edges.
• Add �(i) to every vertex in Vi . We will choose the values �(0),�(1), . . . , �(d)

to greedily maximize the increase in the dual bound.

Note that our original algorithm corresponds to the case when d = 1. The lemma
below quantifies the increase of the dual objective after one step of the above update.

Lemma 8 Let (V0, . . . , Vd) be a partition of V . Let x ∈ R
V be a vector of potentials,

and let � = (�(0), . . . ,�(d)) be any vector in R
d+1. Let x̃ be obtained from x by

adding �(i) to the potential of every node in Vi . Then, the increase in the dual bound
is given by the formula

B(̃x) − B(x) = bTH� − 1

2
�TLH�,

where

• H is the contracted graphwith vertices V0, V1, . . . , Vd and resistances r(Vk, Vl) =
(

∑

i j∈δ(Vk ,Vl )
1

r(i, j)

)−1
,

• LH is the Laplacian matrix of H, and
• bH (k) = b(Vk) − f (Vk) for k = 0, 1, . . . , d.

In particular, the choice of � that maximizes B(̃x) − B(x) is given by the solution to
LH� = bH .
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Proof We write the increase in the dual potential bound. Recall that f (Vk) is the
amount of flow leaving Vk in the flow f (i, j) = x(i)−x( j)

r(i, j) . We let f (Vk, Vl) be the
amount of flow going from Vk to Vl .

2 (B(̃x) − B(x))

= (2bT x̃ − x̃T L̃x) − (2bT x − xTLx)

= 2
∑

k

b(Vk)�(k) +
∑

(i, j)∈ �E

1

r(i, j)

[

(x(i) − x( j))2 − (x̃(i) − x̃( j))2
]

= 2
∑

k

b(Vk)�(k) +
∑

(i, j)∈ �E

1

r(i, j)

[

(x(i) − x( j) + x̃(i) − x̃( j))(x(i) − x( j) − x̃(i) + x̃( j))
]

= 2
∑

k

b(Vk)�(k) +
∑

k<l

∑

(i, j)∈δ(Vk ,Vl )

1

r(i, j)
[(2x(i) − 2x( j) + �(k) − �(l))(�(l) − �(k))]

= 2
∑

k

b(Vk)�(k) + 2
∑

k<l

(�(l) − �(k))
∑

(i, j)∈δ(Vk ,Vl )

1

r(i, j)
(x(i) − x( j))

−
∑

k<l

(�(k) − �(l))2
∑

(i, j)∈δ(Vk ,Vl )

1

r(i, j)

= 2
∑

k

b(Vk)�(k) + 2
∑

k<l

(�(l) − �(k)) f (Vk , Vl ) − �TLH�

= 2
∑

k

b(Vk)�(k) − 2
∑

k

�(k) f (Vk) − �TLH�

= 2
∑

k

(b(Vk) − f (Vk))�(k) − �TLH�

= 2bTH� − �TLH�

Note that this is a concave function of �, because LH is positive semidefinite. There-
fore, maximizing this expression is equivalent to setting its gradient to 0. Taking its
gradient and setting to 0 yields LH� = bH , as claimed. ��
Remark 2 Another interpretation of the � that maximizes B(̃x) −B(x) in the Lemma
above is as follows: (�(0), . . . ,�(d)) are the values such that if one adds �(i) to the
potential of every vertex in Vi , the resulting potential-induced flow satisfies the flow
constraints f (Vk) = b(Vk) for all k = 0, . . . , d.

5.3 The Sparsify and Recurse Algorithm

Next we give the algorithm with sparsification and recursion in more detail. Observe
that d cut-toggling updates effectively break the spanning tree into d +1 components.
After contracting the components to get a graph H with d+1 vertices, Lemma 8 shows
that solving the Laplacian system LH� = bH gives the update that maximizes the
increase in B(̃x) −B(x) among all updates that increment the potential of all vertices
in Vi by the same amount. In particular, the progress made by this update step is is
at least as large as the progress made by the sequence of d updates performed by the
straightforward unbatched algorithm.
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A natural approach is to solve LH� = b recursively. However, this by itself does
not give an improved running time. Instead, we will first spectrally sparsify H to get
a sparsified approximation ˜LH of LH , satisfying (1 − γ )LH � ˜LH � (1 + γ )LH

for an appropriate constant γ ∈ (0, 1). Such a matrix ˜LH is known as a γ -spectral
sparsifier of LH . We then call the algorithm recursively on H to solve ˜LH˜� = bH .
This approach is akin to recursive sparsification based Laplacian solvers [22–24], but
whose progress is bounded via the effect of single cut toggles. A main task of the
analysis is to bound the error incurred by solving the sparsified system instead of the
exact one.

For the spectral sparsification, we need to use an algorithm that does not require
calling Laplacian solvers as a subroutine. For examples of such algorithms, see [16,
25–28]. We will use the sparsifier given in Theorem 1.2 of [16], which returns a γ -
spectral sparsifier with O(n log2 n log log n/γ 2) edges in O(m log2 n log log n/γ 2)

time, with probability at least 1 − 1
poly(n)

. Here, m, n are the number of edges and

vertices, respectively, in the graph before sparsifying, and the 1 − 1
poly(n)

probability

means that one canmake the probability 1− 1
nk

for any constant k, with the k appearing
as a multiplicative factor in the big-O expressions. We will take k = 2 when calling
the sparsifier in our algorithm, so it succeeds with probability at least 1 − 1

n2
.

Pseudocode for Dual KOSZ with batching, sparsification, and recursion is given in
Algorithm 4. The base case of the recursive algorithm is when |V | ≤ n0, where n0 is
a constant that the algorithm can choose. For the base case, we simply use Gaussian
elimination to solve LGx = b, which takes O(1) time since n0 is a constant. For every
t , contracting G down to Ht and computing the new resistances takes O(m) time; this
is because each edge in G contributes to the resistance between exactly one pair of
nodes in Ht .

5.4 Analysis of the Sparsify and Recurse Algorithm

We now analyze Algorithm 4. We first bound the convergence rate, then analyze the
running time.

5.4.1 Error Analysis

The lemma below bounds the expected rate of convergence of xt to x∗.

Lemma 9 For all t ≥ 0, we have E
∥

∥x∗ − xt
∥

∥

2
LG

≤
(

1 − β + βe− d
τ

)t ‖x∗‖2LG
. Here,

• τ = O(m log n log log n) is the stretch of the spanning tree,
• d is the number of updates in each batch,

• β =
(

1 − 1
n20

)

(

1 −
(

4ε′ · 1+γ
1−γ

·
(

1 + γ 2

(1−γ )2

)

+ 2γ 2

(1−γ )2

))

.

In particular, if we choose n0 = 10, γ = 1
100 , and ε′ = 1

100 , then β ≥ 4
5 , so that

E
∥

∥x∗ − xt
∥

∥

2
LG

≤
(

1

5
+ 4

5
e− d

τ

)t
∥

∥x∗∥
∥

2
LG

.
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Algorithm 4 Dual KOSZ with batching, sparsification, and recursion
1: If |V | ≤ n0, solve LGx = b using Gaussian elimination and return x.
2: � LG is the Laplacian matrix of G.
3: Compute a low-stretch spanning tree T of G.
4: Initialize x0 = 0.
5: for t = 0 to K do
6: Generate the next d updates. These correspond to d tree edges et1, . . . , e

t
d ∈ T .

7: Let V t
0 , . . . , V t

d be the vertex sets of the connected components of
8: T − {et1, . . . , etd }.
9: Contract G to Ht with d + 1 vertices: Each V t

i is a vertex in Ht , and
10: resistances in Ht are

rHt (V t
k , V t

l ) =
⎛

⎝

∑

i j∈δ(Vk ,Vl )

1

r(i, j)

⎞

⎠

−1

.

11: Compute˜LHt , a γ -spectral sparsifier of LHt , where γ ∈ (0, 1) will be
12: a parameter that we will determine later.
13: Let btG = b − LGxt .

14: Let bt
Ht ∈ R

V (Ht ) be defined as follows: bt
Ht (V

t
i ) = ∑

u∈V t
i
btG (u) for alli = 0, 1, . . . , d.

15: Call the algorithm recursively to solve the Laplacian system ˜LHt ˜�t = bt
Ht for ˜�t . This will

return an approximate solution ˜�t
ε′ that satisfies

∥

∥

∥

˜�t
ε′ − ˜�t

∥

∥

∥

2

˜LHt
≤ ε′ ∥

∥˜�t
∥

∥

2
˜LHt

. Here, ε′ is the error
parameter that we will input to the recursive call, to be determined later.

16: Update xt using �̃t
ε′ to get the next iterate xt+1. For every vertex u ∈ V ,

xt+1(u) ← xt (u) + �̃t
ε′ (V t

i ),

where V t
i is the set in V t

0 , . . . , V t
d such that u ∈ V t

i . In other words, we update xt to xt+1 by adding

�̃t
ε′ (V t

i ) to the potential of every vertex in V t
i .

17: If B(xt+1) ≤ B(xt ), revert xt+1 ← xt .
18: end for
19: Return xK and the corresponding tree-defined flow fK .

Proof Define the random variable Dt := B(x∗) − B(xt ). We will show in
Lemma 11 that for every possible realization xt , we have E

[

Dt+1 | xt ] ≤
(

1 − β + βe−d/τ
)

E
[

Dt | xt ] .This implies thatE[Dt+1] ≤ (

1 − β + βe−d/τ
)

E
[

Dt
]

unconditionally.
It then follows that

E
[

Dt ] ≤
(

1 − β + βe−d/τ
)t

E

[

D0
]

=
(

1 − β + βe−d/τ
)t B(x∗).

Thus, B(x∗) − E[B(xt )] ≤ (

1 − β + βe−d/τ
)t B(x∗). ��

123



Algorithmica (2023) 85:3680–3716 3703

As in the original analysis of Dual KOSZ, we will study the duality gap and analyze
its decrease at each step of the algorithm. Consider some iteration t of the algorithm.
Recall that xt is the iterate at the start of iteration t . For every possible sequence of
et1, . . . , e

t
d (the trees edges chosen in iteration t), define the following:

• Let x̂t+1 be the vector obtained from xt by adding �t (V t
i ) to every vertex in V t

i ,

where �t := L†
HtbtH t .

• Let x̄t+1 be obtained from xt by applying the updates for the sequence of tree
edges et1, . . . , e

t
d , one by one. (i.e. Exactly as in the original, unbatched version of

Dual KOSZ described in Sect. 3.)

Lemma 10 Fix any choice of et1, . . . , e
t
d , and assume that ˜LHt is a γ -approximate

sparsifier of LHt . Then

B(xt+1) − B(xt ) ≥ (1 − α)
(

B(x̂t+1
) − B(xt )

)

where α = 4ε′ · 1+γ
1−γ

·
(

1 + γ 2

(1−γ )2

)

+ 2γ 2

(1−γ )2
.

If we further assume that γ ∈ (0, 1
2 ), we can simplify to get

B(xt+1) − B(xt ) ≥ (1 − 12ε′ − 8γ 2 − 48ε′γ 2)
(

B(x̂t+1
) − B(xt )

)

.

Proof To simplify notation, in this proof we will use

• bH to denote btH t ,
• �̃ε′ to denote �̃t

ε′ ,
• �̃ to denote �̃t

• � to denote �t ,
• H to denote Ht ,

Later in this proof, we will show that

∥

∥

∥�̃ε′ − �

∥

∥

∥

2

LH
≤ α ‖�‖2LH

, (1)

for a constant α that depends on ε′ and γ . Assuming (1) holds, by the definition of the
matrix norm it follows that

(

�̃ε′ − �
)T

LH

(

�̃ε′ − �
)

≤ α�TLH�.

Expanding the left-hand side and rearranging, we get

2�̃T
ε′LH� − �̃T

ε′LH �̃ε′ ≥ (1 − α)�TLH�.

Using LH� = bH , this becomes

2�̃T
ε′bH − �̃T

ε′LH �̃ε′ ≥ (1 − α)�TLH�.
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Recall that xt+1 is obtained from xt by adding �̃ε′(V t
i ) to every vertex in V t

i . Using
Lemma8with�(i) = ˜�ε′(V t

i ),x = xt , x̃ = xt+1,˜L = LH , and˜b = bH it follows that

the left-hand side is equal to B(xt+1) −B(xt ). On the other hand, B(x̂t+1
) −B(xt ) =

2bTH� − �TLH� = �TLH�. (Since LH� = bH .) Thus, the right-hand side is

equal to (1 − α)
(

B(x̂t+1
) − B(xt )

)

. Thus we have

B(xt+1) − B(xt ) ≥ (1 − α)
(

B(x̂t+1
) − B(xt )

)

,

as claimed.
It remains to prove (1). To prove (1), note that we have

1.
∥

∥

∥�̃ε′ − �̃

∥

∥

∥

2

˜LH
≤ ε′

∥

∥

∥�̃

∥

∥

∥

2

˜LH
(This is the error from the recursive solve).

2.
∥

∥

∥�̃ − �

∥

∥

∥

2

LH
≤ h(γ ) ‖�‖2LH

(follows by part 2 of Proposition 1 in the “Appendix”.

This is the error from sparsification).

The first inequality, together with (1 − γ )LH � ˜LH � (1 + γ )LH and part 1 of
Proposition 1 in the “Appendix”, implies that

∥

∥

∥�̃ε′ − �̃

∥

∥

∥

2

LH
≤ 1

1 − γ

∥

∥

∥�̃ε′ − �̃

∥

∥

∥

2

˜LH
≤ ε′

1 − γ

∥

∥

∥�̃

∥

∥

∥

2

˜LH
≤ ε′ · 1 + γ

1 − γ
·
∥

∥

∥�̃

∥

∥

∥

2

LH
.

Now, using the inequality ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 (which holds for any norm),
we note that

∥

∥

∥�̃

∥

∥

∥

2

LH
≤ 2 ‖�‖2LH

+ 2
∥

∥

∥�̃ − �

∥

∥

∥

2

LH
≤ 2 ‖�‖2LH

+ 2h(γ ) ‖�‖2LH
.

Hence,

∥

∥

∥�̃ε′ − �̃

∥

∥

∥

2

LH
≤ 2ε′ · 1 + γ

1 − γ
· (1 + h(γ )) ‖�‖2LH

.

Again using ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2, we have
∥

∥

∥�̃ε′ − �

∥

∥

∥

2

LH
≤ 2

(

∥

∥

∥�̃ε′ − �̃

∥

∥

∥

2

LH
+
∥

∥

∥�̃ − �

∥

∥

∥

2

LH

)

≤ 2

(

2ε′ · 1 + γ

1 − γ
· (1 + h(γ )) ‖�‖2LH

+ h(γ ) ‖�‖2LH

)

=
(

4ε′ · 1 + γ

1 − γ
· (1 + h(γ )) + 2h(γ )

)

‖�‖2LH
.

Therefore, (1) holds with α = 4ε′ · 1+γ
1−γ

· (1 + h(γ )) + 2 h(γ ). ��
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Lemma 11 For any vector xt , we have

B(x∗) − E[B(xt+1)] ≤
(

1 − β + βe−d/τ
)

(B(x∗) − B(xt )
)

,

where β = (1 − 1
n20

)(1 − α).

Here, the expectation is taken over the random choices of et1, . . . , e
t
d , and also over

the randomness of the sparsification step. (Recall that we use the sparsifier given
in Theorem 1.2 of [16], which successfully returns a γ -approximate sparsifier with
probability at least 1 − 1

|V (Ht )|2 .)

Proof By Lemma 4, we know that

B(x∗) − E[B(x̄t+1)] ≤
(

1 − 1

τ

)d
(B(x∗) − B(xt )

) ≤ e− d
τ
(B(x∗) − B(xt )

)

.

Rearranging, this is equivalent to

E[B(x̄t+1)] − B(xt ) ≥
(

1 − e− d
τ

)

(B(x∗) − B(xt )
)

.

Observe that for every realization of et1, . . . , e
t
d , we have B(x̂t+1

) ≥ B(x̄t+1). This

is because x̂t+1 − xt = �t , where �t by definition is the vector that maximizes the
increase B(x̂t+1

) − B(xt ) while subject to being incremented by the same amount on
each of the components V t

0 , . . . , V
t
d . On the other hand, the vector x̄t+1 − xt is also

incremented by the same amount on each of the components V t
0 , . . . , V

t
d by the way

our original algorithm works.
Since B(x̂t+1

) ≥ B(x̄t+1) holds for every realization of et1, . . . , e
t
d , it follows that

E[B(x̂t+1
)] ≥ E[B(x̄t+1)], where the expectation is taken over the random choices of

et1, . . . , e
t
d made by the algorithm. Hence,

E[B(x̂t+1
)] − B(xt ) ≥

(

1 − e− d
τ

)

(B(x∗) − B(xt )
)

. (2)

To conclude, we will use Lemma 10 to translate the above inequality (which is in
terms of x̂t+1), to an inequality in terms of xt+1. We have

• With probability ≥ 1 − 1
n20
, the sparsifier is successful and by Lemma 10,

E[B(xt+1)] − B(xt ) ≥ (1 − α)
(

E[B(x̂t+1
)] − B(xt )

)

.

• With probability≤ 1
n20
, the sparsifier is unsuccessful and E[B(xt+1)]−B(xt ) ≥ 0.

This is because in the algorithm, we evaluate B(xt+1) and only update xt to xt+1

if B(xt+1) ≥ B(xt ). Otherwise, we make xt+1 = xt .
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Note that the above expectations are with respect to the random choices of et1, . . . , e
t
d ,

conditioned on the sparsifier being successful/unsuccessful. Now, taking another
expectation with respect to the randomness of the sparsifier, we get

E[B(xt+1)] − B(xt ) ≥
(

1 − 1

n20

)

(1 − α)
(

E[B(x̂t+1
)] − B(xt )

)

≥
(

1 − 1

n20

)

(1 − α)
(

1 − e− d
τ

)

(B(x∗) − B(xt )
)

(by(2))

Rearranging the above inequality gives

B(x∗) − E[B(xt+1)] ≤
(

1 −
(

1 − 1

n20

)

(1 − α)
(

1 − e− d
τ

)

)

(B(x∗) − B(xt )
)

,

as claimed. ��

5.4.2 Running Time Analysis

The following theorem bounds the running time of the algorithm.

Theorem 2 For any δ ∈ (0, 1) and ε > 0, Dual KOSZ with batching, sparsification,

and recursion finds x with E ‖x∗ − x‖2L ≤ ε ‖x∗‖2L in O(m1+δ(log n)
8
δ (log 1

ε
)
1
δ ) time.

Proof By Lemma 9, it suffices to run the algorithm for K iterations, for any K ≥
ln ε

ln
(

1
5+ 4

5 e
−d/τ

) .

Using the inequalities e−x ≤ 1− x
2 and ln(1− x) ≤ − x

2 which hold for x ∈ (0, 1),
we see that it suffices to choose K = 5τ

d ln(1/ε).
Recall τ ≤ c3m log2 n, for some constant c3. Thus, we choose d = c3m̄(log2 n) ·

m−δ. Here, m̄ is the number of edges in the current iteration, while m is the number
of edges in the topmost iteration (i.e. in the original graph G). With this choice of d,
we have K = 5c3mδ ln(1/ε). (Note that K is the same at every level of the recursion
tree.)

The work involved in each call to the algorithm consists of

• Computing T ,
• Doing K times

– Contracting and sparsifying to a graphwith d vertices and a1d logc n/γ 2 edges,
for some constant a1.

– Doing a recursive call.

If m is the number of edges in the graph at one level of the recursion tree, then at the
next level, the number of edges is

a1d log
2 n log log n/γ 2 ≤ a1c3m̄(log2 n) · m−δ log3 n/γ 2 = a1c3m̄ · m−δ(log n)5/γ 2.
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Therefore, the number of edges in a graph at level l of the recursion tree is

edgesl ≤ m1−lδ(a1c3)
l(log n)5l/γ 2l .

The total work required by a node at level l of the recursion tree is dominated by the
sparsifier, which takes time

workl = K · a2 · edgesl · log2 n log log n/γ 2 ≤ a2 · edgesl · log3 n/γ 2

for some constant a2.
Finally, the total number of recursion tree nodes at level l is equal to Kl . This

implies that the total work required by all the nodes at level l of the recursion tree is
equal to

total workl = workl · Kl

≤ K · a2 · edgesl · log3 n · 1

γ 2 · Kl

≤ K · a2 ·
(

m1−lδ(a1c3)
l(log n)5l/γ 2l

)

· log3 n · 1

γ 2 · Kl

= 5l+1cl+1
3 m1+δ(ln 1/ε)l+1a2(a1c3)

l(log n)(5l+3) · 1

γ 2l+2

≤ Alm1+δ(log n)8l(ln 1/ε)l+1,

for some numerical constant A.
To conclude, we note that the total work summed across all the levels is at most a

constant factor times the total work at the maximum level, which is l = 1
δ
. ��

Remark 3 By setting δ =
√

8 log log n+log log 1
ε

logm (which is the choice of δ that minimizes

m1+δ(log n)
8
δ (log 1

ε
)
1
δ ), the running time in Theorem 2 becomes

O

(

m exp

(

2
√

logm(8 log log n + log log 1
ε
)

))

, which is O(m1+o(1)) if ε is a con-

stant.

6 Conclusion

We propose a cut-based combinatorial algorithm to solve Laplacian systems approx-
imately. This algorithm is dual to the cycle-based algorithm by Kelner et al. [7]. We
show that our algorithm converges in a near-linear number of iterations.

To achieve a near-linear running time, wewould further need each iteration to run in
polylogarithmic time. We give evidence against this, by presenting a reduction from
the OMv conjecture. This is in contrast to the algorithm in [7], which uses a data
structure such that each iteration of the algorithm runs in O(log n) time. In order to
obtain a better running time, onewould need to show it is possible take advantage of the
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particular structure of updates in the algorithm to implement the data structure. Note
that our reduction crucially needs that a very specific spanning tree (albeit with very
small stretch) is chosen. Is it possible for the algorithm to choose a different small-
stretch spanning tree that is amendable to a polylogarithmic time implementation?
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AOmitted Proofs from Sect. 3

Lemma 1 Let x ∈ R
V be a vector of potentials and let C ⊂ V . Let x′ be the potentials

obtained from x as in the algorithm (that is, by adding � to the potential of every
vertex in C so that flow conservation is satisfied across δ(C)). Then

B(x′) − B(x) = �2

2R(C)
.

Proof The way we update x is by adding a constant � to the potentials of every vertex
in C , where

� = (b(C) − f (C)) · R(C)

Recall that f (C) is the net amount of flow going out of C in the flow induced by x.
That is,

f (C) =
∑

i j∈E
i∈C, j /∈C

x(i) − x( j)

r(i, j)

Note that the new potentials x′ can be expressed as x′ = x + �1C . We have

2(B(x′) − B(x)) = 2b�x′ − (x′)�Lx′ − (2b�x − x�Lx)
= 2b�(x + � · 1C ) − 2b�x − (x′)�Lx′ + x�Lx

123



Algorithmica (2023) 85:3680–3716 3709

= 2� · b�1C −
∑

i j∈E

1

r(i, j)

[

(x ′(i) − x ′( j))2 − (x(i) − x( j))2
]

= 2� · b�1C −
∑

i j∈δ(C)

1

r(i, j)

[

(x ′(i) − x ′( j))2 − (x(i) − x( j))2
]

= 2� · b�1C −
∑

i∈C, j /∈C
i j∈δ(C)

1

r(i, j)

[

(x(i) + � − x( j))2 − (x(i) − x( j))2
]

= 2� · b�1C −
∑

i∈C, j /∈C
i j∈δ(C)

1

r(i, j)

[

2� · (x(i) − x( j)) + �2]

= 2� · b�1C − 2� · f (C) − �2
∑

(i, j)∈δ(C)

1

r(i, j)

= 2� · b�1C − 2� · f (C) − �2 · R(C)−1

= 2� · b(C) − 2� · f (C) − �2R(C)−1

= 2�2R(C)−1 − �2R(C)−1

= �2/R(C).

��

Lemma 2 We have gap(f, x) = 1
2

∑

(i, j)∈ �E r(i, j)
(

f (i, j) − x(i)−x( j)
r(i, j)

)2
.

Proof By definition, we have

2 gap(f, x) =
∑

e∈E
r(e) f (e)2 − (2b�x − x�Lx).

Note that

b�x =
∑

i∈V
b(i)x(i)

=
∑

i∈V
x(i)

⎛

⎝

∑

j :(i, j)∈ �E
f (i, j) −

∑

j :( j,i)∈ �E
f ( j, i)

⎞

⎠

=
∑

(i, j)∈ �E
f (i, j)(x(i) − x( j))

and

x�Lx =
∑

(i, j)∈ �E

(x(i) − x( j))2

r(i, j)
.
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Plugging these into our expression for gap(f, x), we obtain

2 gap(f, x) =
∑

(i, j)∈ �E

[

r(i, j) f (i, j)2 − 2 f (i, j)(x(i) − x( j)) + (x(i) − x( j))2

r(i, j)

]

=
∑

(i, j)∈ �E
r(i, j)

(

f (i, j) − x(i) − x( j)

r(i, j)

)2

which is what we wanted to show. ��
Lemma 3 Let T be a spanning tree, x vertex potentials, and b a supply vector. Let fT ,x
be the associated tree-defined flow. Then

gap(fT ,x, x) = 1

2

∑

(i, j)∈T
r(i, j) · �(C(i, j))2

R(C(i, j))2
.

Proof Recall that C(i, j), �(C(i, j)) and R(C(i, j)) were defined as follows:

• C(i, j) is the set of vertices on the side of the fundamental cut of T determined by
(i, j) containing i . In otherwords,C(i, j) consists of the vertices in the component
of T − i j with i ∈ C(i, j) and j /∈ C(i, j).

• R(C(i, j)) =
(

∑

i j∈δ(C)
1

r(i, j)

)−1
.

• �(C(i, j)) = (b(C(i, j)) − f (C(i, j)))R(C(i, j)), where

– b(C(i, j)) = b�1C(i, j), and

– f (C(i, j)) =
∑

k∈C(i, j), l /∈C(i, j)
kl∈E

x(k) − x(l)

r(k, l)

We have

2 gap(fT ,x, x) =
∑

(i, j)∈E
r(i, j)

(

fT ,x(i, j) − x(i) − x( j)

r(i, j)

)2

=
∑

(i, j)∈T
r(i, j)

(

fT ,x(i, j) − x(i) − x( j)

r(i, j)

)2

=
∑

(i, j)∈T
r(i, j)

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

b(C(i, j)) −
∑

k∈C(i, j),l /∈C(i, j)
kl∈E−i j

x(k) − x(l)

r(k, l)

⎞

⎟

⎟

⎠

− x(i) − x( j)

r(i, j)

⎤

⎥

⎥

⎦

2

=
∑

(i, j)∈T
r(i, j)

⎡

⎢

⎢

⎣

b(C(i, j)) −
∑

k∈C(i, j),l /∈C(i, j)
kl∈E

x(k) − x(l)

r(k, l)

⎤

⎥

⎥

⎦

2

=
∑

(i, j)∈T
r(i, j) [b(C(i, j)) − f (C(i, j))]2
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=
∑

(i, j)∈T
r(i, j) · �(C(i, j))2

R(C(i, j))2

��
Lemma 4 If each iteration of the algorithm samples an edge (i, j) ∈ T according to
the probabilities Pi j = 1

τ
· r(i, j)
R(C(i, j)) , then we have

B(x∗) − E[B(xt+1)] ≤
(

1 − 1

τ

)

(B(x∗) − B(xt )
)

.

Proof We know from the discussion above that

E[B(xt+1)] − B(xt ) = 1

τ
gap(fT ,x, xt ),

where fT ,x is the tree-defined flow associated with potentials xt . Since gap(fT ,x, xt ) ≥
B(x∗) − B(xt ), we get

E[B(xt+1)] − B(xt ) ≥ 1

τ

(B(x∗) − B(xt )
)

.

Rearranging gives

B(x∗) − E[B(xt+1)] ≤
(

1 − 1

τ

)

(B(x∗) − B(xt )
)

,

as desired. ��
Corollary 1 After K = τ ln( 1

ε
) iterations, B(x∗) − E[B(xK )] ≤ ε · B(x∗).

Proof Define the random variable Dt := B(x∗) −B(xt ). By Lemma 4, we know that

E

[

Dt+1 | xt
]

≤
(

1 − 1

τ

)

E
[

Dt | xt ]

for all possible vectors of potentials xt . This implies that E
[

Dt+1
] ≤ (

1 − 1
τ

)

E
[

Dt
]

unconditionally.
By induction on t , it then follows that

E

[

DK
]

≤
(

1 − 1

τ

)K

E

[

D0
]

=
(

1 − 1

τ

)K (

B(x∗) − B(x0)
)

=
(

1 − 1

τ

)K

B(x∗).

Thus,

B(x∗) − E[B(xK )] ≤
(

1 − 1

τ

)K

B(x∗).

123



3712 Algorithmica (2023) 85:3680–3716

Using the inequality 1 − x ≤ e−x , we obtain

B(x∗) − E[B(xK )] ≤ e−K/τB(x∗).

Hence, if K ≥ τ ln( 1
ε
), then we will have B(x∗) − E[B(xK )] ≤ ε · B(x∗), as desired.

��
Theorem 1 Let τ be the total stretch of T . After K = τ ln( τ

ε
) iterations, Dual KOSZ

returns xK ∈ R
V and fK ∈ R

�E such that E
∥

∥x∗ − xK
∥

∥

2
L ≤ ε

τ
‖x∗‖2L and E[E(fK )] ≤

(1 + ε)E(f∗), for f∗ and x∗ optimal primal and dual solutions respectively.

Proof of Theorem 1 ByCorollary 1, after K = τ ln( τ
ε
) iterations, the algorithm returns

potentials xK such thatB(x∗)−E[B(xK )] ≤ ε
τ
·B(x∗). Combiningwith Lemma 13,we

get thatE
∥

∥x∗ − xK
∥

∥

2
L ≤ ε

τ
‖x∗‖2L. Finally, Lemma14givesE

[E(fK )
] ≤ (1+ε)E(f∗).

��
Lemma 12 We have τ = stT (G, r).

Proof We write out the definitions of τ and stT (G, r):

τ =
∑

(i, j)∈T

r(i, j)

R(C(i, j))
=

∑

(i, j)∈T
r(i, j)

∑

(k,l)∈δ(C(i, j))

1

r(k, l)

and

stT (G, r) =
∑

(i, j)∈ �E
stT ((i, j), r) =

∑

(i, j)∈ �E

1

r(i, j)

∑

(k,l)∈P(i, j)

r(k, l),

where P(i, j) is the unique path from i to j in T .
It turns out that the expressions for τ and stT (G) are summing exactly the same

terms, just in different ways. Indeed, we have

τ =
∑

(i, j)∈T

∑

(k,l)∈δ(C(i, j))

r(i, j)

r(k, l)

=
∑

(k,l)∈ �E

∑

(i, j)∈P(k,l)

r(i, j)

r(k, l)

= stT (G, r).

To switch the order of summation from the first line to the second line, we used the fact
that for an edge (k, l) ∈ �E , we have (k, l) ∈ δ(C(i, j)) if and only if (i, j) ∈ P(k, l).
This is because T is a spanning tree. ��

By Corollary 1, we know that the potentials xt found by the algorithm satisfy the
property that B(xt ) converges to B(x∗) at a linear rate, in expectation. The following
lemma shows that if x is a set of potentials such that B(x) is close to B(x∗), then x is
close to x∗ as a vector (measured in the matrix norm defined by the Laplacian L).
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Lemma 13 Let x be any vector of potentials. Then 1
2 ‖x∗ − x‖2L = B(x∗) − B(x). In

particular, if B(x∗) − B(x) ≤ ε · B(x∗), then ‖x∗ − x‖2L ≤ ε ‖x∗‖2L .

Proof We have

∥

∥x∗ − x
∥

∥

2
L = (x∗ − x)�L(x∗ − x)

= (x∗)�Lx∗ − 2x�Lx∗ + x�Lx
= 2B(x∗) − 2x�b + x�Lx
= 2B(x∗) − 2B(x).

In particular, if B(x∗) − B(x) ≤ ε · B(x∗), then ‖x∗ − x‖2L ≤ 2ε · B(x∗) = ε ‖x∗‖2L.
This is because

2B(x∗) = 2b�x∗ − (x∗)�Lx∗ = (x∗)�Lx∗ = ∥

∥x∗∥
∥

2
L .

��
Next, we show that if B(x) is sufficiently close to B(x∗), then the associated tree-

defined flow fT ,x has energy sufficiently close to E(f∗).
Lemma 14 For any distribution over x such that Ex[B(x)] ≥ (1 − ε

τ
)B(x∗), we have

Ex[E(fT ,x)] ≤ (1 + ε)E(f∗).
Proof For ease of notation, in this proof let f = fT ,x. (Note that f is a random vector
that is a function of x.) We have Ex[E(f) − E(f∗)] = Ex[gap(f, x∗)].

For a fixed choice of x, consider running the algorithm for one more iteration
starting from x to obtain a vector x′. Then we have E[B(x′)] − B(x) = 1

τ
gap(f, x).

This implies B(x∗) − B(x) ≥ 1
τ
gap(f, x). Taking expectations with respect to x, we

get Ex[B(x∗) − B(x)] ≥ 1
τ
Ex[gap(f, x)]. Thus,

Ex[E(f) − E(f∗)] = Ex[gap(f, x∗)]
= Ex[gap(f, x) − (B(x∗) − B(x))]
≤ (τ − 1)Ex[B(x∗) − B(x)]
≤ τEx[B(x∗) − B(x)]
≤ εB(x∗)
= εE(f∗).

��

B Spectral Approximations

Let A,B be n × n symmetric, positive semidefinite matrices. We say that B is a
γ -spectral sparsifier of A if

(1 − γ )A � B � (1 + γ )A.
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Proposition 1 (Spectral Approximations) Suppose A,B ∈ S
n+ and (1 − γ )A � B �

(1 + γ )A. Let x, y, z, b ∈ R
n. Then the following hold:

1. (1 − γ ) ‖x‖2A ≤ ‖x‖2B ≤ (1 + γ ) ‖x‖2A
2. If Ax = b and By = b, then ‖x − y‖2A ≤ h(γ ) ‖x‖2A, where h(γ ) = γ 2

(1−γ )2
.

Proof The first one is by definition of ‖x‖2A = x�Ax.
For the second one, first we claim that it is sufficient to prove that

∥

∥A†b − B†b
∥

∥

2
A ≤

h(γ )
∥

∥A†b
∥

∥

2
A. This is because in general, we have x = A†b + u, and y = B†b + v,

for some u ∈ Null(A) and v ∈ Null(B). Moreover, the condition (1 − γ )A � B �
(1 + γ )A implies that Null(A) = Null(B). Hence, ‖x − y‖2A = ∥

∥A†b − B†b
∥

∥

2
A, and

‖x‖2A = ∥

∥A†b
∥

∥

2
A.

Next, we expand
∥

∥A†b − B†b
∥

∥

2
A ≤ h(γ )

∥

∥A†b
∥

∥

2
A into

(A†b − B†b)TA(A†b − B†b) ≤ h(γ )bTA†b,

or equivalently,

bT
(

A† − B†
)

A
(

A† − B†
)

b ≤ h(γ )bTA†b.

To prove the above inequality, it suffices to prove that

(

A† − B†
)

A
(

A† − B†
)

� h(γ )A†. (3)

Multiplying the left and right sides of Eq. 3 by A
1
2 , we get that (3) is implied by

A
1
2

(

A† − B†
)

A
(

A† − B†
)

A
1
2 � h(γ )A

1
2A†A

1
2 . (4)

Let 	 := A
1
2A†A

1
2 be the projection map onto the row space of A. Note that 	 =

A†A = AA†. Also, 	 = A
†
2A

1
2 = A

1
2A

†
2 . These can be seen using the spectral

decomposition. Now, the reason why Eq.4 implies Eq.3 is because if we can multiply

both sides of (4) with one copy ofA
†
2 on the left and one copy ofA

†
2 on the right. Then

Eq.4 becomes 	
(

A† − B†)A
(

A† − B†)	 � h(γ )	A†	. We have 	(A† −B†) =
(A† − B†)	 = A† − B† because A and B have the same null space. Similarly,
	A† = A†	 = A†.

To prove (4), first rewrite it as

(

A
1
2

(

A† − B†
)

A
1
2

)2 � h(γ )	,

or equivalently

(

	 − A
1
2B†A

1
2

)2 � h(γ )	.
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From the spectral approximation (1 − γ )A � B � (1 + γ )A, we deduce that

1

1 + γ
A† � B† � 1

1 − γ
A†,

which, when multiplying on the left and right by A
1
2 , implies that

1

1 + γ
	 � A

1
2B†A

1
2 � 1

1 − γ
	.

This in turn gives

−γ

1 + γ
	 � 	 − A

1
2B†A

1
2 � γ

1 − γ
	.

Observe that any eigenvector of 	−A
1
2B†A

1
2 is also an eigenvector of 	 (they share

eigenspaces because A and B have the same null spaces). Moreover, the eigenvalues

of	 are 0 or 1. This implies that the eigenvalues of	−A
1
2B†A

1
2 are all between −γ

1+γ

and γ
1−γ

. Hence, the eigenvalues of
(

	 − A
1
2B†A

1
2

)2
are all between 0 and γ 2

(1−γ )2
,

and thus
(

	 − A
1
2B†A

1
2

)2 � γ 2

(1−γ )2
	. ��
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