
Algorithmica (2024) 86:64–89
https://doi.org/10.1007/s00453-023-01135-x

RESEARCH

Simulated Annealing is a Polynomial-Time Approximation
Scheme for the Minimum Spanning Tree Problem

Benjamin Doerr1 · Amirhossein Rajabi2 · Carsten Witt2

Received: 26 November 2022 / Accepted: 8 May 2023 / Published online: 22 July 2023
© The Author(s) 2023

Abstract
We prove that Simulated Annealing with an appropriate cooling schedule computes
arbitrarily tight constant-factor approximations to theminimum spanning tree problem
in polynomial time. This result was conjectured by Wegener (Automata, Languages
and Programming, ICALP, Berlin, 2005). More precisely, denoting by n,m, wmax,
and wmin the number of vertices and edges as well as the maximum and minimum
edge weight of the MST instance, we prove that simulated annealing with initial
temperature T0 ≥ wmax andmultiplicative cooling schedule with factor 1−1/�, where
� = ω(mn ln(m)), with probability at least 1− 1/m computes in time O(�(ln ln(�) +
ln(T0/wmin))) a spanning tree with weight at most 1 + κ times the optimum weight,
where 1+κ = (1+o(1)) ln(�m)

ln(�)−ln(mn ln(m))
. Consequently, for any ε > 0, we can choose � in such

a way that a (1+ ε)-approximation is found in time O((mn ln(n))1+1/ε+o(1)(ln ln n+
ln(T0/wmin))) with probability at least 1 − 1/m. In the special case of so-called
(1+ ε)-separated weights, this algorithm computes an optimal solution (again in time
O((mn ln(n))1+1/ε+o(1)(ln ln n+ln(T0/wmin)))), which is a significant speed-up over
Wegener’s runtime guarantee of O(m8+8/ε). Our tighter upper bound also admits the
result that in some situations a hybridization of simulated annealing and the (1 + 1)EA
can lead to stronger runtime guarantees than either algorithm alone.

Keywords Simulated annealing · Approximation scheme · Minimum spanning
trees · Runtime analysis · Theory

B Carsten Witt
cawi@dtu.dk

Benjamin Doerr
doerr@lix.polytechnique.fr

Amirhossein Rajabi
amraj@dtu.dk

1 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique de Paris,
91120 Palaiseau, France

2 DTU Compute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01135-x&domain=pdf

Algorithmica (2024) 86:64–89 65

1 Introduction

The theory of randomized search heuristics, mostly in the last 25 years, has consid-
erably increased our understanding of this class of algorithms. A closer look at this
field shows that in the early years, significant efforts were devoted also to simulated
annealing (SA) [1–4], whereas more recently these algorithms at most appear in side
results of works focused on other heuristics. Due to this decline in attention, the gap
between theory and practice, at least as wide in heuristics as in classic algorithms, is
even wider for SA.

Sincewe do not see a reducing interest in SA in practice [5],with this first theoretical
work solely devoted to SA after a longer time, we aim at reviving the theoretical
analysis of this famous heuristic. To this aim, we revisit a classic problem, namely
how SA computes minimum spanning trees (MSTs) [3]. We are, of course, not finally
interested in using SA for this purpose – for this several very efficient near-linear time
algorithms are known –, but we use this problem to try to understand the working
principles of SA.

Wegener’s seminal work [3] is well-known for the construction of an instance of the
MST problem where the Metropolis algorithm with any fixed temperature fails badly,
but SA with a simple multiplicative cooling schedule computes an optimal solution
efficiently. Much less known, but equally interesting is another result in this work,
namely that SA with a suitable multiplicative cooling schedule can efficiently find
optimal solutions to the MST problem when the edge weights are (1 + ε)-separated
(see the theorem for a definition of this term).

Theorem 1 ([3]) Let G = (V , E) with w : E → Z>0 be an instance of the MST
problem. Let ε > 0 be such that for all edges e1, e2 ∈ E, we have that w(e1) > w(e2)
implies w(e1) ≥ (1 + ε)w(e2). Assume further that w(e) ≤ 2m for all e ∈ E. Then
SA with initial temperature T0 = 2m and cooling factor β = (1 + ε/2)−m−7−8/ε

with
probability 1−O(1/m) finds an optimal solution in at most 2 log2(1+ ε/2)−1m8+8/ε

iterations.

Wegener [3] conjectured that his SAalgorithm for generalweights instead of (1+ε)-
separated ones computes (1 + ε)-approximate minimum spanning trees, that is, trees
with weight at most (1+ ε) times the weight of a true minimum spanning tree. While
this conjecture is very natural, it was never proven.

Our main result is that Wegener’s conjecture is indeed true, even though our proof
does not confirm his statement that “it is easy to generalize our result to prove that
SA is always highly successful if one is interested in (1+ ε)-optimal spanning trees.”
More precisely, we show the following result (see Theorem 4 for a slightly stronger,
but more complicated version of this result). We note that SA cannot compute (1+ε)-
approximations for sub-constant ε, see again [3], so in this sense our result is as good
as possible.

Let ε > 0 be a constant. Consider a run of SA with cooling factor β = 1 − 1/�,
where � = (2mn ln(m))1+1/ε+o(1), and T0 ≥ wmax on an instance of theMSTproblem.
Then there is a time T ∗ = O((mn ln(n))1+1/ε+o(1)(ln ln n + ln(T0/wmin))) such that
with probability at least 1− 1/m, at all times t ≥ T ∗ the current solution is a (1+ ε)-
approximation.

123

66 Algorithmica (2024) 86:64–89

Due to the use of proof methods not available at that time, our time bound is
significantly better thanWegener’s. To compute a (1+ε)-approximation, or to compute
an optimal solution when the edge weights are (1+ε)-separated (see Theorem 11), our
runtime guarantee is roughly O((mn log n)1+1/ε log wmax

wmin
) as opposed to O(m8+8/ε)

in Theorem 1.
Mostly because of a different organization of the proof, our result gives more

insights into the influence of the algorithm parameters. Our result only applies to ini-
tial temperatures T0 that are at least the maximum edge weight. This is very natural
since with substantially smaller temperatures, the heaviest edge cannot be included in
the solution with reasonable probability (this follows right from the definition of the
algorithm). It is also not difficult to prove that once the temperature is somewhat below
the smallest edge weight, then no new edges will ever enter the solution (see Lemma 6
for the precise statement of this result). This implies that there is no reason to run the
algorithm longer than roughly for time log1/β(T0/wmin) = O(� log(T0/wmin)), see
Theorem 9 for the details. From the perspective of the algorithm user, this is an inter-
esting insight since it gives an easy termination criterion. Also without understanding
the precise influence of the cooling factor β on the approximation quality, this insight
motivates to use the algorithm for decreasing values of β, say βi = 2−i , always until
the above-determined time is reached, and follow this procedure until a sufficiently
good MST approximation is found.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
most relevant previous works. We define SA and the minimum spanning tree problem
in Sect. 3. The core of this work is our mathematical runtime analysis in Sect. 4.
Afterwards, in Sect. 5, we give the result carried out for theMST problemwith (1+ε)-
separated weights. In Sect. 6, we compare our runtime results for SA with the known
performance guarantees for the (1 + 1) EA and discuss a possible hybridization of the
two algorithms. The paper ends with a conclusion and a discussion of possible future
works.

Extensions to conference version.An extended abstract of this work appeared in [6].
This paper provides full mathematical proofs and includes the new Sect. 6.

2 PreviousWork

As mentioned in the introduction, there are relatively few runtime analyses for SA as
a discrete optimization algorithm, see also the survey [7].

The first such result [1] proves that SA can compute good approximations to the
maximum matching problem. A closer look at the result reveals that a constant tem-
perature is used, that is, the SA algorithm is in fact the special case of the Metropolis
algorithm. It has to be noted that to obtain a particular approximation quality, the
temperature has to be set suitably. In this light, the following result from [8] shows
a light advantage for evolutionary algorithms: When running the (1 + 1) EA with
standard mutation rate on this problem, then the expected first time to find a (1 + ε)-
approximation is O(m2�1/ε�). Note that in this result, the parameters of the algorithm
do not need to be adjusted to the desired approximation rate.

123

Algorithmica (2024) 86:64–89 67

For a different problem, namely the bisection problem, it was shown in [2] that SA,
again with constant temperature, can solve certain random instances in quadratic time.

Wegener’s above mentioned work [3] on the MST problem was the first to show
that for some non-artificial problem, a non-trivial cooling schedule is necessary.

A runtime analysis of theMetropolis algorithm on the classic benchmark OneMax
was conducted in [4]. Not surprisingly, the ability to accept inferior solutions is not
helpful when optimizing this unimodal function. The interesting side of this result,
though, is that the Metropolis algorithm is efficient on OneMax only for very small
temperatures.

A recent study [9] on the deceiving-leading-blocks (DLB) problem shows that here
theMetropolis algorithmwith a constant temperature has a good performance, beating
the known runtime results for evolutionary algorithms by a factor of �(n). We note
that the DLB problem, just as the MST problem, has many local optima which all can
be left by flipping two bits.

As side results of a fundamental analysis of hyper-heuristics, two easy lower bounds
on the runtime of the Metropolis algorithm (that is, SA with constant temperature) are
proven in [10]: (i) The Metropolis algorithm needs time �̃(nd−1/2) on cliff functions
with constant cliff width d and super-polynomial time when the cliff width is super-
polynomial. (ii) The Metropolis algorithm with a temperature small enough to allow
efficient hill-climbing needs exponential time to optimize jump functions.

As part of a broader analysis of single-trajectory search heuristics, it was found
that the Metropolis algorithm can optimize all weakly monotonic pseudo-Boolean
functions in at most exponential time [11].

Some more results exist on problems designed for demonstrating a particular phe-
nomenon. In [12], a problem called Valley is designed that has the property the
Metropolis algorithm with any temperature needs at least exponential expected time,
whereas SA with a suitable cooling schedule only needs time O(n5 log n). In [4],
examples are constructed where one of (1 + 1) EA and SA has a small polynomial
runtime and the other has an exponential runtime. Also, a class of functions is con-
structed where both algorithms have a similar performance despite dealing with the
local optimum in a very different manner. In [13], a class of problems with tunable
width and depths of a valley of lowfitness is proposed. It is proven that the performance
of the elitist (1 + 1) EA is mostly influenced by the width of the valley, whereas the
performance of the Metropolis algorithm and a similar non-elitist algorithm inspired
from population genetics is mostly influenced by the depths of the valley.

For evolutionary algorithms, for which the theory is more developed than for SA,
there are a larger number of results showing that they can serve as approximation
algorithms for optimization problems, including NP-hard problems [14]. However,
results describing an approximation scheme where the user can provide a parameter ε

to the evolutionary algorithm to compute a (1+ ε)-approximation are rare; apart from
themaximummatching problemmentioned above, we are only aware of related results
for parallel (1+1) EAs, (1+1) EAs with ageing and simple artificial immune systems
on the number partitioning problem [15, 16] and for an evolutionary algorithm on the
multi-objective shortest path problem [17]. Evolutionary algorithms that approximate
the optimum are also known in the subfield of fixed-parameter tractability.While most
of these results prove an approximationwithin a constant factor or growing slowlywith

123

68 Algorithmica (2024) 86:64–89

Algorithm 1 Simulated Annealing (SA) with starting temperature T0 and cooling
factor β ≤ 1 for the minimization of f : {0, 1}n → R

Select x(0) from {0, 1}n .
for t ← 0, 1, . . . do

Create y by flipping a bit of x(t) chosen uniformly at random.
if f (y) ≤ f (x(t)) then

x(t+1) ← y.
else

x(t+1) ← y with probability e(f (x
(t))− f (y))/Tt and

x(t+1) ← x(t) otherwise.
end if
Tt+1 := Tt · β.

end for

the problem dimension, there are also statements similar to approximation schemes for
the vertex cover problem [18]. However, in general it is safe to say that there are only
few results in the literature that characterize very simple randomized search heuristics
like the (1 + 1) EA and SA as polynomial-time approximation schemes for classical
(non-noisy) combinatorial optimization problems.

Finally, we remark that the classical (1 + 1) EA and a variant of random-
ized local search can solve the MST problem in expected pseudo-polynomial time
O(m2 log(nwmax)) [19]. While SA in general does not solve the problem in expected
polynomial time, its time bound to achieve a (1 + ε)-approximation (see Theorem 4
below) can be smaller than the time bound for the (1 + 1) EA in certain cases where
m = ω(n) and ε is a constant. We will compare SA and (1 + 1) EA more closely in
Sect. 6.

3 Preliminaries

We now define the SA algorithm and the MST problem. Also, we state a technical
tool our main proof builds on.

Simulated annealing (SA) is a simple stochastic hill-climber first proposed as opti-
mization algorithm in [20]. Different from a true hill-climber it may, with small
probability, also accept inferior solutions. Working with bit-string representations,
we use the classic bit-flip neighborhoods, that is, the neighbors of a solution are all
other solutions that differ from it in a single bit value. For the acceptance of inferior
solutions, we use the widely accepted Metropolis condition, that is, a solution with
fitness loss δ over the current solution is accepted with probability e−δ/T , where T
is the current temperature. The temperature is usually not taken as constant, but is
reduced during the run of the algorithm. This allows the algorithm to accept wors-
ening moves easy in the early stages of the run, whereas later worsening moves are
accepted with smaller probability, bringing the algorithm closer to a true hill-climber.
The choice of the cooling schedule is a critical decision in the design of a SA algo-
rithm. A popular choice, already proposed in [20], is a multiplicative cooling schedule
(also called geometric cooling scheme). Here we start with a given temperature T0 and
reduce the temperature by some factor β in each iteration. This common variant of

123

Algorithmica (2024) 86:64–89 69

SA, see Algorithm 1 for the pseudocode, was regarded also in the predecessor work
of Wegener [3].

The minimum spanning tree (MST) problem is defined as follows. We are given
an undirected, connected, weighted graph G = (V , E). We denote by n its number
of vertices and by m its number of edges. Let the set of edges be E = {e1, . . . , em}.
The weight of edge ei , where i ∈ {1, . . . ,m}, is a positive number wi . We write
wmin := min{wi | i ∈ {1, . . . ,m}} and wmax := max{wi | i ∈ {1, . . . ,m}} for the
minimum and maximum edge weight.

The task in the MST problem is to find a subset E ′ ⊆ E such that (V , E ′)
is a spanning tree of G having minimal total weight w(E ′) = ∑

ei∈E ′ wi . We
use the natural bit-string representation for sets E ′ of edges, that is, a bit string
x = (x1, . . . , xm) ∈ {0, 1}m represents the set E(x) = {ei | xi = 1}. As objec-
tive function, we use the sum of the weights of the selected edges when these form a
connected graph on V and ∞ otherwise:

f (x) =
{

w1x1 + · · · + wmxm if (V , E(x)) is connected,

∞ otherwise.

Here ∞ can be replaced by an extremely large value without essentially changing the
result. To ensure that we start with a feasible solution (one that has finite objective
value), we assume that SA is initialized with the all-ones string x (0) = (1, . . . , 1).
From this initial string, SA can move to solutions having fewer edges by flipping one-
bits; however, it will never accept solutions that are not connected due to their infinitely
high f -value. We note that, similarly to the analysis of the (1 + 1) EA on the MST
problem [19], one could use a more involved fitness function to penalize connected
components and thus lead the algorithm towards connected subgraphswhen the current
solution is not connected. However, since we assume SA to start from a connected
solution and connected solutions will not be replaced with disconnected solutions with
the present definition of f , this would not provide new insights. Overall, our setup is
the same as the one used by Wegener [3].

When the temperature has become sufficiently low, it is likely that SA has reached a
solution describing a spanning tree. If this spanning tree is suboptimal, improvements
require a change of at least 2 bits. Since SA only flips one bit per iteration, this is
only possible by temporarily including one more edge, i. e., closing a cycle, and then
removing another edge from the cycle in the next iteration. This requires a temperature
still being sufficiently high for the temporary inclusion to be accepted.

Ourmeasure of complexity is thefirst hitting time T ∗ for a certain set of solutions S∗,
e. g., globally optimal solutions or solutions satisfying a certain approximation guar-
antee with respect to the set of global optima. That is, we give bounds on the smallest t
such that SAhas found a solution in S∗. Due to the probabilistic nature of the algorithm,
we will usually give bounds that hold with high probability, e. g., with probabil-
ity 1 − 1/n. The expected value of T ∗ may be undefined since the cooling schedule
may make it less and less likely to hit the set S∗ when the algorithm has been unsuc-
cessful during the steps where a promising temperature held. This is different from
the analysis of, e. g., simple evolutionary algorithms, where one often considers the

123

70 Algorithmica (2024) 86:64–89

so-called runtime as the first hitting time of the set of optimal solutions and bounds the
expected runtime. However, as described in detail by Wegener [3], there are simple
restart schemes for SA that guarantee expected polynomial optimization times if there
is a sufficiently high probability of a single run being successful in polynomial time.

The proof of our main result uses multiplicative drift analysis as a state-of-the-
art technical tool, which was not available to Wegener [3]. The multiplicative drift
theorem in Theorem 2 below goes back to [21] and was enhanced with tail bounds in
[22]. We give a slightly generalized presentation that can be found in [23].

Theorem 2 (Multiplicative Drift, cf. [21–23]) Let (Xt)t≥0, be a stochastic process,
adapted to a filtration Ft , over a state space S ⊆ {0} ∪ [smin, smax], where smin > 0
and {0} ∈ S. Suppose that there exists a δ > 0 such that for all t ≥ 0, we have

E
[
Xt − Xt+1 | Ft

] ≥ δXt .

Then the first hitting time T := min{t | Xt = 0} satisfies

E[T | F0] ≤ ln(X0/smin) + 1

δ
.

Moreover, Pr(T > (ln(X0/smin) + r)/δ) ≤ e−r for any r > 0.

4 SA as Approximation Scheme for theMinimum Spanning Tree
Problem

In this section, we prove our main results on how well SA computes approximate
solutions for the MST problem. These results easily imply improved bounds for the
previously regarded special case of (1 + ε)-separated instances, see Sect. 5.

4.1 Main Results and Proof Outline

As outlined above in the introduction, this paper revisits Wegener’s [3] analysis of
SA on the MST problem. Our main result is Theorem 3 below, proving that SA is a
polynomial-time approximation scheme for the MST problem as originally conjec-
tured by Wegener. The statement of our main theorem describes the approximation
quality and the required time to reach it as a function of the cooling factor, the desired
success probability and of course the instance parameters. Theorem 4 takes the dual
perspective of computing cooling schedules and running times that allow SA to find
a (1 + ε)-approximation for a given ε with high probability.

We now present the main theorem and a variant of it, corresponding to the two
perspectives mentioned above for analyzing the approximation quality.

Theorem 3 Let δ < 1. Consider a run of SA with multiplicative cooling schedule with
β = 1− 1/� for some � = ω(mn ln(m/δ)) and T0 ≥ wmax on an instance of the MST

problem. With probability at least 1 − δ, at all times t ≥ (�/2) ln
(
ln(4(�−1)/δ)T0

wmin

)
the

current solution is a (1 + κ)-approximation, where

123

Algorithmica (2024) 86:64–89 71

1 + κ ≤ (1 + o(1))
ln(�/δ)

ln(�) − ln(mn ln(m/δ))
.

Theorem 4 Let δ = ω(1/(mn ln n)) and δ < 1, ε > 0. Consider a run of SA with
β = 1 − 1/� for � = (mn ln(m/δ))1+1/ε and T0 ≥ wmax on an instance of the MST

problem. With probability at least 1 − δ, at all times t ≥ (�/2) ln
(
ln(4(�−1)/δ)T0

wmin

)
the

current solution is a (1 + o(1))(1 + ε)-approximation.

The last theorem is stated in somewhat weaker, but simpler form in the following
corollary. In particular, it gives a concrete time bound until SA has computed a (1+ε)-
approximation with probability at least 1 − δ, where δ and ε are chosen by the user.

Corollary 5 Let ε > 0 be a constant, δ = ω(1/(mn ln n)) and δ < 1. Consider a run
of SA with β = 1 − 1/�, where

� = (mn ln(m/δ))1+1/ε+o(1),

and T0 ≥ wmax on an instance of the MST problem. With probability at least 1 − δ,

at all times t ≥ T ∗ := (�/2) ln
(
ln(4(�−1)/δ)T0

wmin

)
the current solution is a (1 + ε)-

approximation. Moreover,

T ∗ = O((mn ln(n))1+1/ε+o(1)(ln ln n + ln(T0/wmin))).

The idea of the proof of all results formulated above is to consider phases in the
optimization process, concentrating on different intervals for the edge weights, with
the size and center of the intervals decreasing over time. In each phase, the number of
edges chosen from such an interval will achieve some close-to-optimal value with high
probability. After the end of the phase, the temperature of SA is so low that basically
no more changes occur to the edges with weights in the interval.

In more detail, the proofs of Theorem 3 and its variant are composed of several
lemmas. We are now going to outline the main ideas of these lemmas and how they
relate to each other in the roadmap of the final proof.

It is useful to formulate the main results in terms of a cooling factor β = 1 − 1/�
for some � > 1 since � carries the intuition of a “half-life” for the temperature; more
precisely, after � iterations of SA the temperature has decreased by the constant factor
of (1−1/�)� ≈ e−1. Lemma 6 is (on top of the usual graph parameters and the starting
temperature) based on �, a weight w and some parameter a. Intuitively, it describes a
point of time tw after which edges of weight at least w are no longer flipped in with
high probability and can be ignored for the rest of the analysis due to an exponential
decay in the probability of accepting search points of higher f -value. This probability
depends on the parameter a which will be optimized later in the composition of the
main proof.

While Lemma 6 will be used to show that edges above a certain weight are no
longer included in the current solution after the temperature has dropped sufficiently,
Lemma 7, which is the main lemma in our analysis, deals with the structure of the
current solution after edges of a certain weight w are no longer included. It considers

123

72 Algorithmica (2024) 86:64–89

connected components that can be spanned by cheaper edges and states that these con-
nected components are essentially connected in an optimal way in the whole solution
up to multiplicative deviations of a factor (1 + κ) in the weights of the connecting
edges. Lemma 7 uses careful edge exchange arguments in its proof and bounds the time
to do these exchanges in a multiplicative drift analysis. Moreover, it features another
parameter called γ that will be optimized later along with the above-mentioned a.

Lemma 8 puts together the previous two lemmas to consider the run of SA over up
to n phases depending on the weight spectrum of the graph until the temperature has
dropped to a value being so small that no more changes are accepted. This will be the
final solution considered in the main proof. Essentially, having listed the weights of
an MST decreasingly, the lemma will match the weights of the final solution to the
weights of theMST and show for each element in the list that the final solutionmatches
theweight of the element up to a factor 1+κ . Its proof uses a bijection argument proved
by induction to apply Lemma 7 and is crucially different from Wegener’s analysis.

The final lemma, Lemma 10, finds choices for the parameter γ to minimize the
bound 1 + κ on the approximation ratio. Its proof uses several results from calculus.
Afterwards, Theorem 3 also chooses the parameter a carefully and arrives at the first
statement on the approximation ratio depending on �, the desired success probabil-
ity 1− δ, and the graph parameters, only. The second main theorem, Theorem 4 then
essentially translates parameters into each other to compute � and to express time
bounds based on the desired ε. A weaker but simpler formulation of that theorem is
finally stated in Corollary 5.

4.2 Detailed Technical Analysis

In this subsection, we collect the technical lemmas and theorems outlined above.
Let a > 1 and, forw > 0, let tw be the earliest point of time when T (tw) ≤ w/a. In

the following lemma, we state that the probability that SA accepts edges of weight w
after tw is exponentially small with respect to a. It shows that after the temperature
becomes less than w, the probability of accepting such an edge is sharply decreasing.

Lemma 6 Consider a run of SA with multiplicative cooling schedule with β = 1−1/�
and T0 ≥ wmax on an instance of the MST problem. Let � > 2, 1 < a ≤ � − 1 and for
any w > 0, tw be the earliest point of time when T (tw) ≤ w/a. It holds that no new
edge of weight at least w is included in the solutions after time tw with probability at
least

1 − 2(� − 1)

aea
,

which is at least 1 − δ/2 for δ < 1, if we set a ≥ ln(4(� − 1)/δ).

Proof Let s be an edge ofweight at leastw, which is not in the solution at the beginning
of the step tw. Let t ∈ N≥0 and E

(tw+t)
s be the event of accepting the edge s at step tw+t .

This event happens if the edge s is flipped with probability 1/m and the algorithm
accepts this worse solution. Thus

123

Algorithmica (2024) 86:64–89 73

Pr
[
E (tw)
s

]
= m−1 · exp

(−w

T (tw)

)

≤ e−a/m.

For all integers t ≥ 0, we have T (tw + t) = T (tw)(1 − 1/�)t . Then

Pr
[
E (tw+t)
s

]
= m−1 exp

(−w

T (tw)(1 − 1/�)t

)

≤ m−1e−a(1+ 1
�−1)t

≤ m−1e−a(1+ t
�−1),

where we used the inequality (1 + x)r ≥ 1 + r x for x > −1 and r ∈ N≥0.
Let E≥tw

s be the event of accepting the edge e of weight at least w after step tw at
least once. Then, using a union bound and the geometric series sum formula, we get

Pr
[
E≥tw
s

] ≤
∞∑

t=0

Pr
[
E (tw+t)
e

]
≤

∞∑

t=0

m−1e−a(1+ t
�−1)

= m−1 e−a

1 − e−a/(�−1)
≤ m−1 e−a

1 − (1 − a
2(�−1))

= m−1 2(� − 1)

aea
,

where we have a ≤ � − 1 and use the inequality e−x ≤ 1 − x/2 for 0 ≤ x ≤ 1.
Since there are m edges, with probability 1− 2(�−1)

aea , there is no inclusion of edges
after their corresponding steps tw.

Moreover, if we set a ≥ ln(4(� − 1)/δ), the probability is at least

1 − 2(� − 1)

ln(4(� − 1)/δ) · 4(� − 1)/δ
= 1 − δ/2

ln(4(� − 1)/δ)
≥ 1 − δ/2,

where we have � > 2 and δ < 1. ��
In the following lemma,we consider a time interval of length 4.21γmn ln(2m2/δ)+

1 starting from tw (for fixed a) and prove that at the end of this period, there are no edges
of weight at leastw left that could be replaced by an edge of weight at mostw/(1+κ),
where κ depends on the algorithm parameter � and parameters γ and a. We optimize
these parameters later in this paper.

Lemma 7 Let γ > 1, δ < 1, � > 2, a > 1. Consider a run of SA with multiplicative
cooling schedule with β = 1−1/� and T0 ≥ wmax on an instance of theMST problem.
Let tw be the earliest point of time when T (tw) ≤ w/a, and assume that no further
edges of weight at least w are added to the solution from time tw. Let

1 + κ =
a exp

(
γ

4.21mn ln(2m2/δ)
�−1

)

ln γ
.

123

74 Algorithmica (2024) 86:64–89

Let nw be the number of connected components in the subgraph using only edges
with weight at most w/(1+ κ) in G. After time tw + 4.21γmn ln(2m2/δ), the number
of edges in the current solution with weight at leastw is at most nw−1with probability
at least 1 − δ/(2m).

Proof Let Tbase = 4.21mn ln(2m2/δ). We analyze the steps tw, . . . , tw +γ Tbase. The
temperature during this phase is at least

T (tw)(1 − 1/�)γ Tbase ≥ T (tw)e−(γ Tbase)/(�−1),

using 1 − x ≥ e−x/(1−x) for x ≤ 1, so the probability to accept a chosen edge with
weight at most w/(1 + κ) in one step is bounded from below by

exp

(−w/(1 + κ)

T (tw)e−γ Tbase/(�−1)

)

= exp

(

−aeγ Tbase/(�−1)

(1 + κ)

)

= 1/γ

during this phase. By our assumption in the statement, we do not include edges of
weight at least w.

Let us partition the set of edges with weight at leastw in the current solution x , that
is, the graph Gx = (V , E(x)), into three disjoint subsets. An edge e = {u, v} with
weight at least w has one of the following three properties,

(a) the edge e lies on a cycle in Gx ;
(b) the edge e does not lie on a cycle, but there is at least one edge e′ ∈ E \ E(x) with

weight at most w/(1+ κ) such that e lies on a cycle in the graph (V , E(x)∪{e′});
(c) the edge e has neither of the two properties. In this case, we call this edge essential

for the current and forthcoming solutions.

As long as an edge with weight at least w is not essential, it can either be removed
from the current solution or become an essential edge. When the edge disappears,
since its weight is at least w, it will not appear again.

Also, when the edge becomes essential, it remains essential in the solution to the
end, because in order to create a cycle containing this edge, an edge with weight at
least w has to appear, which does not happen, and also removing this edge makes the
graph unconnected.

We claim that the number of essential edges does not exceed nw − 1. In order to
prove this, we define the graph H = (VH , EH) as follows. There is a vertex in VH

for each connected component of the induced subgraph on the edges of weight at
most w/(1 + κ) in G, and there is an edge between two vertices vi , v j ∈ VH if there
is an essential edge e = {u, v} in the solution that u and v belong to the corresponding
connected components Ci and C j respectively. Formally, let C = {C1, . . . ,Cnw }
be the connected components of the induced subgraph on the edges of weight at
most w/(1 + κ). Then, VH = {v1, . . . , vnw } and

EH = {{i, j} | ∃ essential e = {u, v}, u ∈ Ci , v ∈ C j
}
.

Weclaim that there is no essential edgewith both endpoints in the sameCi . To prove
this, we assume for contradiction that there is such an edge e = {u, v}. Then, since e

123

Algorithmica (2024) 86:64–89 75

is essential, it cannot be on a cycle in the current solution. Let Su and Sv denote the
sets of vertices connected to u and v respectively using edges in the solution except e.
Su ∪ Sv = V (G) because the solution is always connected. Since e is essential, there
is no edge with weight at most w/(1+ κ) in G from Su to Sv (see the property (2)), so
there is no such cheap edge in G from Su ∩ Ci to Sv ∩ Ci , which results in that there
is a partition of vertices of Ci that are disconnected in the subgraph using only edges
with weight at most w/(1 + κ) in G, which contradicts the definition of Ci . Also, H
has to be a forest since we also know that essential edges are not on a cycle. Therefore,
since there are nw connected components, there are at most nw − 1 essential edges.

Now, in the next paragraphs, we state the number of steps needed to remove edges
with weight at least w or to make them essential. We consider some epochs consisting
of 2m iterations each and let Xt be the random variable denoting the number of non-
essential edges with weight at leastw whose exclusion is possible at epoch t . We claim
that

�t (s) := E
[
Xt − Xt+1 | Xt = s

] ≥ s · (1 − e−3)n−1/(2γ).

If no cycle with a non-essential edge e = {u, v} with weight at least w exists, the
probability of creating such a cycle by adding the cheap edge considered in Case 2
between Su and Sv in each step is at least 1/(γm) and in m steps, is at least

1 −
(

1 − 1

γm

)m

≥ 1 − e−1/γ ≥ 1/(2γ),

where we have 1 + x ≤ ex for all x ∈ R and the inequality e−x ≤ 1 − x/2 for
0 ≤ x ≤ 1.

Then, after the cycle is created in the firstm iterations, or the cycle already existed,
the probability of the exclusion of such an edge in m steps of the second half of the
epoch is only (1 − e−3)n−1 because the probability of observing at least one edge
from the cycle of length k inm steps is 1− (1− k/m)m ≥ 1− (1−3/m)m ≥ 1− e−3,
and the probability that the edge selected is e equals 1/n. Altogether, the probability
of excluding a non-essential edge with weight at leastw is at least (1−e−3)n−1/(2γ),
which results in decreasing Xt by at least one because removing e might also make
some other edges essential. Since there are s non-essential edges, we have �t (s) ≥
s · (1− e−3)n−1/(2γ). Since there can be at most m essential edges at the beginning,
we have X0 ≤ m. Assume Y denotes the number of epochs needed to have only
essential edges with weight at least w. Using the upper tail bound of multiplicative
drift in Theorem 2, we have

Pr

[

Y >
ln(2m/δ) + ln X0

(1 − e−3)n−1/(2γ)

]

≤ e− ln(2m/δ) = δ/(2m).

Since each epoch consists of 2m iterations,

2m · 2(1 − e−3)−1nγ ln(2m2/δ) ≤ 4.21mn ln(2m2/δ)

is sufficient to arrive at a solution where all edges of weight at least w are essential. ��

123

76 Algorithmica (2024) 86:64–89

SA does with high probability not accept an inclusion of any edge using Lemma 6
when the temperature is colder thanwmin/a for some a that is still a parameter chosen
later. This is the time from when the solution is invariant. Let twmin be the earliest time
when T (twmin) ≤ wmin/a and tend := twmin .

In the following lemma, we show that there is a bijective relation between the
edges of the solution at time tend and a MST such that the ratio between the weights
of corresponding edges is less than (1 + κ).

Lemma 8 Let δ < 1, γ > 1, � = ω(1) and a ≥ ln(4(� − 1)/δ). Let

1 + κ =
a exp

(
γ

4.21mn ln(2m2/δ)
�−1

)

ln γ
.

Consider a run of SA with multiplicative cooling schedule with β = 1 − 1/� and
T0 ≥ wmax on an instance of theMST problem. Assume that T ∗ is aminimum spanning
tree and T ′ is the solution of SA at time tend where T (tend) ≤ wmin/a.

For an arbitrary spanning tree T , let wT = (wT (1), . . . , wT (n − 1)) be a
decreasingly sorted list of the weights on its edges, i. e., wT (j) ≥ wT (i) for all
1 ≤ j ≤ i ≤ n − 1. With probability at least 1 − δ, we have

wT ∗(k) ≤ wT ′(k) < (1 + κ)wT ∗(k) for each k ∈ [1..n − 1].

Proof We recall that tw is the earliest point of time when T (tw) ≤ w/a. With proba-
bility 1 − δ/2, edges of weight w are not included after their corresponding times tw
via Lemma 6. Thus conditional on this event, we can use Lemma 7 stating that with
probability at least 1 − δ/(2m), the number of edges with weight at least w is at
most nw − 1. This condition must hold for at most m distinct values, happening with
probability at least 1− δ/2 according to a union bound. Altogether, since the event in
Lemma 6 must happen with probability 1 − δ/2 and the condition in Lemma 7 must
hold for all weights, with probability at least 1− δ, the statement in Lemma 7 is valid
for all possible weights.

We use induction on the index k. The case k = 0 is trivial as the basic step.
Regarding the inductive step, assume that for all 0 ≤ k ≤ i −1, the inequality is valid.
If i = n, the claim is proved. Otherwise, let wT ∗(i) be the next unique largest weight
and j ≥ i be the largest index that wT ∗(j) = wT ∗(i). In fact, we have

wT ∗(i − 1) > wT ∗(i) = · · · = wT ∗(j) > wT ∗(j + 1).

There are exactly j − i + 1 edges with weight wT ∗(i) in the minimum spanning tree
T ∗. The number of connected components in G using only edges with weight at most
wT ∗(i) is i since they are connected using i − 1 edges in T ∗. Using Lemma 7 with
w = (1+κ)wT ∗(i) and considering nw = i , there are at most i −1 edges with weight
at least (1+ κ)wT ∗(i) in T ′, which means that the rest of the weight values in T ′ are
less than (1 + κ)wT ∗(i). Since we know that the graph cannot be connected using
less than j edges with weight at least wT ∗(i), we can conclude that there are at least

123

Algorithmica (2024) 86:64–89 77

j edges with weight between wT ∗(i) and (1 + κ)wT ∗(i). Therefore, for i ≤ k ≤ j ,
the inequality suggested above holds. ��

With the above lemmas at hand, we can prove the first theorem. Given �, Theorem 9
states the approximation ratio that the algorithm with cooling schedule β = 1 − 1/�
can obtain.

Theorem 9 Let δ < 1, γ > 1 and � = ω(1). Consider a run of SA with multiplicative
cooling schedule with β = 1 − 1/� and T0 ≥ wmax on an instance of the MST
problem. For a ≥ ln(4(� − 1)/δ), with probability at least 1 − δ, at all times t ≥
(�/2) ln (aT0/wmin) the current solution is a (1 + κ)-approximation where

1 + κ =
a exp

(
γ

4.21mn ln(2m2/δ)
�−1

)

ln γ
.

Proof We consider the time tend when T (tend) ≤ wmin/a and show the approximation
result for the current solution of SA at that time. Concretely, assume that T ∗ is a
minimum spanning tree and T ′ is the solution of the algorithm at time tend. Assume
w(T) is the total weight of edges in the tree T . Using Lemma 8, with probability 1−δ,
we have wT ′(k) < (1 + κ)wT ∗(k) for each k ∈ [1..n − 1]. Thus, we have

w(T ′) =
n−1∑

i=1

wT ′(i) <

n−1∑

i=1

wT ∗(i)(1 + κ) = (1 + κ)w(T ∗).

To complete the proof, we only have to find the time tend fromwhen the temperature
is less than wmin/a, so after that, no edges are included anymore via Lemma 6. Then
tend satisfies

T0(1 − 1/�)tend = wmin

a
.

Then

tend = log1−1/� ((wmin/a)/T0) = ln(wmin/(aT0))

ln(1 − 1/�)
.

Using the inequality 1 − x/2 ≥ e−x for 0 ≤ x ≤ 1 with x = 2/�, we can bound tend
from above by

tend ≤ ln(wmin/(aT0))

−2/�
= (�/2) ln

(
aT0
wmin

)

.

��
The formula for κ , which we obtained in Theorem 9, holds for all γ > 1. In the

following lemma, we suggest a value for γ , leading to the smallest value for 1 + κ .
With the help of that, we give also some bounds on 1 + κ considering different cases
for �.

123

78 Algorithmica (2024) 86:64–89

Lemma 10 Let a and κ be defined as in Theorem 9 and Tbase := 4.21mn ln(2m2/δ).

Then the minimum value of κ is achieved by setting γ = exp
(
W

(
�−1
Tbase

))
, where W

is the Lambert W function. Moreover, if � < eTbase+1, 1+κ ≥ e(1/e)−1a. Otherwise,
if � ≥ eTbase + 1,

1 + κ ≤ a

exp

(
(
ln

(
�−1
Tbase

)) e
e−1 ln

−1
(

�−1
Tbase

)
−1

)

ln
(

�−1
Tbase

)
− ln ln

(
�−1
Tbase

) .

For � = ω(Tbase), the last fraction is (1 + o(1)) a
ln(�−1)−ln(Tbase)

.

Proof From the definition of κ in Theorem 9, for γ > 1, we have

1 + κ = a
eγ /b

ln γ
, (1)

where b := �−1
Tbase

.

Let f (x) = ex/b/ ln x for x > 1. Then its derivative is f ′(x) = ex/b
b ln(x) − ex/b

x ln2(x)
.

For x > 1, we have the only root x = eW (b), where W is the Lambert W function.
Therefore, Eq. (1) with γ = eW (b) gives us the minimum value for (1+ κ) and equals

a
ee

W (b)/b

W (b)
. (2)

Now, we aim at finding some bounds on 1 + κ . We analyze Eq. (2) for two cases
of b.

For b ≥ e, using the inequality

ln b − ln ln b + ln ln b

2 ln b
≤ W (b) ≤ ln b − ln ln b + e

e − 1

ln ln b

ln b
,

from [24], we get

a
ee

W (b)/b

W (b)
≤ a

exp
(
b−1eln(b)e− ln ln be

e
e−1

ln ln b
ln b

)

ln(b) − ln ln(b)

= a
exp

(
e− ln ln be

e
e−1

ln ln b
ln b

)

ln(b) − ln ln(b)

= a
exp

(
(ln b)−1+ e

(e−1) ln b

)

ln(b) − ln ln(b)
.

123

Algorithmica (2024) 86:64–89 79

For b = ω(1), the last expression equals a(1+o(1))
ln b−ln ln b = (1 + o(1)) a

ln b since

(ln b)−1+ e
(e−1) ln b = e

e ln ln b
(e−1) ln b

ln b
= o(1)

ln b
= o(1).

Regarding the case b < e, using the definition W (x)eW (x) = x , we have eW (x) =
x

W (x) . By applying these inequalities on Eq. (2), we obtain

a
ee

W (b)/b

W (b)
= a

e

(
b

bW (b)

)

W (b)
= a

e1/W (b)

W (b)
.

From the definition again, we haveW (b)eW (b) = b. Since for x ≥ 0, we have ex ≥ 1,
we can conclude W (b) ≤ b, resulting in W (b) < e. Thus the last expression can be
bounded from below by

a
e1/e

e
= e(1/e)−1a.

��
Finally, we give the proofs of the two main theorems in this paper.

Proof of Theorem 3 Using Theorem 9, we have

1 + κ =
a exp

(
γ

Tbase
�−1

)

ln γ
.

By setting a = ln(4(� − 1)/δ) and using the upper bound on (1 + κ) obtained in
Lemma 10 for � = ω(Tbase) = ω(mn ln(m/δ)), we get

1 + κ ≤ (1 + o(1))
ln(4(� − 1)/δ)

ln(� − 1) − ln(4.21mn ln(2m2/δ))

= (1 + o(1)) · (1 + o(1))
ln((� − 1)/δ)

ln(�) − ln(mn ln(m/δ))

≤ (1 + o(1))
ln(�/δ)

ln(�) − ln(mn ln(m/δ))
.

��
In Theorem 3, we only consider the case � = ω(Tbase) since the other cases for �

cannot lead to constant approximation ratios and therefore are not interesting to study.
More precisely, let us assume � = ω(1). In the case that � < eTbase + 1, we have the
lower bound�(ln(4(�−1)/δ)) = ω(1) on 1+κ from Lemma 10. Regarding the case
that � ≥ eTbase + 1 and � = O(Tbase), it can be proved that 1 + κ = �(a) = ω(1),

123

80 Algorithmica (2024) 86:64–89

since �/Tbase = O(1) makes all terms constant except a in Eq. (2). Then again for
a ≥ ln(4(� − 1)/δ) and � = ω(1), the approximation ratio is ω(1).

Now, we give the proof of Theorem 4.

Proof of Theorem 4 Let � = (mn ln(m/δ))1+1/ε . Via Theorem 3, we have

1 + κ ≤ (1 + o(1))
ln(�/δ)

ln
(

�
mn ln(m/δ)

)

= (1 + o(1))
(1 + 1/ε) ln (mn ln(m/δ)) + ln(1/δ)

(1/ε) ln (mn ln(m/δ))

= (1 + o(1))

(
1 + 1/ε

1/ε
+ ln(1/δ)

(1/ε) ln(mn ln(m/δ))

)

≤ (1 + o(1))

(

1 + ln(1/δ)

ln(mn ln(m/δ))

)

(1 + ε) .

For δ−1 = o(mn ln n), the last expression can be bounded from above by (1 +
o(1)) (1 + ε). ��

A more straightforward result of Theorem 4 is stated in Corollary 5. In this corol-
lary, we are aiming at expressing an asymptotic time for the algorithm to find the
approximation, and we assume that ε is constant.

Proof of Corollary 5 Using Theorem 4, we will first prove the result for an approxima-
tion ratio of (1+o(1))(1+ ε′) for some constant ε′ > 0 and then bound this by a ratio
of at most 1 + ε such that (1 + o(1))(1 + ε′) ≤ 1 + ε for n large enough.

Note that � = (mn ln(m/δ))1+1/ε′
and δ = ω(1/(mn ln n)) and invoke Theorem 4.

The asymptotic bound on T ∗ is obtained in the following way: we note that ln(n/δ) =
O(ln n) since 1/δ = nO(1) by assumption and m ≤ n2. Since ε′ > 0 is constant,
we have ln(�) = O((1 + 1/ε′) ln(mn ln(m/δ))) = O((1 + 1/ε′) ln n))) = O(ln n).
Moreover, � = O((mn ln(n/δ))1+ε′

) = O((mn ln(n))1+ε′
). Putting this together, we

have

T ∗ = O((mn ln(n))1+1/ε′
(ln ln n + ln(T0/wmin))).

We have that 1/ε′ = 1/ε + o(1) since ε and ε′ are constants. Hence, we obtain the
statement of the corollary. ��

5 (1+ �)-SeparatedWeights

In this section, we revisit the case that the weights w1, . . . , wm are (1+ ε)-separated,
i. e., there is a constant ε > 0 such that w j ≥ (1 + ε)wi if w j > wi for all i, j ∈
{1, . . . , n}. As mentioned in the introduction in Theorem 1, Wegener proves that SA
with high probability finds an MST for any instance with (1 + ε)-separated weights
if wmax ≤ 2m . More precisely, the proof of his theorem considers a time span of

123

Algorithmica (2024) 86:64–89 81

O(m8+8/ε) steps and shows that SA constructs an MST within this time span with
probability 1 − O(1/m).

In the following, we improve this result in two ways. As acknowledged byWegener
himself, he did not optimize the parameters in the final bound on the runtime.
Therefore, we can give an improved time bound of O((mn ln(n))1+1/ε+o(1)(ln ln n +
ln(T0/wmin))), see Theorem 11 for the precise, more general result. Moreover, we
replace the assumption on the largest edge weight by the parameter wmax. Essentially,
we have done all work necessary to show the following theorem already in the previ-
ous section, where we proved an approximation result. Now, the (1 + ε)-separation
implies that indeed an optimal solution is found with high probability.

Theorem 11 Let δ = ω(1/(mn ln n)) and δ < 1, ε > 0 be a constant. Con-
sider a run of SA with multiplicative cooling schedule with β = 1 − 1/� for
� = (mn ln(m/δ))1+1/ε+o(1) and T0 ≥ wmax on an instance of the MST prob-
lem with (1 + ε)-separated weights. With probability at least 1 − δ, at all times

t ≥ T ∗ := (�/2) ln
(
ln(4(�−1)/δ)T0

wmin

)
the current solution is optimal. Moreover,

T ∗ = O((mn ln(n))1+1/ε+o(1)(ln ln n + ln(T0/wmin))).

Proof We first prove the result for (1 + o(1))(1 + ε′)-separated weights for some
constant ε′ > 0. Then we prove the result for (1 + ε)-separated weights such that
(1 + o(1))(1 + ε′) ≤ (1 + ε) for n large enough.

Using Lemma 8, with probability 1 − δ, we have wT ∗(k) ≤ wT ′(k) < (1 +
κ)wT ∗(k) for each k ∈ [1..n − 1]. The (1 + κ)-separated graphs do not have edge
weights betweenwT ∗(k) and (1+κ)wT ∗(k) exceptwT ∗(k). Therefore, the algorithm
finds an optimal solution.

We need to bound 1 + κ using the assumptions in the statement. By setting a =
ln(4(�−1)/δ) and using Lemma 10 for � = (mn ln(m/δ))1+1/ε′

, we bound 1+κ from
above by (1 + o(1))(1 + ε′) similarly to the proof of Theorem 4. Since ε and ε′ are
constants and we have 1/ε′ = 1/ε + o(1), we obtain the claim for (1 + ε)-separated
weights.

Regarding T ∗, since ε > 0 is constant, we have ln(�) = O((1 + 1/ε +
o(1)) ln(mn ln(m/δ))) = O((1 + 1/ε + o(1)) ln n))) = O(ln n). Moreover, � =
O((mn ln(n/δ))1+ε+o(1)) = O((mn ln(n))1+ε+o(1)). Putting this together, we have

T ∗ = O((mn ln(n))1+1/ε+o(1)(ln ln n + ln(T0/wmin))). ��

6 Comparison and Hybridization of SA and (1+ 1) EA

In this section, we compare the performance proven for SA in thisworkwith the known
performance of the (1 + 1)EA, a simple single-trajectory evolutionary algorithm. This
will both show that SAcan have a superior performance on graphs that are not too dense
and that a hybridization of the two algorithms, computing an approximate solution via
SA and refining it via the (1 + 1) EA, can be a superior approach.

123

82 Algorithmica (2024) 86:64–89

6.1 Runtime Analysis for the (1+ 1) EA

To achieve the goals of this section, we need the following result on the performance
of the (1 + 1) EA when starting with a solution of a given quality. Since it takes
almost no additional effort, we also formulate this result for approximations, that is,
for the problem of computing a connected graph on the whole vertex set with total
edge weight at most (1 + ε) times the weight of a minimum spanning tree. In the
following, wopt denotes the weight of a minimum spanning tree.

Theorem 12 Consider using the standard (1 + 1) EA to compute minimum spanning
trees. Assume that the objective function f : {0, 1}m → Z is such that f (x) equals
the sum w(x) := ∑m

i=1 wi xi of the edge weights in the solution when x represents a
connected graph and that f (x) >

∑m
i=1 wi otherwise. Assume that the initial solution

x (0) is connected.

(a) The number T of iterations until an optimal solution is computed satisfies

E[T] ≤ em2(1 + ln(f (x (0)) − wopt)).

For λ > 0, we have

Pr
[
T > �em2(λ + ln(f (x (0)) − wopt))�

] ≤ exp(−λ).

(b) Let ε > 0. Then the number Tε of iterations until the current solution of the
(1 + 1) EA is a connected graph with total weight at most (1 + ε)wopt satisfies

E[Tε] ≤ em2(1 + ln(1/ε) + ln(f (x (0))/wopt)).

and

Pr
[
Tε > �em2(λ + ln(1/ε) + ln(f (x (0))/wopt))�

] ≤ exp(−λ)

for all λ > 0.

This result is similar to Theorem 12 in [19]. It is more general in that it takes
into account the quality w(x (0)) of the initial solution. There is no doubt that such a
statement could easily have been obtained also with the approach of [19]. Since the
proof of Theorem 12 in [19] refers to many arguments of the proof of Theorem 11 in
that paper, and since that work could not yet use the more elegant multiplicative-drift
approach [21], we now give a short complete proof of our result via multiplicative
drift. Compared to [19], it also uses a slightly more elegant way to deal with the two
different ways of making progress, omitting edges that are not needed for connectivity
and exchanging expensive edges for a cheaper ones (without disconnecting the graph).
While we believe that all these changes lead to a more comprehensive proof, it is clear
that the central arguments have already appeared in [19].

123

Algorithmica (2024) 86:64–89 83

Proof of Theorem 12 To apply the multiplicative drift (Theorem 2), we show that the
expected fitness of an accepted offspring of a connected solution is smaller than the
fitness of the parent. More precisely, let

g(x) := w(x) − wopt

for any connected solution x . Note that apart from the additive offset wopt, this is just
the fitness of x . Let y be obtained from x via standard bit-wise mutation (flipping
each bit independently with probability 1

n). Let z := y, if f (y) ≤ f (x), and z := x
otherwise. That is, z is the parent individual after one iteration started with x as parent.
We show that

E[g(z)] ≤
(

1 − 1

em2

)

g(x). (3)

We start by analyzing the structure of the graphGx represented by x . Letm′ = ‖x‖1
be the number of edges of Gx . If r = m′ − (n − 1) is positive, then there are r
edges ei1 , . . . , eir such that G ′ := Gx − {ei1 , . . . , eir } is a spanning tree (this is an
elementary result from graph theory). Let us assume that these edges were chosen
with maximal weight (“maximality assumption”), that is, ei1 , . . . , eir are r edges such
that G ′ := Gx − {ei1 , . . . , eir } is a spanning tree and for all other sets F of r edges
such that G − F is a spanning tree, we have

∑
f ∈F w(f) ≤ ∑r

�=1 w(ei�).
By Lemma 1 of [19], which is originally from [25], there are a number s ∈ [0..n−1]

and pairs (e j1 , ek1), . . . , (e js , eks) of edges such that (i) for all � ∈ [1..s], e j� is an edge
of G ′, ek�

is not an edge of G ′, and the graph G ′ − e j� + ek�
is connected and has a

smaller totalweight thanG ′ (hencew(e j�) > w(ek�
)), and (ii)w(G ′)−∑s

�=1(w(e j�)−
w(ek�

)) = wopt.
Let A�, � ∈ [1..r], denote the event that y is obtained from flipping exactly the i�-th

bit in x (that is, Gy = Gx − ei�). Note that by definition, Gy is a connected graph in
this case, and f (y) ≤ f (x). Let B�, � ∈ [1..s], denote the event that y is obtained
from flipping exactly the bits x j� and xk�

. If e j� is an edge ofGx and ek�
is not, then this

mutation exchanges these two edges and the resulting graph Gy has a better fitness
than Gx (note that Gy is connected since it contains G ′ − e j� + ek�

). Hence assume
that Gx contains both e j� and ek�

. Then G ′ − e j� + ek�
is a connected subgraph of G

having smaller weight than G ′, in contradiction to our maximality assumption (that
is, the set {ei1 , . . . , eir }\{ek�

} ∪ {e j�} would have been a set with larger weight such
that its removal creates a spanning tree). Hence the case that both e j� and ek�

are in
Gx does not occur.

Since an offspring is only accepted if it is connected and has not a larger g-value
than x , we have

g(x) − E[g(z)] ≥
r∑

�=1

Pr[A�]w(ei�) +
s∑

�=1

Pr[B�](w(e j�) − w(ek�
)).

123

84 Algorithmica (2024) 86:64–89

For all �, we have Pr[B�] = 1
m2 (1− 1

m)m−2 ≥ 1
em2 and Pr[A�] = 1

m (1− 1
m)m−1 ≥ 1

em .
By construction,

r∑

�=1

w(ei�) +
s∑

�=1

(w(e j�) − w(ek�
)) = w(Gx) − w(G ′) + w(G ′) − wopt

= g(x).

Hence g(x) − E[g(z)] ≥ 1
em2 g(x), that is, E[g(z)] ≤ (1 − 1

em2)g(x) as claimed
in (3).

Since we assumed that all edge weights are integers, the smallest positive value
taken by our potential function g is smin = 1. Applying themultiplicative drift theorem
(Theorem3 in [21]),we conclude that thefirst timeT that g(x) = 0,which is equivalent
to saying that x encodes a minimum spanning tree, satisfies

E[T] ≤ 1 + ln(g(x (0))/smin)

1/(em2)
= em2(1 + ln(f (x (0)) − wopt)).

By the multiplicative drift theorem with tail bounds (Theorem 2), for each λ > 0 we
also have

Pr
[
T > �em2(λ + ln(f (x (0)) − wopt))�

] ≤ exp(−λ).

Let ε > 0, let w(x (0)) ≥ (1 + ε)wopt, and let Tε be the first time that g(x) ≤
εwopt =: smin. Note that such an x is a (1 + ε)-approximate solution, that is, it
encodes a connected graph with weight at most (1 + ε)wopt. Let g̃(x) defined by
g̃(x) = g(x) when g(x) ≥ smin and g(x) = 0 otherwise. Then (3) immediately
translates to E[g̃(z)] ≤ (1 − 1

em2)g̃(x) and the multiplicative drift theorems give

E[Tε] ≤ 1 + ln(g̃(x (0))/smin)

1/(em2)
= em2

(

1 + ln

(
f (x (0)) − wopt

εwopt

))

≤ em2(1 + ln(1/ε) + ln(f (x (0))/wopt))

and

Pr
[
Tε >

⌈
em2

(
λ + ln (1/ε) + ln

(
f (x (0))/wopt

))⌉]
≤ exp(−λ)

for all λ > 0. ��

6.2 Comparison of Runtime Bounds

The classical analysis of the (1 + 1) EA on the MST problem in [19] as well as
Theorem 12 both assume integral edge weights. For the SA, we will without loss of

123

Algorithmica (2024) 86:64–89 85

generality assume the same, resulting in a smallest edge weight of at least 1. With
TSA(ε) being the time for SA to obtain a (1+ε)-approximation, where ε is a constant,
Corollary 5 with T0 = wmax and wmin ≥ 1 then states that

TSA(ε) = O
(
(mn ln(n))1+1/ε+o(1)(ln ln n + ln(wmax))

)
(4)

(with high probability). We emphasize that this is only an upper bound. We do not
have any lower bounds on the runtime of SA, and upper bounds and lower bounds
for the (1 + 1) EA on the MST problem are apart by a polynomial factor. In lack of
good lower bounds, we are therefore going to compare the upper bound for SA in
(4) to an upper bound on the expected approximation time of the (1 + 1) EA. Such a
comparison shows which of the two algorithms has the stronger runtime guarantee. It
cannot formally prove anything about the true ranking of the algorithms.

The bound from Theorem 12 depends on the value of the initial search point x (0),
assuming it to describe a connected graph. Our result for SA in Corollary 5 depends
on the extremal edge weights but not on the initial search point. Again, since it seems
rather difficult to obtain a result for SA depending on the initial search point, we
assume a worst-case perspective and compare the two algorithms with respect to the
worst-case bound f (x (0)) ≤ mwmax. Moreover, we assume mwmax ≥ wκ

opt for some
constant κ > 1. Hence, the bound on the initial f -value is assumed significantly larger
than the optimum so (1+ ε)-approximations (for constant ε) are not too easy to find.

According to Theorem 12, the time T(1+1) EA(ε) for the (1 + 1)EA to find a (1+ε)-
approximation satisfies

E[T(1+1) EA(ε)] ≤ em2(1 + ln(1/ε) + ln(mwmax/wopt)).

Using our assumptions, in particular that ε and κ are constants, the right-hand side is
no less than

em2(1 + ln(1/ε) + (1 − 1/κ) ln(mwmax))

= �(m2(ln(m) + ln(wmax))). (5)

We note that we have derived a lower bound on the upper bound on E[T(1+1) EA(ε)]
from Theorem 12 since we want to identify situations where this upper bound is larger
than the upper bound in (4).

Finally, we carefully compare (4)with (5). Interestingly, the first bound, i. e., the one
for SA, can be better for not too sparse graphs. The main reason is that (4) essentially
grows like (mn)1+1/ε , while (5) grows likem2 (ignoring logarithmic factors). We will
work out the asymptotic difference more closely now.

Assume that m = �(n1+β) for some constant β ∈ (0, 1]. Then, comparing the
factor (mn ln(n))1+1/ε+o(1) from (4) to the factor m2 from (5) (and noting that the
following factor in parentheses is lower in (4)), we essentially have a relative speed-

123

86 Algorithmica (2024) 86:64–89

up of SA compared to (1 + 1) EA by at least

m2

(mn ln(n))1+1/ε = m1−1/ε

(n ln(n))1+1/ε ,

where we ignored the o(1) in the exponent since, in the following, we can simply
increase the constant β by an additive term of o(1) to adjust for the missing term.
Now, plugging in the bound on m, the bound on the speed-up becomes

n(1+β)(1−1/ε)

(n ln(n))1+1/ε = (ln(n))−1−1/εn(1+β)(1−1/ε)−1−1/ε = (ln(n))−1−1/εnβ(1−1/ε)−2/ε,

which becomes n�(1) if

β >
2/ε

1−1/ε ,

where we recall that β is a constant in the range (0, 1]. Already for ε > 3, there are
feasible β; e. g., for ε = 4, it suffices that β > 2/3.

Altogether, for constant-factor approximations with ε > 3, there is a sufficiently
dense graph class such that the upper bound on TSA(ε) becomes asymptotically smaller
than the bound on E[T(1+1) EA(ε)] (assumingmwmax ≥ wκ

opt). In this sense, applying
SA may be more efficient to obtain constant-factor approximations to the MST than
applying the (1 + 1) EA.

6.3 A Hybridization of SA and (1+ 1) EA

As we have seen in the previous subsection, SA may be more efficient at computing
approximate solutions to theMSTproblem than the (1 + 1)EA. This suggests a hybrid
approach where the (1 + 1) EA is started from an approximate solution obtained from
SA. We now analyze in which situations the overall runtime to find an MST with
such a hybrid approach is superior to the time taken by the (1 + 1) EA started with
a random solution as in the classical work. To be precise, since we have no lower
bounds on these runtimes, we only compare the runtime guarantees obtainable by our
results, that is, we study under which conditions we obtain stronger guarantees via a
hybridization.

The analysis from the previous subsection indicates that a runtime advantage of SA
compared to the (1 + 1)EA (for computing approximate solutions) only seems to exist
for dense graphs. Then the term m2 appearing in the bound for the (1 + 1) EA from
Theorem12outweighs the termTSA = (mn ln(n))1+1/ε+o(1)(ln ln n+ln(wmax/wmin))

in the bound for SA fromCorollary 5. In the following,we assume that ε is a sufficiently
large constant andm grows sufficiently faster than n such that TSA = o(m2) holds. To
ease the presentation, we shall also assume that wopt = ω(1), which is a very natural
assumption.

Let us now consider the following hybridization:

123

Algorithmica (2024) 86:64–89 87

(a) We startMAwith T0 = wmax and run it for T ∗ steps to achieve a solution of quality
no larger than (1 + ε)wopt with high probability, with T ∗ defined in Corollary 5.

(b) We initialize the (1 + 1) EA with the solution of SA at time T ∗ and let it run until
it has obtained an MST.

We bound the sum of the (expected) times spent by the two algorithms. First, we
have T ∗ = O((mn ln n)1+1/ε+o(1)(ln ln n + ln(wmax/wmin)), which bounds the time
spent by SA. Let us assume that the solution at that time is of quality no less than
w∗ = (1 + ε)wopt, which happens with high probability. According to Theorem 12,
with high probability (take λ ∈ ω(1)∩o(wopt)), the (1 + 1)EA startingwith a solution
of quality w∗ finds the optimum in time

O(m2(1 + ln(w∗ − wopt))) = O(em2 lnwopt),

where we used that ε = O(1). Together with T ∗, with high probability, we have a
total optimization time of

O((mn ln n)1+1/ε+o(1)(ln ln n + ln(wmax/wmin)) + m2 lnwopt).

By comparison, the runtime guarantee from [19] for the (1 + 1) EA started with a
uniformly random solution is

O(m2(ln n + ln(wmax/wmin))).

Essentially, via the hybrid approach we replace the ln(wmax/wmin) in the dominant
term of the runtime with lnwopt (still assuming sufficiently dense graphs and suf-
ficiently large m such that (mn ln n)1+1/ε+o(1)(ln ln n + ln(wmax/wmin)) = o(m2)

holds). This is not a drastic improvement; however, if wmax is much larger than wopt
(e. g., since the graph has a very heavy edge that does not appear inMSTs), the runtime
bound for the hybrid approach is better than for the plain (1 + 1) EA.

7 Conclusions

We have shown that simulated annealing is a polynomial-time approximation scheme
for the minimum spanning tree problem, thereby proving a conjecture byWegener [3].
Our analyses use state-of-the-art methods and have led to improved results in the case
of (1+ε)-separatedweights,where simulated annealingyields anoptimal solutionwith
high probability. Our main result is one of the rare examples where simple randomized
search heuristics, with a straightforward representation and objective function, serve
as polynomial-time approximation scheme.

Since the runtime analysis of simulated annealing is still underrepresented in the
theory of randomized search heuristics, our understanding of its working principles
is still limited. In particular, we do not have a clear characterization of the fitness
landscapes in which its non-elitism, along with a cooling schedule, is more efficient
than global search. The study of the Metropolis Algorithm for the DLB problem in [9]

123

88 Algorithmica (2024) 86:64–89

and our analysis on theminimum spanning tree problemmight indicate that landscapes
with many, but easy to leave local optima are beneficial; however, more research is
needed to support this conjecture.

Acknowledgements This work was supported by a public grant as part of the Investissements d’avenir
project, reference ANR-11-LABX-0056-LMH, LabEx LMH, and a grant by the Independent Research
Fund Denmark (DFF-FNU 8021-00260B).

Funding Open access funding provided by Royal Danish Library.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Sasaki, G.H., Hajek, B.: The time complexity of maximum matching by simulated annealing. J. ACM
35, 387–403 (1988)

2. Jerrum, M., Sorkin, G.B.: The Metropolis algorithm for graph bisection. Discret. Appl. Math. 82,
155–175 (1998)

3. Wegener, I.: Simulated annealing beats Metropolis in combinatorial optimization. In: Automata, Lan-
guages and Programming, ICALP 2005, pp. 589–601. Springer, Berlin (2005)

4. Jansen, T., Wegener, I.: A comparison of simulated annealing with a simple evolutionary algorithm on
pseudo-Boolean functions of unitation. Theoret. Comput. Sci. 386, 73–93 (2007)

5. Franzin, A., Stützle, T.: Revisiting simulated annealing: a component-based analysis. Comput. Oper.
Res. 104, 191–206 (2019)

6. Doerr, B., Rajabi, A., Witt, C.: Simulated annealing is a polynomial-time approximation scheme for
the minimum spanning tree problem. In: Proc. of GECCO ’22, pp. 1381–1389. ACM Press, (2022)

7. Jansen, T.: Simulated annealing. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuris-
tics. World Scientific Publishing, Singapore (2011)

8. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Symposium
on Theoretical Aspects of Computer Science, STACS 2003, pp. 415–426. Springer, Berlin (2003)

9. Wang, S., Zheng, W., Doerr, B.: Choosing the right algorithm with hints from complexity theory. In:
International Joint Conference on Artificial Intelligence, IJCAI 2021, pp. 1697–1703. ijcai.org, (2021)

10. Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the time complexity of algorithm selection hyper-
heuristics for multimodal optimisation. In: Conference on Artificial Intelligence, AAAI 2019, pp.
2322–2329. AAAI Press, Washington (2019)

11. Doerr, B.: Exponential upper bounds for the runtime of randomized search heuristics. Theoret. Comput.
Sci. 851, 24–38 (2021)

12. Droste, S., Jansen, T., Wegener, I.: Dynamic parameter control in simple evolutionary algorithms. In:
Foundations of Genetic Algorithms, FOGA 2000, pp. 275–294. Morgan Kaufmann, Burlington (2000)

13. Oliveto, P.S., Paixão, T., Heredia, J.P., Sudholt, D., Trubenová, B.: How to escape local optima in black
box optimisation: when non-elitism outperforms elitism. Algorithmica 80, 1604–1633 (2018)

14. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization - Algorithms and
Their Computational Complexity. Springer, Berlin (2010)

15. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In:
Diekert, V., Durand, B. (eds.) Proc. of STACS 2005. Lecture Notes in Computer Science, vol. 3404,
pp. 44–56. Springer, Berlin (2005)

16. Corus, D., Oliveto, P.S., Yazdani, D.: Artificial immune systems can find arbitrarily good approxima-
tions for the NP-hard number partitioning problem. Artif. Intell. 274, 180–196 (2019)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2024) 86:64–89 89

17. Horoba, C.: Exploring the runtime of an evolutionary algorithm for the multi-objective shortest path
problem. Evol. Comput. 18, 357–381 (2010)

18. Neumann, F., Sutton, A.M.: Parameterized complexity analysis of randomized search heuristics. In:
Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation - Recent Developments in Discrete
Optimization. Springer, Berlin (2020)

19. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum span-
ning tree problem. Theoret. Comput. Sci. 378, 32–40 (2007)

20. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220,
671–680 (1983)

21. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)
22. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)
23. Lehre, P.K., Witt, C.: Tail bounds on hitting times of randomized search heuristics using variable drift

analysis. Comb. Probab. Comput. 30, 550–569 (2021)
24. Hoorfar, A., Hassani, M.: Inequalities on the Lambert W function and hyperpower function. J. Inequal.

Pure Appl. Math. 9, 5–9 (2008)
25. Kano, M.: Maximum and k-th maximal spanning trees of a weighted graph. Combinatorica 7, 205–214

(1987)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Simulated Annealing is a Polynomial-Time Approximation Scheme for the Minimum Spanning Tree Problem
	Abstract
	1 Introduction
	2 Previous Work
	3 Preliminaries
	4 SA as Approximation Scheme for the Minimum Spanning Tree Problem
	4.1 Main Results and Proof Outline
	4.2 Detailed Technical Analysis

	5 (1+ε)-Separated Weights
	6 Comparison and Hybridization of SA and (1 + 1) EA
	6.1 Runtime Analysis for the (1 + 1) EA
	6.2 Comparison of Runtime Bounds
	6.3 A Hybridization of SA and (1 + 1) EA

	7 Conclusions
	Acknowledgements
	References

