
Algorithmica (2023) 85:2735–2778
https://doi.org/10.1007/s00453-023-01116-0

Tight Approximation Algorithms for Geometric Bin Packing
with Skewed Items

Arindam Khan1 · Eklavya Sharma1,2

Received: 18 January 2022 / Accepted: 7 March 2023 / Published online: 28 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In Two-dimensional Bin Packing (2BP), we are given n rectangles as input and our
goal is to find an axis-aligned nonoverlapping packing of these rectangles into the
minimum number of unit square bins. 2BP admits no APTAS and the current best
approximation ratio is 1.406 by Bansal and Khan (ACM-SIAM symposium on discrete
algorithms (SODA), pp 13–25, 2014. https://doi.org/10.1137/1.9781611973402.2). A
well-studied variant of 2BP isGuillotine Two-dimensional Bin Packing (G2BP), where
rectangles must be packed in such a way that every rectangle in the packing can be
obtained by applying a sequence of end-to-end axis-parallel cuts, also called guillotine
cuts. Bansal et al. (Symposium on foundations of computer science (FOCS). IEEE,
pp 657–666, 2005. https://doi.org/10.1109/SFCS.2005.10) gave an APTAS for G2BP.
Let λ be the smallest constant such that for every set I of items, the number of bins in
the optimal solution to G2BP for I is upper bounded by λ opt(I) + c, where opt(I)
is the number of bins in the optimal solution to 2BP for I and c is a constant. It is
known that 4/3 ≤ λ ≤ 1.692. Bansal and Khan (2014) conjectured that λ = 4/3. The
conjecture, if true, will imply a (4/3 + ε)-approximation algorithm for 2BP. Given a
small constant δ > 0, a rectangle is called large if both its height and width are at least
δ, else it is called skewed. We make progress towards the conjecture by showing that
λ = 4/3 when all input rectangles are skewed. We also give an APTAS for 2BP for
skewed items, though general 2BP does not admit an APTAS.

Arindam Khan is supported by Pratiksha Trust Young Investigator Award and Google ExploreCSR grant.
Eklavya Sharma did this work when he was a student at the Indian Institute of Science. A preliminary
version of this paper appeared in the proceedings of the International Conference on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX) 2021 [1].

B Eklavya Sharma
eklavya2@illinois.edu

Arindam Khan
arindamkhan@iisc.ac.in

1 Indian Institute of Science, Bangalore, India

2 University of Illinois at Urbana-Champaign, Champaign, IL, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01116-0&domain=pdf
http://orcid.org/0000-0003-1147-1476
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1109/SFCS.2005.10

2736 Algorithmica (2023) 85:2735–2778

Keywords Geometric bin packing · Guillotine cuts · Approximation algorithms

1 Introduction

Two-dimensional Bin Packing (2BP) is a well-studied problem in combinatorial opti-
mization. It finds numerous applications in logistics, databases, and cutting stock. In
2BP, we are given a set of n rectangular items and square bins of side length 1. The
i th item is characterized by its width w(i) ∈ (0, 1] and height h(i) ∈ (0, 1]. Our goal
is to find an axis-aligned nonoverlapping packing of these items into the minimum
number of square bins of side length 1. There are two well-studied variants: (i) where
the items cannot be rotated, and (ii) they can be rotated by 90◦.

As is conventional in bin packing, we focus on asymptotic approximation algo-
rithms. For any optimization problem, the asymptotic approximation ratio (AAR) of
algorithm A is defined as limm→∞ supI :opt(I)=m(A(I)/opt(I)), where opt(I) is the
optimal objective value and A(I) is the objective value of the solution output by algo-
rithm A, respectively, on input I . Intuitively, AAR captures the algorithm’s behavior
when opt(I) is large. We call a bin packing algorithm α-asymptotic-approximate iff its
AAR is at most α. An Asymptotic Polynomial-Time Approximation Scheme (APTAS)
is an algorithm that accepts a parameter ε and has an AAR of (1 + ε).

2BP is a generalization of the classical 1-D bin packing problem [2, 3]. How-
ever, unlike 1-D bin packing, 2BP does not admit an APTAS unless P = NP [4]. In
1982, Chung et al. [5] gave an approximation algorithm with AAR 2.125 for 2BP.
Caprara [6] obtained a T∞(≈ 1.691)-asymptotic-approximation algorithm. Bansal et
al. [7] introduced the Round and Approx framework to obtain an AAR of 1 + ln(T∞)

(≈ 1.525). Then Jansen and Praedel [8] obtained an AAR of 1.5. The present best
AAR is 1 + ln(1.5) (≈ 1.405), due to Bansal and Khan [9], and works for both the
cases with and without rotations. The best lower bounds on the AAR for 2BP are 1 +
1/3792 and 1 + 1/2196 [10], for the versions with and without rotations, respectively.

In the context of geometric packing, guillotine cuts are well-studied and heav-
ily used in practice [11]. The notions of guillotine cuts and k-stage packing were
introduced by Gilmore and Gomory in their seminal paper [12] on the cutting stock
problem. A packing of items into a bin is called a k-stage packing if the items can be
separated from each other using k stages of axis-parallel end-to-end cuts, also called
guillotine cuts, where in each stage, either all cuts are vertical or all cuts are horizon-
tal. In each stage, each rectangular region obtained in the previous stage is considered
separately and can be cut again using guillotine cuts. Note that in the cutting process
we change the orientation (vertical or horizontal) of the cuts k−1 times. In the k-stage
bin packing problem, we need to pack the items into the minimum number of bins
such that the packing in each bin is a k-stage packing. 2-stage packing, also called
shelf packing, has been studied extensively. A packing is called guillotinable iff it is a
k-stage packing for some integer k. See Fig. 1 for examples. Caprara et al. [13] gave
an APTAS for 2-stage 2BP. Bansal et al. [14] showed an APTAS for guillotine 2BP.

The presence of an APTAS for guillotine 2BP raises an important question: can the
optimal solution to guillotine 2BP be used as a good approximate solution to 2BP?
Formally, let opt(I) and optg(I) be the minimum number of bins and the minimum

123

Algorithmica (2023) 85:2735–2778 2737

Fig. 1 Examples of guillotinable and non-guillotinable packing

number of guillotinable bins, respectively, needed to pack items I . Let λ be the smallest
constant such that for some constant c and for every set I of items, we get optg(I) ≤
λ opt(I) + c. Then λ is called the Asymptotic Price of Guillotinability (APoG). It is
easy to show that APoG ≥ 4/3.1 Bansal and Khan [9] conjectured that APoG = 4/3.
If true, this would imply a (4/3+ε)-asymptotic-approximation algorithm for 2BP [14].
However, the present upper bound on APoG is only T∞ (≈ 1.691), due to Caprara’s
HDH algorithm [6] for 2BP, which produces a 2-stage packing.

Nearly-optimal algorithms are known for some special cases of 2BP, such as when
all items are squares [4] or when all rectangles are very small in both dimensions [15]
(see Lemma 40 in Appendix C). Another important class is skewed rectangles. We say
that a rectangle is δ-large if, for some constant δ > 0, its width and height are more than
δ; otherwise, the rectangle is δ-skewed. We just say that a rectangle is large or skewed
when δ is clear from the context. An instance of 2BP is skewed if all the rectangles
in the input are skewed. Skewed instances are important in geometric packing (see
Sect. 1.1). This special case is practically relevant [16]: e.g., in scheduling, it captures
scenarios where no job can consume a significant amount of a shared resource (energy,
memory space, etc.) for a significant amount of time. Even for skewed instance for
2BP, the best known AAR is 1.406 [9]. Also, for skewed instance, the best known
upper bound on APoG is T∞ ≈ 1.691.

1.1 RelatedWorks

Multidimensional packing and covering problems are fundamental in combinatorial
optimization [17]. Vector packing (VP) is another variant of bin packing, where the

1 Consider a set I of items containing 2m rectangles of width 0.6 and height 0.4 and 2m rectangles of width
0.4 and height 0.6. Then opt(I) = m and optg(I) = 	4m/3
.

123

2738 Algorithmica (2023) 85:2735–2778

input is a set of vectors in [0, 1]d and the goal is to partition the vectors into the
minimum number of parts (bins) such that in each part, the sum of vectors is at most
1 in every coordinate. The present best approximation algorithm attains an AAR of
(0.807 + ln(d + 1)) [18] and there is a matching �(ln d)-hardness [19]. Generalized
multidimensional packing [20, 21] generalizes both geometric and vector packing.

In two-dimensional strip packing (2SP) [15, 22], we are given a set of rectangles and
a bounded width strip. The goal is to obtain an axis-aligned nonoverlapping packing
of all rectangles such that the height of the packing is minimized. The best-known
approximation ratio for 2SP is 5/3+ ε [23] and it is NP-hard to obtain better than 3/2-
approximation. However, there exist APTASes for the problem, for both the cases with
and without rotations [24, 25]. In two-dimensional knapsack (2GK) [26], the rectangles
have associated profits and our goal is to pack the maximum profit subset into a unit
square knapsack. The present best polynomial-time (resp. pseudopolynomial-time)
approximation ratio for 2GK is 1.809 [27] (resp. 4/3 [28]). These geometric packing
problems have also been studied for d dimensions (d ≥ 2) [29].

2SP and 2GK are also well-studied under guillotine packing. Seiden and Woeg-
inger [30] gave an APTAS for guillotine 2SP. Khan et al. [31] recently gave a
pseudopolynomial-time approximation scheme for guillotine 2GK.

Recently, guillotine cuts [32] have received attention due to their connection with
the maximum independent set of rectangles (MISR) problem [33]. In MISR, we are
given a set of possibly overlapping rectangles and the goal is to find the maximum
cardinality set of rectangles so that there is no pairwise overlap. It was noted in [34,
35] that for any set of n non-overlapping axis-parallel rectangles, if there is a guillotine
cutting sequence separating αn of them, then it implies a 1/α-approximation for MISR.
Recently there has been progress on MISR [36, 37] based on geometric decomposition
using cuts that can be considered a generalization of guillotine cuts. Guillotine cuts
have only one segment and divide a rectangle into two sub-rectangles, whereas the cuts
in [36, 37] divide a rectilinear region into O(1) sub-regions, each with O(1) number
of edges.

Skewed instance is an important special case in these problems. In some problems,
such as MISR and 2GK, if all items are δ-large then we can solve them exactly
in polynomial time. So, the inherent difficulty of these problems lies in instances
containing skewed items. For VP, hard instances are again skewed, e.g., Bansal et
al. [18] showed that hard instances for 2-D VP (for a class of algorithms called rounding
based algorithms) are skewed instances, where one dimension is 1 − ε and the other
dimension is ε. Galvez el al. [16] recently studied strip packing when all items are
skewed. For skewed instances, they showed (3/2 − ε) hardness of approximation and
a matching (3/2 + ε)-approximation algorithm. For 2GK, when the height of each
item is at most ε3, a (1 − 72ε)−1-approximation algorithm is known [38].

1.2 Our Contributions

We study 2BP for the special case of δ-skewed rectangles, where δ ∈ (0, 1/2] is a
constant.

123

Algorithmica (2023) 85:2735–2778 2739

First, we make progress towards the conjecture [9] that APoG = 4/3. Even for
skewed rectangles, we only knew APoG ≤ T∞(≈ 1.691). We resolve the conjecture
for skewed rectangles, by giving lower and upper bounds of roughly 4/3 when δ is a
small constant.

Specifically, in Sect. 3, we give an algorithm for 2BP, called skewed4Packε, that
takes a parameter ε ∈ (0, 1/2] as input. For a set I of δ-skewed rectangles, we show
that when δ and ε are close to 0, skewed4Packε(I) outputs a 4-stage packing of I
into roughly 4 opt(I)/3 + O(1) bins.

Theorem 1 Let I bea set of δ-skewed items,where δ ∈ (0, 1/2]. Thenskewed4Packε

(I) outputs a 4-stage packing of I in time O(n(log n+ δ/ε))+Oε(1), where n := |I |,
and the number of bins used is less than (4/3)(1 + 8δ)(1 + 6ε) opt(I)+ 12δ/ε2 + 50.

A tighter analysis (Lemma 16) shows that when δ ≤ 1/16 and ε ≤ 10−4, then
skewed4Pack has AAR (76/45)(1 + 6ε) < T∞, which improves upon the best-
known bound on APoG for the general case.

In Sect. 4, we show that the lower bound of 4/3 on APoG can be extended to skewed
items.

Theorem 2 Let m and k be positive integers and ε ∈ (0, 1). Let I be a set of 4mk
rectangular items, where 2mk items have width (1 + ε)/2 and height (1 − ε)/2k, and
2mk items have height (1 + ε)/2 and width (1 − ε)/2k. Let opt(I) be the number
of bins in the optimal packing of I and optg(I) be the number of bins in the optimal
guillotinable packing of I . Then

optg(I)

opt(I)
≥ 4

3
(1 − ε).

This holds true even if items in I are allowed to be rotated by 90◦.
Hence, our bounds on APoG are almost tight for skewed items. Our result indicates

that to improve the bounds for APoG in the general case, we should focus on δ-large
items.

Our other main result is something like an APTAS for 2BP for skewed items.
Formally, in Sect. 5, we describe a polynomial-time algorithm for 2BP, called
skewedCPack (abbreviates skewed compartmental packing), that is parametrized by
a constant ε ∈ (0, 1/2]. We show that for some constant δ ∈ (0, ε), skewedCPack
has an AAR of 1 + 14ε when all items in the input are δ-skewed rectangles.

Theorem 3 Let ε ∈ (0, 1/2]. Let f (x) := εx/(104(1+1/(εx))2/x−2). (Note that f (x)
increases with x, and f (x) ≤ x ∀x ≤ 1/2.) For any non-negative integer j , let f (j)(x)
be x if j = 0 and f (f (j−1)(x)) otherwise. Let η := f 	2/ε
(ε) and γ := 1 + 1/(εη).

Let I be a set of η-skewed rectangular items. Then the number of bins used by
skewedCPackε(I) is less than

(1 + 14ε) opt(I) + 1

20
γ 2/η−3 + 17.

The running time of skewedCPackε(I) is Oε(|I |2+γ γ 2/η+1

).

123

2740 Algorithmica (2023) 85:2735–2778

The best-known AAR for 2BP is 1+ln(1.5)+ε. Our result indicates that to improve
upon algorithms for 2BP, one should focus on δ-large items.

In Appendices A and B, we show that our results also hold when items can be
rotated by 90◦.

2 Preliminaries

Let [n] := {1, 2, . . . , n}, for n ∈ N. For a rectangle i , its area a(i) := w(i)h(i).
For a set I of rectangles, let a(I) := ∑

i∈I a(i). An axis-aligned packing of an
item i in a bin is specified by a pair (x(i), y(i)), where x(i) ∈ [0, 1 − w(i)] and
y(i) ∈ [0, 1−h(i)], so that i is placed in the region [x(i), x(i)+w(i)]×[y(i), y(i)+
h(i)]. A packing of rectangles in a bin is called non-overlapping iff for any two
distinct items i and j , the rectangles (x(i), x(i) + w(i)) × (y(i), y(i) + h(i)) and
(x(j), x(j) + w(j)) × (y(j), y(j) + h(j)) are disjoint. Equivalently, items may only
intersect at their boundaries.

For a set I of rectangular items, define opt(I) as the minimum number of bins
needed to pack I , and define optg(I) as the minimum number of guillotine-separable
bins needed to pack I .

When analyzing running time of algorithms, we assume that arithmetic operations
take constant time. For any function f and parameter ε, define Oε(f (n)) as the set of
functions of n that are upper-bounded by C f (n) for all sufficiently-large n and some
value C that only depends on ε.

2.1 Next-Fit Decreasing Height

The NFDH algorithm [15] is a simple algorithm for 2SP and 2BP. We use the following
results on NFDH. See Appendix C for the description of NFDH and proofs of these
results.

Lemma 4 Let I be a set of items where each item i has w(i) ≤ δW and h(i) ≤ δH .
NFDH can pack I into a bin of width W and height H if a(I) ≤ (W − δW)(H − δH).

Lemma 5 NFDH uses less than (2a(I)+ 1)/(1 − δ) bins to pack I when h(i) ≤ δ for
each item i and less than 2a(I)/(1 − δ) + 3 bins when w(i) ≤ δ for each item i.

If we swap the coordinate axes in NFDH, we get the Next-Fit Decreasing Width
(NFDW) algorithm. Analogs of the above results hold for NFDW.

2.2 Slicing Items

We consider variants of 2BP where some items can be sliced. Formally, slicing a
rectangular item i using a horizontal cut is the operation of replacing i by two items
i1 and i2 such that w(i) = w(i1) = w(i2) and h(i) = h(i1) + h(i2). Slicing using
vertical cut is defined analogously. Allowing some items to be sliced may reduce the
number of bins required to pack them. See Fig. 2 for an example.

123

Algorithmica (2023) 85:2735–2778 2741

Fig. 2 Packing two items into a bin, where one item is sliced using a vertical cut. If slicing were forbidden,
two bins would be required

Variants of 2SP where items can be sliced using vertical cuts find applications in
resource allocation problems [39–41]. Many packing algorithms [8, 14, 24] solve the
sliceable version of the problem as a subroutine.

3 Guillotinable Packing of Skewed Rectangles

An item is called (δW , δH)-skewed iff its width is at most δW or its height is at most
δH . In this section, we consider the problem of obtaining good upper and lower bounds
on APoG for (δW , δH)-skewed items. We describe the skewed4Pack algorithm and
prove Theorem 1.

3.1 PackingWith Slicing

Before describing skewed4Pack, let us first look at a closely-related variant of
this problem, called the sliceable 2D bin packing problem, denoted as S2BP. In this
problem, we are given two sets of rectangular items, W̃ and H̃ , where items in W̃ have
width more than 1/2, and items in H̃ have height more than 1/2. W̃ is called the set
of wide items and H̃ is called the set of tall items. We are allowed to slice items in W̃
using horizontal cuts and slice items in H̃ using vertical cuts, and our task is to pack
W̃ ∪ H̃ into the minimum number of bins without rotating the items. See Fig. 3 for an
example that illustrates the difference between 2BP and S2BP.

The S2BP problem can be viewed as a special case of the (δW , δH)-skewed 2BP
problem when δW and δH are infinitesimally small. (This perspective is not used in
this paper, so we omit a proof of equivalence.)

We first describe a simple 4/3-asymptotic-approximation algorithm for S2BP,
called greedyPack, that outputs a 2-stage packing. (Note that the asymptotic
approximation ratio is with respect to the optimal solution to S2BP, i.e., items can
be sliced in the optimal solution.) Later, we show how to use greedyPack to design
skewed4Pack.

We assume that the bin is a square of side length 1. Since we can slice items, we
allow items in W̃ to have height more than 1 and items in H̃ to have width more than
1.

123

2742 Algorithmica (2023) 85:2735–2778

Fig. 3 Example illustrating 2BP vs. S2BP. There are 2 wide items (W̃) and 2 tall items (H̃). The items are
squares of side length 0.6 and the bins are squares of side length 1

For X ⊆ W̃ , Y ⊆ H̃ , define

hsum(X) :=
∑

i∈X
h(i) wmax(X) :=

{
maxi∈X w(i) if X �= ∅
0 if X = ∅

wsum(Y) :=
∑

i∈Y
w(i) hmax(Y) :=

{
maxi∈Y h(i) if Y �= ∅
0 if Y = ∅ .

In the algorithmgreedyPack(W̃ , H̃), we first sort items W̃ in decreasing order of
width and sort items H̃ in decreasing order of height. Suppose hsum(W̃) ≥ wsum(H̃).
Let X be the largest prefix of W̃ of total height at most 1, i.e., if hsum(W̃) > 1, then X
is a prefix of W̃ such that hsum(X) = 1 (slice items if needed), and X = W̃ otherwise.
Pack X into a bin such that the items touch the right edge of the bin. Then we pack the
largest possible prefix of H̃ into the empty rectangular region of width 1 − wmax(X)

in the left side of the bin. We call this a type-1 bin. See Fig. 4a for an example. If
hsum(W̃) < wsum(H̃), we proceed analogously in a coordinate-swapped way, i.e.,
we first pack tall items in the bin and then pack wide items in the remaining space. Call
this bin a type-2 bin. See Fig. 4b for an example. We pack the rest of the items into bins
in the same way. See Algorithm 1 for a more precise description of greedyPack.

Claim 6 greedyPack(W̃ , H̃) outputs a 2-stage packing of W̃ ∪ H̃ in O(m +
|W̃ | log |W̃ | + |H̃ | log |H̃ |) time, where m is the number of bins used. Furthermore, it
slices items in W̃ by making at most m − 1 horizontal cuts and slices items in H̃ by
making at most m − 1 vertical cuts.

123

Algorithmica (2023) 85:2735–2778 2743

Fig. 4 Examples of type-1 and type-2 bins produced by greedyPack

Algorithm 1 greedyPack(W̃ , H̃): Packs items W̃ ∪ H̃ into bins. The items W̃ have
width more than 1/2 and can be sliced using horizontal cuts. The items H̃ have height
more than 1/2 and can be sliced using vertical cuts.
1: Sort the items in W̃ in decreasing order of width.
2: Sort the items in H̃ in decreasing order of height.
3: while W̃ �= ∅ or H̃ �= ∅ do
4: Create an empty bin.
5: if hsum(W̃) ≥ wsum(H̃) then
6: Let X be the largest prefix of W̃ of height at most 1.
7: // Hence, hsum(X) = 1 if hsum(W̃) > 1; else X = W̃ .
8: Pack X in a region of width wmax(X) on the right side of the bin.
9: Remove X from W̃ .
10: Let Y be the largest prefix of H̃ of width at most 1 − wmax(X).
11: Pack Y in a region of width 1 − wmax(X) on the left side of the bin.
12: Remove Y from H̃ .
13: Label the bin as a type-1 bin.
14: else
15: Proceed analogous to the previous case, i.e., X is a prefix of H̃ of width at most 1 and Y is a prefix

of W̃ of height at most 1 − hmax(X).
16: Label the bin as a type-2 bin.
17: end if
18: end while

Since items in W̃ have width more than 1/2, no two items can be placed side-by-side.
Hence, 	hsum(W̃)
 = opt(W̃) ≤ opt(W̃ ∪ H̃), where opt(X) is the minimum number
of bins needed to pack X when we can slice wide items in X using horizontal cuts and
slice tall items in X using vertical cuts. Similarly, 	wsum(H̃)
 ≤ opt(W̃ ∪ H̃). So, if
all bins have the same type, greedyPack uses max(hsum(W̃)
, 	wsum(H̃)
) =
opt(W̃ ∪ H̃) bins. We now focus on the case where some bins have type 1 and some
have type 2.

Definition 1 In a type-1 bin, let X and Y be the wide and tall items, respectively. The
bin is called full iff hsum(X) = 1 and wsum(Y) = 1 − wmax(X). Define fullness for
type-2 bins analogously.

123

2744 Algorithmica (2023) 85:2735–2778

We first show that the total area of items packed in a full bin is large, and then show
that if some bins have type 1 and some bins have type 2, then there are at most 2 non-full
bins. This helps us upper-bound the number of bins used by greedyPack(W̃ , H̃)

in terms of a(W̃ ∪ H̃).

Lemma 7 Let there be m1 type-1 full bins. Let J1 be the items in them. Then m1 ≤
4a(J1)/3 + 1/3.

Proof In the j th full bin of type 1, let X j be the items from W̃ and Y j be the items
from H̃ . Let 	 j := wmax(X j) if j ≤ m1 and 	m1+1 := 1/2. Since all items have their
larger dimension more than 1/2, 	 j ≥ 1/2 and hmax(Y j) > 1/2, for any j ∈ [m1].

a(X j) ≥ 	 j+1, since X j has height 1 and width at least 	 j+1. a(Y j) ≥ (1 − 	 j)/2,
since Y j has width 1 − 	 j and height more than 1/2. So, a(J1) = ∑m1

j=1(a(X j) +
a(Y j)) ≥ ∑m1

j=1(j+1+(1−	 j)/2) ≥ ∑m1
j=1

(
(j+1/2) + (1/4) + (1/2) − (j/2)

) =
(3m1/4) + (1/4) − (1/2) ≥ (3m1 − 1)/4. In the above inequalities, we used
	 j+1 ≥ 1/2 and 	1 ≤ 1.

Therefore, m1 ≤ 4a(J1)/3 + 1/3. ��
An analog of Lemma 7 can be proven for type-2 bins. Lemma 7 implies that very

few full bins can have items of total area significantly less than 3/4.
Letm be the number of bins used by greedyPack(W̃ , H̃). After j bins have been

packed, let A j be the height of the remaining items in W̃ and Bj be the width of the
remaining items in H̃ . Let t j be the type of the j th bin (1 for type-1 bin, 2 for type-2
bin). So t j = 1 ⇐⇒ A j−1 ≥ Bj−1.

We first show that |A j−1 −Bj−1| ≤ 1 �⇒ |A j −Bj | ≤ 1, i.e., once | hsum(W̃)−
wsum(H̃)| becomes at most 1 during greedyPack, it continues to stay at most 1.
Next, we show that t j �= t j+1 �⇒ |A j−1 − Bj−1| ≤ 1, i.e., if all bins do not have
the same type, then | hsum(W̃) − wsum(H̃)| eventually becomes at most 1 during
greedyPack. In the first non-full bin, we use up all the wide items or all the tall
items. We now show that the remaining items have total height or total width at most
1, so we have at most 2 non-full bins.

In the j th bin, let a j be the height of items from W̃ and b j be the width of items
from H̃ . Hence, for all j ∈ [m], A j−1 = A j + a j and Bj−1 = Bj + b j .

Lemma 8 |A j−1 − Bj−1| ≤ 1 �⇒ |A j − Bj | ≤ 1.

Proof W.l.o.g., assume A j−1 ≥ Bj−1. So, t j = 1. Suppose a j < b j . Then a j < 1, so
we used up W̃ in the j th bin. Therefore, A j = 0 �⇒ A j−1 = a j < b j ≤ b j + Bj =
Bj−1, which is a contradiction. Hence, a j ≥ b j . As 0 ≤ (A j−1−Bj−1), (a j−b j) ≤ 1,
we get A j − Bj = (A j−1 − Bj−1) − (a j − b j) ∈ [−1, 1]. ��
Lemma 9 t j �= t j+1 �⇒ |A j−1 − Bj−1| ≤ 1.

Proof W.l.o.g., assume t j = 1 and t j+1 = 2. Then A j−1 ≥ Bj−1 and A j < Bj

�⇒ Bj−1 ≤ A j−1 < Bj−1 + a j − b j �⇒ A j−1 − Bj−1 ∈ [0, 1). ��
Lemma 10 If all bins do not have the same type, then there can be at most 2 non-full
bins.

123

Algorithmica (2023) 85:2735–2778 2745

Proof Let there be p full bins. Assume w.l.o.g. that in the (p + 1)th bin, we used up
all items from W̃ but not H̃ . Hence, Ap+1 = 0 and ∀i ≥ p + 2, ti = 2. Since all bins
do not have the same type, ∃k ≤ p + 1 such that tk = 1 and tk+1 = 2. By Lemmas 9
and 8, we get |Ap+1 − Bp+1| ≤ 1, implying Bp+1 ≤ 1. Hence, the (p + 2)th bin will
use up all tall items, implying at most 2 non-full bins. ��
Theorem 11 The number of bins m used by greedyPack(W̃ , H̃) is at most
max

(hsum(W̃)
, 	wsum(H̃)
, 4
3a(W̃ ∪ H̃) + 8

3

)
.

Proof If all bins have the same type, then m ≤ max(hsum(W̃)
, 	wsum(H̃)
).
Let there be m1 (resp. m2) full bins of type 1 (resp. type 2) and let J1 (resp. J2)

be the items inside those bins. Then by Lemma 7, we get m1 ≤ 4a(J1)/3 + 1/3
and m2 ≤ 4a(J2)/3 + 1/3. Hence, m1 + m2 ≤ 4a(W̃ ∪ H̃)/3 + 2/3. If all bins do
not have the same type, then by Lemma 10, there can be at most 2 non-full bins, so
greedyPack(W̃ , H̃) uses at most 4a(W̃ ∪ H̃)/3 + 8/3 bins. ��
Corollary 12 greedyPack(W̃ , H̃) ≤ (4/3) opt(W̃ ∪ H̃) + (8/3). (Hence,
greedyPack is 4/3-asymptotic-approximate for S2BP).

Proof Follows from Theorem 11, 	hsum(W̃)
 = opt(W̃) ≤ opt(W̃ ∪ H̃),
	wsum(H̃)
 = opt(H̃) ≤ opt(W̃ ∪ H̃), and a(W̃ ∪ H̃) ≤ opt(W̃ ∪ H̃). ��

3.2 The skewed4Pack Algorithm

We now return to the 2BP problem. skewed4Pack is an algorithm for 2BP that takes
as input a set I of rectangular items and a parameter ε ∈ (0, 1/2] where ε−1 ∈ Z. It
outputs a 4-stage bin packing of I . skewed4Pack has the following outline:

1. Item Classification and Rounding: Use linear grouping [3, 24] to round up the
width or height of each item in I . This gives us a new instance Î .

2. Creating Shelves: Pack Î into at most 2(1/ε2 + 1) shelves, after possibly slicing
some items. A shelf is a rectangular region with width or height more than 1/2 and
is fully packed, i.e., the total area of items in a shelf equals the area of the shelf. If
we treat each shelf as an item, we get a new instance Ĩ .

3. Packing Shelves into Bins: Compute a packing of Ĩ into bins, after possibly slicing
some items, using greedyPack.

4. Packing Items into Shelves: Pack most of the items of I into the shelves in the
bins. We prove that the remaining items have very small area, so they can be packed
separately using NFDH.

3.2.1 Item Classification and Rounding

Define W := {i ∈ I : h(i) ≤ δH } and H := I − W . Items in W are called wide and
items in H are called tall. Let W (L) := {i ∈ W : w(i) > ε} and W (S) := W − W (L).
Similarly, let H (L) := {i ∈ H : h(i) > ε} and H (S) := H − H (L).

We use linear grouping [3, 24] to round up the widths of items W (L) and the heights
of items H (L) to get items Ŵ (L) and Ĥ (L), respectively. Since linear grouping is a stan-
dard technique (which we also use in Sect. 5.1), we describe it in Appendix D. Formally,

123

2746 Algorithmica (2023) 85:2735–2778

Ŵ (L) := lingroupWide(W (L), ε, ε) and Ĥ (L) := lingroupTall(H (L), ε, ε),
where lingroupWide and lingroupTall are algorithms that we define in
Appendix D. In Appendix D, we show that Ŵ (L) and Ĥ (L) satisfy the following
properties:

• |Ŵ (L)| = |W |, and each item in W is smaller than the corresponding item in Ŵ (L).
Formally, there is a bijection π : W → Ŵ (L) such that ∀i ∈ W , w(i) ≤ w(π(i))
and h(i) = h(π(i)).

• |Ĥ (L)| = |H |, and each item in H is smaller than the corresponding item in Ĥ (L).
Formally, there is a bijection π : H → Ĥ (L) such that ∀i ∈ H , h(i) ≤ h(π(i))
and w(i) = w(π(i)).

• Items in Ŵ (L) have at most 1/ε2 distinct widths.
• Items in Ĥ (L) have at most 1/ε2 distinct heights.

Let Ŵ := Ŵ (L) ∪ W (S), Ĥ := Ĥ (L) ∪ H (S), and Î := Ŵ ∪ Ĥ . For X̂ ⊆ Î , let
fopt(X̂) be the minimum number of bins needed to pack X̂ when items in X̂ ∩ Ŵ (L)

can be sliced using horizontal cuts, items in X̂ ∩ Ĥ (L) can be sliced using vertical cuts,
and items in X̂ ∩ (W (S) ∪ H (S)) can be sliced both vertically and horizontally. Then
the following lemma follows from Lemma 43 in Appendix D.

Lemma 13 fopt(Î) < (1 + ε) opt(I) + 2.

Linear grouping takes O(n log n + 1/ε2) time, where n := |I | (c.f. Lemma 41).

3.2.2 Creating Shelves

We use ideas from Kenyon and Rémila’s 2SP algorithm [24] to pack Î into shelves.
Roughly, we solve a linear program in O(n)+Oε(1) time to compute an optimal strip
packing of Ŵ , where the packing is 3-stage. In this packing, we define shelves to be
the rectangular regions given by the first stage of cuts, and we define containers to be
the regions given by the second stage of cuts. From each shelf, we trim off space that
doesn’t belong to any container. We defer the details of shelf-creation to Sect. 3.2.5.

Let W̃ be the shelves thus obtained. Analogously, we can pack items Ĥ into shelves
H̃ . Shelves in W̃ are called wide shelves and shelves in H̃ are called tall shelves. Let
Ĩ := W̃ ∪ H̃ . We can interpret each shelf in Ĩ as a rectangular item. We allow slicing
W̃ and H̃ using horizontal cuts and vertical cuts, respectively. In Sect. 3.2.5, we prove
the following facts.

Lemma 14 Ĩ has the following properties: (a) |W̃ | ≤ 1 + 1/ε2 and |H̃ | ≤ 1 + 1/ε2;
(b) Each item in W̃ has width more than 1/2 and each item in H̃ has height more than
1/2; (c) a(Ĩ) = a(Î); (d) max(hsum(W̃)
, 	wsum(H̃)
) ≤ fopt(Î).

3.2.3 Packing Shelves Into Bins

So far, we have packed Î into shelves W̃ and H̃ . We now use greedyPack(W̃ , H̃)

to pack the shelves into bins. By Claim 6, we get a 2-stage packing of W̃ ∪ H̃ into m
bins, where we make at most m − 1 horizontal cuts in W̃ and at most m − 1 vertical
cuts in H̃ . The horizontal cuts (resp. vertical cuts) increase the number of wide shelves

123

Algorithmica (2023) 85:2735–2778 2747

Fig. 5 A type-1 bin in the
packing of Î computed by
skewed4Pack. The packing
contains 5 tall containers in 2
tall shelves and 18 wide
containers in 8 wide shelves

(resp. tall shelves) from at most 1+1/ε2 to at most m+1/ε2. By Theorem 11, Lemma
14(d) and Lemma 14(c), we get m ≤ max

(hsum(W̃)
, 	wsum(H̃)
, 4
3a(Ĩ) + 8

3

) ≤
4
3 fopt(Î) + 8

3 . This step takes O(m + (1/ε2) log(1/ε)) time (c.f. Claim 6).

3.2.4 Packing Items Into Shelves

So far, we have a packing of shelves into m bins, where the shelves contain slices of
items Î . We now repack a large subset of the items Î into the shelves without slicing
Î . See Fig. 5 for an example output. We do this using a standard greedy algorithm. See
Sect. 3.2.6 for details of the algorithm and proof of the following lemma.

Lemma 15 Let P be a packing of Ĩ intom bins,wherewemade atmostm−1horizontal
cuts inwide shelves and atmostm−1 vertical cuts in tall shelves. Thenwe can (without
slicing) pack a large subset of items Î into the shelves in P in O(| Î | log | Î | + m/ε +
1/ε3) time such that the unpacked items (also called discarded items) from Ŵ have
total area less than ε hsum(W̃)+ δH (1 + ε)(m + 1/ε2), and the unpacked items from
Ĥ have total area less than ε wsum(H̃) + δW (1 + ε)(m + 1/ε2).

We pack wide discarded items into new bins using NFDH and pack tall discarded
items into new bins using NFDW.

Finally, we prove the performance guarantee of skewed4Packε(I).

Lemma 16 Let I be a set of (δW , δH)-skewed items. Thenskewed4Packε(I) outputs
a 4-stage packing of I in time O(n(log n+max(δH , δW)/ε))+Oε(1), where n = |I |,
and uses less than α opt(I)+2β bins, where� := 1

2

(
δH

1−δH
+ δW

1−δW

)
, α := (4/3)(1+

4�)(1 + 3ε)(1 + ε), β := (1/3)(6�(1 + ε)/ε2 + 11 + 35� + 12ε + 44�ε).

Proof The discarded items are packed using NFDH or NFDW, which output a 2-stage
packing. SincegreedyPack outputs a 2-stage packing of the shelves and the packing
of items into the shelves is a 2-stage packing, the bin packing of non-discarded items
is a 4-stage packing.

123

2748 Algorithmica (2023) 85:2735–2778

Suppose greedyPack uses at most m bins. Then by Theorem 11, m ≤
4 fopt(Î)/3+8/3. Let Wd and Hd be the items discarded from W and H , respectively.
By Lemma 15 and Lemma 14(d), a(Wd) < ε fopt(Î) + δH (1 + ε)(m + 1/ε2) and
a(Hd) < ε fopt(Î) + δW (1 + ε)(m + 1/ε2).

By Lemmas 5 and 13, the number of bins used by skewed4Packε(I) is less than

m + 2a(Wd) + 1

1 − δH
+ 2a(Hd) + 1

1 − δW

≤ (1 + 4�(1 + ε))m + 4ε(1 + �) fopt(Î) + 2(1 + �) + 4�(1 + ε)/ε2

≤ 4

3
(1 + 4� + 3ε + 7�ε) fopt(Î) + 2

3

(
6�(1 + ε)

ε2 + 7 + 19� + 16�ε

)

≤ α opt(I) + 2β.

The last inequality follows from Lemma 13.
skewed4Pack runs in O(n(log n + max(δH , δW)/ε)) + Oε(1) time, since

• linear grouping takes O(n log n + 1/ε2) time.
• shelf creation takes O(n) + Oε(1) time.
• packing shelves into bins usinggreedyPack takes O(m+(1/ε2) log(1/ε)) time,

where m is the number of bins used.
• packing Î into shelves takes O(n log n + m/ε + 1/ε3) time.
• packing discarded items using NFDH and NFDW takes O(n log n) time.

Furthermore,

m ≤ max(hsum(W̃)
, 	wsum(H̃)
, (4/3)a(Ĩ) + (8/3))

≤ max(2a(W̃) + 1, 2a(H̃) + 1, (4/3)a(Ĩ) + (8/3))

(since wide shelves have width > 1/2)

≤ 2a(Ĩ) + 8/3 ≤ 2n max(δH , δW) + 8/3

∈ O(n max(δH , δW) + 1).

��
Now we conclude with the proof of Theorem 1.

Theorem 1 Let I bea set of δ-skewed items,where δ ∈ (0, 1/2]. Thenskewed4Packε

(I) outputs a 4-stage packing of I in time O(n(log n+ δ/ε))+Oε(1), where n := |I |,
and the number of bins used is less than (4/3)(1 + 8δ)(1 + 6ε) opt(I)+ 12δ/ε2 + 50.

Proof This is a simple corollary of Lemma 16, where δ ≤ 1/2 and ε ≤ 1/2 give us
� ≤ 2δ, α ≤ (4/3)(1 + 8δ)(1 + 6ε), and β < 6δ/ε2 + 25. ��

3.2.5 Details on Creating Shelves

Here we describe how to obtain shelves W̃ and H̃ from items Ŵ and Ĥ , respectively.

123

Algorithmica (2023) 85:2735–2778 2749

Since we allow horizontally slicing items in Ŵ , a packing of Ŵ into m bins gives
us a packing of Ŵ into a strip of height m, and a packing of Ŵ into a strip of height h′
gives us a packing of Ŵ into 	h′
 bins. Hence, define foptSP(Ŵ) as the height of the
optimal strip packing of Ŵ where we are allowed to slice items in Ŵ using horizontal
cuts. Then fopt(Ŵ) = 	foptSP(Ŵ)
. We now try to compute a near-optimal strip
packing of Ŵ .

Recall the definition of W (S) and Ŵ (L) from Sect. 3.2. Let Ŵ (L)
j be the j th linear

group of Ŵ (L), where j ≤ 1/ε2 (cf. Appendix D). Let w j be the width of items in

Ŵ (L)
j .

Define a horizontal configuration S as a tuple (S0, S1, S2, . . .) of 1/ε2 + 1 non-

negative integers, where S0 ∈ {0, 1} and
∑1/ε2

j=1 S jw j ≤ 1. For any horizontal line at

height y in a strip packing of Ŵ , the multiset of items intersecting the line corresponds
to a configuration. S0 indicates whether the line intersects items from W (S), and S j is

the number of items from Ŵ (L)
j that the line intersects. Let S be the set of all horizontal

configurations. Let N := |S|. Then N ≤ 2(1/ε)1/ε2
.

To obtain an optimal packing, we need to determine the height of each configuration.
This can be done with the following linear program.

min
x∈RN

∑

S∈S
xS

where
∑

S∈S
S j xS = h(Ŵ (L)

j) ∀ j ∈ [1/ε2]

and
∑

S:S0=1

⎛

⎝1 −
1/ε2
∑

j=1

S jw j

⎞

⎠ xS = a(W (S))

and xS ≥ 0 ∀S ∈ S

Here h(Ŵ (L)
j) := ∑

i∈Ŵ (L)
j

h(i). Let x∗ be an optimal extreme-point solution to the

above LP. This gives us a packing where the strip is divided into rectangular regions
called shelves that are stacked on top of each other. Each shelf has a configuration S
associated with it and has height h(S) := x∗

S . Each shelf can be divided into rectangular
regions called containers that are stacked side-by-side. Each container has an integer
j associated with it, called the type of the container, where 0 ≤ j ≤ 1/ε2. A shelf
having configuration S contains S j containers of type j . For j ≥ 1, a type- j container

has width w j and only contains items from Ŵ (L)
j . A type-0 container has width w0 :=

1−∑1/ε2

j=1 S jw j and only contains items from W (S). Each container is fully filled with
items, i.e., the area of the container equals the sum of areas of items inside the container.
Let w(S) denote the width of shelf S. Then the sum of widths of all containers in S is

w(S). Hence, if S0 = 1, then w(S) = 1; otherwise w(S) = ∑1/ε2

j=1 S jw j .

Lemma 17 x∗ contains at most 1/ε2 + 1 positive entries.

123

2750 Algorithmica (2023) 85:2735–2778

Proof sketch Follows by applying Rank Lemma2 to the linear program. ��
Lemma 18 x∗

S > 0 �⇒ w(S) > 1/2.

Proof Suppose w(S) ≤ 1/2. Then we could have split S into two parts by making a
horizontal cut in the middle and packed the parts side-by-side, reducing the height of
the strip by x∗

S/2. But that would contradict the fact that x∗ is optimal. ��
Treat each shelf S as an item of width w(S) and height h(S). Allow each such item

to be sliced using horizontal cuts. This gives us a new set W̃ of items such that Ŵ can
be packed inside W̃ .

By applying an analogous approach to Ĥ , we get a new set H̃ of items. Let Ĩ :=
W̃ ∪ H̃ . We call the shelves of W̃ wide shelves and the shelves of H̃ tall shelves. The
containers in wide shelves are called wide containers and the containers in tall shelves
are called tall containers.

Lemma 14 Ĩ has the following properties: (a) |W̃ | ≤ 1 + 1/ε2 and |H̃ | ≤ 1 + 1/ε2;
(b) Each item in W̃ has width more than 1/2 and each item in H̃ has height more than
1/2; (c) a(Ĩ) = a(Î); (d) max(hsum(W̃)
, 	wsum(H̃)
) ≤ fopt(Î).

Proof Lemma 17 implies (a) and Lemma 18 implies (b). a(Î) = a(Ĩ) as the
shelves are tightly packed. Since x∗ is an optimal solution to the linear program,
	hsum(W̃)
 = 	∑S∈S x∗

S
 = 	foptSP(Ŵ)
 = fopt(Ŵ) ≤ fopt(Î). Similarly,
	wsum(H̃)
 = fopt(Ĥ) ≤ fopt(Î). ��

In O(n + 1/ε2) time, we can compute h(Ŵ (L)
j) for all j and a(W (S)). In

O((1/ε)1/ε2
) time, we can compute S. The LP has 1/ε2 + 1 non-trivial constraints

and N variables. Hence, we can find the optimal extreme-point solution to it using the
simplex algorithm [44], and the running time would be a constant (though it will be
a very large constant that is a function of ε), provided an appropriate pivoting rule is
used [45].

(Although there are polynomial-time algorithms for solving linear programs, they
are not strongly polynomial-time. Since we want to get an extreme point solution
and we do not want to worry about the bit-length of the input, we use the simplex
algorithm).

3.2.6 Details on Packing Items Into Shelves

Lemma 15 Let P be a packing of Ĩ intom bins,wherewemade atmostm−1horizontal
cuts inwide shelves and atmostm−1 vertical cuts in tall shelves. Thenwe can (without
slicing) pack a large subset of items Î into the shelves in P in O(| Î | log | Î | + m/ε +
1/ε3) time such that the unpacked items (also called discarded items) from Ŵ have
total area less than ε hsum(W̃)+ δH (1 + ε)(m + 1/ε2), and the unpacked items from
Ĥ have total area less than ε wsum(H̃) + δW (1 + ε)(m + 1/ε2).

2 Rank Lemma: the number of non-zero variables in an extreme-point solution to a linear program is at
most the number of non-trivial constraints [42, Lemma 2.1.4]..

123

Algorithmica (2023) 85:2735–2778 2751

Proof For each j ∈ [1/ε2], number the type- j wide containers arbitrarily, and number
the items in Ŵ (L)

j arbitrarily. Now greedily assign items from Ŵ (L)
j to the first container

C until the total height of the items exceeds h(C). Then move to the next container
and repeat. As per the constraints of the linear program, all items in Ŵ (L)

j will get
assigned to some type- j wide container. Similarly, number the type-0 wide containers
arbitrarily and number the items in W (S) arbitrarily. Greedily assign items from W (S)

to the first container C until the total area of the items exceeds a(C). Then move to
the next container and repeat. As per the constraints of the linear program, all items
in W (S) will get assigned to some type-0 wide container. Similarly, assign all items
from Ĥ to tall containers.

Let C be a type- j wide container and Ĵ be the items assigned to it. If we discard the
last item from Ĵ , then the items can be packed into C . The area of the discarded item
is at most w(C)δH . Let C be a type-0 wide container and Ĵ be the items assigned to it.
Arrange the items in Ĵ in decreasing order of width and pack the largest prefix Ĵ ′ ⊆ Ĵ
into C using NFDW (Next-Fit Decreasing Width), which is an analog of NFDH with
the coordinate axes swapped.

Discard the items Ĵ − Ĵ ′. By Lemma 4, a(Ĵ − Ĵ ′) < εh(C) + δHw(C) + εδH .
Therefore, for a wide shelf S, the total area of discarded items is less than εh(S) +
δH (1 + ε).

After slicing the shelves in Ĩ to get P , we get at most m + 1/ε2 wide shelves and
at most m + 1/ε2 tall shelves. Therefore, the total area of discarded items from W is
less than

ε hsum(W̃) + δH (1 + ε)(m + 1/ε2),

and the total area of discarded items from H is less than

ε wsum(H̃) + δW (1 + ε)(m + 1/ε2).

In the above subroutine for packing Î , for n = | Î |, it takes O(n log n) time to sort
W (S) by width, and O(n + mcont) time to pack Î into containers, where mcont is the
number of containers in P . Since there are 2(m + 1/ε2) shelves and each shelf has at
most 1/ε containers, we get that mcont ≤ (2/ε)(m + 1/ε2). ��

4 Lower Bound on APoG

In this section, we prove a lower bound of roughly 4/3 on the APoG for skewed
rectangles.

Lemma 19 Let k be a positive integer and ε ∈ (0, 1) be a real number. Let J be a set of
items packed into a bin, where each item has the longer dimension equal to (1 + ε)/2
and the shorter dimension equal to (1 − ε)/2k. If the bin is guillotine-separable, then
a(J) ≤ 3/4 + ε/2 − ε2/4.

Proof For an item packed in the bin, if the height is (1 − ε)/2k, call it a wide item,
and if the width is (1 − ε)/2k, call it a tall item. Let W be the set of wide items in J .

123

2752 Algorithmica (2023) 85:2735–2778

Fig. 6 A guillotinable packing of items into a bin and the corresponding guillotine tree

Fig. 7 Structuring a guillotine-separable packing

The packing of items in the bin can be represented as a tree, called the guillotine
tree of the bin, where each node u represents a rectangular region of the bin (the root
node represents the entire bin) and the child nodes v1, v2, . . . , vp of node u represent
the sub-regions obtained by parallel guillotine cuts. The ordering of the children has a
significance here: if the guillotine cuts are vertical, children are ordered by increasing
x-coordinate, and if the cuts are horizontal, children are ordered by increasing y-
coordinate. See Fig. 6 for an example.

We now show how to rearrange the items in the bin so that the packing remains
guillotine-separable but becomes more structured. We exploit this structure to show
that the packing has a large unpacked area. See Fig. 7 for an example.

In the guillotine tree, suppose there is a node u that has children v1, v2, . . . , vp.
W.l.o.g., assume that the children are obtained by making vertical cuts. At most one of
these children can contain items fromW . We can assume w.l.o.g. that the other children
contain only one item, because otherwise we can separate them by vertical cuts. We
can reorder the children (which is equivalent to repacking the guillotine partitions) so
that the child containing items from W (if any) is the first child. Therefore, we can
assume w.l.o.g. that at any level in the guillotine tree, only the first node has children.

Based on the argument above, we can see that the first node in each level touches
the bottom-left corner of the bin. All the other nodes either contain a single wide item
and touch the left edge of the bin but not the bottom edge, or they contain a single tall
item and touch the bottom edge of the bin but not the left edge. In each node containing
a wide item, shift the item leftwards, and in each node containing a tall item, shift the

123

Algorithmica (2023) 85:2735–2778 2753

Fig. 8 Packing 4k items in one
bin. Here k = 7

item downwards. Then each wide item touches the left edge of the bin and each tall
item touches the bottom edge of the bin.

Therefore, the square region of side length (1 − ε)/2 at the top-right corner of the
bin is empty. Hence, the area occupied in each bin is at most 3/4 + ε/2 − ε2/4. ��

Theorem 2 Let m and k be positive integers and ε ∈ (0, 1). Let I be a set of 4mk
rectangular items, where 2mk items have width (1 + ε)/2 and height (1 − ε)/2k, and
2mk items have height (1 + ε)/2 and width (1 − ε)/2k. Let opt(I) be the number
of bins in the optimal packing of I and optg(I) be the number of bins in the optimal
guillotinable packing of I . Then

optg(I)

opt(I)
≥ 4

3
(1 − ε).

This holds true even if items in I are allowed to be rotated by 90◦.

Proof For an item i ∈ I , if h(i) = (1 − ε)/2k, call it a wide item, and if w(i) =
(1 − ε)/2k, call it a tall item. Let W be the set of wide items and H be the set of
tall items. We show that optg(I)/ opt(I) is sufficiently large, which will give us a
lower-bound on APoG.

Partition W into groups of k elements. In each group, stack items one-over-the-
other. This gives us 2m containers of width (1 + ε)/2 and height (1 − ε)/2. Similarly,
get 2m containers of height (1 + ε)/2 and height (1 − ε)/2 by stacking items from
H side-by-side. We can pack 4 containers in one bin, so I can be packed into m bins.
See Fig. 8 for an example. Therefore, opt(I) ≤ m.

We now show a lower-bound on optg(I). In any guillotine-separable packing of I ,
the area occupied by each bin is at most 3/4 + ε/2 − ε2/4 (by Lemma 19). Note that
a(I) = m(1 − ε2). Therefore,

optg(I) ≥ m(1 − ε2)

3/4 + ε/2 − ε2/4

�⇒ optg(I)

opt(I)
≥ 4

3
× 1 − ε2

1 + 2ε/3 − ε2/3
= 4

3
× 1 − ε

1 − ε/3
≥ 4

3
(1 − ε).

��

123

2754 Algorithmica (2023) 85:2735–2778

5 Almost-Optimal Bin Packing of Skewed Rectangles

In this section, we describe the algorithm skewedCPack. skewedCPack takes as
input a set I of δ-skewed items and a parameter ε ∈ (0, 1/2], where ε−1 ∈ Z. We prove
that skewedCPack has AAR 1 + 14ε when δ is sufficiently small. skewedCPack
works roughly as follows:

1. Invoke the subroutine round(I) (cf. Sect. 5.1). round(I) returns a pair (Ĩ , Imed).
Here Imed, called the set of medium items, has low total area, so we can pack it in
a small number of bins. Ĩ , called the set of rounded items, is obtained by rounding
up the width or height of each item in I − Imed, so that Ĩ has special properties that
help us pack it easily.

2. Compute the optimal fractional compartmental bin packing of Ĩ (we will define
fractional and compartmental later).

3. Use this packing of Ĩ to obtain a packing of I that uses slightly more number of
bins.

To bound the AAR of skewedCPack, we prove a structural theorem (Sect. 5.2),
which says that the optimal fractional compartmental packing of Ĩ uses close to opt(I)
bins.

We first describe round and the properties of its output in Sect. 5.1. We then
define compartmental packing in Sect. 5.2. In Sect. 5.3, we give an overview of the
skewedCPack algorithm. We provide the remaining details in Sects. 5.4, 5.5 and
5.6.

5.1 Classifying and Rounding Items

We now describe the algorithm round. It takes as input the set I of items and a
parameter ε ∈ (0, 1/2], and outputs the pair (Ĩ , Imed) where Ĩ and Imed are sets of
items that satisfy useful properties.

5.1.1 Removing Medium Items

First, we find a set Imed ⊆ I (called the set of medium items) and positive constants ε1
and ε2 such that a(Imed) ≤ εa(I) and I − Imed is (ε2, ε1]-free, i.e., no item in I − Imed
has its width or height in the interval (ε2, ε1]. Then we can remove Imed from I and
pack it separately into a small number of bins using NFDH. We will see that when
ε2 � ε1, the (ε2, ε1]-freeness of I − Imed will help us pack I − Imed efficiently.

Additionally, we impose the conditions ε1 ≤ ε, ε−1
1 ∈ Z, and ε2 = f (ε1), where

f (x) := εx/
(
104(1 + 1/(εx))2/x−2

)
. We explain this choice of f in Sect. 5.3. Intu-

itively, such an f ensures that ε2 � ε1 (because f (x) � x for small x) and ε−1
2 ∈ Z.

For skewedCPack to work, we require δ ≤ ε2. Finding such an Imed and ε1 is a
standard technique [8, 9], which we describe now.

Let T := 	2/ε
. Let μ0 = ε. For t ∈ [T], define μt := f (μt−1) and define

Jt := {i ∈ I : w(i) ∈ (μt , μt−1] or h(i) ∈ (μt , μt−1]}.

123

Algorithmica (2023) 85:2735–2778 2755

Define r := argminTt=1 a(Jt), Imed := Jr and ε1 := μr−1. Each item belongs to at
most 2 sets Jt , so

a(Imed) = T
min
t=1

a(Jt) ≤ 1

T

T∑

t=1

a(Jt) ≤ 2

	2/ε
a(I) ≤ εa(I).

We can compute Imed and ε1 in O(| Ĩ | log(1/ε) + 1/ε) time, since we can compute
all μt in O(1/ε) time, and for each item i , we can find all t such that i ∈ Jt in
O(log(1/ε)) time by binary-searching for w(i) and h(i) in the list [μ1, μ2, . . .].
5.1.2 Classifying Items

Next, we classify the items in I − Imed into three disjoint classes:

• Wide items: W := {i ∈ I : w(i) > ε1 and h(i) ≤ ε2}.
• Tall items: H := {i ∈ I : w(i) ≤ ε2 and h(i) > ε1}.
• Small items: S := {i ∈ I : w(i) ≤ ε2 and h(i) ≤ ε2}.

Note that there is no item i ∈ I for which both w(i) and h(i) are more than ε1,
since I is δ-skewed, so min(w(i), h(i)) ≤ δ ≤ ε2.

5.1.3 Linear Grouping

We now use linear grouping [3, 24] to round up the widths of items W and the heights
of items H to get items W̃ and H̃ , respectively. Since linear grouping is a standard
technique (which we also use in Sect. 3.2), we describe it in Appendix D. Formally,
let W̃ := lingroupWide(W , ε, ε1) and H̃ := lingroupTall(H , ε, ε1), where
lingroupWide and lingroupTall are algorithms that we define in Appendix
D. In Appendix D, we show that W̃ and H̃ satisfy the following properties:

• |W̃ | = |W |, and each item in W is smaller than the corresponding item in W̃ .
Formally, there is a bijection π : W → W̃ such that ∀i ∈ W , w(i) ≤ w(π(i)) and
h(i) = h(π(i)).

• |H̃ | = |H |, and each item in H is smaller than the corresponding item in H̃ .
Formally, there is a bijection π : H → H̃ such that ∀i ∈ H , h(i) ≤ h(π(i)) and
w(i) = w(π(i)).

• Items in W̃ have at most 1/(εε1) distinct widths.
• Items in H̃ have at most 1/(εε1) distinct heights.

Let Ĩ := W̃ ∪ H̃ ∪ S.

Definition 2 (Fractional packing) Suppose we are allowed to slice wide items in Ĩ
using horizontal cuts, slice tall items in Ĩ using vertical cuts and slice small items in Ĩ
using both horizontal and vertical cuts. For any X̃ ⊆ Ĩ , a bin packing of the slices of
X̃ is called a fractional packing of X̃ . The optimal fractional packing of X̃ is denoted
by fopt(X̃).

Lemma 20 (Proved as Lemma 43 in Appendix D) fopt(Ĩ) < (1 + ε) opt(I) + 2.

Linear grouping takes O(n log n + 1/εε1) time, where n := |I | (c.f. Lemma 41).
Hence, round(I) takes O(n log(n/ε) + 1/εε1) time.

123

2756 Algorithmica (2023) 85:2735–2778

5.2 Structural Theorem

We now define compartmental packing and prove the structural theorem, which says
that the number of bins in the optimal fractional compartmental packing of Ĩ is roughly
equal to fopt(Ĩ).

We first show how to discretize a packing, i.e., we show that given a fractional
packing of items in a bin, we can remove a small fraction of tall and small items and
shift the remaining items leftwards so that the x-coordinate of left and right edges of
each wide item belong to a constant-sized set T , where |T | ≤ (1+1/εε1)

2/ε1−2. Next,
we define compartmental packing and show how to convert a discretized packing to
a compartmental packing.

5.2.1 DefiningT

For any sets A, B ⊆ [0, 1], define the restricted Minkowski sum A ⊕ B as {x + y :
x ∈ A, y ∈ B, x + y ≤ 1}. For any α ∈ (0, 1] such that α−1 ∈ Z, define unif(α) as
{kα : k ∈ Z, 0 ≤ k < 1/α}.

Let R be the set of distinct widths of items in W̃ . Given the way we rounded items,
|R| ≤ 1/εε1. For j ≥ 0, define R(j) as the restricted Minkowski sum of j copies of
R ∪ {0}. Define μ and T as

μ := εε1

(1 + 1/εε1)
2/ε1−4 , T := unif(μ) ⊕ R(1/ε1−1)

Recall that ε1 ≤ ε ≤ 1/2 and ε−1
1 , ε−1 ∈ Z, so μ−1 ∈ Z.

Lemma 21 4 ≤ 1/εε1 ≤ |T | ≤ (1 + 1/εε1)
2/ε1−2.

Proof |T | ≥ | unif(μ)| = 1/μ ≥ 1/εε1 ≥ 4. Let γ := 1 + 1/εε1. Then

|T | ≤ 1

μ
+ |R ∪ {0}|1/ε1−1 = γ 2/ε1−4

εε1
+ γ 1/ε1−1

≤ γ 2/ε1−3

εε1
+ γ 2/ε1−3 (ε1 ≤ 1/2 �⇒ 1/ε1 − 1 ≤ 2/ε1 − 3)

= γ 2/ε1−2.

��

5.2.2 Discretization

One of our main results regarding skewedCPack is the Discretization Theorem,
which we prove in Sect. 5.4.

For any rectangle i packed in a bin, let x1(i) and x2(i) denote the x-coordinates of
its left and right edges, respectively, and let y1(i) and y2(i) denote the y-coordinates
of its bottom and top edges, respectively.

123

Algorithmica (2023) 85:2735–2778 2757

Theorem 22 (Discretization) Given a fractional packing of items J̃ ⊆ Ĩ into a bin,
we can remove tall and small items of total area less than ε and shift some of the
remaining items to the left such that for every wide item i, we get x1(i), x2(i) ∈ T .

5.2.3 Compartmental Packing

Definition 3 (Compartmental packing) Consider a packing of some items into a bin.
A compartment C is defined as a rectangular region in the bin satisfying the following
properties:

• x1(C) ∈ T , x2(C) ∈ T ∪ {1} − {0}.
• y1(C), y2(C) are multiples of εcont := εε1/6|T |.
• Each item either lies inside C or outside C , i.e., no item crosses C’s boundary.
• C does not contain both wide items and tall items.
• If C contains tall items, then x1(C) and x2(C) are consecutive values in T .

If a compartment contains a wide item, it is called a wide compartment. Otherwise it
is called a tall compartment. A packing of items into a bin is called compartmental iff
there is a set of non-overlapping compartments in the bin such that all of the following
hold:

• each wide or tall item lies completely inside some compartment,
• each tall compartment’s top and bottom edges either touch a wide compartment

or the edge of the bin.
• there are at most nW := 3(1/ε1 − 1)|T | + 1 wide compartments in the bin.
• there are at most nH := (1/ε1 − 1)|T | tall compartments in the bin.

A packing of items into multiple bins is called compartmental iff each bin is compart-
mental.

Note that small items can be packed both inside and outside compartments.
A fractional compartmental packing is a fractional packing that is also compart-

mental, i.e., it is a compartmental packing of slices of items (we can slice wide items
using horizontal cuts, tall items using vertical cuts, and small items both horizontally
and vertically). Note that it’s possible for different slices of the same item to be in
different compartments.

The following lemma states that a discretized packing can be converted to a frac-
tional compartmental packing.

Lemma 23 If x1(i), x2(i) ∈ T for each wide item i in a bin, then by removing wide
and small items of area less than ε, we can get a fractional compartmental packing of
the remaining items into a bin.

Lemma 23 can be proved using standard techniques (e.g., Section 3.2.3 in [43]).
We provide a formal proof in Sect. 5.6.

Theorem 24 (Structural Theorem) For a set Ĩ of δ-skewed rounded items, define
fcopt(Ĩ) as the number of bins in the optimal fractional compartmental packing of Ĩ .
Then fcopt(Ĩ) < (1 + 4ε) fopt(Ĩ) + 2.

123

2758 Algorithmica (2023) 85:2735–2778

Proof Consider a fractional packing of Ĩ into m := fopt(Ĩ) bins. From each bin, we
can discard items of area less than 2ε and get a fractional compartmental packing of
the remaining items by Theorem 22 and Lemma 23.

Let X be the set of wide and small discarded items and let Y be the set of tall
discarded items. For each item i ∈ X , if w(i) ≤ 1/2, slice it using a horizontal cut in
the middle and place the pieces horizontally next to each other to get a new item of
width 2w(i) and height h(i)/2. Repeat until w(i) > 1/2. Now pack the items in bins
by stacking them one-over-the-other so that for each item i ∈ X , x1(i) = 0. This will
require less than 2a(X) + 1 bins, and the packing will be compartmental, where each
bin has a single wide compartment of width and height 1.

Similarly, we can get a fractional compartmental packing ofY into less than 2a(Y)+
1 bins, where each bin has |T | tall compartments of height 1 each. Since a(X ∪ Y) <

2εm, we require less than 4εm+2 bins. Therefore, the total number of compartmental
bins used to fractionally pack Ĩ is less than (1 + 4ε)m + 2. ��

5.3 Overview of Packing Algorithm

We now give an overview of the skewedCPack algorithm for packing a set I of
δ-skewed items. It consists of the following steps:

1. round(I): classifies and rounds items (see Sect. 5.1):
round(I) returns a pair (Ĩ , Imed), where Imed, called the set of medium items, has
low total area, and Ĩ , called the set of rounded items, is obtained by rounding up
the width or height of each item in I − Imed.

2. iterPackings(Ĩ): enumerates packing of compartments:
The subroutine iterPackings(Ĩ) computes all possible packings of empty
compartments into at least 	a(Ĩ)
 bins and at most | Ĩ | bins. In Sect. 5.5.1, we
describe this subroutine and show that it outputs at most | Ĩ |ν packings and runs in
time O(| Ĩ |ν+1), where ν := γ γ 2/ε1+1

and γ := 1 + 1/εε1.
3. Fractionally pack items into compartments:

For each packing P of empty compartments output by iterPackings(Ĩ), frac-
tionally pack Ĩ into P (if possible) using a linear program. Specifically, we compute
an extreme point solution z∗ to a constant-sized linear program FP(Ĩ , P). This
gives us a fractional compartmental packing of Ĩ . In Sect. 5.5.2, we define FP(Ĩ , P)

and show that we can compute z∗ in O(m|T |/ε1) + Oε(1) time, where m is the
number of bins in P .

4. greedyCPack(Ĩ , P, z∗): converts to non-fractional packing:
Discard a small set D ⊆ Ĩ of items and use z∗ to compute a non-fractional packing
of Ĩ −D into P . Formally, the subroutine greedyCPack(Ĩ , P, z∗) outputs a pair
(Q, D), where Q is a packing of Ĩ−D. We describegreedyCPack in Sect. 5.5.3.

5. Pack Imed ∪ D into bins using the NFDH algorithm.

See Fig. 9 for a visual overview of skewedCPack, and Algorithm 2 for a precise
description of skewedCPack.

Definition 4 (Packing concatenation) Let P1 be a packing of items I1 into m1 bins
and P2 be a packing of items I2 into m2 bins. Then define P1 + P2 as the packing of

123

Algorithmica (2023) 85:2735–2778 2759

Fig. 9 Major steps of skewedCPack after rounding I

items I1 ∪ I2 into m1 +m2 bins, where the first m1 bins pack I1 according to P1, and
the next m2 bins pack I2 according to P2.

Algorithm 2 skewedCPackε(I): Packs a set I of δ-skewed rectangular items into
bins without rotating the items. For a linear feasibility program X , extPt(X) returns
an arbitrary extreme point solution to X if X is feasible, and returns null if X is
infeasible.
1: (Ĩ , Imed) = roundε(I).
2: Initialize Qbest to null.
3: for P ∈ iterPackings(Ĩ) do // iterPackings is defined in Section 5.5.1.
4: z∗ = extPt(FP(Ĩ , P)). // FP is defined in Section 5.5.2.
5: if z∗ �= null then // if Ĩ can be packed into P
6: (Q, D) = greedyCPack(Ĩ , P, z∗).
7: // greedyCPack is defined in Section 5.5.3.
8: QD = NFDH(D ∪ Imed).
9: if Q + QD uses less bins than Qbest then
10: // Q + QD is defined in Definition 4.
11: Qbest = Q + QD .
12: end if
13: end if
14: end for
15: return Qbest

In Sect. 5.5.3, we describe greedyCPack and prove the following result.

Lemma 25 Let (Q, D) := greedyCPack(Ĩ , P, z∗). Let there be m bins in P. Then

a(D) < 4ε2

(
13|T |

ε1
m + |T |(|T | + 1)

2
+ 6|T |

εε1
+ 2

εε1

)

,

123

2760 Algorithmica (2023) 85:2735–2778

and greedyCPack(Ĩ , P, z∗) runs in time

O

(

| Ĩ | log | Ĩ | + |T |
ε2

1

m + |T |2
ε1

)

.

Recall the function f from Sect. 5.1.1. Since ε2 := f (ε1), we get

ε2 = f (ε1) = εε1

104(1 + 1/εε1)2/ε1−2 ≤ εε1

104|T | . (1)

The last inequality follows from the fact that |T | ≤ (1 + 1/εε1)
2/ε1−2 (Lemma 21).

Also, using ε1 ≤ ε ≤ 1/2, we get δ ≤ ε2 = f (ε1) ≤ f (1/2) < 10−4.

Theorem 26 If I is ε2-skewed, the number of bins used by skewedCPackε(I) is less
than

(1 + 14ε) opt(I) + 1

20
γ 2/ε1−3 + 17,

where γ := 1+1/εε1. The running time of skewedCPackε(I) is Oε(|I |2+γ γ 2/ε1+1

).

Proof In an optimal fractional compartmental bin packing of Ĩ , let P∗ be the corre-
sponding packing of empty compartments into bins. Hence, P∗ containsm := fcopt(Ĩ)
bins. Since iterPackings(Ĩ) iterates over all packings of compartments into bins,
P∗ ∈ iterPackings(Ĩ). Since wide and tall items in Ĩ can be packed into the
compartments of P∗, we get that z∗ is not null. By Lemma 5, the number of bins
used by NFDH to pack Imed ∪ D is less than 2a(Imed ∪ D)/(1 − δ) + 3 + 1/(1 − δ).
Therefore, the number of bins used by skewedCPack(I) is less than

m + 2a(Imed ∪ D)

1 − δ
+ 3 + 1

1 − δ

<

(

1 + 104ε2|T |
ε1(1 − δ)

)

m + 2ε

1 − δ
a(I) + 8ε2

1 − δ

(|T |(|T | + 1)

2
+ 6|T | + 2

εε1

)

+ 4

1 − δ

(by Lemma 25 and a(Imed) ≤ εa(I))

≤
(

1 + ε

1 − δ

)

m + 2ε

1 − δ
a(I) + 1

13(1 − δ)

(
εε1|T |

2
+ 58 + εε1

2
+ 2

|T |
)

.

(by Eq. (1))

By Theorem 24 and Lemma 20, we get

m = fcopt(Ĩ) < (1 + 4ε) fopt(Ĩ) + 2 < (1 + 4ε)(1 + ε) opt(I) + 4 + 8ε.

Therefore, the number of bins used by skewedCPack(I) is less than

(

(1 + 4ε)(1 + ε)

(

1 + ε

1 − δ

)

+ 2ε

1 − δ

)

opt(I)

123

Algorithmica (2023) 85:2735–2778 2761

+ (4 + 8ε)

(

1 + ε

1 − δ

)

+ 1

13(1 − δ)

(
εε1|T |

2
+ 58 + εε1

2
+ 2

|T |
)

<

(

1 +
(

27

2
+ 13δ

2(1 − δ)

)

ε

)

opt(I) + εε1|T |
26(1 − δ)

+ 1

1 − δ

(

16 + 53

104

)

(since ε1 ≤ ε ≤ 1/2 and |T | ≥ 4 (by Lemma 21))

≤ (1 + 14ε) opt(I) + 1

20

(

1 + 1

εε1

)2/ε1−3

+ 17.

(since δ ≤ 1/35 and|T | ≤ (1 + 1/εε1)
2/ε1−2 (by Lemma 21))

iterPackings outputs at most |I |ν packings, where ν := γ γ 2/ε1+1
. For each pack-

ing P output by iterPackings, computing z∗ takes O(m|T |/ε1) ⊆ Oε(|I |) time,
wherem is the number of bins in P ,greedyCPack runs in O(|I | log |I |+|T |m/ε2

1 +
|T |2/ε1) ⊆ Oε(|I |2) time, and NFDH(D ∪ Imed) runs in O(|I | log |I |) time. Hence,
the running time of skewedCPackε(I) is Oε(|I |2+ν). ��

From Theorem 26 and Sect. 5.1, we get the following corollary.

Theorem 3 Let ε ∈ (0, 1/2]. Let f (x) := εx/(104(1+1/(εx))2/x−2). (Note that f (x)
increases with x, and f (x) ≤ x ∀x ≤ 1/2.) For any non-negative integer j , let f (j)(x)
be x if j = 0 and f (f (j−1)(x)) otherwise. Let η := f 	2/ε
(ε) and γ := 1 + 1/(εη).

Let I be a set of η-skewed rectangular items. Then the number of bins used by
skewedCPackε(I) is less than

(1 + 14ε) opt(I) + 1

20
γ 2/η−3 + 17.

The running time of skewedCPackε(I) is Oε(|I |2+γ γ 2/η+1

).

5.4 Proof of the Discretization Theorem

Theorem 22 (Discretization) Given a fractional packing of items J̃ ⊆ Ĩ into a bin,
we can remove tall and small items of total area less than ε and shift some of the
remaining items to the left such that for every wide item i, we get x1(i), x2(i) ∈ T .

For wide items u and v in the bin, we say that u ≺ v iff the right edge of u is to the left
of the left edge of v. Formally u ≺ v ⇐⇒ x2(u) ≤ x1(v). We call u a predecessor
of v. A sequence [i1, i2, . . . , ik] such that i1 ≺ i2 ≺ . . . ≺ ik is called a chain ending
at ik . For a wide item i , define level(i) as the number of items in the longest chain
ending at i . Formally, level(i) := 1 if i has no predecessors, and

(
1 + max j≺i level(j)

)

otherwise. Let Wj be the items at level j , i.e., Wj := {i : level(i) = j}. See Fig. 10
for an example. Note that the level of an item can be at most 1/ε1 −1, since each wide
item has width more than ε1.

We now describe an algorithm for discretization. But first, we need to introduce
two recursively-defined set families (S1, S2, . . .) and (T0, T1, . . .). Let T0 := {0} and
t0 := 1. For any j > 0, define

123

2762 Algorithmica (2023) 85:2735–2778

Fig. 10 Example illustrating the
≺ relationship between wide
items in a bin. An edge is drawn
from u to v iff u ≺ v. Here
W1 = {a, e, b}, W2 = {d, f }
and W3 = {c}

1. t j := (1 + 1/εε1)
2 j ,

2. δ j := εε1/t j−1,
3. S j := Tj−1 ∪ unif(δ j),
4. Tj := S j ⊕ R.

Note that ∀ j > 0, we have Tj−1 ⊆ S j ⊆ Tj and δ−1
j ∈ Z.

Lemma 27 Let T ′
0 := {0}. For all j ≥ 1, let S′

j := unif(δ j) ⊕ R(j−1) and T ′
j :=

unif(δ j) ⊕ R(j). Then S j ⊆ S′
j and Tj ⊆ T ′

j for all j .

Proof by induction Base case: T ′
0 = T0 = {0} and S1 = S′

1 = unif(δ1).
For all j ≥ 1, by the induction hypothesis, Tj := S j ⊕ R ⊆ S′

j ⊕ R = T ′
j and

S j+1 = Tj ∪ unif(δ j+1) ⊆ T ′
j ∪ unif(δ j+1)

= (unif(δ j) ⊕ R(j)) ∪ unif(δ j+1)

⊆ unif(δ j+1) ⊕ R(j) = S′
j+1. (since unif(δ j) ⊆ unif(δ j+1))

��
Corollary 28 T1/ε−1 ⊆ T .

Proof Recall the definition of μ and T . Note that μ = δ1/ε1−1 and T = T ′
1/ε1−1. ��

Corollary 29 |Tj | ≤ |T ′
j | ≤ t j .

Proof Let γ := 1 + 1/εε1. For j = 0, we get |T0| = |T ′
0| = 1 = t0. For j ≥ 1,

|T ′
j | ≤ 1

δ j
+ γ j = γ 2 j−2

εε1
+ γ j ≤ γ 2 j−1

εε1
+ γ 2 j−1 = γ 2 j = t j .

��
Our discretization algorithm proceeds in 1/ε1 −1 stages, where in the j th stage, we

apply two transformations to the items in the bin, called strip-removal and compaction.

123

Algorithmica (2023) 85:2735–2778 2763

Strip-removal: For each x ∈ Tj−1, consider a strip of width δ j and height 1 in the
bin whose left edge has coordinate x . Discard the slices of tall and small items inside
the strips.

Compaction: Move all tall and small items as much towards the left as possible
(imagine a gravitational force acting leftwards on the tall and small items) while
keeping the wide items fixed. Then move each wide item i ∈ Wj leftwards till x1(i) ∈
S j .

Observe that the algorithm maintains the following invariant: after k stages, for
each j ∈ [k], each item i ∈ Wj has x1(i) ∈ S j (and hence x2(i) ∈ Tj). This ensures
that after the algorithm ends, x1(i), x2(i) ∈ T . All that remains to prove is that the
total area of items discarded during strip-removal is at most ε and that compaction is
always possible.

Lemma 30 Items discarded by strip-removal (across all stages) have total area less
than ε.

Proof In the j th stage, we create |Tj−1| strips, and each strip has total area at most
δ j . Therefore, the area discarded in the j th stage is at most |Tj−1|δ j ≤ t j−1δ j = εε1.
Since there can be at most 1/ε1 −1 stages, we discard a total area of less than ε across
all stages. ��
Lemma 31 Compaction always succeeds, i.e., in the j th stage, while moving item
i ∈ Wj leftwards, no other item will block its movement.

Proof Let i ∈ Wj . Let z be the x-coordinate of the left edge of the strip immediately
to the left of item i , i.e., z := max({x ∈ Tj−1 : x ≤ x1(i)}). For any wide item i ′, we
have x2(i ′) ≤ x1(i) ⇐⇒ i ′ ≺ i ⇐⇒ level(i ′) ≤ j − 1. By our invariant, we get
level(i ′) ≤ j − 1 �⇒ x2(i ′) ∈ Tj−1 �⇒ x2(i ′) ≤ z. Therefore, for every wide
item i ′, x2(i ′) /∈ (z, x1(i)].

In the j th strip-removal, we cleared the strip [z, z+δ j]×[0, 1]. If x1(i) ∈ [z, z+δ j],
then i can freely move to z, and z ∈ Tj−1 ⊆ S j . Since no wide item has its right edge
in (z, x1(i)], if x1(i) > z + δ j , all the tall and small items whose left edge lies
in [z + δ j , x1(i)] will move leftwards by at least δ j during compaction. Hence, there
would be an empty space of width at least δ j to the left of item i (see Fig. 11). Therefore,
we can move i leftwards to make x1(i) a multiple of δ j , and then x1(i) would belong
to S j . ��

Hence, compaction always succeeds and we get x1(i), x2(i) ∈ T for each wide
item i . This completes the proof of the Discretization Theorem (Theorem 22).

5.5 Packing AlgorithmDetails

5.5.1 iterPackings

We describe a subroutine, called iterPackings(Ĩ), that outputs all packings of
empty compartments into at least 	a(Ĩ)
 bins and at most | Ĩ | bins. A packing of empty
compartments in a bin is called a configuration. We first enumerate all configurations
and then output multisets of configurations of cardinality ranging from 	a(Ĩ)
 to | Ĩ |.

123

2764 Algorithmica (2023) 85:2735–2778

Fig. 11 This figure shows a region in the bin in the vicinity of item i ∈ Wj . It illustrates how shifting tall
and small items during compaction in the j th stage creates a free space of width δ j to the left of some wide
items, including i . Wide items are shaded dark and the lightly shaded region potentially contains tall and
small items. Note that some tall and small items in the region C may be unable to shift left because item k
is blocking them. All other tall and small items in this figure to the right of z can shift left by δ j

There can be at most nW := 3(1/ε1 − 1)|T | + 1 wide compartments in a bin. For
each wide compartment C , x1(C) ∈ T , x2(C) ∈ T − {0} ∪ {1}, y1(C) ∈ unif(εcont),
and y2(C) ∈ unif(εcont) − {0} ∪ {1}. (Recall the definitions of x1, x2, y1, y2 from
Sect. 5.2.2, unif from Sect. 5.2.1, εcont := εε1/6|T | by Definition 3 from Sect. 5.2.3.)

Hence, for nC := (|T |2/ε2
cont)

nW , there are at most nC different configurations and
we can enumerate them in O(nC) time. Furthermore,

nC :=
(|T |2

ε2
cont

)nW

≤
(

6|T |2
εε1

)6|T |/ε1

≤
(

1 + 1

εε1

)
(

1+ 1
εε1

)2/ε1+1

.

Since each configuration can have at most | Ĩ | bins, the number of combinations of
configurations is at most (| Ĩ | + 1)nC . Therefore, we can output all possible bin pack-
ings of empty compartments in O(| Ĩ |nC+1) time by iterating over all elements of
{0, 1, . . . , | Ĩ |}nC . This completes the description of iterPackings.

5.5.2 Fractionally Packing Items Into Compartments

For each bin packing P of empty compartments, we try to fractionally pack the items
Ĩ into the bins. To do this, we create a feasibility linear program, called FP(Ĩ , P), that
is feasible iff wide and tall items in Ĩ can be fractionally packed into the compartments
in P . If FP(Ĩ , P) is feasible, then small items can also be fractionally packed since P
contains at least a(Ĩ) bins. Recall that small items can be sliced both vertically and
horizontally, and they can be packed both inside and outside compartments.

Let w′
1, w

′
2, . . . , w

′
p be the distinct widths of wide compartments in P . Let Uj be

the set of wide compartments in P having width w′
j . Let h(Uj) be the sum of heights

of the compartments inUj . By Definition 3, we know that p ≤ |T |(|T |+1)/2 ≤ |T |2.
Let w1, w2, . . . , wr be the distinct widths of items in W̃ (recall that W̃ is the set of

123

Algorithmica (2023) 85:2735–2778 2765

wide items in Ĩ). Let W̃ j be the items in W̃ having width w j . Let h(W̃ j) be the sum
of heights of all items in W̃ j . By Claim 42 in Appendix D, we get r ≤ 1/εε1.

Let C := [C0,C1, . . . ,Cr] be a vector, where C0 ∈ [p] and C j ∈ Z≥0 for j ∈ [r].
C is called a wide configuration iff w(C) := ∑r

j=1 C jw j ≤ w′
C0

. Intuitively, a
wide configuration C represents a set of wide items that can be placed side-by-side
into a compartment of width w′

C0
. Let C be the set of all wide configurations. Then

|C| ≤ p/εr1, which is a constant. Let C j := {C ∈ C : C0 = j}.
To fractionally pack W̃ into wide compartments, we must determine the height

of each configuration. Let x ∈ R
|C|
≥0 be a vector where xC denotes the height of

configuration C . Then W̃ can be packed into wide compartments according to x iff x
is a feasible solution to the following feasibility linear program, named FPW (W̃ , P):

∑

C∈C
C j xC ≥ h(W̃ j)∀ j ∈ [r] (W̃ j should be covered)

∑

C∈C and C0= j

xC ≤ h(Uj)∀ j ∈ [p] (C j should fit in Uj)

xC ≥ 0∀C ∈ C

Let x∗ be an extreme point solution to FPW (W̃ , P) (if FPW (W̃ , P) is feasible). By
Rank Lemma,3 at most p+r entries of x∗ are non-zero. Since the number of variables
and constraints is constant, x∗ can be computed in constant time.

Let H̃ be the set of tall items in Ĩ . Items in H̃ have at most 1/εε1 distinct heights.
Let there be q distinct heights of tall compartments in P . By Definition 3, we know
that q ≤ 1/εcont = 6|T |/εε1. We can similarly define tall configurations and we can
similarly define a feasibility linear program for tall items, named FPH (H̃ , P). H̃ can
be packed into tall compartments in P iff FPH (H̃ , P) is feasible. Let y∗ be an extreme
point solution to FPH (H̃ , P). Then y∗ can be computed in constant time and y∗ has
at most q + 1/εε1 positive entries.

Therefore, Ĩ can be packed into P iff the feasibility linear program FP(Ĩ , P) :=
FPW (W̃ , P)× FPH (H̃ , P) is feasible. We can show that z∗ := (x∗, y∗) is an extreme
point of FP(Ĩ , P) iff x∗ is an extreme point of FPW (W̃ , P) and y∗ is an extreme point
of FPH (H̃ , P).

Let there be m bins in P . Then in O(mnW) time, we can find w′
j and h(Uj) for

all j ∈ [p]. In O(p/εr1) time, we can compute C. FPW (W̃ , P) has p + r constraints
and |C| variables. Hence, we can find an extreme point solution to it using the simplex
algorithm [44], and the running time would be a constant (though it will be a very large
constant that is a function of ε), provided an appropriate pivoting rule is used [45].
Similarly, it takes O(mnH) time to scan P for information relevant to FPH (H̃ , P),
and we can use the simplex algorithm to solve it in constant time. Hence, given Ĩ and
P , we can obtain an extreme-point solution to FP(Ĩ , P) in O(m|T |/ε1)+Oε(1) time.

(Although there are polynomial-time algorithms for solving linear programs, they
are not strongly polynomial-time. Since we want to get an extreme point solution

3 Rank Lemma: the number of non-zero variables in an extreme-point solution to a linear program is at
most the number of non-trivial constraints [42, Lemma 2.1.4]..

123

2766 Algorithmica (2023) 85:2735–2778

and we do not want to worry about the bit-length of the input, we use the simplex
algorithm).

The solution (x∗, y∗) shows us how to split each compartment into shelves, where
each shelf corresponds to a configuration C . A shelf in a wide compartment having
configurationC can be split intoC j containers of width w j and one container of width
w′
C0

− w(C). Shelves in tall compartments can be split into containers analogously.
Let there be m bins in P . After splitting the configurations across compartments, we
get at most mshelves := p + q + 2/εε1 + m(nW + nH) shelves.

5.5.3 greedyCPack

Let there be m bins in a packing P of empty compartments into bins. Suppose it is
possible to pack Ĩ into P . Let (x∗, y∗) be an extreme-point solution to FP(Ĩ , P). This
gives us a fractional compartmental packing of Ĩ intom bins. We now show how to con-
vert this to a non-fractional compartmental packing by removing some items of small
total area. Formally, we give an algorithm called greedyCPack(Ĩ , P, (x∗, y∗)). It
returns a pair (Q, D), where Q is a (non-fractional) compartmental bin packing of
items Ĩ − D, where the compartments in the bins are as per P . D is called the set of
discarded items, and we prove that a(D) is small.

For a configuration C in a wide compartment, there is a container of width w′
C0

−
w(C) available for packing small items. Similarly, there are containers inside tall
compartments into which we can pack small items. Hence, there aremshelves containers
available inside compartments for packing small items.

Lemma 32 (Similar to Lemma 3.2 in [4]) Let there be a set I of rectangles packed
inside a bin. Then there is a polynomial-time algorithm that can decompose the empty
space in the bin into at most 3|I | + 1 rectangles by making horizontal cuts only.

Proof Extend the top and bottom edge of each rectangle leftwards and rightwards till
they hit another rectangle or an edge of the bin. This decomposes the empty region
into rectangles R. See Fig. 12.

For each rectangle i ∈ I , the top edge of i is the bottom edge of a rectangle in R,
the bottom edge of i is the bottom edge of two rectangles in R. Apart from possibly
the rectangle in R whose bottom edge is at the bottom of the bin, the bottom edge of
every rectangle in R is either the bottom or top edge of a rectangle in I . Therefore,
|R| ≤ 3|I | + 1. ��

By Lemma 32, we can partition the space outside compartments into at most
m(3(nW + nH) + 1) containers. Therefore, the total number of containers available
for packing small items is at most msmall := mshelves + m(3(nW + nH) + 1). These
containers reserved for packing small items are called small containers.

Greedily assign small items to small containers, i.e., keep assigning small items to a
container till the area of items assigned to it is at least the area of the container, and then
resume from the next container. Each small item will get assigned to some container.
For each small containerC , pack the largest possible prefix of the assigned items using
the Next-Fit Decreasing Height (NFDH) algorithm. By Lemma 4, the area of unpacked

123

Algorithmica (2023) 85:2735–2778 2767

Fig. 12 Using horizontal cuts to
partition the empty space around
the 3 items into 9 rectangular
regions

items would be less than ε2 + δ + ε2δ. Summing over all containers, we get that the
total area of unpacked small items is less than (ε2 + δ + ε2δ)msmall ≤ 3ε2msmall.

For each j , greedily assign wide items from W̃ j to containers of width w j , i.e.,
keep assigning items till the height of items exceeds the height of the container. Each
wide item will get assigned to some container. Then discard the last item from each
container. For each shelf in a wide compartment having configuration C , the total area
of items we discard is at most δw(C). Similarly, we can discard tall items of area at
most δh(C) from each shelf in a tall compartment having configuration C . Hence,
across all configurations, we discard wide and tall items of area at most δmshelves.

Lemma 25 Let (Q, D) := greedyCPack(Ĩ , P, z∗). Let there be m bins in P. Then

a(D) < 4ε2

(
13|T |

ε1
m + |T |(|T | + 1)

2
+ 6|T |

εε1
+ 2

εε1

)

,

and greedyCPack(Ĩ , P, z∗) runs in time

O

(

| Ĩ | log | Ĩ | + |T |
ε2

1

m + |T |2
ε1

)

.

Proof Recall that nH := (1/ε1 − 1)|T |, nW := 3nH + 1, p ≤ |T |(|T | + 1)/2,
q ≤ 1/εcont = 6|T |/εε1, and mshelves := p + q + 2/εε1 + m(nW + nH)). Hence,

a(D) < 3ε2msmall + δmshelves

≤ ε2(4mshelves + m(9(nW + nH) + 3))

≤ ε2(4(p + q + 2/εε1) + m(13(nW + nH) + 3))

≤ 4ε2

(
13|T |

ε1
m + |T |(|T | + 1)

2
+ 6|T |

εε1
+ 2

εε1

)

.

To implement greedyCPack, we first sort the small items by height. This takes
O(| Ĩ | log | Ĩ |) time. Then the time to (non-fractionally) pack items into containers is
O(mcont +| Ĩ |), where mcont is the total number of containers. Hence, the running time

123

2768 Algorithmica (2023) 85:2735–2778

Fig. 13 Creating tall cells in a bin

of greedyCPack is O(| Ĩ | log | Ĩ | + mcont). Furthermore,

mcont ≤ mshelves/ε1 + msmall ∈ O

(
|T |
ε2

1

m + |T |2
ε1

)

.

��

5.6 Compartmentalizing a Discretized Packing

Recall Lemma 32, proved in Sect. 5.5.3. Also see Fig. 12 in Sect. 5.5.3 for an example
application.

Lemma 32 (Similar to Lemma 3.2 in [4]) Let there be a set I of rectangles packed
inside a bin. Then there is a polynomial-time algorithm that can decompose the empty
space in the bin into at most 3|I | + 1 rectangles by making horizontal cuts only.

Lemma 23 If x1(i), x2(i) ∈ T for each wide item i in a bin, then by removing wide
and small items of area less than ε, we can get a fractional compartmental packing of
the remaining items into a bin.

Proof Draw vertical lines in the bin at the x-coordinates in T − {0}. This splits the
bin into |T | columns (see Fig. 13a). Each column has 0 or more wide items crossing
it. These wide items divide the column into cells. A cell is called tall iff it contains a
tall item (see Fig. 13b). There can be at most 1/ε1 − 1 tall cells in a column, so there
can be at most (1/ε1 − 1)|T | tall cells in the bin.

123

Algorithmica (2023) 85:2735–2778 2769

Fig. 14 Obtaining compartments

By Lemma 32, we can use horizontal cuts to partition the space outside tall cells
into at most 3(1/ε1 − 1)|T |+ 1 rectangular regions (this may slice some wide items).
See Fig. 14a. If a region contains a wide item, call it a box.

For each box i , slice and discard some items from the bottom of the box and increase
y1(i) so that it becomes a multiple of εcont. Then slice and discard some items from
the top of the box and reduce y2(i) so that it becomes a multiple of εcont. The total
area of items discarded is less than 2εcont. If i continues to contain a wide item, it
becomes a wide compartment. Now all wide items belong to some wide compartment
(see Fig. 14b).

Each column has 0 or more wide compartments crossing it. These wide compart-
ments divide the column into rectangular regions. Each region that contains a tall item
is a tall compartment (see Fig. 14c).

Therefore, by removing wide and small items of area less than 6|T |εcont/ε1 ≤ ε,
we get a compartmental packing of items where there are at most (1/ε1 − 1)|T | tall
compartments and at most 3(1/ε1 − 1)|T | + 1 wide compartments. ��

Funding Arindam Khan is supported by the Pratiksha Trust Young Investigator Award and Google
ExploreCSR grant.

Declarations

Conflict of interest Eklavya Sharma is a student at the University of Illinois, Urbana-Champaign. The
following members of Algorithmica’s editorial board are affiliated with the same university: Timothy
M. Chan. Arindam Khan was a postdoctoral researcher at Technical University, Munich, Germany from
November 2017 to December 2018. The following members of Algorithmica’s editorial board are affiliated
with the same university: Susanne Albers, Harald Raecke.

123

https://www.springer.com/journal/453/editors

2770 Algorithmica (2023) 85:2735–2778

Appendix A APoG for the Rotational Case

Theorem 33 LetAPoGnr andAPoGr be theAPoG for the non-rotational and rotational
versions, respectively, restricted to the δ-skewed case. Then APoGr ≤ APoGnr.

Proof For a set I of δ-skewed rectangular items, let optnr(I) and optr(I) be the min-
imum number of bins needed to pack I in the non-rotational and rotational versions,
respectively. Let optnr

g (I) and optr
g(I) be the minimum number of guillotinable bins

needed to pack I in the non-rotational and rotational versions, respectively. Assume
w.l.o.g. that the bin has width and height at least 1.

Let I be any set of δ-skewed items. Let K be the corresponding rotated items in
the optimal rotational packing of I , i.e., optr(I) = optnr(K). Then

optr
g(I) ≤ optnr

g (K)

≤ APoGnr optnr(K) + c (c is a constant)

= APoGnr optr(I) + c.

Hence, we get APoGr ≤ APoGnr. ��

Appendix B skewedCPackwith Item Rotations

In this section, we briefly explain changes to skewedCPack and its analysis so that
they work for the case where items can be rotated by 90◦ and the ratio of the bin’s
width and height is a constant.

For the rotational version of the problem, we assume w.l.o.g. that the width of the
bin is 1 and the height of the bin is at least 1, because we can rotate the bin and scale
its width and height equally. We also assume that the height of the bin is a constant.
Since the input is δ-skewed, we can assume w.l.o.g. that every item in the input has
width at most δ, since otherwise we can rotate the item by 90◦.

To handle the rotational case, we do not require any change in Sect. 5.1.
The structural theorem in Sect. 5.2 doesn’t require any conceptual modifications.

The only change is that the number of tall compartments in a tall cell can be more than
1/ε1 − 1. Specifically, if the height of the bin is H , the number of tall compartments
in a tall cell is now upper-bounded by H/ε1. (Hence, for the number of compartments
to be a constant, we require the bin’s height to be a constant). This will increase the
running time of iterPackings, but there will be no change to Theorem 24.

The feasibility linear program of Sect. 5.5.2 will have to change to take item rotations
into account. Instead of using two programs— FPW and FPH—which fractionally
pack wide and tall items separately, we use just one program which will also decide
which items to rotate. To do this, we allow an item to belong to both wide and tall
configurations. The number of constraints in the feasibility linear program will be a
constant that depends on ε and ε1.

The greedyCPack algorithm of Sect. 5.5.3 will remain the same, but the total
area of discarded items will be slightly different because the number of compartments

123

Algorithmica (2023) 85:2735–2778 2771

in a bin can now be larger. Finally, the AAR of skewedCPack for the rotational
version will be 1 + �(1)ε by the same kind of analysis as in Sect. 5.3.

Appendix C Next-Fit Decreasing Height (NFDH)

In this section, we give proofs of the results in Sect. 2 related to NFDH algorithm [15].

C.1 Next-Fit

Our proofs rely on the Next-Fit algorithm for classical bin packing.
In the classical bin packing problem, we are given a set I of items, and an infinite

supply of bins of capacityC , where each item i has a size si ∈ (0,C] associated with it.
We need to pack the items into the minimum number of bins such that in each bin, items
have total size at most C . Formally, for a set J of items, define size(J) := ∑

i∈J si .
Then our goal is to partition the items I into sets B1, B2, . . . , Bm such that m is
minimized and size(Bj) ≤ C for all j ∈ [m].

In the Next-Fit algorithm, we repeatedly pack items into a bin till it is possible to
do so. Then we close that bin, open a new bin, and resume. See Algorithm 3 for a
more precise description.

Algorithm 3 NextFit(I ,C): Takes a classical bin packing instance (I ,C) as input
(I is a set of items, C is the bin capacity) and packs them into bins, where bins are
numbered from 1 onwards.
1: Set currBin = 1 and totSize = 0.
2: for i ∈ I do
3: if totSize + si ≤ C then
4: totSize += si
5: else
6: totSize = 0
7: currBin += 1
8: end if
9: Pack item i in bin number currBin.
10: end for

Lemma 34 [46] Let I be a classical bin packing instance where bin capacity is C.
Then the number of bins used by the Next-Fit algorithm [46] to pack I is less than
2 size(I)/C + 1.

Lemma 35 [46] Let I be a classical bin packing instance, where each item has size
at most ε and bin capacity is C. Then the number of bins used by the Next-Fit algo-
rithm [46] to pack I is less than size(I)/(C − ε) + 1.

123

2772 Algorithmica (2023) 85:2735–2778

Fig. 15 7 items packed into 3
shelves by NFDH

C.2 Description of NFDH

Suppose we have rectangular items I that we want to pack into bins of width W and
height H . The Next-Fit Decreasing Height (NFDH) algorithm [15] packs items into
rectangular containers of width W called shelves, and packs the shelves into bins. For
each shelf, the bottom edge of each item in it touches the bottom edge of the shelf.
See Fig. 15 for an example output of NFDH.

The NFDH algorithm works roughly as follows:

1. Sort the items in non-increasing order of height.
2. Create a shelf whose height equals the height of the first item. Pack the largest prefix

of I in the shelf from left-to-right. Then recursively pack the remaining items into
more shelves.

3. Treat the shelves as a classical bin packing instance where the size of a shelf equals
its height, and bin capacity is H . Pack the shelves into bins using NextFit.

See Algorithm 4 for an equivalent but more precise description of NFDH.

C.3 Results on NFDH

Lemma 36 [15] Let I be a set of rectangles of width at most 1. Then I can be packed
(without rotation) into a rectangular bin of width 1 and height less than 2a(I) +
maxi∈I h(i) using NFDH.

Lemma 37 Let I be a set of rectangles of width at most ε. Then I can be packed
(without rotation) into a rectangular bin of width W and height less than a(I)/(W −
ε) + maxi∈I h(i) using NFDH.

Proof Let there be p shelves output by NFDH. Let S j be the items in the j th shelf.
Let h j be the height of the j th shelf. Let H be the sum of heights of all the shelves.

For j ∈ [p− 1], in the j th shelf, the total width of items is more than (W − ε) and
each item has height more than h j+1. Therefore, a(S j) > h j+1(W − ε).

Let H be the sum of heights of all the shelves. Then a(I) >
∑p−1

i=1 a(S j) ≥
∑p−1

i=1 h j+1(W − ε) ≥ (W − ε)(H − h1). This implies H < a(I)/(W − ε) + h1. ��
Lemma 4 Let I be a set of items where each item i has w(i) ≤ δW and h(i) ≤ δH .
NFDH can pack I into a bin of width W and height H if a(I) ≤ (W − δW)(H − δH).

123

Algorithmica (2023) 85:2735–2778 2773

Algorithm 4 NFDH(I ,W , H): Takes a set of rectangular items I as input. Packs the
items into shelves and packs the shelves into bins. At any point in time, at most one
bin is open and at most one shelf is open, where open means ‘available to be used
for packing’. The remaining bins and shelves are closed, i.e., nothing can be added or
removed from them.
1: Set shelfH = 0, x = 0, y = 0.
2: Sort I in decreasing order of height.
3: Let shelfH be the height of the first item in I .
4: Open a bin. Open a shelf of height shelfH and place it at the bottom of the open bin.
5: for i ∈ I do
6: if x + w(i) > W then
7: x = 0
8: y += shelfH
9: shelfH = h(i)
10: Close the current shelf and open a new shelf of height shelfH.
11: if y + h(i) > H then
12: y = 0
13: Close the current bin and open a new bin.
14: end if
15: Place the open shelf at position y in the open bin.
16: end if
17: x += w(i).
18: Pack item i in the open shelf at position x .
19: // Open shelf’s bottom edge is at distance y from open bin’s bottom edge.
20: end for

Proof (Also proved as Lemma 2(iii) in [47].)
NFDH packs the items into shelves of width W . Let H̃ be the total height of the

shelves. By Lemma 37, we get H̃ < a(I)/(W − δW) + δH ≤ H . Therefore, NFDH
can fit I into the bin. ��
Lemma 38 Let I be a set of rectangular items where each item has height at most δ.
Then the number of bins required by NFDH to pack I is less than (2a(I)+1)/(1− δ).

Proof The bin packing version of NFDH first packs I into shelves and then packs
the shelves into bins using Next-Fit. Let H be the sum of heights of all the shelves.
By Lemma 36, H < 2a(I) + δ. By Lemma 35, the number of bins is less than
1 + H/(1 − δ) < (2a(I) + 1)/(1 − δ). ��
Lemma 39 Let I be a set of rectangular items where each item has width at most δ.
Then the number of bins required by NFDH to pack I is less than 2a(I)/(1 − δ) + 3.

Proof The bin packing version of NFDH first packs I into shelves and then packs the
shelves into bins using Next-Fit. Let H be the sum of heights of all the shelves. By
Lemma 37, H < a(I)/(1 − δ) + 1. By Lemma 34, the number of bins is less than
2H + 1 < 2a(I)/(1 − δ) + 3. ��
Lemma 40 Let I be a set of rectangular items where each item has width at most δW
and height at most δH . Then the number of bins required by NFDH to pack I is at
most a(I)/(1 − δW)(1 − δH) + 1/(1 − δH).

123

2774 Algorithmica (2023) 85:2735–2778

Proof The bin packing version of NFDH first packs I into shelves and then packs the
shelves into bins using Next-Fit. Let H be the sum of heights of all the shelves. By
Lemma 37, H < a(I)/(1 − δW) + δH . By Lemma 35, the number of bins is less than
1 + H/(1 − δH) < a(I)/(1 − δW)(1 − δH) + 1/(1 − δH). ��

Appendix D Linear Grouping

In this section, we describe the linear grouping technique [3, 24] for wide and tall
items.

Let ε and ε1 be constants in (0, 1) such that (εε1)
−1 ∈ Z. Let W be a set of

items where each item has width more than ε1. We describe an algorithm called
lingroupWide that takes W , ε and ε1 as input and returns the set Ŵ as output,
where Ŵ is obtained by increasing the width of each item in W .

lingroupWide(W , ε, ε1) first arranges the items W in non-increasing order of
width and stacks them one-over-the-other (i.e., the widest item in W is at the bottom).
Let hL be the height of the stack. Let y(i) be the y-coordinate of the bottom edge of
item i . Split the stack into sections of height εε1hL each. For j ∈ [1/εε1], let w j be
the width of the widest item intersecting the j th section, i.e.,

w j := max({w(i) : i ∈ W and (y(i), y(i) + h(i)) ∩ ((j − 1)εε1hL , jεε1hL) �= ∅}).

Round up the width of each item i to the smallest w j that is at least w(i) (see Fig. 16).
Let Wj be the items whose width got rounded to w j and let Ŵ j be the resulting rounded
items. (There may be ties, i.e., there may exist j1 < j2 such that w j1 = w j2 . In that
case, define Wj2 := Ŵ j2 := ∅. This ensures that all Wj are disjoint.) Finally, define
Ŵ := ⋃

j Ŵ j . Then Ŵ j is called the j th linear group of Ŵ .
We can similarly define the algorithm lingroupTall. Let H be a set of items

where each item has height more than ε1. lingroupTall takes H , ε and ε1 as input
and returns Ĥ , where Ĥ is obtained by increasing the height of each item in H .

Lemma 41 lingroupWide(W , ε, ε1) runs in O(|W | log |W | + 1/εε1) time.
lingroupTall(H , ε, ε1) runs in O(|H | log |H | + 1/εε1) time.

Proof Let n := |W |. Arranging items in W in non-increasing order of width takes
O(n log n) time. Computing w1, w2, . . . takes O(n + 1/εε1) time. Rounding up
the width of all items takes O(n + 1/εε1) time (by iterating over sorted lists W
and [w1, w2, . . .]). Hence, the total running time of lingroupWide(W , ε, ε1) is
O(n log n + 1/εε1). The running time of lingroupTall can be derived analo-
gously. ��
Claim 42 Items in lingroupWide(W , ε, ε1) have at most 1/(εε1) distinct widths.
Items in lingroupTall(H , ε, ε1) have at most 1/(εε1) distinct heights.

Lemma 43 Let W, H and S be sets of items, where items in W have width more than
ε1 and items in H have height more than ε1. Let Ŵ := lingroupWide(W , ε, ε1)

and Ĥ := lingroupTall(H , ε, ε1). If we allow slicing items in Ŵ and Ĥ using

123

Algorithmica (2023) 85:2735–2778 2775

Fig. 16 Example invocation of lingroupWide for ε = ε1 = 1/2. Each linear group of Ŵ is given a
unique color

horizontal and vertical cuts, respectively, then we can pack Ŵ ∪ Ĥ ∪ S into less than
(1 + ε) opt(W ∪ H ∪ S) + 2 bins.

Proof lingroupWide(W , ε, ε1) arranges the items W in non-increasing order of
width and stacks them one-over-the-other. Let hL be the height of the stack. Split the
stack into sections of height εε1hL each. For j ∈ [1/εε1], let W ′

j be the slices of

items that lie between heights (j −1)εε1hL and jεε1hL . Let Ŵ ′
j be the corresponding

rounded items from W ′
j . Similarly define H ′

j and Ĥ ′
j .

Consider the optimal packing of W ∪ H ∪ S. To convert this to a packing of
Ŵ ∪ Ĥ ∪ S − (Ŵ ′

1 ∪ Ĥ ′
1), unpack W ′

1 and H ′
1, and for each j ∈ [1/εε1 − 1], pack

Ŵ ′
j+1 in the place of W ′

j and pack Ĥ ′
j+1 in the place of H ′

j , possibly after slicing

the items. This gives us a packing of Ŵ ∪ Ĥ ∪ S − (Ŵ ′
1 ∪ Ĥ ′

1) into m1 bins, where
m1 ≤ opt(W ∪ H ∪ S).

We can pack Ĥ ′
1 by stacking the items side-by-side on the base of bins. We can pack

Ŵ ′
1 into bins by stacking the items one-over-the-other. Recall that hL is the total height

of items in Ŵ . Let wL be the total width of items in Ĥ . This gives us a packing of
Ŵ ′

1∪Ĥ ′
1 intom2 := 	εε1hL
+	εε1wL
 bins. Since opt(W∪H∪S) ≥ a(W)+a(H) ≥

ε1(hL+wL), we getm2 = 	εε1hL
+	εε1wL
 < ε opt(W∪H∪S)+2. Therefore, we
get a packing of Ŵ∪Ĥ∪S intom1+m2 bins andm1+m2 < (1+ε) opt(W∪H∪S)+2.

��

References

1. Khan, A., Sharma, E.: Tight approximation algorithms For Geometric Bin Packing with skewed items.
In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 207, pp.

123

2776 Algorithmica (2023) 85:2735–2778

22–12223. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://
doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.22

2. Hoberg, R., Rothvoss, T.: A logarithmic additive integrality gap for bin packing. In: ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2616–2625 (2017). https://doi.org/10.1137/1.
9781611974782.172

3. De La Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear time. Combinatorica
1(4), 349–355 (1981). https://doi.org/10.1007/BF02579456

4. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions: inapprox-
imability results and approximation schemes. Math. Oper. Res. 31(1), 31–49 (2006). https://doi.org/
10.1287/moor.1050.0168

5. Chung, F.R., Garey, M.R., Johnson, D.S.: On packing two-dimensional bins. SIAM J. Algebr. Discrete
Methods 3(1), 66–76 (1982). https://doi.org/10.1137/0603007

6. Caprara, A.: Packing d-dimensional bins in d stages. Math. Oper. Res. 33, 203–215 (2008). https://
doi.org/10.1287/moor.1070.0289

7. Bansal, N., Caprara, A., Sviridenko, M.: A new approximation method for set covering problems, with
applications to multidimensional bin packing. SIAM J. Comput. 39(4), 1256–1278 (2010). https://doi.
org/10.1137/080736831

8. Jansen, K., Prädel, L.: New approximability results for two-dimensional bin packing. In: ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 919–936 (2013). https://doi.org/10.1007/s00453-
014-9943-z

9. Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin packing. In: ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 13–25 (2014). https://doi.org/10.1137/1.
9781611973402.2

10. Chlebík, M., Chlebíková, J.: Hardness of approximation for orthogonal rectangle packing and covering
problems. J. Discrete Algorithms 7(3), 291–305 (2009). https://doi.org/10.1016/j.jda.2009.02.002

11. Sweeney, P.E., Paternoster, E.R.: Cutting and packing problems: a categorized, application-orientated
research bibliography. J. Oper. Res. Soc. 43(7), 691–706 (1992). https://doi.org/10.1057/jors.1992.
101

12. Gilmore, P.C., Gomory, R.E.: Multistage cutting stock problems of two and more dimensions. Oper.
Res. 13(1), 94–120 (1965). https://doi.org/10.1287/opre.13.1.94

13. Caprara, A., Lodi, A., Monaci, M.: Fast approximation schemes for two-stage, two-dimensional bin
packing. Math. Oper. Res. 30(1), 150–172 (2005). https://doi.org/10.1287/moor.1040.0112

14. Bansal, N., Lodi, A., Sviridenko, M.: A tale of two dimensional bin packing. In: Symposium on
Foundations of Computer Science (FOCS), pp. 657–666. IEEE (2005). https://doi.org/10.1109/SFCS.
2005.10

15. Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented
two-dimensional packing algorithms. SIAM J. Comput. 9, 808–826 (1980). https://doi.org/10.1137/
0209062

16. Gálvez, W., Grandoni, F., Ameli, A.J., Jansen, K., Khan, A., Rau, M.: A tight (3/2 + ε) approximation
for skewed strip packing. In: International Workshop on Approximation Algorithms for Combinato-
rial Optimization Problems (APPROX) (2020). https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.
2020.44

17. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidi-
mensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017). https://doi.org/10.1016/j.cosrev.
2016.12.001

18. Bansal, N., Eliáš, M., Khan, A.: Improved approximation for vector bin packing. In: ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1561–1579. SIAM (2016). https://doi.org/10.1137/
1.9781611974331.ch106

19. Sandeep, S.: Almost optimal inapproximability of multidimensional packing problems. In: Sympo-
sium on Foundations of Computer Science (FOCS), pp. 245–256 (2022). https://doi.org/10.1109/
FOCS52979.2021.00033

20. Khan, A., Sharma, E., Sreenivas, K.V.N.: Geometry meets vectors: approximation algorithms for
multidimensional packing. In: Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2022), vol. 250, pp. 23:1–23:22 (2022). https://doi.org/10.4230/LIPIcs.
FSTTCS.2022.23

21. Khan, A., Sharma, E., Sreenivas, K.V.N.: Approximation algorithms for generalized multidimensional
knapsack (2021) arXiv:2102.05854 [cs.DS]

123

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.22
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.22
https://doi.org/10.1137/1.9781611974782.172
https://doi.org/10.1137/1.9781611974782.172
https://doi.org/10.1007/BF02579456
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1137/0603007
https://doi.org/10.1287/moor.1070.0289
https://doi.org/10.1287/moor.1070.0289
https://doi.org/10.1137/080736831
https://doi.org/10.1137/080736831
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1016/j.jda.2009.02.002
https://doi.org/10.1057/jors.1992.101
https://doi.org/10.1057/jors.1992.101
https://doi.org/10.1287/opre.13.1.94
https://doi.org/10.1287/moor.1040.0112
https://doi.org/10.1109/SFCS.2005.10
https://doi.org/10.1109/SFCS.2005.10
https://doi.org/10.1137/0209062
https://doi.org/10.1137/0209062
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1137/1.9781611974331.ch106
https://doi.org/10.1137/1.9781611974331.ch106
https://doi.org/10.1109/FOCS52979.2021.00033
https://doi.org/10.1109/FOCS52979.2021.00033
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.23
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.23
http://arxiv.org/abs/2102.05854

Algorithmica (2023) 85:2735–2778 2777

22. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26(2),
401–409 (1997). https://doi.org/10.1137/S0097539793255801

23. Harren, R., Jansen, K., Prädel, L., Van Stee, R.: A (5/3 + ε)-approximation for strip packing. In:
Workshop on Algorithms and Data Structures (WADS), pp. 475–487. Springer (2011). https://doi.org/
10.1007/978-3-642-22300-6_40

24. Kenyon, C., Rémila, E.: Approximate strip packing. In: Symposium on Foundations of Computer
Science (FOCS), pp. 31–36 (1996). https://doi.org/10.1109/SFCS.1996.548461

25. Jansen, K., van Stee, R.: On strip packing with rotations. In: ACM Symposium on Theory of Computing
(STOC), pp. 755–761 (2005). https://doi.org/10.1145/1060590.1060702

26. Jansen, K., Zhang, G.: On rectangle packing: maximizing benefits. In: ACM-SIAM Symposium on
Discrete Algorithms (SODA), vol. 4, pp. 204–213 (2004)

27. Gálvez, W., Grandoni, F., Heydrich, S., Ingala, S., Khan, A., Wiese, A.: Approximating geometric
knapsack via L-packings. In: Symposium on Foundations of Computer Science (FOCS), pp. 260–271.
IEEE (2017). https://doi.org/10.1109/FOCS.2017.32

28. Gálvez, W., Grandoni, F., Khan, A., Ramirez-Romero, D., Wiese, A.: Improved approximation algo-
rithms for 2-dimensional knapsack: packing into multiple L-shapes, spirals and more. In: International
Symposium on Computational Geometry (SoCG), vol. 189, pp. 39:1–39:17 (2021). https://doi.org/10.
4230/LIPIcs.SoCG.2021.39

29. Sharma, E.: Harmonic algorithms for packing d-dimensional cuboids into bins. In: Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021), vol. 213,
pp. 32:1–32:22 (2021). https://doi.org/10.4230/LIPIcs.FSTTCS.2021.32

30. Seiden, S.S., Woeginger, G.J.: The two-dimensional cutting stock problem revisited. Math. Program.
102(3), 519–530 (2005). https://doi.org/10.1007/s10107-004-0548-1

31. Khan, A., Maiti, A., Sharma, A., Wiese, A.: On guillotine separable packings for the two-dimensional
geometric knapsack problem. In: International Symposium on Computational Geometry (SoCG), vol.
189, pp. 48:1–48:17 (2021). https://doi.org/10.4230/LIPIcs.SoCG.2021.48

32. Pach, J., Tardos, G.: Cutting glass. In: International Symposium on Computational Geometry (SoCG),
pp. 360–369 (2000). https://doi.org/10.1145/336154.336223

33. Adamaszek, A., Har-Peled, S., Wiese, A.: Approximation schemes for independent set and sparse
subsets of polygons. J. ACM 66(4), 29:1–29:40 (2019). https://doi.org/10.1145/3326122

34. Khan, A., Pittu, M.R.: On guillotine separability of squares and rectangles. In: International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX) (2020). https://
doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47

35. Abed, F., Chalermsook, P., Correa, J., Karrenbauer, A., Pérez-Lantero, P., Soto, J.A., Wiese, A.: On
guillotine cutting sequences. In: International Workshop on Approximation Algorithms for Combina-
torial Optimization Problems (APPROX), pp. 1–19 (2015). https://doi.org/10.4230/LIPIcs.APPROX-
RANDOM.2015.1

36. Mitchell, J.S.B.: Approximating Maximum Independent Set for Rectangles in the Plane. In: Sym-
posium on Foundations of Computer Science (FOCS), pp. 339–350 (2022). https://doi.org/10.1109/
FOCS52979.2021.00042

37. Gálvez, W., Khan, A., Mari, M., Mömke, T., Pittu, M.R., Wiese, A.: A 3-approximation algorithm for
maximum independent set of rectangles. In: ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 894–905 (2022). https://doi.org/10.1137/1.9781611977073.38. SIAM

38. Fishkin, A.V., Gerber, O., Jansen, K.: On efficient weighted rectangle packing with large resources. In:
International Symposium on Algorithms and Computation (ISAAC), pp. 1039–1050. Springer (2005).
https://doi.org/10.1007/11602613_103

39. Alamdari, S., Biedl, T., Chan, T.M., Grant, E., Jampani, K.R., Keshav, S., Lubiw, A., Pathak, V.:
Smart-grid electricity allocation via strip packing with slicing. In: Workshop on Algorithms and Data
Structures (WADS), pp. 25–36. Springer (2013). https://doi.org/10.1007/978-3-642-40104-6_3

40. Deppert, M.A., Jansen, K., Khan, A., Rau, M., Tutas, M.: Peak Demand Minimization via Sliced
Strip Packing. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2021), vol. 207, pp. 21:1–21:24 (2021). https://doi.org/10.4230/
LIPIcs.APPROX/RANDOM.2021.21

41. Gálvez, W., Grandoni, F., Ameli, A.J., Khodamoradi, K.: Approximation Algorithms for Demand
Strip Packing. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2021), vol. 207, pp. 20:1–20:24 (2021). https://doi.org/10.4230/
LIPIcs.APPROX/RANDOM.2021.20

123

https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1007/978-3-642-22300-6_40
https://doi.org/10.1007/978-3-642-22300-6_40
https://doi.org/10.1109/SFCS.1996.548461
https://doi.org/10.1145/1060590.1060702
https://doi.org/10.1109/FOCS.2017.32
https://doi.org/10.4230/LIPIcs.SoCG.2021.39
https://doi.org/10.4230/LIPIcs.SoCG.2021.39
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.32
https://doi.org/10.1007/s10107-004-0548-1
https://doi.org/10.4230/LIPIcs.SoCG.2021.48
https://doi.org/10.1145/336154.336223
https://doi.org/10.1145/3326122
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.1
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.1
https://doi.org/10.1109/FOCS52979.2021.00042
https://doi.org/10.1109/FOCS52979.2021.00042
https://doi.org/10.1137/1.9781611977073.38
https://doi.org/10.1007/11602613_103
https://doi.org/10.1007/978-3-642-40104-6_3
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.21
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.21
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.20
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.20

2778 Algorithmica (2023) 85:2735–2778

42. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization, vol. 46. Cambridge
University Press, Cambridge (2011)

43. Prädel, L.D.: Approximation algorithms for geometric packing problems. PhD thesis, Kiel
University (2012). https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_
00004634/dissertation-praedel.pdf?AC=N

44. Vanderbei, R.J.: Linear Programming: Foundations and Extensions. International Series in Operations
Research & Management Science. Springer, Berlin (2013). https://doi.org/10.1007/978-1-4614-7630-
6

45. Bland, R.G.: New finite pivoting rules for the simplex method. Math. Oper. Res. 2(2), 103–107 (1977).
https://doi.org/10.1287/moor.2.2.103

46. Johnson, D.S.: Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of Technol-
ogy, USA (1973)

47. Bansal, N., Caprara, A., Jansen, K., Prädel, L., Sviridenko, M.: A structural lemma in 2-dimensional
packing, and its implications on approximability. In: International Symposium on Algorithms and
Computation (ISAAC), pp. 77–86. Springer (2009). https://doi.org/10.1007/978-3-642-10631-6_10

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
https://doi.org/10.1007/978-1-4614-7630-6
https://doi.org/10.1007/978-1-4614-7630-6
https://doi.org/10.1287/moor.2.2.103
https://doi.org/10.1007/978-3-642-10631-6_10

	Tight Approximation Algorithms for Geometric Bin Packing with Skewed Items
	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Preliminaries
	2.1 Next-Fit Decreasing Height
	2.2 Slicing Items

	3 Guillotinable Packing of Skewed Rectangles
	3.1 Packing With Slicing
	3.2 The skewed4Pack Algorithm
	3.2.1 Item Classification and Rounding
	3.2.2 Creating Shelves
	3.2.3 Packing Shelves Into Bins
	3.2.4 Packing Items Into Shelves
	3.2.5 Details on Creating Shelves
	3.2.6 Details on Packing Items Into Shelves

	4 Lower Bound on APoG
	5 Almost-Optimal Bin Packing of Skewed Rectangles
	5.1 Classifying and Rounding Items
	5.1.1 Removing Medium Items
	5.1.2 Classifying Items
	5.1.3 Linear Grouping

	5.2 Structural Theorem
	5.2.1 Defining Tcal
	5.2.2 Discretization
	5.2.3 Compartmental Packing

	5.3 Overview of Packing Algorithm
	5.4 Proof of the Discretization Theorem
	5.5 Packing Algorithm Details
	5.5.1 iterPackings
	5.5.2 Fractionally Packing Items Into Compartments
	5.5.3 greedyCPack

	5.6 Compartmentalizing a Discretized Packing

	Appendix A APoG for the Rotational Case
	Appendix B skewedCPack with Item Rotations
	Appendix C Next-Fit Decreasing Height (NFDH)
	C.1 Next-Fit
	C.2 Description of NFDH
	C.3 Results on NFDH

	Appendix D Linear Grouping
	References

