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Abstract
In the general max–min fair allocation problem, there are m players and n indivisible
resources, each player has his/her own utilities for the resources, and the goal is to
find an assignment that maximizes the minimum total utility of resources assigned to a
player. The problem finds many natural applications such as bandwidth distribution in
telecom networks, processor allocation in computational grids, and even public-sector
decision making. We introduce an over-estimation strategy to design approximation
algorithms for this problem.When all utilities are positive, we obtain an approximation
ratio of c

1−ε
, where c is the maximum ratio of the largest utility to the smallest utility

of any resource. When some utilities are zero, we obtain an approximation ratio of(
1+ 3ĉ + O(δĉ2)

)
, where ĉ is the maximum ratio of the largest utility to the smallest

positive utility of any resource.

Keywords Max–min allocation · Hypergraph matching · Approximation algorithms

1 Introduction

Fair resource allocation is an important concept that arises in a variety of real-world
applications. One application is public-sector decision making; for instance, in health
care, education and so on. Another example is bandwidth allocation in telecommuni-
cation networks. The objective is to treat all users as fairly as possible, while satisfying
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their demands. Such fairness problems appear in many practical scenarios, from the
distribution of bandwidth allocation to grid/cloud computing to machine scheduling
[2, 18, 19, 21]. Depending on the context, the resources may be divisible as in the
bandwidth allocation, or indivisible as in the scheduling of jobs to machines.

In this paper, we consider the general max–min fair allocation problem. The input
consists of a set P of m players and a set R of n indivisible resources. Each player
p ∈ P has his/her own non-negative utilities for the n resources, and we denote the
utility of the resource r for p by vp,r . In other words, each resource r has a set of
non-negative utilities {vp,r : p ∈ P}, one for each player. We assume that every vp,r

is a rational number. For every subset S of resources, define the total utility of S for p
to be vp(S) = ∑

r∈S vp,r . An allocation is a disjoint partition of R into {Sp : p ∈ P}
such that Sp ⊆ R for all p ∈ P , and Sp ∩ Sq = ∅ for any p �= q. That is, p is assigned
the resources in Sp. The max–min fair allocation problem is to find an allocation that
maximizes min{vp(Sp) : p ∈ P}.

Throughout this paper, we follow the convention in previous studies that for any
α ≥ 1, an α-approximation algorithm or an approximation of α for the general max–
min fair allocation problem means that the minimum total utility of a player is at least
1/α times the optimum.

1.1 Prior Studies

The problem has received considerable attention in recent decades. A related problem
is a classic scheduling problem that minimizes the maximummakespan of scheduling
on unrelated parallel machines. The problem has the same input as the max–min
fair allocation problem. The only difference between them is that the goal of the
scheduling problem is to minimize the maximum load over all machines. Lenstra
et al. [17] proposed a 2-approximation algorithm by rounding the relaxation of the
assignment linear programming model (LP). However, Bezáková and Dani [7] proved
that the assignment LP cannot guarantee the same performance for the general max–
min allocation problem.

The machine covering problem is a special case of the general max–min fair allo-
cation problem. The objective is to assign n jobs to m parallel identical machines
so that the minimum machine load is maximized. Every job (resource) has the same
positive utility for every machine (player), i.e., every r ∈ R has a positive value vr

such that vp,r = vr > 0 for all p ∈ P . Deuermeyer et al. [14] proved that the heuris-
tic LPT algorithm returns a 4

3 -approximation allocation. Csirik et al. [12] improved
the approximation ratio to 4m−2

3m−1 . Later, Woeginger [22] presented a polynomial time

approximation scheme that gives an approximate ratio of 1
1−ε

for any fixed ε > 0.
There is a variant of the machine covering problem that specifies a speed sp for each
machine p. So the processing time of a job r on a machine p is vp,r = vr/sp. Azar et
al. [5] proposed a polynomial time approximation scheme for this variant, achieving
an approximation of 1

1−ε
. The online machine covering problem was studied in [15,

16] for identical machines.
Bansal and Sviridenko [6] proposed a stronger LP relaxation, the configuration LP,

for the general max–min fair allocation problem. They showed that the integrality gap
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Table 1 Results on the max–min allocation problem

Problem Approximation ratio Running time Refs.

Restricted O
( log logm
log log logm

)
poly(m, n) [6]

General O
(√

m log3 m
)

poly(m, n) [4]

General O
(√

m logm
)

poly(m, n) [20]

General O
(
mδ

)
nO(1/δ) [8]

Restricted 12.325 + δ poly(m, n) · mpoly(1/δ) [1]

Restricted 6 + δ poly(m, n) · mpoly(1/δ) [9]

Restricted 4 + δ poly(m, n) · mpoly(1/δ) [10, 13]

General c/(1 − ε) O(n logm) This paper

(positive utilities)

General 1 + 3ĉ + O(δĉ2) poly(m, n) · mpoly(1/δ) This paper

of the configuration LP is �(
√

m), where m is the number of players. Based on the
configuration LP, Asadpour and Saberi [4] developed an approximation algorithm that
achieves an approximation ratio of O(

√
m log3 m). Later, Saha and Srinivasan [20]

reduced the approximation ratio to O(
√

m logm). Chakrabarty et al. [8] developed a
method to provide a trade-off between the approximation ratio and the running time:
for all δ = �(log log n/ log n), an approximation ratio of O(mδ) can be obtained in
O(m1/δ) time.

Bansal and Sviridenko [6] also defined the restricted max–min fair allocation prob-
lem. In the restricted case, each resource has the same utility vr for all players who are
interested in it, that is, vp,r ∈ {0, vr } for all p ∈ P . They proposed an O

( log logm
log log logm

)
-

approximation algorithm by rounding the configuration LP. Later, Asadpour et al. [3]
used the bipartite hypergraph matching technique to attack the restricted max–min
fair allocation problem. They used local search to show that the integrality gap of the
configuration LP is at most 4. However, it is not known whether the local search in
[3] runs in polynomial time. Inspired by [3], Annamalai et al. [1] designed an approx-
imation algorithm that enhances the local search with a greedy player strategy and a
lazy update strategy. Their algorithm runs in polynomial time and achieves an approx-
imation ratio of 12.325 + δ for any fixed δ ∈ (0, 1). Cheng and Mao [9] adjusted the
greedy strategy in a more flexible and aggressive way, and they successfully lowered
the approximation ratio to 6 + δ. Very recently, they introduced the limited blocking
idea and improved the ratio to 4+δ [10, 11]. This ratiowas also obtained independently
by Davies et al. [13]. Table 1 lists the related results.

1.2 Our Contribution

Themajor challenge for the general max–min fair allocation problem is that a resource
may have different utilities for different players. Our key idea is to use a player-
independent value to estimate the value of a particular set: for every resource r ∈ R,
its over-estimated utility is vmax

r = max{vp,r : p ∈ P}. Consider an instance where
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Fig. 1 An illustration of (i) the restricted case, (i i) the general case and (i i i) the over-estimation strategy

every utility in the set {vp,r : p ∈ P, r ∈ R} is positive. Such a problem setting is
closely related to the machine covering problem. The main difference is that players
are not identical and players have their own preferences for the resources. Using
the player-independent over-estimation, we can transform this case to the machine
covering problem. Then, we can apply the currently best algorithm proposed by [22]
to obtain an allocation in which every player gets at least (1−ε)T ∗

oe worth of resources,
where T ∗

oe denotes the optimal solution for the transformedmachine covering problem.
Due to the over-estimation before the transformation, the allocation may be off by an
additional factor of c = max

{
vp,r/vq,r : p, q ∈ P ∧ r ∈ R

}
. This gives our first

result which is summarized in Theorem 1 below. Further discussions are provided in
Sect. 2.

Theorem 1 For every fixed ε ∈ (0, 1), there is a polynomial-time
( c
1−ε

)
-approximation

algorithm for general max–min fair allocation problem, provided that every resource
has a positive utility for every player.

The problem becomes muchmore complicated when some resource has zero utility
for someplayers.Our idea is to combine the over-estimation strategywith the algorithm
of Cheng andMao [11] for the restricted max–min fair allocation problem to obtain an
approximation for the general case (as shown in Fig. 1). The over-estimation strategy
allows us to use the maximum resource utilities in differentiating active and inactive
resources. That is, active and inactive resources are defined differently from [11] (see
Definition 1). This change requires us to adapt the proof of Lemma 2 in [11] to our
new definitions. We also need to formulate and prove a new result, Lemma 3, in order
to carry out the subsequent analysis of the approximation ratio in Lemma 4. At first
sight, combining the over-estimation strategy with the algorithm in [11] seems to yield
an approximation ratio of (4 + δ)ĉ, where ĉ = max

{
vp,r/vq,r : p, q ∈ P ∧ r ∈

R ∧ vq,r > 0
}
. Nevertheless, by a careful revision of the proof of Lemma 4 for our

case, we obtain a better ratio of 1 + 3ĉ + O(δĉ2) for any fixed δ ∈ (0, 1). Other than
the above changes, we carry the rest of the algorithm in [11] for the restricted case
over to the general case. The total utilities of a subset of resources assigned to a player
is calculated using the actual utilities of those resources.

Theorem 2 For every fixed δ ∈ (0, 1), there is a (1 + 3ĉ + O(δĉ2))-approximation
algorithm that runs in polynomial time for the general max–min fair allocation prob-
lem.

123



Algorithmica (2024) 86:485–504 489

Recall that the best known approximation ratio for the general max–min fair allo-
cation problem is O(

√
m logm) or O(mδ) [8, 20]. Given the difficulty of the problem,

the approximation ratios in Theorems 1 and 2 are quite reasonable when c and ĉ are
small; for example, when the players rate the resources on a 5-point scale.

The remainder of this paper is organized as follows. In the next section, we consider
the simpler case in which all utilities are positive. In Sect. 3, we propose an approxi-
mation algorithm for the case when some utilities may be zero. In Sect. 4, we analyze
the performance and running time of this algorithm. We conclude with some open
questions in Sect. 5.

2 Every Resource has a Positive Utility for Every Player

In this section, we consider the general max–min fair allocation problem in which all
utilities are positive. This model is similar to the machine covering problem, but the
major difference is that every player has his/her own preferences for the resources.
There is a polynomial time approximation scheme for the machine covering problem,
proposed by Woeginger [22], that achieves an approximation ratio of 1/(1 − ε).

Fr each resource r ∈ R, we use vmax
r = max{vp,r : p ∈ P} as the player-

independent utility for r . Hence all players become identical. This transformed
problem is exactly the machine covering problem which we denote by Hoe. Let H
denote the original problem before the transformation. Let T ∗ be the optimal target
value for H , and let T ∗

oe be the optimal target value for Hoe. So T ∗ ≤ T ∗
oe. Using

the PTAS algorithm in [22], we can find an approximation allocation {Sp : p ∈ P},
where

∑
r∈Sp

vmax
r ≥ (1− ε)T ∗

oe for every p ∈ P . When we consider the actual value
vp(Sp), we have to allow for the over-estimation factor c = max{vp,r/vq,r : p, q ∈
P ∧ r ∈ R}.

The definition of c implies that
∑

r∈Sp
vmax

r ≤ c · vp(Sp), which further implies
that (1 − ε)T ∗

oe ≤ ∑
r∈Sp

vmax
r ≤ c · vp(Sp). That is, we guarantee that every player

receives at least (1 − ε)T ∗
oe/c worth of resources. Since T ∗

oe ≥ T ∗, the allocation is
a

( c
1−ε

)
-approximation for the original problem H . This completes the discussion of

Theorem 1.

3 Some Resources have Zero Utility for Some Players

At the high-level, we use binary search to identify largest value T such that we can
find an allocation in which the resources assigned to every player have a total utility of
at least λT , where λ is a value that will be proved to be at least

(
1+ 3ĉ + O(δĉ2)

)−1.
The same binary process for λ = (4 + δ)−1 is used in [11]. For each guess T ,
the desired allocation is computed using a local search. Depending on whether we
succeed or not, we increase or decrease T correspondingly in order to zoom into the
value T ∗ of the optimal max–min allocation. The initial range for T for binary search
is (0, 1

m

∑
r∈R vmax

r ). Since every vmax
r is a rational number by assumption, the binary

search will terminate in a polynomial number of probes.
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In the rest of this section, we assume that T = 1, which can be enforced by scaling
all resource utilities, and we describe how to find an allocation such that every player
obtains resources with a total utility of at least λ.

3.1 Resources and Over-estimation

We call a resource r fat if vp,r ≥ λ for all p ∈ P . Otherwise, there exists a player p
such that vp,r < λ, and we call r thin in this case. The input resources are thus divided
into fat and thin resources; this is a generalization of the classification of fat and thin
resources in the restricted case [11].

We introduce a new utility truncation that will simplify subsequent discussion and
analysis. For every r ∈ R and every p ∈ P , if vp,r > λ, we reset vp,r := λ. This
modification does not affect our goal of finding an allocation in which the resources
assigned to every player have a total utility of at least λ. Note that vp,r is left unchanged
if it is at most λ. Therefore, fat resources remain fat, and thin resources remain thin.
Note that r still has zero utility for those players who are not interested in r , and
different players may have different utilities for the same resource.

Since we have reset each vp,r so that it is at most λ, we have vmax
r ≤ λ. For any

subset D of thin resources, let vmax(D) = ∑
r∈D vmax

r . For every player p, vp(D) still
denotes

∑
r∈D vp,r .

3.2 Fat Edges and Thin Edges

For better resource utilization, it suffices to assign a player p either a single fat resource
(whose utilities are all equal to λ after the above modification), or a subset D of thin
resources such that vp(D) ≥ λ. We model the above possible assignment of resources
to players using a bipartite graph G and a bipartite hypergraph H as in [11]. The
vertices of G are the players and fat resources. For every player p and every fat
resource r f , G includes the edge (p, r f ) which we call a fat edge. The vertices of
H are the players and thin resources. For every subset D of thin resources and every
player p, the hypergraph H includes the edge (p, D) if vp(D) ≥ λ, called a thin edge.

3.3 Overview of the Algorithm

We sketch the high-level ideas of the local search in [11]. We are interested in finding
an allocation that corresponds to a maximum matching M in G and a subset E of
hyperedges H such that every player is incident to an edge in M or E , and no two
edges in M ∪ E share any resource.

To construct such an allocation, we start with an arbitrary maximum matching M
of G and an empty matching E of H , process unmatched players one by one in an
arbitrary order, and update M and E in order to match the next unmatched player.
Once the algorithm matches a player, that player remains matched until the end of the
algorithm. Also, although M may be updated, it is always some maximum matching
of G. We call any intermediate M ∪ E a partial allocation.
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Let G M be a directed graph obtained by orienting the edges of G with respect to
M of G as follows. If a fat edge {p, r f } belongs to the matching M , we orient {p, r f }
from r f to p in G M . Conversely, if {p, r f } does not belong to the matching M , we
orient {p, r f } from p to r f in G M .

Let p0 be an arbitrary unmatched player with respect to the current partial allocation
M ∪ E . We find a directed path π from p0 to a player q0 in G M . If p0 = q0, then
π is a trivial path. In this case, if q0 is covered by a thin edge a that does not share
any resource with the edges in M ∪ E , then we can update the partial allocation to
be M ∪ (E ∪ {a}) to match p0. If p0 �= q0, then π is a non-trivial path. Note that π

has an even number of edges because both p0 and q0 are players. For i ≥ 0, every
(2i + 1)-th edge in π does not belong to M , but every (2i + 2)-th edge in π does. It
is an alternating path in the matching terminology. The last edge in π is a matching
edge (r f , q0) in M for some fat resource r f . Suppose that q0 is incident to a thin edge
a that does not share any resource with any edge in M ∪ E . Then, we can update M
to another maximum matching of G by flipping the edge in π . That is, delete every
(2i + 2)-th edge in π from M and add every (2i + 1)-th edge in π to M . Denote
this update of M by flipping π as M ⊕ π . Consequently, p0 is now matched by M .
Although q0 is no longer matched by M , we can regain q0 by including the thin edge
a. In all, the updated partial allocation is (M ⊕ π) ∪ (E ∪ {a}).

However, sometimes we cannot find a thin edge a that is incident to q0 and shares
no resource with the edges in M ∪E . Let b be an edge in M ∪E . If a and b share some
resource, then a is blocked by b. That is, if we want to add a into E , we must release
the resources in b first. Thus, a is an addable edge and b is a blocking edge that forbids
the addition of a. Wewill provide the formal definitions of addable and blocking edges
shortly. To release the resources covered by b, we need to reconsider how to match
the player covered by b. This defines a similar intermediate subproblem that needs to
be solved first, namely, finding a thin edge that is incident to the player covered by b
and shares no resource with the edges in M ∪ E . In general, the algorithm maintains
a stack that consists of layers of addable and blocking edges; each layer correspond
to some intermediate subproblems that need to be solved. Eventually, every blocking
edge needs to be released in order that we can match p0 in the end.

Annamalai et al. [1] introduced two ideas to enhance the above local search for
the restricted max–min allocation problem. They are instrumental in obtaining a poly-
nomial running time. First, when an unblocked addable edge is found, it is not used
immediately to update the partial allocation. Instead, the algorithm waits until there
are enough unblocked addable edges to reduce the number of blocking edges signifi-
cantly. This ensures that the algorithm makes a substantial progress with each update
of the partial allocation. This is called the lazy update strategy. Second, when the
algorithm considers an addable edge (p, D), it requires vp(D) to be a constant factor
larger than λ. As a result, (p, D) will induce more blocking edges, which will result
in a geometric growth of the blocking edges in the layers from the bottom of the stack
towards the top of the stack. This is called the greedy player strategy.

The greedy player strategy causes trouble sometimes, and a blocking edge may
block too many addable edges. To this end, Cheng and Mao [11] introduced limited
blocking which stops the resources in a blocking edge b from being picked in an
addable edge if b shares too many resources with addable edges.
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We provide more details of the algorithm in the remaining subsections.

3.4 Layers of Addable and Blocking Edges

For every thin edge e, we use Re to denote the resources covered by e. Given a set X
of thin edges, we use R(X ) to denote the set of resources covered by the edges in X .

Let � = (L0, L1, . . . , L	) denote the current stack maintained by the algorithms,
where each Li = (Ai ,Bi ) is a layer that consists of a set Ai of addable edges and a
set Bi of blocking edges. That is, Bi = {e ∈ E : Re ∩ R(Ai ) �= ∅}. The layer Li+1
is on top of the layer Li . The layer L0 = (A0,B0) at the stack bottom is initialized
to be (∅, {(p0,∅)}). It signifies that there is no addable edge initially, and replacing
(p0,∅) by some edge is equivalent to finding an edge that covers p0 without causing
any blocking. In general, when building a new layer L	+1 in �, the algorithm starts
with A	+1 = ∅, B	+1 = ∅, and addable and blocking edges will be added to A	+1
and B	+1.

We use A≤i to denote A0 ∪ . . . ∪ Ai . Similarly, B≤i = B0 ∪ . . . ∪ Bi .
The current configurationof the algorithmcanbe specifiedbya tuple (M, E, �, 	, I),

where M ∪ E is the current partial allocation, � is the current stack of layers, 	 is the
index of the highest layer, and I is a set of thin edges in H such that they cover the
players of some edges in B≤	 and each edge in I does not share any resource with any
edge in E . Although the edges in I can be added to E immediately to release some
blocking edges in B≤	, we do not do so right away in order to accumulate a larger I
which will release more blocking edges in the future.

Definition 1 Let (M, E, �, 	, I) be the current configuration. A thin resource r can
be active or inactive. It is inactive if at least one of the following three conditions
is satisfied: (a) r ∈ R(A≤	 ∪ B≤	), (b) r ∈ R(A	+1 ∪ I), and (c) r ∈ Rb for some
b ∈ B	+1 and vmax

(
Rb ∩ R(A	+1)

)
> βλ, where β is a positive parameter to be

specified later. If none is satisfied, then r is active.

In Definition 1, condition (c) is a modification of the condition of v
(
Rb ∩

R(A	+1)
)

> βλ in the definition of inactive resources in [11] in the restricted case.
The switch to vmax

(
Rb ∩ R(A	+1)

)
> βλ fits with our over-estimation strategy for the

general case. The utilities of inactive resources are disregarded in judging whether a
thin edge contributes enough total utility to be considered an addable edge. Avoiding
inactive resources, especially those in condition (c), helps to improve the approxima-
tion ratio.

Let Ai , Bi , and I denote the sets of players covered by the edges in Ai , Bi , and I,
respectively. Let A≤i = A0 ∪ . . . Ai , and let B≤i = B0 ∪ . . . ∪ Bi . Given two subsets
of players S and T , we use fM [S, T ] to denote the maximum number of node-disjoint
paths from S to T in G M . The alternating paths in G M from B≤	 to I and other
players are relevant. If we flip the alternating paths to I , we can release some blocking
edges in B≤	 because they will be matched to fat resources instead. Also, if there is an
alternating path from B≤	 to a player p, then we can look for a thin edge that covers
p to release a blocking edge.

Next, we define addable players, addable edges, and collapsible layers as in [11].
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Definition 2 Let (M, E, �, 	, I) be the current configuration. We say that a player p
is addable if fM [B≤	, A	+1 ∪ I ∪ {p}] = fM [B≤	, A	+1 ∪ I ] + 1.

Definition 3 Let (M, E, �, 	, I) be the current configuration. Given an addable player
p, a thin edge (p, D) in H is addable if D is a set of active thin resources and
vp(D) ≥ λ.

As mentioned before, the edges in I can be deployed any time to replace some
blocking edges, butwe only do sowhenwe can release a significant number of blocking
edges. When this is possible for a layer in �, we call that layer collapsible as defined
below.

Definition 4 Let (M, E, �, 	, I) be the current configuration. Let μ ∈ (0, 1)be a
parameter to be specified later. The layer L0 in � is collapsible if fM [B0, I ] = 1
(note that |B0| = 1), and for i ∈ [1, 	], the layer Li is collapsible if fM [B≤i , I ] −
fM [B≤i−1, I ] > μ|Bi |.

3.5 The Local Search Step

Wediscuss how tomatch the next unmatched player p0. Let M∪E be the current partial
allocation. Let � = (

L0
)
be the initial stack. Let I = ∅. We go into the Build phase

to add a new layer to �. Afterwards, if some layer becomes collapsible, we go into
the Collapse phase to prune � and update the current partial allocation. Afterwards,
we go back into the Build phase to add new layers to � again. The above is repeated
until � becomes empty, which means that p0 is matched eventually. We describe the
Build and Collapse phases [11] in the following sections. (See an example in Fig. 2.)

3.5.1 Build Phase

We start with A	+1 = B	+1 = ∅. We grow A	+1 and B	+1 as long as we can find
some appropriate thin edge (p, D) in H that falls into one of the two cases below:

• Suppose that there is an unblocked addable thin edge (p, D). That is, R(D) ∩
R(E) = ∅. It is natural to add such an edge to I, but for better resource utilization,
there is no need to use the whole D if vp(D) is way larger than λ. We greedily
extract a λ-minimal thin edge (p, D′) from (p, D): (i) D′ is a subset of D such
that vp(D′) ≥ λ, and (ii) vp(D′′) < λ for all subset D′′ ⊂ D′. We add (p, D′) to
I.

• Assume that all addable thin edges are blocked. Suppose that there is a blocked
addable thin edge (p, D) that is (1 + γ )λ-minimal for an appropriate γ ∈ (0, 1)
that will be specified later. That is, vp(D) ≥ (1 + γ )λ and for all D′ ⊂ D,
vp(D′) < (1+γ )λ. This is in accordance with the greedy player strategy. Let E be
the subset of thin edges in E that block (p, D), i.e., E = {e ∈ E : Re ∩ R(D) �= ∅}.
Add (p, D) to A	+1 and update B	+1 := B	+1 ∪ E .

Our definitions ofλ-minimal and (1+γ )λ-minimal thin edges are player-dependent,
in contrast to their player-independent counterparts in the restricted max–min case
[11].

123



494 Algorithmica (2024) 86:485–504

thin resource

player

addable edge, (1 + γ)λ-minimal

unblocked addable edge, λ-minimal

blocking edge, λ-minimal

p0 Layer L0 p0 Layer L0

q1 q2

Layer L1

a1

b1 b2

p0 Layer L0

q1 q2

Layer L1

q3

Layer L2

a1

b1 b2

a′
2 a3

b3

(a) (b) (c)

p0 Layer L0

q2

Layer L1

a1

b2

a′
1 p0a′

1

(d) (e)

Fig. 2 An illustration of the Build and Collapse phases. In (a), the local search attempts to match p0,
L0 = (A0,B0) = (∅, {(p0,∅)}), and I = ∅. In (b), L1 = (A1,B1) = ({a1}, {b1, b2}) and I = ∅.
In (c), L2 = (A2,B2) = ({a3}, {b3}), I = {a′

2}, L1 becomes collapsible, and the algorithm enters the
Collapse phase. In (d), L2 is removed, b1 is removed fromB1, and I becomes empty. The edge a1 becomes
unblocked, and the λ-minimal edge a′

1 is extracted from a1 and added to I. So I becomes {a′
1}, L0 becomes

collapsible, and the algorithm remains in the Collapse phase. In (e), p0 is matched by a′
1, i.e., the local

search suceeds to match p0

If no more edge can be added to I, orA	+1 and B	+1, then we push (A	+1,B	+1)

onto � and increment 	. If some layer becomes collapsible, we go into the Collapse
phase; otherwise, we repeat the Build phase to construct another new layer.

3.5.2 Collapse Phase

Let Lk be the lowest collapsible layer in�. We are going to prune Bk which will make
all layers above Lk invalid. Correspondingly, some of the unblocked addable edges
in I also become invalid because they are generated using blocking edges in Bi for
i ∈ [k + 1, 	]. So a key step is to decompose I into a disjoint partition

⋃	
i=0 Ii such

that, among the fM [B≤	, I ] paths in G M from B≤	 to I , there are exactly |Ii | paths
from Bi to Ii for i ∈ [0, 	], where Ii denotes the set of players covered by Ii .

We remove Li for i ≥ k + 1 from �, and we also remove Ii for i ≥ k + 1. We
change M by flipping the alternating paths from Bk to Ik . The sources of these paths
form a subset of Bk , which are covered by a subset B∗

k ⊆ Bk . The flipping of the
alternating paths from Bk to Ik has the effect of replacing B∗

k by Ik in E .
If k = 0, it means that the next unmatched player p0 is now matched and the

local search has succeeded. Otherwise, some of the addable edges in Ak may no
longer be blocked due to the removal of B∗

k from E . We reset I := I≤k−1. For
each edge (p, D) ∈ Ak that becomes unblocked, we delete (p, D) from Ak , and if
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fM [B≤k−1, I ∪ {p}] = fM [B≤k−1, I ] + 1,1 then we extract a λ-minimal thin edge
(p, D′) from (p, D) and add (p, D′) to I. After pruning Ak , we reset 	 := k.

We repeat the above as long as some layer in � is collapsible. When this is no
longer the case and p0 is not matched yet, we go back to the Build phase.

4 Analysis

For any δ ∈ (0, 1), we show that we can set γ = �(δ), β = γ 2, and μ = γ 3 so
that the local search runs in polynomial time, and if the target value 1 is feasible, the
local search returns an allocation that achieves a value of λ = 1/(1 + 3ĉ + O(δĉ2))
or more. Recall that ĉ = max{vp,r/vq,r : p, q ∈ P ∧ r ∈ R ∧ vq,r > 0}.

The key is to show that the stack � has logarithmic depth for these choices of
γ , β and μ. The numbers of blocking edges |Bi | for i ∈ [0, 	] induce a signature
vector that increases lexicographically as the local search proceeds. Therefore, if �

has logarithmic depth, the local search must terminate in polynomial time before we
run out of all possible signature vectors (see the proof of Lemma 6). To show that �
has logarithmic depth, we are to prove that the number of blocking edges increases
geometrically from one layer to the next as we go up �.

We extract Lemma 1 below from [11].

Lemma 1 (Lemma12 in [11])For i ∈ [0, 	], let zi = |Ai | right after the creation of the
layer Li . Whenever no layer is collapsible, |Ai+1| ≥ zi+1 −μ|B≤i | for i ∈ [0, 	−1].

The next result is the same as Lemma 14 in [11], but its proof is changed in order
to accommodate our new definition of active and inactive resources.

Lemma 2 For i ∈ [0, 	], |Ai | <
(
1 + β

γ

)|Bi |.
Proof First, we claim that for every blocking edge b ∈ Bi , there is an edge a ∈ Ai

such that vmax
(
R(b) ∩ R(Ai\{a})) ≤ βλ. Take a blocking edge b ∈ Bi . Let a be the

last edge added to Ai in the chronological order that is blocked by b. Let Ãi be the
subset of edges in Ai that were added to Ai before a. Some resource in b must be
active at the time when a was added toAi in order that b blocks a. For this to happen,
Definition 1 implies that vmax

(
Rb ∩ R(Ãi )

) ≤ βλ. Moreover, the edges added to Ai

after a do not share any resource with b because they are not blocked by b. As a result,
vmax

(
R(b) ∩ R(Ai\{a})) ≤ βλ, establishing our claim.

By our claim, for every b ∈ Bi , there is an edge ab ∈ Ai such that vmax
(
Rb ∩

R(Ai\{ab})
) ≤ βλ. Define A′

i = {ab : b ∈ Bi }. Note that |A′
i | ≤ |Bi |. Define

A′′
i = Ai\A′

i . For every edge b ∈ Bi , we have vmax
(
Rb ∩ R(A′′

i )
) ≤ vmax

(
Rb ∩

R(Ai\{ab})
) ≤ βλ. Summing over all edges in Bi , we obtain

vmax
(
R(Bi ) ∩ R(A′′

i )
) ≤ βλ|Bi |. (1)

Since the edges in A′′
i are blocked, for every edge a ∈ A′′

i , more than γ λ worth
of resources in Ra must be shared by edges in Bi . Notice that these are the actual

1 As proved in [11], this is equivalent to checking the addability of player p according to Definition 2.
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utilities of the resources in Ra with respect to the players of the blocking edges in Bi .
By the over-estimation strategy, the over-estimated utilities of these resources in Ra

cannot be smaller. As a result, vmax
(
R(Bi ) ∩ Ra

)
> γλ. Moreover, every resource in

R(Bi ) ∩ Ra is occupied by a distinct edge in Bi because the edges in Bi are matching
edges. Therefore, summing over all edges in A′′

i gives

vmax
(
R(Bi ) ∩ R(A′′

i )
)

> γλ|A′′
i |. (2)

We conclude from (1) and (2) that βγ |Bi | ≥ vmax
(
R(Bi )∩ R(A′′

i )
)

> γλ|A′′
i |, which

implies that |A′′
i | < β|Bi |/γ . As a result, |Ai | = |A′

i | + |A′′
i | < |Bi | + β|Bi |/γ =

(1 + β/γ )|Bi |. ��
The analogous version of Lemma 3 below in [11] gives the inequality |B′

i | <
(2+γ )

β
|Ai | in the restricted max–min case. We prove that a similar bound with the

extra over-estimation factor ĉ holds for the general max–min case.

Lemma 3 Let B′
i be the subset of Bi such that all resources in B′

i are inactive, i.e.,

B′
i = {

b ∈ Bi | vmax
(
Rb ∩ R(Ai )

)
> βλ

}
. Then, |B′

i | <
(2+γ )ĉ

β
|Ai |.

Proof Summing over the edges in B′
i gives vmax

(
R(B′

i ) ∩ R(Ai )
)

> βλ|B′
i |.

Every edge (p, D) ∈ Ai is (1+ γ )λ-minimal by definition, so vp(D) ≤ (2+ γ )λ.
Summing over the edges in Ai gives

∑
(p,D)∈Ai

vp(D) ≤ (2 + γ )λ|Ai |. The
definition of ĉ implies that vmax

r ≤ ĉ vp,r , which implies that vmax (R(Ai )) ≤∑
(p,D)∈Ai

ĉ vp(D) ≤ (2 + γ )λĉ |Ai |.
Combining the inequalities above gives βλ|B′

i | < vmax (R(B′
i ) ∩ R(Ai )) ≤

vmax (R(Ai )) ≤ (2 + γ )λĉ |Ai |, which implies that |B′
i | <

(2+γ )ĉ
β

|Ai |. ��
Lemma 3 is instrumental in proving Lemma 4 below which is the key to showing a

geometric growth in the numbers of blocking edges. Its proof explains why we need
to set λ to be

(
1 + 3ĉ + O(δĉ2)

)−1. We give the proof in the appendix; it is a careful
adaptation of an analogous result in [11].

Lemma 4 Suppose that the target value 1 is feasible for the general max–min alloca-
tion problem. Suppose that λ = (

1 + 3ĉ + O(δĉ2)
)−1

. Then, immediately after the
construction of a new layer L	+1, if no layer is collapsible, then |A	+1| > 2μ|B≤	|.

We show how to use Lemma 4 to obtain the geometric growth.

Lemma 5 If no layer is collapsible, then
∣∣Bi+1

∣∣ >
γ 3

1+γ

∣∣B≤i
∣∣. Hence,

∣∣B≤i+1
∣∣ >

(
1 + γ 3

1+γ

∣
∣B≤i

∣
∣).

Proof Let (L0, L1, . . . , L	) be the current stack �. Take any i ∈ [0, 	 − 1]. Since
the most recent construction of Li+1, Li+1 and any layer below it is not collapsible.
If not, Li+1 would be deleted, which means that there would be another construction
of it after the most recent construction, a contradiction. Therefore, Lemma 4 implies
that zi+1 > 2μ|B≤i |, where zi+1 is the value of |Ai+1| right after the construction
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of Li+1. By Lemma 1, |Ai+1| ≥ zi+1 − μ|B≤i |. Substituting zi+1 > 2μ|B≤i | into
this inequality gives |Ai+1| > 2μ|B≤i | − μ|B≤i | = μ|B≤i |. Lemma 2 implies that
|Bi+1| >

γ
γ+β

|Ai+1| >
γμ

γ+β
|B≤i |. Plugging in β = γ 2 and μ = γ 3 gives |Bi+1| >

γ 3|B≤i |/(1 + γ ). ��
The next result shows that a polynomial running time follows from Lemma 5.

Lemma 6 Suppose that the target value 1 is feasible for the general max–min allo-
cation problem. Then, the local search matches a player in poly(m, n) · m poly(1/δ)

time.

Proof The proof follows the argument in [1]. Let h = γ 3/(1+γ ). Define the signature
vector (s1, s2, ..., s	,∞), where si = ⌊

log1/(1−μ)

(|Bi |h−i−1
)⌋
.

By Lemma 5, |B	| ≥ h|B≤	−1| ≥ h|B	−1|. So ∞ > s	 ≥ s	−1, which means that
the coordinates of the signature vector are non-decreasing.

When a (lowest) layer Lt is collapsed in the Collapse phase, we update Bt to
B′

t where (1 − μ)|Bt | > |B′
t |. By definition, the signature vector is updated to

(s1, s2, ..., s′
t ) where s′

t ≤ st − 1. So the signature vector decreases lexicographi-
cally. By Lemma 5, the number of layers in � is at most log1+h m, where m is the
number of players. One can verify that the sum of coordinates in every signature vector
is at most U 2 where U = logm · O( 1

μh log 1
h ). Every signature vector corresponds to

a distinct partition of an integer that is no more than U 2.
By counting the distinct partitions of integers that are no more than U 2, we get the

upper bound of mO( 1
μh log 1

h ) on the number of signature vectors. Since γ = �(δ),
μ = γ 3, and h = γ 3/(1 + γ ), this upper bound is mpoly(1/δ). This also bounds the
number of calls on Build and Collapse. It is not difficult to make the construction
of a layer and the collapse of a layer run in poly(m, n) time. ��

We have not discussed how to handle the case that the target value 1 is infeasible
for the general max–min allocation problem. In this case, the local search must fail
at some point. From the previous proofs, we know that as long as the conclusion of
Lemma 4 holds immediately after the construction of a new layer L	+1, that is, if
no layer is collapsible, then |A	+1| > 2μ|B≤	|, the local search must succeed and
finish in polynomial time. As a result, we must encounter a situation that no layer is
collapsible and yet |A	+1| ≤ 2μ|B≤	| for the first time during the local search. This
situation can be checked explicitly. It means that the guessed target value is too high.
So we abort the local search and continue with the binary search probe for the next
guess of the target value. Since the conclusion of Lemma 4 has held so far, the running
time up to the point of abortion is polynomial. This completes the proof of Theorem 2.

5 Conclusion

We provide two solutions for the general max–min fair allocation problem. If every
resource has a positive utility for every player, the problem can be transformed to the
machine covering problem using our over-estimation strategy. By using an existing
polynomial time approximation scheme for the machine covering problem, we obtain

123



498 Algorithmica (2024) 86:485–504

a
( c
1−ε

)
-approximation algorithm that runs in polynomial time, where ε is any constant

in the range (0, 1) and c = max{vp,r/vq,r : p, q ∈ P ∧ r ∈ R}. If some resource
has zero utility for some players, we show how to combine the over-estimation strat-
egy with the approximation algorithm in [10] for the restricted max–min allocation
problem to obtain an approximation ratio of 1 + 3ĉ + O(δĉ2) for any δ ∈ (0, 1) in
polynomial time, where ĉ = max{vp,r/vq,r : p, q ∈ P ∧ r ∈ R ∧ vq,r > 0}. We
conclude with two research questions. The first question is whether the approximation
ratios presented here can be improved further. Despite its theoretical guarantee, the
local search step is still quite challenging to implement. So the second question is
whether there is a simpler algorithm that can also achieve a good approximation ratio
in polynomial time.
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Appendix A: Proof of Lemma 4

We give a proof by contradiction. Suppose to the contrary that z	+1 = |A	+1| <

2μ|B≤	|.
For every p ∈ P , a configuration C for p is a subset of resources (fat or thin) such

that p is interested in the resources in C and vp(C) ≥ 1. Let Cp(1) denote the set of
all such configurations for p. The LP relaxation below is the configuration LP for the
general max–min allocation problem.

Primal
Min 0

s.t.
∑

C∈Cp(1)

x p,C ≥ 1, ∀p ∈ P,

∑

p∈P

∑

r∈C

x p,C ≤ 1, ∀r ∈ R,

x p,C ≥ 0, ∀p ∈ P, ∀C ∈ Cp(1).

Dual
Max

∑

p∈P

yp −
∑

r∈R

zr

s.t. yp ≤
∑

r∈C

zr , ∀p ∈ P, ∀C ∈ Cp(1)

yp ≥ 0, ∀p ∈ P,

zr ≥ 0, ∀r ∈ R.

Wewill define a solution for the dual of configuration LP and show that it is feasible
and gives a positive objective function value. We can then scale up this feasible dual
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solution arbitrarily,which gives an arbitrarily large objective function value. Therefore,
the dual of the configuration LP is unbounded, which implies the contradiction that
the configuration LP is infeasible. Our proof is largely the same as the counterpart
of Lemma 4 in [10, 11], but adaptions to our setting is needed in defining the dual
solution and in proving that the objective function value is positive.

To define the dual solution, we need to classify certain subsets of players and
resources. Consider the moment right after the completion of the construction of the
layer L	+1.

Let 
 be a maximum set of node-disjoint paths in G M from B≤	 to A	+1 ∪ I . Let
src(
) denote the set of sources of the paths in 
. It is possible that the sets B≤	 and
A	+1∪ I share some common player, in which case
may contain a path that consists
of a single node. We call such a path a trivial path. Other paths in 
 are non-trivial
paths. Let 
+ be the set of non-trivial paths in 
, i.e., paths with at least one edge.
Let src(
+) denote the set of sources of the paths in 
+. The non-trivial paths in

 are alternating, that is, for i ≥ 0, every (2i + 2)-th edge belongs to M and every
(2i + 1)-th edge does not.

If we flip the alternating paths in 
, M is updated to another maximum matching
of G. Let M ⊕ 
 denote the resulting maximum matching. Note that flipping a trivial
path in
 does not change anything. The players in src(
+) are not matched in M , but
they are now matched in M ⊕
, which means that there are directed edges in G M⊕


from fat resources to the players in src(
+). So players in src(
+) have in-degree
exactly one in G M⊕
.

Let P+ be the set of players that can be reached in G M⊕
 from B≤	\src(
). Let
R+

f be the set of fat resources that can be reached in G M⊕
 from B≤	\src(
). Let

R+
t be the set of inactive thin resources. We can now define the desired dual solution

({y∗
p}p∈P , {z∗

r }r∈R) as follows:

y∗
p =

{
1 − (1 + γ )λ if p ∈ P+,

0 otherwise.

z∗
r =

⎧
⎪⎨

⎪⎩

1 − (1 + γ )λ if r ∈ R+
f ,

vmax
r if r ∈ R+

t ,

0 otherwise.

We will need the following properties of G M⊕
.

Proposition 1 In G M⊕
, the players in B≤	\src(
) have zero in-degrees, and the fat
resources in R+

f have out-degrees exactly one.

Proof The players in B≤	 are matched by thin edges in E , so they are not matched by
M to fat resources. Hence, players in B≤	 have in-degree zero in G M . After flipping
the paths in 
, among the players in B≤	, only those in src(
) may now be matched
to fat resources in M ⊕ 
, and therefore, players in B≤	\src(
) are still unmatched
in M ⊕ 
. So players in B≤	\src(
) have zero in-degrees.

By the definition of R+
f , for every resource r ∈ R+

f , there is a path to r in G M⊕


from a player in B≤	 \ src(
). If r is not matched in M ⊕ 
, we can flip this path to
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increase the matching size, contradicting the fact that M ⊕
 is a maximummatching.
So r is matched in M ⊕ 
, implying that its out-degree in G M⊕
 is exactly one. ��

Note that the rest of the proof considers the moment right after completing the
construction of L	+1, and there is no more (1 + γ )λ-minimal addable edge that can
be discovered.

A.1 Feasibility

We first prove that the dual solution is feasible, which requires us to show that y∗
p ≤∑

r∈C z∗
r , ∀p ∈ P , ∀C ∈ Ci (1). The feasibility constraint is trivially satisfied if

p /∈ P+ because y∗
p = 0 in this case and z∗

r ≥ 0 for all r ∈ R. Take any p ∈ P+. So
y∗

p = 1 − (1 + γ )λ by definition. As p ∈ P+, there is a path π from B≤	\src(
) to
p in G M⊕
. We prove that

∑
r∈C z∗

r ≥ 1 − (1 + γ )λ for all C ∈ Cp(1).
Case 1: C contains a fat resource r f . Since r f belongs to a configuration for p,

p desires r , which means that G M⊕
 contains either the directed edge (p, r f ) or
the directed edge (r f , p). We show that r f ∈ R+

f below. It immediately follows that
z∗

r f
= 1 − (1 + γ )λ, so

∑
r∈C z∗

r ≥ z∗
r f

= 1 − (1 + γ )λ.

If G M⊕
 contains the edge (p, r f ), then r f ∈ R+
f because we can follow the path

π to p and then the edge (p, r f ) to r f . Suppose that G M⊕
 contains the edge (r f , p).
By the property of matching, p has in-degree at most one in G M⊕
, so (r f , p) is the
only edge entering p. It follows that the path π reaches r f first before p, so the prefix
of π up to r f certifies that r f ∈ R+

f .
Case 2: C contains only thin resources. We consider the moment after completing

the construction of L	+1. Recall that
 is a maximum set of node-disjoint paths in G M

from B≤	 to A	+1 ∪ I . The existence of the path π in G M⊕
 to p means that there are
more than |
| node-disjoint paths in G M from B≤	 to A	+1 ∪ I ∪{p}. Therefore, p is
an addable player according to Definition 2. However, we cannot find any (1 + γ )λ-
minimal addable edge for p upon the completion of L	+1. Since C ∈ Cp(1), we have
vp(C) ≥ 1. Therefore, the total utility of active resources in C for p must be less
than (1 + γ )λ, which means that the total utility of inactive resources in C for p is
greater than 1 − (1 + γ )λ. Since R+

t is the set of inactive thin resources, we have∑
r∈C z∗

r ≥ ∑
r∈C∩R+

t
z∗

r = ∑
r∈C∩R+

t
vmax

r ≥ ∑
r∩C∩R+

t
vp,r > 1 − (1 + γ )λ.

A.2 Positive Objective FunctionValue

By definition, y∗
p = 0 if p /∈ P+, and z∗

r = 0 if r /∈ R+
f ∪ R+

t . So we only need to
prove that

∑
p∈P+ y∗

p − ∑
r∈R+

f
z∗

r − ∑
r∈R+

t
z∗

r > 0.

First we consider the value of
∑

p∈P+ y∗
p − ∑

r∈R+
f

z∗
r . By definition, y∗

p = z∗
r =

1 − (1 + γ )λ for all p ∈ P+ and r ∈ R+
f . Then

∑

p∈P+
y∗

p −
∑

r∈R+
f

z∗
r =

(
1 − (1 + γ )λ

) (
|P+| − |R+

f |
)

.
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Take any r ∈ R+
f . By Proposition 1, there is an edge (r f , p) in G M⊕
 for some

player p, i.e., p is matched to r f in M ⊕ 
. There is a path from B≤	\src(
) to r f

by the definition of R+
f , which implies that there is a path from B≤	\src(
) to p.

Hence, p ∈ P+. We can thus charge every r f ∈ R+
f to a player in P+ such that, by

the property of matching, no player in P+ is charged more than once. As discussed
previously, every player in B≤	\src(
) is not matched in M ⊕ 
, so players in
B≤	 \ src(
) are not charged. Moreover, every player in B≤	\src(
) belongs to P+
because there is a trivial path from every such player to himself/herself. As a result,

|P+| − |R+
f | ≥ |B≤	 \ src(
)|.

Since 
 is a maximum set of node-disjoint paths in G M from B≤	 to A	+1 ∪ I , we
have |src(
)| = |
| ≤ |A	+1| + |I |. Therefore,

|P+| − |R+
f | ≥ |B≤	 \ src(
)| ≥ |B≤	| − |A	+1| − |I|.

We conclude that

∑

pi ∈P+
y∗

i −
∑

r j ∈R+
f

z∗
j =

(
1 − (1 + γ )λ

) (
|P+| − |R+

f |
)

≥
(
1 − (1 + γ )λ

)(
|B≤	| − |A	+1| − |I|

)
. (A.1)

It remains to analyze
∑

r∈R+
t

z∗
r . Every resource r ∈ R∗

t is inactive. By definition,
the inactive resources appear in three disjoint subsets of thin edges: (i) A≤	 ∪ B≤	,
(ii) A	+1 ∪ I, and (iii) B′

	+1 = {
b ∈ B	+1 : vmax

(
Rb ∩ R(A	+1)

)
> βλ

}
. It follows

that

∑

r∈R+
t

z∗
r =

∑

r∈R+
t

vmax
r

= vmax
(
R(A≤	 ∪ B≤	)

) + vmax
(
R(A	+1 ∪ I)

) + vmax
(
R(B′

	+1)
)
.

We first consider vmax
(
R(A≤	 ∪ B≤	)

)
. Every edge (p, D) in A≤	 is a blocked

addable edge. So vp
(
D\R(B≤	)

)
< λ. Every edge in B≤	 is λ-minimal. Thus, we can

use the over-estimate strategy to bound vmax
(
R(A≤	 ∪ B≤	)

)
:

vmax(R(A≤	 ∪ B≤	)) ≤
∑

(p,D)∈A≤	∪B≤	

ĉ · vp(D)

≤ ĉ · λ|A≤	| + ĉ · 2λ|B≤	|
Lemma 2

<

(
3 + β

γ

)
ĉ · λ|B≤	|. (A.2)
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We analyze vmax
(
R(A	+1 ∪ I)

)
next. Every edge in A	+1 is (1 + γ )λ-minimal, and

every edge in I is λ-minimal. Therefore,

vmax
(
R(A	+1 ∪ I)

) ≤
∑

(p,D)∈A	+1∪I
ĉ · vp(D)

≤ (2 + γ )ĉ · λ|A	+1| + 2ĉ · λ|I|. (A.3)

Lastly, consider vmax
(
R(B′

	+1)
)
. Edges in B′

	+1 are λ-minimal. Therefore,

vmax
(
R(B′

	+1)
) ≤

∑

(p,D)∈B′
	+1

ĉ · vp(D)

≤ 2ĉ · λ|B′
	+1|

Lemma 3
<

(
4 + 2γ

β

)
ĉ2 · λ|A	+1|. (A.4)

Summing (A.2), (A.3)) and (A.4) gives

∑

r∈R+
t

z∗
r <

(
3 + β

γ

)
ĉλ|B≤	| +

(
(2 + γ )ĉ +

(
4 + 2γ

β

)
ĉ2

)
λ|A	+1| + 2ĉλ|I|.

(A.5)

Combining (A.1) and (A.5) gives

∑

p∈P+
y∗

p −
∑

r∈R+
f

z∗
r −

∑

r∈R+
t

z∗
r

>

(
1 − (1 + γ )λ −

(
3 + β

γ

)
ĉλ

)
|B≤	|

−
(
1 − (1 + γ )λ + (2 + γ )ĉλ +

(
4 + 2γ

β

)
ĉ2λ

)
|A	+1|

−(
1 − (1 + γ )λ + 2ĉλ

)|I|. (A.6)

We claim that |I| ≤ μ|B≤	| because no layer is collapsible. If |I| > μ|B≤	|,
there would be some Ii in the disjoint partition

⋃	
i=1 Ii of I such that |Ii | > μ|Bi |.

Note that |Ii | = |Ii | because Ii consists of the destinations of node-disjoint paths
from Bi to Ii . Also, |Bi | = |Bi | because edges in Bi belong to a matching of the
hypergraph H , so no two edges in Bi are incident to the same player. By definition,
fM [B≤i , I ] − fM [B≤i−1, I ] = |Ii | > μ|Bi |. But then the layer Li is collapsible
according to Definition 4, a contradiction to the assumption that no layer is collapsible.
This proves our claim.

We have assumed to the contrary of Lemma 4 that |A	+1| ≤ 2μ|B≤	|.
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Plugging β = γ 2, μ = γ 3, and the two inequalities above into (A.6) gives

∑

p∈P+
y∗

i −
∑

r∈R+
f

z∗
r −

∑

r∈R+
t

z∗
r

>
(
1 − 3γ 3)|B≤	| − (

1 + γ − 3γ 3 − 3γ 4)λ|B≤	| − (
3 + γ + 6γ 3 + 2γ 4)ĉλ|B≤	|

−(
8γ + 4γ 2)ĉ2λ|B≤	|.

One can set γ = �(δ) so that

1 − 3γ 3

(1 + γ − 3γ 3 − 3γ 4) + (3 + γ + 6γ 3 + 2γ 4)ĉ + (8γ + 4γ 2)ĉ2

>
1

1 + 3ĉ + O(δĉ2)
= λ,

which implies that the objective function value is positive.
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