
Algorithmica (2024) 86:442–484
https://doi.org/10.1007/s00453-023-01098-z

Lazy Parameter Tuning and Control: Choosing All
Parameters Randomly from a Power-Law Distribution

Denis Antipov1 ·Maxim Buzdalov2,3 · Benjamin Doerr4

Received: 25 October 2021 / Accepted: 14 January 2023 / Published online: 22 February 2023
© The Author(s) 2023

Abstract
Most evolutionary algorithms have multiple parameters and their values drastically
affect the performance. Due to the often complicated interplay of the parameters, set-
ting these values right for a particular problem (parameter tuning) is a challenging
task. This task becomes even more complicated when the optimal parameter values
change significantly during the run of the algorithm since then a dynamic parameter
choice (parameter control) is necessary. In this work, we propose a lazy but effec-
tive solution, namely choosing all parameter values (where this makes sense) in each
iteration randomly from a suitably scaled power-law distribution. To demonstrate the
effectiveness of this approach, we perform runtime analyses of the (1+(λ, λ)) genetic
algorithmwith all three parameters chosen in this manner.We show that this algorithm
on the one hand can imitate simple hill-climbers like the (1+ 1) EA, giving the same
asymptotic runtime on problems like OneMax, LeadingOnes, or Minimum Spanning
Tree. On the other hand, this algorithm is also very efficient on jump functions, where
the best static parameters are very different from those necessary to optimize simple
problems. We prove a performance guarantee that is comparable to the best perfor-
mance known for static parameters. For the most interesting case that the jump size k
is constant, we prove that our performance is asymptotically better than what can be

B Denis Antipov
antipovden@yandex.ru

Maxim Buzdalov
mbuzdalov@gmail.com

Benjamin Doerr
lastname@lix.polytechnique.fr

1 School of Computer Science, The University of Adelaide, Adelaide, Australia

2 ITMO University, St. Petersburg, Russia

3 Department of Computer Science, Aberystwyth University, Aberystwyth, United Kingdom

4 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01098-z&domain=pdf
http://orcid.org/0000-0001-7906-096X

Algorithmica (2024) 86:442–484 443

obtained with any static parameter choice.We complement our theoretical results with
a rigorous empirical study confirming what the asymptotic runtime results suggest.

Keywords Runtime analysis · Dynamic parameter choice · Crossover · Theory

1 Introduction

Evolutionary algorithms (EAs) are general-purpose randomized search heuristics.
They are adapted to the particular problem to be solved by choosing suitable val-
ues for their parameters. This flexibility is a great strength on the one hand, but a true
challenge for the algorithm designer on the other. Missing the right parameter values
can lead to catastrophic performance losses.

Despite being a core topic of both theoretical and experimental research, general
advice on how to set the parameters of an EA are still rare. The difficulty stems from the
fact that different problems need different parameters, different instances of the same
problem may need different parameters, and even during the optimization process on
one instance the most profitable parameter values may change over time.

In an attempt to design a simple one-size-fits-all solution, Doerr et al. [22] proposed
to use random parameter values chosen independently in each iteration from a power-
law distribution (note that random mutation rates were used before [15, 16], but with
different distributions and for different reasons). Mostly via mathematical means, this
was shown to be highly effective for the choice of the mutation rate of the (1 +
1) EA when optimizing the jump benchmark, which has the property that the optimal
mutation rate depends strongly on the problem instance. More precisely, for a jump
function with representation length n and jump size 2 ≤ k = o(

√
n), the standard

mutation rate p = 1/n gives an expected runtime of (1+ o(1))enk , where e ≈ 2.718
is Euler’s number. The asymptotically optimal mutation rate p = k/n leads to a
runtime of (1 + o(1))nk(e/k)k . Deviating from the optimal rate by a small constant
factor increases the runtime by a factor exponential in k. When using the mutation rate
α/n, where α ∈ [1..n/2] is sampled independently in each iteration from a power-law
distributionwith exponent β > 1, the runtime becomes�(kβ−0.5nk(e/k)k), where the
constants hidden by the asymptotic notation are independent of n and k. Consequently,
apart from the small polynomial factor�(kβ−0.5), this randomizedmutation rate gives
the performance of the optimal mutation rate and in particular also achieves the super-
exponential runtime improvement by a factor of (e/k)�(k) over the standard rate 1/n.

The idea of choosing parameter values randomly according to a power-law
distribution was quickly taken up by other works. In [32, 39], variants of the
heavy-tailed mutation operator were proposed and analyzed on TwoMax, Jump,
MaxCut, and several sub-modular problems. In [27, 30, 49], power-law mutation
in multi-objective optimization was studied. In [12], the authors compared power-law
mutation and artificial immune systems. In [2], heavy-tailed mutation was regarded
for the (1 + (λ, λ))GA), however again only for a single parameter and this parameter
being the mutation rate. Very recently, the first analysis of a heavy-tailed choice of a
parameter of the selection operator was conducted [17].

123

444 Algorithmica (2024) 86:442–484

While optimizing a single parameter is already non-trivial (and the latest work [2]
showed that the heavy-tailed mutation rate can even give results better than any static
mutation rate, that is, it can inherit advantages of dynamic parameter choices), the
really difficult problem is finding good values for several parameters of an algorithm.
Here the often intricate interplay between the different parameters can be a true chal-
lenge (see, e.g., [23] for a theory-based determination of the optimal values of three
parameters).

The only attempt to choose randomly more than one parameter was made in [3]
for the (1 + (λ, λ)) GA having a three-dimensional parameter space spanned by the
parameters population size λ, mutation rate p, and crossover bias c. For this algo-
rithm, first proposed in [14], the product d = pcn of mutation rate, crossover bias,
and representation length describes the expected distance of an offspring from the par-
ent. It was argued heuristically in [3] that a reasonable parameter setting should have
p = c, that is, the same mutation rate and crossover bias. With this reduction of the
parameter space to two dimensions, the parameter choice in [3] was made as follows.
Independently (and independently in each iteration), both λ and d were chosen from
a power-law distribution. Mutation rate and crossover bias were both set to

√
d/n to

ensure p = c and pcn = d. When using unbounded power-law distributions with
exponents βλ = 2 + ε and βd = 1 + ε′ with ε, ε′ > 0 any small constants, this ran-
domized way of setting the parameters gave an expected runtime of eO(k)(nk)(1+ε)k/2

on jump functions with jump size k ≥ 3. This is very similar (slightly better for
k < 1

ε
, slightly worse for k > 1

ε
) to the runtime of (nk)(k+1)/2eO(k) obtainable with the

optimal static parameters. This is a surprisingly good performance for a parameter-
less approach, in particular, when compared to the runtime of �(nk) of many classic
evolutionary algorithms. Note that both for the static and dynamic parameters only
upper bounds were proven,1 hence we cannot make a rigorous conclusion on which
algorithm performs better on jump. The proofs of these upper bounds however suggest
to us that they are tight.

Our Results: While the work [3] showed that in principle it can be profitable to
choose more than one parameter randomly from a power-law distribution, it relied
on the heuristic assumption that one should take the mutation rate equal to the
crossover bias. There is nothing wrong with using such heuristic insight, however,
one has to question if an algorithm user (different from the original developers of the
(1 + (λ, λ)) GA) would have easily found this relation p = c.

In this work, we show that such heuristic preparations are not necessary: One can
simply choose all three parameters of the (1 + (λ, λ)) GA from (scaled) power-law
distributions and obtain a runtime comparable to the ones seen before. More precisely,
when using the power-law exponents 2 + ε for the distribution of the population size
and 1+ε′ for the distributions of the parameters p and c and scaling the distributions for
p and c by dividing by

√
n (to obtain a constant distance of parent and offspring with

constant probability), we obtain the same eO(k)(nk)(1+ε)k/2 runtime guarantee as in [3].
From our theoretical results one can see that the exact choice of ε′ does not affect the
asymptotical runtimeneither on easy functions such asOneMax, nor on hard functions

1 A lower bound of (nk)k/2e�(k) fitness evaluations on the runtime of the (1 + (λ, λ)) GA with static
parameters was shown in [6], but this bound was proven for the initialization in the local optimum of Jumpk
and it does not include the runtime until the algorithm gets to the local optimum from a random solution.

123

Algorithmica (2024) 86:442–484 445

such as Jumpk . Hence if an algorithm user would choose all exponents as 2+ε, which
is a natural choice as it leads to a constant expectation and a super-constant variance
as usually desired from a power-law distribution, the resulting runtimes would still be
O(n log n) for OneMax and eO(k)(nk)(1+ε)k/2 for jump functions with gap size k.

With this approach, the only remaining design choice is the scaling of the dis-
tributions. It is clear that this cannot be completely avoided simply because of the
different scales of the parameters (mutation rates are in [0, 1], population sizes are
positive integers). However, we argue that here very simple heuristic arguments can
be employed. For the population size, being a positive integer, we simply use a power-
law distribution on the non-negative integers. For the mutation rate and the crossover
bias, we definitely need some scaling as both number have to be in [0, 1]. Recalling
that (and this is visible right from the algorithm definition) the expected distance of
offspring from their parents in this algorithm is d = pcn and recalling further the
general recommendation that EAs should generate offspring with constant Hamming
distance from the parent with reasonable probability (this is, for example, implicit both
in the general recommendation to use a mutation rate of 1/n and in the heavy-tailed
mutation operator proposed in [22]), a scaling leading to a constant expected value of
d appears to be a good choice. We obtain this by taking both p and c from power-law
distributions on the positive integers scaled down by a factor of

√
n. This appears

again to be the most natural choice. We note that if an algorithm user would miss
this scaling and scale down both p and c by a factor of n (e.g., to obtain an expected
constant number of bits flipped in themutation step), then our runtime estimates would

increase by a factor of n
βp+βc

2 −1, which is still not much compared to the roughly nk/2

runtimes we have and the �(nk) runtimes of many simple evolutionary algorithms.
Our precise result is a mathematical runtime analysis of this heavy-tailed algorithm

for arbitrary parameters of the three heavy-tailed distributions (power-law exponent
and upper bound on the range of positive integers it can take, including the case of no
bound) on a set of “easy” problems (OneMax,LeadingOnes, theminimum spanning
tree and the partition problem) and on Jump function. We show that on easy problems
the heavy-tailed (1 + (λ, λ))GA asymptotically is not worse than the (1+1) EA, and
on Jump it significantly outperforms the (1+1) EA for a wide range of the parameters
of power-lawdistributions. These results show that the absolutely best performance can
be obtained by guessing correctly suitable upper bounds on the ranges. Since guessing
these parameters wrong can lead to significant performance losses, whereas the gains
from these optimal parameter values are not so high, we would rather advertise our
parameter-less “layman recommendation” to use unrestricted ranges and power-law
exponents slightly more than two for the population size and slightly more than one
for other parameters. These recommendations are supported by the empirical study
shown in Sect. 4.

Our work also provides an example where a dynamic (here simply randomized)
parameter choice provably gives an asymptotic runtime improvement. This improve-
ment is significantly more pronounced than the o(

√
log n) factor speed-up observed

in [2, 13] for the optimization of OneMax via the (1 + (λ, λ)) GA.
We note that our situation is different, e.g., from the optimization of jump functions

via the (1+1) EA. Here the mutation rate k
n is asymptotically optimal [22] for Jumpk .

123

446 Algorithmica (2024) 86:442–484

Clearly, for the easy OneMax-type part of the optimization process, the mutation
rate 1

n would be superior, but the damage from using the larger rate k
n only leads to a

lower-order increase of the runtime.
We prove that this is different for the optimization of the jump functions via the

(1 + (λ, λ)) GA. Since this effect is already visible for constant values of k, and in
fact strongest visible, to ease the presentation, we assume that k is constant. We note
that only for constant k the different variants of the (1 + (λ, λ)) GA had a polynomial
runtime, so clearly, k constant (and not too large) is the most interesting case.

For constant k, our result is eO(k)(nk)(1+ε)k/2. The best runtime that could be
obtained with a static mutation rate was eO(k)n(k+1)/2k−k/2. Hence by choosing ε

sufficiently small, our upper bound is asymptotically smaller than the best upper
bound for static parameters. Unfortunately, no lower bounds were proven in [6]
for static parameters. To rigorously support our claim that dynamic parameter choices
can asymptotically outperform static ones when optimizing jump functions via the
(1 + (λ, λ)) GA, in Sect. 3.3 we prove such a lower bound. Since this is not the main
topic of this work, we shall not go as far as proving that the upper bound for static
parameters is tight, but we content ourselves with a simpler proof of a weaker lower
bound, which however suffices to support our claim of the superiority of dynamic
parameter choices.

In summary, our results demonstrate that choosing all parameters of an algorithm
randomly according to a simple (scaled) power-law can be a goodway to overcome the
problem of choosing appropriate fixed or dynamic parameter values.We are optimistic
that this approach will lead to a good performance also for other algorithms and other
optimization problems.

2 Preliminaries

In this section we collect definitions and tools which we use in the paper. To avoid
misreading of our results, we note that we use the following notation. ByNwe denote
the set of all positive integer numbers and by N0 we denote the set of all non-negative
integer numbers. We write [a..b] to denote an integer interval including its borders
and [a, b] to denote a real-valued interval including its borders. For any probability
distribution L and random variable X , we write X ∼ L to indicate that X follows
the law L. We denote the binomial law with parameters n ∈ N and p ∈ [0, 1]
by Bin (n, p). We denote the geometric distribution taking values in {1, 2, . . . } with
success probability p ∈ [0, 1] by Geom(p). We denote by TI and TF the number
of iterations and the number of fitness evaluations performed until some event holds
(which is always specified in the text).

2.1 Objective Functions

In this paper we consider five benchmark functions and problems, namely OneMax,
LeadingOnes, theminimum spanning tree problem, the partition problem and Jumpk .

123

Algorithmica (2024) 86:442–484 447

All of them are pseudo-Boolean functions, that is, they are defined on the set of bit
strings of length n and return a real number.

OneMax returns the number of one-bits in its argument, that is, OneMax(x) =
OM(x) = ∑n

i=1 xi . It is one of the most intensively studied benchmarks in evolution-
ary computation. Many evolutionary algorithms can find the optimum of OneMax
in time O(n log n) [4, 34, 37, 47]. The (1 + (λ, λ)) GA with a fitness-dependent or
self-adjusting choice of the population size [13, 14] or with a heavy-tailed random
choice of the population size [1] is capable of solving OneMax in linear time when
the other two parameters are chosen suitably depending on the population size.

LeadingOnes returns the number of the leading ones in a bit string. In more formal
words we maximize function

LeadingOnes(x) =
n∑

i=1

i∏

j=1

x j .

The runtime of the most classic EAs is at least quadratic on LeadingOnes. More
precisely, the runtime of the (1+1)EA is�(n2) [20, 41], the runtime of the (μ+1)EA
is �(n2 + μn log(n)) [47], the runtime of the (1+ λ) EA is �(n2 + λn) [34] and the
runtime of the (μ + λ) EA is �(n2 + λn

max{1,log(λ/n)}) [9]. It was shown in [5] that the
(1 + (λ, λ)) GA with standard parameters (λ ∈ [1.. n2], p = λ

n and c = 1
λ
) also has a

�(n2) runtime on LeadingOnes.
In theminimum spanning tree problem (MST for brevity) we are given an undi-

rected graph G = (V , E) with positive integer edge weights defined by a weight
function ω : E → N≥1. We assume that this graph does not have parallel edges or
loops. The aim is to find a connected subgraph of a minimum weight. By n we denote
the number of vertices, by m we denote the number of edges in G.

This problem can be solved by minimizing the following fitness function defined
on all subgraphs G ′ = (V , E ′) of the given graph G.

f (G ′) = (Wtotal + 1)2cc(G ′) + (Wtotal + 1)|E ′| +
∑

e∈E ′
ω(e),

where cc(G ′) is the number of connected components in G ′ and Wtotal is the total
weight of the graph G, that is, the sum of all edge weights. This definition of the
fitness guarantees that any connected graph has a better (in this case, smaller) fitness
than any unconnected graph and any tree has a better fitness than any graph with
cycles.

The natural representation for subgraphs used in [38] is via bit-strings of length m,
where each bit corresponds to some particular edge in graph G. An edge is present in
subgraph G ′ if and only if its corresponding bit is equal to one. In [38] it was shown
that the (1 + 1) EA solves the MST problem with the mentioned representation and
fitness function in expected number of O(m2 log(Wtotal)) iterations.

In the partition problem we have a set of n objects with positive integer weights
w1, w2, . . . , wn and our aim is to split the objects into two sets (usually called bins)
such that the total weight of the heavier bin is minimal. Without loss of generality

123

448 Algorithmica (2024) 86:442–484

OneMax(x)n
0

n − k

k

n

n + k

Jumpk(x)

Fig. 1 Plot of the Jumpk function. As a function of unitation, the function value of a search point x depends
only on the number of one-bits in x

we assume that the weights are sorted in a non-increasing order, that is, w1 ≥ w2 ≥
· · · ≥ wn . By w we denote the total weight of all objects, that is, w = ∑n

i=1 wi . By a
(1+ δ) approximation (for any δ > 0) we mean a solution in which the weight of the
heavier bin is at most by a factor of (1 + δ) greater than in an optimal solution.

Each partition into two bins can be represented by a bit string of length n, where
each bit corresponds to some particular object. The object is put into the first bin if
and only if the corresponding bit is equal to one. As fitness f (x) of an individual x
we consider the total weight of the objects in the heavier bin in the partition which
corresponds to x .

In [46] itwas shown that the (1+1)EAfinds a (43+ε) approximation for any constant
ε > 0 of any partition problem in linear time and that it finds a 4

3 approximation in
time O(n2).

The function Jumpk (where k is a positive integer parameter) is defined viaOneMax
as follows.

Jumpk(x) =
{
OM(x) + k, if OM(x) ∈ [0..n − k] ∪ {n},
n − OM(x), if OM(x) ∈ [n − k + 1..n − 1].

Aplot of Jumpk is shown in Fig. 1. Themain feature of Jumpk is a set of local optima
at distance k from the global optimum and a valley of extremely low fitness in between.
Most EAs optimizing Jumpk first reach the local optima and then have to perform a
jump to the global one, which turns out to be a challenging task for most classic
algorithms. In particular, for all values of μ and λ it was shown that (μ + λ) EA and
(μ, λ) EA have a runtime of�(nk) fitness evaluations when they optimize Jumpk [20,
26]. Using a mutation rate of k

n [22], choosing it from a power-law distribution [22],
or setting it dynamically with a stagnation detection mechanism [28, 42–44] reduces
the runtime of the (1 + 1) EA by a k�(k) factor, however, for constant k the runtime
of the (1 + 1) EA remains �(nk). Many crossover-based algorithms have a better
runtime on Jumpk , see [18, 19, 31, 35, 40, 50] for results on algorithms different from
the (1 + (λ, λ)) GA. Those beating the Õ(nk−1) runtime shown in [19] may appear
somewhat artificial and overfitted to the precise definition of the jump function, see

123

Algorithmica (2024) 86:442–484 449

[48]. Outside the world of genetic algorithms, the estimation-of-distribution algorithm
cGA and the ant-colony optimizer 2-MMASib were shown to optimize jump functions
with small k = O(log n) in time O(n log n) [7, 25, 33]. Runtime analyses for artificial
immune systems, hyperheuristics, and the Metropolis algorithm exist [10, 11, 36], but
their runtime guarantees are asymptotically weaker than O(nk) for constant k.

2.2 Power-Law Distributions

We say that an integer randomvariable X follows a power-law distributionwith param-
eters β and u if

Pr[X = i] =
{
Cβ,ui−β, if i ∈ [1..u],
0, else.

Here Cβ,u = (
∑u

j=1 j−β)−1 denotes the normalization coefficient. We write X ∼
pow(β, u) and call u the bounding of X and β the power-law exponent.

The main feature of this distribution is that while having a decent probability to
sample X = �(1) (where the asymptotic notation is used for u → +∞), we also have
a good (inverse-polynomial instead of negative-exponential) probability to sample a
super-constant value. The following lemmas show the well-known properties of the
power-law distributions. Their proofs can be found, for example, in [3].

Lemma 1 (Lemma 1 in [3]) For all positive integers a and b such that b ≥ a and for
all β > 0, the sum

∑b
i=a i

−β is

• �((b + 1)1−β − a1−β), if β < 1,
• �(log(b+1

a)), if β = 1, and
• �(a1−β − (b + 1)1−β), if β > 1,

where � notation is used for b → +∞.

Lemma 2 (Lemma 2 in [3]) The normalization coefficient Cβ,u = (
∑u

j=1 j−β)−1 of
the power-law distribution with parameters β and u is

• �(uβ−1), if β < 1,
• �(1

log(u)+1), if β = 1, and
• �(1), if β > 1,

where � notation is used for u → +∞.

Lemma 3 (Lemma3 in [3])The expected value of the randomvariable X ∼ pow(β, u)

is

• �(u), if β < 1,
• �(u

log(u)+1), if β = 1,

• �(u2−β), if β ∈ (1, 2),
• �(log(u) + 1), if β = 2, and
• �(1), if β > 2,

123

450 Algorithmica (2024) 86:442–484

where � notation is used for u → +∞.

Lemma 4 If X ∼ pow(β, u), then E[X2] is
• �(u2), if β < 1,
• �(u2

log(u)+1), if β = 1,

• �(u3−β), if β ∈ (1, 3),
• �(log(u) + 1), if β = 3, and
• �(1), if β > 3,

where � notation is used for u → +∞.

Lemma 4 simply follows from Lemma 1.

2.3 The Heavy-Tailed (1+ (�, �)) GA

We now define the heavy-tailed (1 + (λ, λ)) GA. The main difference from the stan-
dard (1 + (λ, λ)) GA is that at the start of each iteration the mutation rate p, the
crossover bias c, and the population size λ are randomly chosen as follows. We sam-
ple p ∼ n−1/2 pow(βp, u p) and c ∼ n−1/2 pow(βc, uc). The population size is chosen
via λ ∼ pow(βλ, uλ). Here the upper limits uλ, u p and uc can be any positive integers,
except we require u p and uc to be at most

√
n (so that we choose both p and c from

interval (0, 1]). The power-law exponents βλ, βp and βc can be any non-negative real
numbers. We call these parameters of the power-law distribution the hyperparameters
of the heavy-tailed (1 + (λ, λ)) GA and we give recommendations on how to choose
these hyperparameters in Sect. 3.3. The pseudocode of this algorithm is shown in
Algorithm 1. We note that it is not necessary to store the whole offspring population,
since only the best individual has a chance to be selected as a mutation or crossover
winner. Hence also large values for λ are algorithmically feasible.

Concerning the scalings of the power-law distributions, we find it natural to choose
the integer parameter λ from a power-law distribution without any normalization. For
the scalings of the power-law determining the parameters p and c, we argued already in
the introduction that the scaling factor ofn−1/2 is natural as it ensures that theHamming
distance between parent and offspring, which is pcn for this algorithm, is one with
constant probability. We see that there is some risk that an algorithm user misses this
argument and, for example, chooses a scaling factor of n−1 for the mutation rate,
which leads to the Hamming distance between parent and mutation offspring being
one with constant probability. A completely different alternative would be to choose
c ∼ 1

pow(βm ,um)
, inspired by the recommendation “c := 1/(pn)” made for static

parameters in [14]. Without proof, we note that these and many similar strategies
increase the runtime by at most a factor of �(nc), c a constant independent of n and
k, thus not changing the general n(0.5+ε)k runtime guarantee proven in this work.

The following theoretical results exist for the (1 + (λ, λ)) GA. With optimal static
parameters the algorithm solvesOneMax in approximately O(n

√
log(n))fitness eval-

uations [14]. The runtime becomes slightlyworse on the randomsatisfiability instances
due to a weaker fitness-distance correlation [8]. In [5] it was shown that the runtime of
the (1 + (λ, λ)) GA on LeadingOnes is the same as the runtime of the most classic

123

Algorithmica (2024) 86:442–484 451

Algorithm 1: The heavy-tailed (1 + (λ, λ)) GA maximizing a pseudo-Boolean
function f : {0, 1}n → R.
1 x ← random bit string of length n;
2 while not terminated do
3 Choose p ∼ n−1/2 pow(βp, u p);

4 Choose c ∼ n−1/2 pow(βc, uc);
5 Choose λ ∼ pow(βλ, uλ);

Mutation phase:
6 Choose
 ∼ Bin (n, p);
7 for i ∈ [1..λ] do
8 x(i) ← a copy of x ;

9 Flip
 bits in x(i) chosen uniformly at random;
10 end
11 x ′ ← argmaxz∈{x(1),...,x(λ)} f (z);

Crossover phase:
12 for i ∈ [1..λ] do
13 Create y(i) by taking each bit from x ′ with probability c and from x with probability

(1 − c);
14 end
15 y ← argmaxz∈{y(1),...,y(λ)} f (z);

16 if f (y) ≥ f (x) then
17 x ← y;
18 end
19 end

algorithms, that is,�(n2), whichmeans that it is not slower thanmost otherEAsdespite
the absence of a strongfitness-distance correlation. The analysis of the (1 + (λ, λ))GA
with static parameters on Jumpk in [6] showed that the (1 + (λ, λ)) GA (with uncom-
mon parameters) can find the optimum in eO(k)(nk)(k+1)/2 fitness evaluations, which is
roughly a square root of the�(nk) runtime ofmany classic algorithms on this function.

Concerning dynamic parameter choices, a fitness-dependent parameter choice was
shown to give linear runtime on OneMax [14], which is the best known runtime
for crossover-based algorithms on OneMax. In [13], it was shown that also the self-
adjusting approach of controlling the parameters with a simple one-fifth rule can
lead to this linear runtime. The adapted one-fifth rule with a logarithmic cap lets the
(1 + (λ, λ)) GA outperform the (1 + 1) EA on random satisfiability instances [8].

Choosing λ from a power-law distribution and taking p = λ
n and c = 1

λ
lets the

(1 + (λ, λ))GA optimizeOneMax in linear time [2]. Also, as it was mentioned in the
introduction, with randomly chosen parameters (but with some dependencies between
several of them) the (1 + (λ, λ)) GA can optimize Jumpk in time of eO(k)(nk)(1+ε)k/2

[3]. For the LeadingOnes it was shown in [5] that the runtime of the (1 + (λ, λ))GA
is �(n2) and that any dynamic choice of λ does not change this asymptotical runtime.

In our proofs we use the following language (also for the (1 + (λ, λ)) GA with
static parameters). When we analyse the (1 + (λ, λ)) GA on Jump and the algorithm
has already reached the local optimum, then we call the mutation phase successful if
all k zero-bits of x are flipped to ones in the mutation winner x ′. We call the crossover
phase successful if the crossover winner has a greater fitness than x .

123

452 Algorithmica (2024) 86:442–484

2.4 Useful Tools

An important tool in our analysis is Wald’s equation [45] as it allows us to express the
expected number of fitness evaluations through the expected number of iterations and
the expected cost of one iteration.

Lemma 5 (Wald’s equation) Let (Xt)t∈N be a sequence of real-valued random vari-
ables and let T be a positive integer random variable. Let also all following conditions
be true.

1. All Xt have the same finite expectation.
2. For all t ∈ N we have E[Xt1{T≥t}] = E[Xt]Pr[T ≥ t].
3.

∑+∞
t=1 E[|Xt |1{T≥t}] < ∞.

4. E[T] is finite.
Then we have

E

[
T∑

t=1

Xt

]

= E[T]E[X1].

In our analysis of the heavy-tailed (1 + (λ, λ)) GA we use the following multi-
plicative drift theorem.

Theorem 6 (Multiplicative Drift [21]) Let S ⊂ R be a finite set of positive numbers
with minimum smin. Let {Xt }t∈N0 be a sequence of random variables over S ∪ {0}. Let
T be the first point in time t when Xt = 0, that is,

T = min{t ∈ N : Xt = 0},

which is a random variable. Suppose that there exists a constant δ > 0 such that for
all t ∈ N0 and all s ∈ S such that Pr[Xt = s] > 0 we have

E[Xt − Xt+1 | Xt = s] ≥ δs.

Then for all s0 ∈ S such that Pr[X0 = s0] > 0 we have

E[T | X0 = s0] ≤ 1 + ln(s0/smin)

δ
.

We use the following well-known relation between the arithmetic and geometric
means.

Lemma 7 For all positive a and b it holds that a + b ≥ 2
√
ab.

123

Algorithmica (2024) 86:442–484 453

3 Runtime Analysis

In this section we perform a runtime analysis of the heavy-tailed (1 + (λ, λ)) GA on
the easy problems OneMax, LeadingOnes, and Minimum Spanning Tree as well as
the more difficult Jump problem. We show that this algorithm can efficiently escape
local optima and that it is capable of solving Jump functions much faster than the
known mutation-based algorithms and most of the crossover-based EAs. At the same
time it does not fail on easy functions like OneMax, unlike the (1 + (λ, λ)) GA with
those static parameters which are optimal for Jump [6].

From the results of this section we distill the recommendations to use βp and βc

slightly greater than one and to use βλ slightly greater than two. We also suggest to
use almost unbounded power-law distributions, taking uc = u p = √

n and uλ = 2n .
These recommendations are justified in Corollary 16.

3.1 Easy Problems

In this subsectionwe show that the heavy-tailed (1 + (λ, λ))GAhas a reasonably good
performance on the easy problemsOneMax,LeadingOnes, minimum spanning tree,
and partition.

3.1.1 ONEMAX

The following result shows that the heavy-tailed (1 + (λ, λ)) GA just like the simple
(1 + 1) EA solves the OneMax problem in O(n log(n)) iterations.

Theorem 8 If βλ > 1, βp > 1, and βc > 1, then the heavy-tailed (1 + (λ, λ)) GA
finds the optimum of OneMax in O(n log(n)) iterations. The expected number of
fitness evaluations is

• O(n log(n)), if βλ > 2,
• O(n log(n)(log(uλ) + 1)), if βλ = 2, and
• O(nu2−βλ

λ log(n)), if βλ ∈ (1, 2).

The central argument in the proof of Theorem 8 is the observation that the heavy-
tailed (1 + (λ, λ)) GA performs an iteration equivalent to one of the (1+ 1) EA with
a constant probability, which is shown in the following lemma.

Lemma 9 If βp, βc and βλ are all strictly greater than one, then with probability
ρ = �(1) the heavy-tailed (1 + (λ, λ)) GA chooses p = c = 1√

n
and λ = 1 and

performs an iteration of the (1 + 1) EA with mutation rate 1
n .

Proof Since we choose p, c and λ independently, then by the definition of the power-
law distribution and by Lemma 2 we have

123

454 Algorithmica (2024) 86:442–484

ρ = Pr

[

p = 1√
n

]

Pr

[

c = 1√
n

]

Pr [λ = 1]

= Cβp,u p1
−βp · Cβc,uc1

−βc · Cβλ,uλ1
−βλ

= �(1) · �(1) · �(1) = �(1).

If we have λ = 1, then we have only one mutation offspring which is automatically
chosen as the mutation winner x ′. Note that although we first choose
 ∼ Bin(n, p)
and then flip
 random bits in x , the distribution of x ′ in the search space is the same
as if we flipped each bit independently with probability p (see Section 2.1 in [14] for
more details).

In the crossover phase we create only one offspring y by applying the biased
crossover to x and x ′. Each bit of this offspring is different from the bit in the same
position in x if and only if it was flipped in x ′ (with probability p) and then taken from
x ′ in the crossover phase (with probability c). Therefore, y is distributed in the search
space as if we generated it by applying the standard bit mutation with mutation rate
pc to x . Hence, we can consider such iteration of the heavy-tailed (1 + (λ, λ)) GA as
an iteration of the (1 + 1) EA which uses a standard bit mutation with mutation rate
pc = 1

n .

We are now in position to prove Theorem 8.

Proof of Theorem 8 By Lemma 9 with probability at least ρ, which is at least some
constant independent of the problem size n, the heavy-tailed (1 + (λ, λ))GAperforms
an iteration of the (1 + 1) EA. Hence, the probability P(i) to increase fitness in one
iteration if we have already reached fitness i is

P(i) ≥ ρ · n − i

en
.

Hence, we estimate the total runtime in terms of iterations as a sum of the expected
runtimes until we leave each fitness level.

E[TI] ≤
n−1∑

i=0

1

P(i)
≤ 1

ρ

n−1∑

i=0

ne

n − i
≤ en ln(n)

ρ
= O(n log(n)).

To compute the expected number of fitness evaluations until we find the optimum
we use Wald’s equation (Lemma 5). Since in each iteration of the heavy-tailed
(1 + (λ, λ)) GA we make 2λ fitness evaluations, we have

E[TF] = E[TI] · E[2λ].
By Lemma 3 we have

E[λ] =

⎧
⎪⎨

⎪⎩

�(1), if βλ > 2,

�(log(uλ) + 1), if βλ = 2,

�(u2−βλ

λ), if βλ ∈ (1, 2).

123

Algorithmica (2024) 86:442–484 455

Therefore,

E[TF] =

⎧
⎪⎨

⎪⎩

O(n log(n)), if βλ > 2,

O(n log(n)(log(uλ) + 1)), if βλ = 2,

O(nu2−βλ

λ log(n)), if βλ ∈ (1, 2).

Theorem 8 shows that the heavy-tailed (1 + (λ, λ)) GA can fall back to a (1 +
1) EA behavior and turn into a simple hill climber. Since we do not have a matching
lower bound, our analysis leaves open the question to what extent the heavy-tailed
(1 + (λ, λ))GAbenefits from iterations inwhich it samples parameter values different
from the ones used in the lemma above. On the one hand, in [2] it was shown that
if we choose only one parameter λ from the power-law distribution and set the other
parameters to their optimal values in the (1 + (λ, λ)) GA (namely, p = λ

n and c = 1
λ

[14]), then we have a linear runtime on OneMax. This indicates that there is a chance
that the heavy-tailed (1 + (λ, λ)) GA with an independent choice of three parameters
can also have a o(n log(n)) runtime on this problem. On the other hand, the probability
that we choose p and c close to their optimal values is not high, hence we have
to rely on making good progress when using non-optimal parameters values. Our
experiments presented in Sect. 4.1 suggest that such parameters do not yield the desired
progress speed and that the heavy-tailed (1 + (λ, λ)) GA has an �(n log(n)) runtime
(see Fig. 3). For this reason, we rather believe that the heavy-tailed (1 + (λ, λ)) GA
proposed in this work has an inferior performance on OneMax than the one proposed
in [2]. Since our new algorithm has a massively better performance on jump functions,
we feel that losing a logarithmic factor in the runtime on OneMax is not too critical.

Lemma 9 also allows us to transform any upper bound on the runtime of the (1 +
1) EA which was obtained via the fitness level argument or via drift with the fitness
into the same asymptotical runtime for the heavy-tailed (1 + (λ, λ)) GA. We give
three examples in the following subsections.

3.1.2 LEADINGONES

For the LeadingOnes problem, we now show that arguments analogous to the ones
in [41] can be used to prove an O(n2) runtime guarantee also for the heavy-tailed
(1 + (λ, λ)) GA.

Theorem 10 If βλ > 1, βp > 1, and βc > 1, then the expected runtime of the
heavy-tailed (1 + (λ, λ))GA on LeadingOnes is O(n2) iterations. In terms of fitness
evaluations the expected runtime is

E[TF] =

⎧
⎪⎨

⎪⎩

O(n2), if βλ > 2,

O(n2(log(uλ) + 1)), if βλ = 2,

O(n2u2−βλ

λ), if βλ ∈ (1, 2).

123

456 Algorithmica (2024) 86:442–484

Proof The probability that the heavy-tailed (1 + (λ, λ)) GA improves the fitness in
one iteration is at least the probability that it performs an iteration of the (1+1)EA that
improves the fitness. ByLemma9 the probability that the heavy-tailed (1 + (λ, λ))GA
performs an iteration of the (1 + 1) EA is �(1). The probability that the (1 + 1) EA
increases the fitness in one iteration is at least the probability that it flips the first zero-
bit in the string and does not flip any other bit, which is 1

n (1− 1
n)n−1 ≥ 1

en . Hence, the
probability that the heavy-tailed (1 + (λ, λ)) GA increases the fitness in one iteration
is �(1n).

Therefore, the expectednumber of iterations before theheavy-tailed (1 + (λ, λ))GA
improves the fitness is O(n) iterations. Since there will be no more than n improve-
ments in fitness before we reach the optimum, the expected total runtime of the
heavy-tailed (1 + (λ, λ)) GA on LeadingOnes is at most O(n2) iterations. Since
by Lemma 3 with βλ > 1 the expected cost of one iteration is

E[2λ] =

⎧
⎪⎨

⎪⎩

�(1), if βλ > 2,

�(log(uλ) + 1), if βλ = 2,

�(u2−βλ

λ), if βλ ∈ (1, 2),

byWald’s equation (Lemma5) the expected total runtime in termsof fitness evaluations
is

E[TF] = E[2λ]E[TI] =

⎧
⎪⎨

⎪⎩

O(n2), if βλ > 2,

O(n2(log(uλ) + 1)), if βλ = 2,

O(n2u2−βλ

λ), if βλ ∈ (1, 2).

3.1.3 Minimum Spanning Tree Problem

We proceed with the runtime on the minimum spanning tree problem. Reusing some
of the arguments from [38] and some more from the later work [21], we show that the
expected runtime of the heavy-tailed (1 + (λ, λ)) GA admits the same upper bound
O(m2 log(Wtotal)) as the (1 + 1) EA.

Theorem 11 If βλ > 1, βp > 1, and βc > 1, then the expected runtime of the
heavy-tailed (1 + (λ, λ))GA onminimum spanning tree problem is O(m2 log(Wtotal))

iterations. In terms of fitness evaluations it is

E[TF] =

⎧
⎪⎨

⎪⎩

O(m2 log(Wtotal)), if βλ > 2,

O(m2 log(Wtotal)(log(uλ) + 1)), if βλ = 2,

O(m2u2−βλ

λ log(Wtotal)), if βλ ∈ (1, 2).

Proof In [38] it was shown that starting with a random subgraph of G, the (1 +
1) EA finds a spanning tree graph in O(m log(n)) iterations. We now briefly adjust
these arguments to the heavy-tailed (1 + (λ, λ)) GA. If G ′ is disconnected, then the

123

Algorithmica (2024) 86:442–484 457

probability to reduce the number of connected components is at most the probability
that the heavy-tailed (1 + (λ, λ))GAperforms an iteration of the (1+1)EAmultiplied
by the probability that an iteration of the (1+1) EA adds an edge which connects two
connected components (and does not add or remove other edges from the subgraph
G ′). The latter probability is at least cc(G

′)−1
m (1− 1

m)m−1 ≥ cc(G ′)−1
em , since there are at

least cc(G ′) − 1 edges which we can add to connect a pair of connected components.
Therefore, by the fitness level argument we have that the expected number of iterations
before the heavy-tailed (1 + (λ, λ)) GA finds a connected graph is O(m log(n)).

If the algorithm has found a connected graph, with probability �(
|E ′|−(n−1)

m) the
heavy-tailed (1 + (λ, λ)) GA performs an iteration of the (1 + 1) EA that removes
an edge participating in a cycle (since there are at least (|E ′| − (n − 1)) such edges).
Therefore, in O(m log(m)) iterations the heavy-tailed (1 + (λ, λ)) GA finds a span-
ning tree (probably not the minimum one). Note that O(m log(m)) = O(m log(n)),
since we do not have loops and parallel edges and thus m ≤ n(n−1)

2 .
Once the heavy-tailed (1 + (λ, λ))GAhas obtained a spanning tree, it cannot accept

any subgraph that is not a spanning tree. Therefore, we can use the multiplicative drift
argument from [21]. Namely, we define a potential function �(G ′) that is equal to the
weight of the current tree minus the weight of the minimum spanning tree. In [21] it
was shown that for every iteration t of (1 + 1) EA, we have

E[�(G ′
t) − �(G ′

t+1) | �(G ′
t) = W] ≥ W

em2 ,

where G ′
t denotes the current graph in the start of iteration t . By Lemma 9 and since

the weight of the current graph cannot decrease in one iteration, for the heavy-tailed
(1 + (λ, λ)) GA we have

E[�(G ′
t) − �(G ′

t+1) | �(G ′
t) = W] ≥ ρW

em2

for some ρ, which is a constant independent of m and W . Since the edge weights
are integers, we have �(G ′

t) ≥ 1 =: smin for all t such that G ′
t is not an optimal

solution. We also have �(G ′
0) ≤ Wtotal by the definition of Wtotal. Therefore, by the

multiplicative drift theorem (Theorem 6) we have that the expected runtime until we
find the optimum starting from a spanning tree is at most

1 + ln(Wtotal)

ρ/(em2)
= O(m2 log(Wtotal)).

Together with the runtime to find a spanning tree, we obtain a total expected runtime
of

E[TI] = O(m log(n)) + O(m log(n)) + O(m2 log(Wtotal)) = O(m2 log(Wtotal))

123

458 Algorithmica (2024) 86:442–484

iterations. By Lemma 3 and by Wald’s equation (Lemma 5) the expected number of
fitness evaluations is therefore

E[TF] = E[2λ]E[TI] =

⎧
⎪⎨

⎪⎩

O(m2 log(Wtotal)), if βλ > 2,

O(m2 log(Wtotal)(log(uλ) + 1)), if βλ = 2,

O(m2u2−βλ

λ log(Wtotal)), if βλ ∈ (1, 2).

3.1.4 Approximations for the Partition Problem

We finally regard the partition problem. We use similar arguments as in [46]
(slightly modified to exploit multiplicative drift analysis) to show that the heavy-tailed
(1 + (λ, λ)) GA also finds a (43 + ε) approximation in linear time. For 4

3 approxima-
tions we improve the O(n2) runtime result of [46] and show that both the (1+ 1) EA
and the heavy-tailed (1 + (λ, λ)) GA succeed in O(n log(w)) fitness evaluations.

Theorem 12 If βλ > 2, βp > 1, and βc > 1, then the heavy-tailed (1 + (λ, λ)) GA
finds a (43 +ε) approximation to the partition problem in an expected number of O(n)

iterations. The expected number of fitness evaluations is

E[TF] =

⎧
⎪⎨

⎪⎩

O(n), if βλ > 2,

O(n(log(uλ) + 1)), if βλ = 2,

O(nu2−βλ

λ), if βλ ∈ (1, 2).

The heavy-tailed (1 + (λ, λ)) GA and the (1 + 1) EA also find a 4
3 approximation

in an expected number of O(n log(w)) iterations. The expected number of fitness
evaluations for the heavy-tailed (1 + (λ, λ)) GA is

E[TF] =

⎧
⎪⎨

⎪⎩

O(n log(w)), if βλ > 2,

O(n log(w)(log(uλ) + 1)), if βλ = 2,

O(nu2−βλ

λ log(w)), if βλ ∈ (1, 2).

Proof We first recall the definition of a critical object from [46]. Let
 ≥ w
2 be the

fitness of the optimal solution. Let i1 < i2 < · · · < ik be the indices of the objects in
the heavier bin. Then we call the object r in the heavier bin the critical one if it is the
object with the smallest index such that

∑

j :i j≤r

wi j >
.

In other words, the critical object is the object in the heavier bin such that the total
weight of all previous (non-lighter) objects in that bin is not greater than
, but the
total weight of all previous objects together with the weight of this object is greater

123

Algorithmica (2024) 86:442–484 459

The heavier bin: wi1 ≥ · · · ≥ wij−1 ≥ wr ≥ wij+1 ≥ . . . wik

≤ �

> �

Light objects

Critical object

Fig. 2 Illustration of the definition of the critical object

than
. We call the weight of the critical object the critical weight. We also call the
objects in the heavier bin which have index at least r the light objects. This notation
is illustrated in Fig. 2.

We now show that at some moment the critical weight becomes at most w
3 and does

not exceed this value in the future. For this we consider two cases.
Case 1: w2 > w

3 . Note that in this case we also have w1 > w
3 , since w1 ≥ w2 and

the weight of all other objects is w − w1 − w2 < w
3 . If the two heaviest objects are

in the same bin, then the weight of this (heavier) bin is at least 2w
3 . In any partition

in which these two objects are separated the weight of the heavier bin is at most
max{w − w1, w − w2} < 2w

3 , therefore if the algorithm generates such a partition it
would replace a partition in which the two heaviest objects are in the same bin. For
the same reason, once we have a partition with the two heaviest objects in different
bins, we cannot accept a partition in which they are in the same bin.

The probability of separating the two heaviest objects into two different bins is at
least the probability that the heavy-tailed (1 + (λ, λ)) GA performs an iteration of the
(1 + 1) EA (which by Lemma 9 is �(1)) multiplied by the probability that in this
iteration we move one of these two objects into a different bin and do not move the
second object. This is at least

�(1) · 2
n

(

1 − 1

n

)

= �

(
1

n

)

.

Consequently, in an expected number of O(n) iterations the two heaviest objects will
be separated into different bins.

Note that the weight of the heaviest object cannot be greater than the weight of the
heavier bin (even in the optimal solution), hence we have w2 ≤ w1 ≤
. Therefore,
when the two heaviest objects are separated into different bins neither of them can be
the critical one. Hence, the critical weight is now at most w3 < w

3 .
Case 2: w2 ≤ w

3 . Since the heaviest object can never be the critical one, the critical
weight is at most w2 ≤ w

3 .
Once the critical weight is at most w

3 , we define a potential function

�(xt) = max
{
f (xt) −
 − w

6 , 0
}
,

where xt is the current individual of the heavy-tailed (1 + (λ, λ))GA at the beginning
of iteration t . Note that this potential function does not increase due to the elitist
selection of the (1 + (λ, λ)) GA.

123

460 Algorithmica (2024) 86:442–484

We now show that as long as �(xt) > 0, any iteration which moves any light
object to the lighter bin and does not move other objects reduces the fitness (and the
potential). Recall that the weight of each light object is at most w

3 . Then the weight
of the bin which was heavier before the move is reduced by the weight of the moved
object. The weight of the other bin becomes at most

w − f (xt) + w

3
<
 − w

6
+ w

3
≤
 + w

6
.

Therefore, the weight of both bins becomes smaller than the weight of the bin which
was heavier before the move, hence such a partition is accepted by the algorithm.

Now we estimate the expected decrease of the potential in one iteration. Recall
that by Lemma 9 the probability that the heavy-tailed (1 + (λ, λ)) GA performs an
iteration of the (1+ 1) EA is at least some ρ = �(1). The probability that in such an
iteration we move only one particular object is 1

n (1 − 1
n)n−1 ≥ 1

en . Hence we have
two options.

• If there is at least one light object with weight at least �(xt), then moving it we
decrease the potential to zero, since the wight of the heavier bin becomes not
greater than
 + w

6 and the weight of the lighter bin also cannot become greater
than
 + w

6 as it was shown earlier. Hence, we have

E
[
�(xt) − �(xt+1) | �(xt) = s

] ≥ sρ

en
.

• Otherwise, the move of any light object decreases the potential by the weight of
the moved object, since the heavy bin will remain the heavier one after such a
move. The total weight of the light objects is at least f (xt) −
 ≥ �(xt). Let L be
the set of indices of the light objects. Then we have

E
[
�(xt) − �(xt+1) | �(xt) = s

] ≥ ρ
∑

i∈L

wi

en
≥ sρ

en
.

Now we are in position to use the multiplicative drift theorem (Theorem 6). Note
that the maximum value of potential function is w

2 and its minimum positive value is
1
6 (since f (xt) and
 are integer values and w

6 is divided by 1
6). Therefore, denoting

TI as the smallest t such that �(xt) = 0, we have

E[TI] ≤ 1 + ln (3w)

ρ/(en)
= �(n log(w)).

When �(xt) = 0, we have

f (xt) ≤
 + w
6 ≤
 +

3 = 4
3
,

which means that xt is a 4
3 approximation of the optimal solution.

123

Algorithmica (2024) 86:442–484 461

To show that we obtain a (43 + ε) approximation in expected linear time for all
constants ε > 0, we use a modified potential function �ε, which is defined by

�ε(xt) =
{
0, if �(xt) ≤ εw

2 ,

�(xt), otherwise.

For this potential function the drift is at least as large as for�, but its smallest non-zero
value is εw

2 . Hence, by the multiplicative drift theorem (Theorem 6) the expectation
of the first time TI (ε) when �ε turns to zero is at most

E[TI (ε)] ≤ 1 + ln
(

w
6 /εw

2

)

ρ/(en)
= O(n).

When �(xt) = 0, we have

f (xt) ≤
 + w

6
+ εw

2
≤
 +

3
+ ε
 =

(
4

3
+ ε

)

,

therefore xt is a (43 + ε) approximation.
By Lemma 3 and by Wald’s equation (Lemma 5) we also have the following esti-

mates on the runtimes TF and TF (ε) in terms of fitness evaluations.

E[TF] = E[2λ] · E[TI] =

⎧
⎪⎨

⎪⎩

O(n log(w)), if βλ > 2,

O(n log(w)(log(uλ) + 1)), if βλ = 2,

O(nu2−βλ

λ log(w)), if βλ ∈ (1, 2),

E[TF (ε)] = E[2λ] · E[TI (ε)] =

⎧
⎪⎨

⎪⎩

O(n), if βλ > 2,

O(n(log(uλ) + 1)), if βλ = 2,

O(nu2−βλ

λ), if βλ ∈ (1, 2).

3.2 JUMP Functions

In this subsection we show that the heavy-tailed (1 + (λ, λ)) GA performs well on
jump functions, hence there is no need for the informal argumentation [3] to choose
mutation rate p and crossover bias c identical. Themain result is the following theorem,
which estimates the expected runtime until we leave the local optimum of Jumpk .

Theorem 13 Let k ∈ [2.. n4], u p ≥ √
2k, and uc ≥ √

2k. Assume that we use the
heavy-tailed (1 + (λ, λ)) GA (Algorithm 1) to optimize Jumpk , starting already in the
local optimum. Then the expected number of fitness evaluations until the optimum is
found is shown in Table 1, where ppc denotes the probability that both p and c are in

[
√

k
n ,

√
2k
n]. Table 2 shows estimates for ppc.

123

462 Algorithmica (2024) 86:442–484

Table 1 Influence of the hyperparameters βλ, uλ on the expected number E[TF] of fitness evaluations the
heavy-tailed (1 + (λ, λ)) GA starting in the local optimum takes to optimize Jumpk

E[TF]ppc
if uλ <

(n
k

)k/2 if uλ ≥ (n
k

)k/2

βλ ∈ [0, 1) eO(k) 1
uλ

(n
k

)k uλe
O(k)

βλ = 1 uλe
O(k)

1+ln

(

uλ

(
n
k

)k/2
)

βλ ∈ (1, 2) eO(k)u2−βλ
λ

(n
k

)(βλ−1)k/2

βλ = 2 eO(k) ln(uλ)+1
uλ

(n
k

)k eO(k) ln(uλ)
(n
k

)k/2

βλ ∈ (2, 3) eO(k) 1

u
3−βλ
λ

(n
k

)k eO(k)
(n
k
)(βλ−1)k/2

βλ = 3 eO(k) 1
ln(uλ+1)

(n
k

)k eO(k) (n
k

)k
/ ln

((n
k

)k
)

βλ > 3 eO(k) (n
k

)k

Since all runtime bounds are of type E[TF] = F(βλ, uλ)/ppc , where ppc = Pr[p ∈ [
√

k
n ,

√
2k
n] ∧ c ∈

[
√

k
n ,

√
2k
n]] and F(βλ, uλ) is some function of βλ and uλ, to ease reading we only state F(βλ, uλ) =

E[TF]ppc and show the influence of the hyperparameters on ppc in Table 2. Asymptotical notation is used
for n → +∞. The bold cell shows the result for the hyperparameters suggested in Corollary 16

Table 2 Influence of the hyperparameters βp and βc on ppc = Pr[p ∈ [
√

k
n ,

√
2k
n] ∧ c ∈ [

√
k
n ,

√
2k
n]]

when both u p and uc are at least
√
2k

0 ≤ βp < 1 βp = 1 βp > 1

βc < 1 �

(

k(1−(βp+βc)/2)

u
1−βp
p u1−βc

c

)

�

(
k(1−βc)/2

u1−βc
c log(u p)

)

�

(
k(1−(βp+βc)/2)

u1−βc
c

)

βc = 1 �

(

k(1−βp)/2

u
1−βp
p log(uc)

)

�
(

1
log(u p) log(uc)

)
�

(
k(1−βp)/2

log(uc)

)

βc > 1 �

(

k(1−(βp+βc)/2)

u
1−βp
p

)

�
(
k(1−βc)/2

log(u p)

)
�
(
k(1−(βp+βc)/2)

)

Asymptotical notation is used for n → +∞. The bold cell shows the result for the hyperparameters
suggested in Corollary 16

The proof of Theorem 13 follows from similar arguments as in [3, Theorem 6], the
main differences being highlighted in the following two lemmas.

Lemma 14 Let k ≤ n
4 . If u p ≥ √

2k and uc ≥ √
2k, then the probability ppc =

Pr[p ∈ [
√

k
n ,

√
2k
n] ∧ c ∈ [

√
k
n ,

√
2k
n]] is as shown in Table 2.

Proof Since we choose p and c independently, we have

ppc = Pr

[

p ∈
[√

k

n
,

√
2k

n

]]

· Pr
[

c ∈
[√

k

n
,

√
2k

n

]]

.

123

Algorithmica (2024) 86:442–484 463

By the definition of the power-law distribution and by Lemmas 1 and 2, we have

Pr

[

p ∈
[√

k

n
,

√
2k

n

]]

= Cβp,u p

�√2k�∑

i=�√k�
i−βp

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�

((√
k

u p

)1−βp
)

, if 0 ≤ βp < 1

�
(

1
log(u p)

)
, if βp = 1

�
(
k

1−βp
2

)
, if βp > 1.

We can estimate Pr[c ∈ [
√

k
n ,

√
2k
n]] in the same manner, which gives us the final

estimate of ppc shown in Table 2.

Now we proceed with an estimate of the probability to find the optimum in one
iteration after choosing p and c.

Lemma 15 Let k ∈ [2.. n4]. Let λ, p and c be already chosen in an iteration of the

heavy-tailed (1 + (λ, λ)) GA and let p, c ∈ [
√

k
n ,

√
2k
n]. If the current individual

x of the heavy-tailed (1 + (λ, λ)) GA is in the local optimum of Jumpk , then the
probability that the algorithm generates the global optimum in one iteration is at least
e−�(k) min{1, (kn)kλ2}.
Proof The probability Ppc(λ) that we find the optimum in one iteration is the proba-
bility that we have a successful mutation phase and a successful crossover phase in the
same iteration. If we denote the probability of a successful mutation phase by pM and
the probability of a successful crossover phase by pC , then we have Ppc(λ) = pM pC .
Then with q
 being some constant which denotes the probability that the number
 of
bits we flip in the mutation phase is in [pn, 2pn], by Lemmas 3.1 and 3.2 in [6] we
have

Ppc(λ) = pM pC = q

2
min

{

1, λ
(p

2

)k
}

· 1
2
min

{
1, λck(1 − c)2pn−k

}

≥ q

4
min

⎧
⎨

⎩
1, λ

(
1

2

√
k

n

)k
⎫
⎬

⎭
min

⎧
⎨

⎩
1, λ

√
k

n

k (

1 −
√
2k

n

)2
√
2kn

⎫
⎬

⎭

= q

4
min

{

1, λ2−k

√
k

n

k}

min

{

1, λe−�(k)

√
k

n

k}

If λ ≥
√

n
k

k
, then we have

Ppc(λ) ≥ q

4
2−ke−�(k) = e−�(k).

123

464 Algorithmica (2024) 86:442–484

Otherwise, if λ <
√

n
k

k
, then both minima are equal to their second argument. Thus,

we have

Ppc(λ) ≥ q

4
λ22−ke−�(k)

(
k

n

)k

= e−�(k)
(
k

n

)k

λ2.

Bringing the two cases together, we finally obtain

Ppc(λ) ≥ e−�(k) min

{

1,

(
k

n

)k

λ2

}

.

Now we are in position to prove Theorem 13.

Proof of Theorem 13 Let the current individual x of the heavy-tailed (1 + (λ, λ)) GA
be already in the local optimum.Let P be the probability of event F when the algorithm
finds optimum in one iteration. By the law of total probability this probability is at
least

P ≥ p(F |pc) · ppc,

where p(F |pc) denotes Pr[F | p, c ∈ [
√

k
n ,

√
2k
n]] and ppc denotes Pr[p, c ∈

[
√

k
n ,

√
2k
n]].

The number TI of iterations until we jump to the optimum follows a geometric
distribution Geom(P) with success probability P . Therefore,

E[TI] = 1

P
≤ 1

p(F |pc) ppc
.

Since in each iteration the heavy-tailed (1 + (λ, λ))GAperforms 2λ fitness evalua-
tions (with λ chosen from the power-law distribution), byWald’s equation (Lemma 5)
the expected number E[TF] of fitness evaluations the algorithm makes before it finds
the optimum is

E[TF] = E[TI]E[2λ] ≤ 2E[λ]
p(F |pc) · ppc .

In the remainderwe showhow E[λ], p(F |pc) and ppc dependon thehyperparameters
of the algorithm.

123

Algorithmica (2024) 86:442–484 465

First we note that ppc was estimated in Lemma 14. Also, by Lemma 3 the expected
value of λ is

E[λ] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�(uλ), if βλ < 1,

�(uλ

log(uλ)+1), if βλ = 1,

�(u2−βλ

λ), if βλ ∈ (1, 2),

�(log(uλ) + 1), if βλ = 2,

�(1), if βλ > 2.

Finally, we compute the conditional probability of F via the law of total probability.

p(F |pc) =
uλ∑

i=1

Pr[λ = i]Ppc(i),

where Ppc(i) is as defined in Lemma 15, in which it was shown that Ppc(i) ≥
e−�(k) min{1, (kn)ki2}. We consider two cases depending on the value of uλ.

Case 1: when uλ ≤ (nk)k/2. In this case we have Ppc(i) ≥ e−�(k)(kn)ki2, hence

p(F |pc) ≥
uλ∑

i=1

Cβλ,uλ i
−βλe−�(k)

(
k

n

)k

i2

= e−�(k)
(
k

n

)k

Cβλ,uλ

uλ∑

i=1

i2−βλ

= e−�(k)
(
k

n

)k

E[λ2].

By Lemma 4 we estimate E[λ2] and obtain

p(F |pc) ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e−�(k)
(k
n

)k
u2λ, if βλ < 1,

e−�(k)
(k
n

)k u2λ
ln(uλ)+1 , if βλ = 1,

e−�(k)
(k
n

)k
u3−βλ

λ , if βλ ∈ (1, 3),

e−�(k)
(k
n

)k
(ln(uλ) + 1), if βλ = 3,

e−�(k)
(k
n

)k
, if βλ > 3.

Case 2: when uλ > (nk)k/2. In this case we have Ppc(i) ≥ e−�(k)(kn)ki2, when
i ≤ (nk)k/2 and we have Ppc(i) ≥ e−�(k), when i > (nk)k/2. Therefore, we have

123

466 Algorithmica (2024) 86:442–484

p(F |s) ≥
�(n

k)
k/2�∑

i=1

Cβλ,uλ i
−βλ

(
k

n

)k

i2e−�(k)

+
uλ∑

i=�(n
k)

k/2�+1

Cβλ,uλ i
−βλe−�(k)

= Cβλ,uλe
−�(k)

⎛

⎜
⎝

(
k

n

)k �(n
k)

k/2�∑

i=1

i2−βλ +
uλ∑

i=�(n
k)

k/2�+1

i−βλ

⎞

⎟
⎠ .

Estimating the sums via Lemma 1, we obtain

p(F |pc) ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e−�(k), if βλ < 1,

e−�(k)
(
1 + ln

(
uλ

(k
n

)k/2)) 1
ln(u)+1 , if βλ = 1,

e−�(k)
(k
n

)(β−1)k/2
, if βλ ∈ (1, 3),

e−�(k)
(k
n

)k
ln
((n

k

)k
)

, if βλ = 3,

e−�(k)
(k
n

)k
, if βλ > 3,

Gathering the estimates for the two cases and the estimates of E[λ] and ppc together,
we obtain the runtimes listed in Table 1.

3.3 Recommended Hyperparameters

In this subsection we subsume the results of our runtime analysis to showmost prefer-
able parameters of the power-law distributions for the practical use. We point out the
runtime with such parameters on OneMax and Jumpk in Corollary 16. We then also
prove a lower bound on the runtime of the (1 + (λ, λ)) GA with static parameters to
show that when k is constant (that is, the most interesting case, since only then we have
a polynomial runtime), then the performance of the heavy-tailed (1 + (λ, λ)) GA is
asymptotically better than the best performance we can obtain with the static param-
eters.

Corollary 16 Let βλ = 2+ ελ and βp = 1+ εp and βc = 1+ εc, where ελ, εp, εc > 0
are some constants. Let also uλ be at least 2n and u p = uc = √

n. Then the expected
runtime of the heavy-tailed (1 + (λ, λ)) GA is O(n log(n)) fitness evaluations on
OneMax and eO(k)(nk)(1+ελ)k/2 fitness evaluations on Jumpk , k ∈ [2.. n4].

This corollary follows from Theorems 8 and 13. We only note that for the runtime
on Jumpk the same arguments as in Theorem 8 show us that the runtime until we reach
the local optimum is at most O(n log(n)), which is small compared to the runtime
until we reach the global optimum. Also we note that when βp and βc are both greater

than one and u p = uc = √
n ≥ √

2k, by Lemma 14 we have ppc = �(k− εp+εc
2),

123

Algorithmica (2024) 86:442–484 467

which is implicitly hidden in the eO(k) factor of the runtime on Jumpk . We also note
that uλ = 2n guarantees that uλ > (nk)k/2, which yields the runtimes shown in the
right column of Table 1.

Corollary 16 shows that when we have (almost) unbounded distributions and use
power-law exponents slightly greater than one for all parameters except the population
size, for which we use a power-law exponent slightly greater than two, we have a good
performance both on easy monotone functions, which give us a clear signal towards
the optimum, and on the much harder jump functions, without any knowledge of the
jump size.

We now also show that the proposed choice of the hyper-parameters gives us a
better performance than any static parameters choice on Jumpk for constant k. As we
have already noted in the introduction, only for such values of k different variants of
the (1 + (λ, λ))GA andmany other classic EAs have a polynomial runtime, hence this
case is the most interesting to consider. We prove the following theorem which holds
for any static parameters choice of the (1 + (λ, λ)) GA, even when we use different
population sizes λM and λC in the mutation and in the crossover phases respectively.

Theorem 17 Let n be sufficiently large. Then the expected runtimeof the (1 + (λ, λ))GA
with any static parameters p, c, λM and λC on Jumpk with k ≤ n

512 is at least
B := 1

91
√
ln(n/k)

(2nk)(k+1)/2.

Before we prove Theorem 17, we give a short sketch of the proof to ease the
further reading. First we show that with high probability the (1 + (λ, λ)) GA with
static parameters starts at a point with approximately n

2 one-bits. In the second step
we handle a wide range of parameter settings and show that for them we cannot obtain
a runtime better than B by showing that the probability to find the optimum in one
iteration is at most 1/B. For the remaining settings we then show that we are not likely
to observe an �(n) progress in one iteration, hence with high probability there is an
iteration when we have a fitness which is n

2 + �(n) and at the same time which is
n − k − �(n). From that point on the probability that we have a progress which is
�(k log(nk)) is very unlikely to happenhencewith high probability the (1 + (λ, λ))GA
does not reach the local optima of Jumpk (nor the global one) in �(n

k log(nk)
) iterations

which is equal to �(
(λM+λC)n
k log(nk)

) fitness evaluations by the definition of the algorithm.

For the narrowed range of parameters this yields the lower bound.
To transform these informal arguments into a rigorous proofweuse several auxiliary

tools. The first of them is Lemma 14 from [29], which we formulate as follows.2

Lemma 18 (Lemma 14 in [29]) Let x be a bit string of length n with exactly m one-
bits in it. Let y be an offspring of x obtained by flipping each bit independently with
probability r

n , where r ≤ n
2 . Let also m′ be a random variable denoting the number

of one-bits in y. Then for any
 ≥ 0 we have

Pr
[
m′ − m ≥ (n − 2m)

r

n
+

]
≤ exp

(−
2

2(1 − r/n)(r +
/3)

)

.

2 Note that in [29] the authors prove upper bounds on both getting a too high and a too low number of
one-bits after applying a standard bit mutation. Since we only use the first one, we do not mention the
second bound here.

123

468 Algorithmica (2024) 86:442–484

We also use the following lemma, which bounds the probability to make a jump to
a certain point.

Lemma 19 If we are in distance d ≤ n
2 from the unique optimum of any function, then

the probability P that the (1 + (λ, λ)) GA with mutation rate p, crossover bias c and
population sizes for the mutation and crossover phases λM and λC respectively finds
the optimum in one iteration is at most

P ≤ min
{
1, λM pd(1 − p)n−d + λMλC (pc)d(1 − pc)n−d

}

≤ min

{

1, 2λMλC

(
d

2n

)d
}

.

A very similar, but less general result has been proven in [6] (Theorem 16).

Proof. Without loss of generality we assume that the unique optimum is the all-
ones bit string. Hence, the current individual has exactly d zero-bits. Let p
 be the
probability that we choose
 as the number of bits to flip at the start of the iteration of
the (1 + (λ, λ)) GA. Let also pm(
) be the probability (conditional on the chosen
)
that the mutation winner has all zero-bits flipped to ones. Note that this is necessary
for crossover to be able to create the global optimum. Let pc(
) be the probability that
conditional on the chosen
 and on that we flip all d zero-bits in the mutation winner,
we then flip
 − d zeros in the mutation winner in at least one crossover offspring.
Then by the law of total probability we have

P =
n∑

=0

p
 pm(
)pc(
). (1)

For
 < d the probability that we flip all d zero-bits in the mutation winner is zero.
For
 = d we flip all d zero-bits in one particular mutation offspring with probability
qm(
) = (n

d

)−1. Since we create all λM offspring independently, the probability that
we flip all d zero-bits in at least one offspring is

pm(
) = 1 − (1 − qm(
))λM ≤ λMqm(
) = λM

(
n

d

)−1

,

where we used Bernoulli inequality. Since when we create such an offspring in the
mutation phase, we already find the optimum, we assume that we do not need to
perform the crossover and therefore, pc(
) = 1 in this case.

When
 > d, the probability to flip all d zero-bits in one offspring is

qm(
) =
(
n − d

 − d

)(
n

)−1

.

123

Algorithmica (2024) 86:442–484 469

The probability to do so in one of λM independently created offspring is thus

pm = 1 − (1 − qm(
))λM ≤ λMqm(
) = λM

(
n − d

 − d

)(
n

)−1

.

The probability that in one crossover offspring we take from the current individual all

−d bits which are zeros in themutation winner and take from themutation winner all
d bits which are zeros in the current individual is qc(
) = cd(1−c)
−d . Consequently,
the probability that we do this in at least one of λC independently created individuals
is

pc(
) = 1 − (1 − qc(
))
λC ≤ λCqc(
) = λCc

d(1 − c)
−d .

Recall that
 is chosen from the binomial distribution Bin(n, p), thus we have
p
 = (n

)
p
(1 − p)n−
. Putting all the estimates above into (1) we obtain

P = pd pm(d) +
n∑

=d+1

p
 pm(
)pc(
)

≤
(
n

d

)

pd(1 − p)n−dλM

(
n

d

)−1

+
n∑

=d+1

(
n

)

p
(1 − p)n−
λM

(
n − d

 − d

)(
n

)−1

λCc
d(1 − c)
−d

= λM pd(1 − p)n−d + λMλC (1 − p)n−d(pc)d
n∑

=d+1

(
n − d

 − d

)(
p(1 − c)

1 − p

)
−d

= λM pd(1 − p)n−d + λMλC (1 − p)n−d(pc)d
n−d∑

i=1

(
n − d

i

)(
p(1 − c)

1 − p

)i

≤ λM pd(1 − p)n−d + λMλC (1 − p)n−d(pc)d
(
p(1 − c)

1 − p
+ 1

)n−d

= λM pd(1 − p)n−d + λMλC (1 − p)n−d(pc)d
(
1 − pc

1 − p

)n−d

= λM pd(1 − p)n−d + λMλC (1 − pc)n−d(pc)d .

We now consider function fd(x) = xd(1 − x)n−d on interval x ∈ [0, 1]. To find
its maximum, we consider its value in the ends of the interval (which is zero in both
ends) and in the roots of its derivative, which is

f ′
d(x) = dxd−1(1 − x)n−d − (n − d)xd(1 − x)n−d−1

= xd−1(1 − x)n−d−1(d − nx).

123

470 Algorithmica (2024) 86:442–484

Hence, the only root of the derivative is in x = d
n . Since fd(x) is a smooth function,

it reaches its maximum there, which is,

fd

(
d

n

)

=
(
d

n

)d (

1 − d

n

)n−d

.

Since we assume that d ≤ n
2 , we conclude that for all x ∈ [0, 1] we have

fd(x) ≤
(
d

n

)d (

1 − d

n

)n−d

=
(
d

n

)d
((

1 − d

n

) n
d −1

)d

≤
(

d

2n

)d

.

Hence we have both pd(1− p)n−d ≤ (d
2n)d and (1− pc)n−d(pc)d ≤ (d

2n)d , from
which we conclude

P ≤ λM pd(1 − p)n−d + λMλC (1 − pc)n−d(pc)d

≤ (λM + λMλC)

(
d

2n

)d

≤ 2λMλC

(
d

2n

)d

.

Since P cannot exceed one, we also have

P ≤ min
{
1, λM pd(1 − p)n−d + λMλC (1 − pc)n−d(pc)d

}

≤ min

{

1, 2λMλC

(
d

2n

)d
}

.

An important corollary from Lemma 19 is the following lower bound for the case
when we use too small population sizes.

Corollary 20 Consider the run of the (1 + (λ, λ))GAwith static parameters on Jumpk
with k < n

2 . Let the population sizes which are used for the mutation and crossover
phases be λM and λC respectively. Let also the current individual x be a point outside
the fitness valley, but with at least n

2 one-bits. Then if λMλC < ln(nk)(2nk)k−1, then the

expected runtime until we find the global optimum is at least 1
2
√
ln(n/k)

(2nk)
k+1
2 .

Proof Since the algorithm has already found the point outside the fitness valley, it will
never accept a point inside it as the current individual x . Hence, unless we find the
optimum, the distance to it from the current individual is at least k and at most n

2 .
We now consider the term (d

2n)d , which is used in the bound given in Lemma 19,
as a function of d and maximize it for d ∈ [k, n

2]. For this purpose we consider its
values in the ends of the interval and in the zeros of its derivative, which is,

((
d

2n

)d
)′

=
(

d

2n

)d (

d ln

(
d

2n

))′
=
(

d

2n

)d (

ln

(
d

2n

)

+ 1

)

.

123

Algorithmica (2024) 86:442–484 471

Hence, the derivative is equal to zero only when d
2n = e−1, that is, when d = 2n

e .
Since we only consider d which are at most n

2 , the derivative does not have roots in
this range. We also note that for d < 2n

e the derivative is negative, hence the maximal
value of (d

2n)d is reached when d = k. Therefore, by Lemma 19 we have

P ≤ min

{

1, 2λMλC

(
d

2n

)d
}

≤ min

{

1, 2λMλC

(
k

2n

)k
}

.

(2)

Since λMλC ≤ ln(nk)(2nk)k−1 and since for all x ≥ 2 we have ln(x) < x
2 , we

compute

2λMλC

(
k

2n

)k

≤ 2 ln
(n

k

)(2n

k

)k−1 (k

2n

)k

= ln
(n

k

)
· k
n

≤ 1

2
.

Therefore, the minimum in (2) is equal to the second argument.
Thus, the runtime TI (in terms of iterations) is dominated by the geometric distri-

bution with parameter 2λMλC
(k
2n

)k ≤ 1
2 . This implies that the expected number of

unsuccessful iterations is E[TI] − 1 ≥ E[TI]
2 . Since in each unsuccessful iteration we

have exactly λM + λC fitness evaluation, we have

E[TF] = (λM + λC)
E[TI]
2

≥ λM + λC

4λMλC
(k
2n

)k =
(

1

λM
+ 1

λC

)

· 1
4

(
2n

k

)k

.

By Lemma 7 we obtain

E[TF] ≥
(

1

λM
+ 1

λC

)

· 1
4

(
2n

k

)k

≥ 1

2

√
1

λMλC

(
2n

k

)k

≥ 1

2

√
√
√
√ 1

ln
(n
k

)

(
k

2n

)k−1

·
(
2n

k

)k

= 1

2
√
ln
(n
k

)

(
2n

k

) k+1
2

.

In the following lemma we also show that too large population sizes also yield a
too large expected runtime.

Lemma 21 Consider the run of the (1 + (λ, λ)) GA with static parameters on Jumpk
with k < n

2 . Let the population sizes which are used for the mutation and crossover
phases be λM and λC respectively. Let also the current individual x be a point outside
the fitness valley, but with at least n

2 one-bits. Then if λMλC > 1
ln(nk)

(2nk)k+1, then the

expected runtime until we find the global optimum is at least 1
16

√
ln(n/k)

(2nk)
k+1
2 .

123

472 Algorithmica (2024) 86:442–484

Proof By Lemma 7 we have that the cost of one iteration is

λM + λC ≥ 2
√

λMλC >
2

√
ln
(n
k

)

(
2n

k

) k+1
2

,

hence to prove this lemma it is enough to consider only the first iteration of the

algorithm, which already takes at least 2√
ln(n/k)

(2nk)
k+1
2 fitness evaluations plus one

evaluation for the initial individual.
We first show that if λM ≥ 2

n
2 − 2, then we are not likely to sample the optimum

before making 2
n
2 − 1 fitness evaluations. For this we note that the initial individual

and all mutation offspring in the first iteration are sampled independently of the fitness
function, thus they are random points in the search space. Therefore, for each of these
individuals the probability to be the optimum is 2−n . Consequently, by the unionbound,
when we create the initial individual and 2

n
2 − 2 mutation offspring, the probability

that at least one of them is the optimum is at most

2
n
2 − 1

2n
= 2− n

2 (1 − 2−n) ≤ 2−(n
2+1).

Hence, with probability at least (1−2−(n
2+1))we have to make 2

n
2 −1 or more fitness

evaluations, which implies that

E[TF] ≥
(
1 − 2−(n

2+1)
) (

2
n
2 − 1

)
= 2

n
2 − 3

2
+ 2−(n

2+1) ≥ 2
n
2−1,

if n ≥ 3. Without proof we note that 1
16

√
ln(n/k)

(2nk)
k+1
2 is increasing in k for k ≤ n

2 .

Hence, for k ≤ n
2 we have that

1

16
√
ln(n/k)

(
2n

k

) k+1
2 ≤ 1

16
√
ln(2)

· 4
(
n
4+ 1

2

)

≤ 2
n
2−2 ≤ E[TF].

In the rest of the proof we assume that λM < 2
n
2 − 2. Since the mutation winner

is chosen based on the fitness, we cannot use the same argument with random points
in the search space for the crossover phase. However, we can consider an artificial
process, which in parallel runs the crossover phase for each mutation offspring seen
as winner. If none of these parallel processes has generated the optimum within m
crossover offspring samples, then also the true process has not done so within a total
of 1+λM +m fitness evaluations. We note that in the parallel crossover phases, since
no selection has been made, again all offspring are uniformly distributed in {0, 1}n .

Let us fixm = 2
n
2−1. By the union bound, the probability that one of 1+λM +mλM

individuals generated by the artificial process is the optimum is at most

1 + λM + mλM

2n
<

1 +
(
2

n
2 − 2

)
(1 + m)

2n
=

1 +
(
2

n
2 − 2

) (
2

n
2−1 + 1

)

2n

123

Algorithmica (2024) 86:442–484 473

= 1 + 1
2 (2n − 4)

2n
≤ 1

2
.

At the same time, if the original (1 + (λ, λ))GA creates 1+λM +m ≥ m individuals,
it also performs at least m fitness evaluations. Hence, the expected number of fitness
evaluations is at least

E[TF] ≥ m

2
= 2

n
2−2 ≥ 1

16
√
ln(n/k)

(
2n

k

) k+1
2

.

We are now in position to prove Theorem 17.

Proof of Theorem 17 Initialization. Recall that the initial individual is sampled uni-
formly at random, hence the number of one-bits in it follows a binomial distribution
Bin(n, 1

2). By the symmetry argument we have that the number of one-bits X in the
initial individual is at least n

2 with probability at least 1
2 . By Chernoff bounds (see,

e.g., Theorem 1.10.1 in [24]) we also have that the probability that X is greater than
n
2 + n

8 is at most

Pr

[

X ≥
(

1 + 1

4

)
n

2

]

≤ exp

(

−n/2

48

)

= e−�(n).

Hence, with probability at least 1
2 − e−�(n) the initial individual has a number of

one-bits (and hence, the fitness) in [n2 , 5n
8]. We now condition on this event3.

Narrowing the reasonable population sizes. Since we condition on starting in
distance d ≤ n

2 from the optimum of Jumpk , by Corollary 20 and Lemma 21 we
have that if we choose λM and λC such that λMλC ≥ 1

ln(n/k) (
2n
k)k+1 or λMλC ≤

ln(nk)(2nk)k−1, then the expected runtime is at least 1
16

√
ln(n/k)

(2nk)
k+1
2 = 91B

16 . Hence,

in the rest of the proof we assume that ln(nk)(2nk)k−1 < λMλC < 1
ln(n/k) (

2n
k)k+1.

We note that by Lemma 7 this assumption also implies that the cost of one iteration
is

λM + λC ≥ 2
√

λMλC ≥ 2

√

ln
(n

k

)(2n

k

) k−1
2

.

Narrowing the reasonable mutation rate and crossover bias.We now show that
using a too large mutation rate or crossover bias also yields a runtime which is greater

than (2nk)
k+1
2 and therefore greater than B. Conditional on the current individual x

3 Without proof we note that if the initial individual has less than n
2 one-bits, our lower bound would also

hold. However, the proof of this fact would require more complicated arguments, hence in order to increase
the readability of the paper we avoid considering that case.

123

474 Algorithmica (2024) 86:442–484

being in distance d ≤ n
2 from the optimum, by Lemma 19 we have that if pc ≥ 1

2
(and therefore, p ≥ 1

2), then we have

P ≤ λM (1 − p)n/2 + λMλC (1 − pc)n/2

≤ λM

(
1

2

) n
2 + λMλC

(
1

2

) n
2 ≤ 2λMλC

(
1

2

) n
2

.

Therefore, the expected number of fitness evaluations until we find the optimum is at
least

E[TF] ≥ λM + λC

P
≥
(

1

λM
+ 1

λC

)

· 2 n
2−1.

Since we already assume that λMλC ≤ 1
ln(n/k) (

2n
k)k+1, by Lemma 7 we have

1

λM
+ 1

λC
≥ 2

√
1

λMλC
≥ 2

√

ln
(n

k

)(k

2n

) k+1
2

.

Therefore, we have

E[TF] ≥ 2
n
2 ln

(n

k

)(k

2n

) k+1
2 = 2

n
2 ln

(n

k

)(k

2n

)k+1 (2n

k

) k+1
2

.

We note that for k ∈ [1, n
512] the term

(k
2n

)k+1
is decreasing in k (we avoid the

proof of this fact, but note that it trivially follows from considering the derivative).
Consequently, if we assume that k ≤ n

512 , then we have

E[TF] ≥ 2
n
2 ln (512)

(
1

1024

) n
512+1 (2n

k

) k+1
2 = 2

n
2−10(n

512+1) · ln(512)
(
2n

k

) k+1
2

= ln(512)

1024
· 2 123n

256

(
2n

k

) k+1
2 ≥ ln(512)

1024
· 2 246

256

(
2n

k

) k+1
2 ≥ 1

91

(
2n

k

) k+1
2

.

Hence, using pc ≥ 1
2 gives us the expected runtime which is not less than B.

Making a linear progress. For the rest of the proof we assume that we have
population sizes such that λMλC ∈ [ln(nk)(2nk)k−1, 1

ln(n/k) (
2n
k)k+1] and p and c such

that pc ≤ 1
2 . We now show that at some iteration before we have already made at least

(2nk)
k+1
2 fitness evaluations we get a current individual x with fitness in [n2 + n

8 , n
2 + n

4].
For this we show that conditional on f (x) ≥ n

2 we are not likely to increase fitness in
one iteration by at least n

8 in a very long time.
For this purpose we consider a modified iteration of the (1 + (λ, λ)) GA, where in

the crossover phase we create not only λC offspring by crossing the current individual
x with themutationwinner x ′, but we create λM ·λC offspring by performing crossover

123

Algorithmica (2024) 86:442–484 475

between x and each mutation offspring λC times. The best offspring in this modified
iteration cannot be worse than the best offspring in a non-modified iteration. Hence
the probability that we increase the fitness by a least n

8 is at most the probability that
the best offspring of this modified iteration is better than the current individual x by
at least n

8 .
Consider one particular offspring y′ created in this modified iteration. Recall that

its parent was created by first choosing a number
 from the binomial distribution
Bin(n, p) and then flipping
 bits, therefore it is distributed as if we created it by
flipping each bit independently with probability p. Then when we create y′ we take
each flipped bit from its parent with probability c, hence in the resulting offspring
each bit is flipped with probability pc, independently of other bits. Consequently the
distribution of y′ is the same as if we created it via the standard bit mutation with
probability of flipping each bit equal to pc. Note that this argument works only when
we consider one particular individual, since the mutation offspring are dependent on
each other (since they have the same number
 of bits flipped) and therefore, their
offspring are all also dependent.

To estimate the probability that y′ has a fitness by n
8 greater than x , we useLemma18

with r = pcn (note that since pc < 1
2 , we have r ≤ n

2 , thus we satisfy the conditions
of Lemma 18). Since we are conditioning onm = f (x) ≥ n

2 , we have (n−2m) rn ≤ 0.
Hence, with
 = n

8 we obtain

Pr
[
f (y′) − f (x) ≥ n

8

]
≤ Pr

[
f (y′) − f (x) ≥ (n − 2 f (x))

r

n
+

]

≤ exp

(−
2

2(1 − r/n)(r +
/3)

)

≤ exp

(
− (n

8

)2

2
(
pcn + n

24

)

)

≤ exp

(
− (n

8

)2

2
(n
2 + n

24

)

)

≤ exp

(

−n2

64
· 12

13n

)

= e− 3n
208 ≤ e− n

70 .

After n
k modified iterationswe create λMλCn

k offspring, therefore by the union bound
the probability that at least one of them has a fitness by at least n8 greater than the fitness

of its parent is at most λMλCn
k e− n

70 . Since we also have λMλC ≤ 1
ln(n/k) (

2n
k)k+1, this

probability is at most

1

ln
(n
k

)

(
2n

k

)k+1

· n
k

· e− 3n
16 = 1

2 ln
(n
k

)

(
2n

k

)k+2

e− n
70 ≤ 1

2

(
2n

k

)k+2

e− n
70 .

We also note that the term
(2n
k

)k+2
is increasing in k for k ∈ [1, n

512] (we omit the
proof, since it trivially follows from considering its derivative). Therefore, for such k
this probability is at most

1

2
· 1024 n

512+2 · e− n
70 = 219 exp

(
ln(1024)n

512
− n

70

)

≤ 219e−0.0007n = e−�(n).

123

476 Algorithmica (2024) 86:442–484

Let T5n/8 be the first iterationwhenwe have x with at least 5n8 one-bits. If T5n/8 ≤ n
k ,

then with probability 1 − e−�(n) none of the offspring created up to this moment
improved the fitness by more than n

8 . Hence, we have that x has at most 5n
8 + n

8 = 3n
4

one-bits. Otherwise, if T5n/8 > n
k , by this iteration we already make at least

(λM + λC)
n

k
≥ 2

√

ln
(n

k

)(2n

k

) k−1
2 n

k
≥
(
2n

k

) k+1
2

.

fitness evaluations and thus the runtime exceeds (2nk)
k+1
2 . Hence, in the rest of the

proof we assume that at some point we have a current individual x with fitness in
[5n8 , 3n

4].
Slowprogress towards the local optimum.Wenowshow that after reachingfitness

at least 5n8 , the (1 + (λ, λ))GAmakes a progress not greater than δ := 26
3 (k+2) ln(nk)

per iteration.
For this purpose we again consider an iteration of the modified algorithm, which

generates λMλC offspring in each iteration. Recall that each offspring created here
can be considered as one created by standard bit mutation with mutation rate pc. We
apply Lemma 18 to one particular offspring y′ with r = pcn and
 = r

4 + δ and
obtain

Pr
[
f (y′) − f (x) ≥ δ

] = Pr
[
f (y′) − f (x) ≥ (n − 2 f (x))

r

n

+(2 f (x) − n)
r

n
+ δ

]

≤ Pr
[
f (y′) − f (x) ≥ (n − 2 f (x))

r

n
+ r

4
+ δ

]

≤ exp

(

−
(r
4 + δ

)2

2
(
1 − r

n

) (
r + r

12 + δ
3

)

)

≤ exp

(

−
(r
4 + δ

)2

2
(13r
12 + δ

3

)

)

.

For all δ > 0 and r > 0 we bound the argument of the exponent as follows.

(r
4 + δ

)2

2
(13r
12 + δ

3

) = 3

2
·
(13r

4 + δ − 3r
) (r

4 + δ
)

(13r
4 + δ

) = 3

2

(

1 − 3r
13r
4 + δ

)
(r

4
+ δ

)

≥ 3

2

(

1 − 12

13

)

δ = 3

26
δ.

Recall that δ = 26
3 (k + 2) ln(nk). Hence, we have

123

Algorithmica (2024) 86:442–484 477

Pr
[
f (y′) − f (x) ≥ δ

] ≤ exp

(

−
(r
4 + δ

)2

2
(13r
12 + δ

3

)

)

≤ e− 3δ
26

= exp
(
−(k + 2) ln

(n

k

))
=
(n

k

)−(k+2)
.

By the union bound the probability that we create such offspring in n/4−k
δ

iterations
is at most

n
4 − k

δ
λMλC

(n

k

)−(k+2) ≤ n

4δ
· 1

ln
(n
k

)
(n

k

)k+1 (n

k

)−(k+2)

≤ k

4δ
= 3k

26(k + 2) ln
(n
k

) ≤ 3

26
.

Ifwe start at somepoint x with fitness f (x) ≤ 3n
4 andwedonot improvefitness by at

least δ for n/4−k
δ

iterations, thenwe do not reach the local optima or the global optimum
in this number of iterations (note that for the considered values of k ≤ n

32 and δ the

value of n/4−k
δ

is at least one). During these iterations we do at least (λM + λC)
n/4−k

δ

fitness evaluations. Since we have already shown that λM + λC ≥ 2
√
ln(nk)(nk)

k−1
2 ,

this is at least

2

√

ln
(n

k

) (n

k

) k−1
2 ·

n
4 − k

δ
=
(n

k

) k+1
2 · (n − 4k)k

2δn

√

ln
(n

k

)

fitness evaluations. We now estimate the factor (n−4k)k
2δ

√
ln(nk). Since by the theorem

conditions we have k ≤ n
32 , for n large enough we have

(n − 4k)k

2δn

√

ln
(n

k

)
≥ 7nk

16δn

√

ln
(n

k

)

=
21k

√
ln
(n
k

)

416(k + 2) ln
(n
k

) ≥ k

20 · 2k
√
ln
(n
k

) ≥ 1

40
√
ln
(n
k

) .

Summary of the proof. We now bring our arguments together. For the narrowed
range of parameters we have shown that (i) with probability 1

2 − e−�(n) the initial
individual has between n

2 and
5n
8 one-bits, (ii) thenwith probability 1−e−�(n) we reach

a point which has between 5n
8 and 3n

4 one-bits or exceed
(n
k

) k+1
2 fitness evaluations,

(iii) then with probability at least 1 − 3
26 = 23

26 we do not reach the local optima or

the global optimum in 1
40

√
ln(n/k)

(n
k

) k+1
2 fitness evaluations. Hence, with probability

123

478 Algorithmica (2024) 86:442–484

at least
(
1

2
− e−�(n)

)(
1 − e−�(n)

) 23

26
= 23

52
− e−�(n)

we do not find the optimum before making 1
40

√
ln(n/k)

(n
k

) k+1
2 fitness evaluations.

Therefore, the expected runtime TF (in terms of fitness evaluations) is at least

E[TF] ≥
(
23

52
− e−�(n)

)
1

40
√
ln
(n
k

)

(n

k

) k+1
2 ≥ 1

91
√
ln
(n
k

)

(n

k

) k+1
2

.

4 Experiments

As our theoretical analysis gives upper bounds that are precise only up to constant
factors, we now use experiments to obtain a better understanding of how the heavy-
tailed (1 + (λ, λ)) GA performs on concrete problem sizes. We conducted a series of
experiments on OneMax and Jump functions with jump sizes k ∈ [2..6].

Since our theory-based recommendations forβp andβc are very similar, the analysis
on the jump functions treats the corresponding distributions very symmetrically, and
our preliminary experimentation did not find any significant advantages from using
different values for βp and βc, we decided to keep them equal in our experiments and
denote them together as βpc, such that βp = βc = βpc.

In all the presented plots we display average values of 100 independent runs of the
considered algorithm, together with the standard deviation.

4.1 Results forONEMAX

For OneMax we considered the problem sizes n ∈ {2i | 3 ≤ i ≤ 14} and
all combinations of choices of βpc ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2} and βλ ∈
{2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2}. For reasons of space, we only present a selection
of these results.

Figure 3presents the running times of the heavy-tailed (1 + (λ, λ))GAonOneMax
against the problem size n for all considered values of βpc, whereas a fixed value of
βλ = 2.8 is used.The running timesof the (1+1)EAare alsopresented for comparison.
Since the runtime is normalized by n ln(n), the plot of the latter tends to a horizontal
line, and so do the plots of the heavy-tailed (1 + (λ, λ)) GA with βpc ≥ 1.8. Other
plots, after discounting for the noise in themeasurements, appear to be convex upwards
and, similarly to [2], they will likely become horizontal as n grows. For OneMax,
bigger values of βpc appear to be better. Since greater βpc increases the chances of
behaving similar to the (1+1)EAduring an iteration, this fits to the situation discussed
in Lemma 9. The plots look similar also for βλ different from 2.8, so we do not present
them here.

123

Algorithmica (2024) 86:442–484 479

23 24 25 26 27 28 29 210 211 212 213 214
100

101

102

Problem size n

R
un

ti
m
e
/

n
ln
(n
)

βpc = 1.0 βpc = 1.2
βpc = 1.4 βpc = 1.6
βpc = 1.8 βpc = 2.0
βpc = 2.2 (1+1) EA

Fig. 3 Running times of the heavy-tailed (1 + (λ, λ)) GA on OneMax starting from a random point,
normalized by n ln(n), for different βpc = βp = βc and βλ = 2.8 in relation to the problem size n. The
expected running times of (1 + 1) EA, also starting from a random point, are given for comparison

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

106

107

βλ

R
un

ti
m
e

βpc = 1.0 βpc = 1.2 βpc = 1.4
βpc = 1.6 βpc = 1.8 βpc = 2.0
βpc = 2.2

Fig. 4 Running times of the heavy-tailed (1 + (λ, λ)) GA on OneMax starting from a random point, for
n = 214 and different βpc = βp = βc depending on βλ

To investigate the dependencies on βλ and βpc more thoroughly, we consider the
largest available problem size n = 214 and plot the runtimes for all parameters con-
figurations in Fig. 4. The general trend of an improving performance with growing
βpc can be clearly seen here as well. For βλ, the picture is less clear. It appears that
very small βλ also result in larger running times, medium values of roughly βλ = 2.4
yield the best available runtimes, and a further increase of βλ increases the runtime
again, but only slightly. As very large βλ, such as βλ = 3.2, correspond to regimes
similar to the (1 + 1) EA, this might be a sign that some of the working principles of
the (1 + (λ, λ)) GA are still beneficial on an easy problem like OneMax.

4.2 Results for JUMP Functions

For Jump functions we used the problem sizes n ∈ {2i | 3 ≤ i ≤ 7}, subject to the
condition k ≤ n

4 and hence n ≥ 4k, as assumed in the theoretical results of this paper.
As running times are higher in this setting, we consider a smaller set of parameter
combinations, βpc ∈ {1.0, 1.2, 1.4} and βλ ∈ {2.0, 2.2, 2.4}.

123

480 Algorithmica (2024) 86:442–484

24 25 26 27
102

104

106

Problem size n

R
un

ti
m
e

βpc = 1.0, βλ = 2.0 βpc = 1.2, βλ = 2.2 (1+1) EA

25 26 27
104

107

1010

Problem size n

Fig. 5 Running times of the heavy-tailed (1 + (λ, λ)) GA on Jump, depending on the problem size n, in
comparison to the (1 + 1) EA. Jump sizes are k = 3 on the left and k = 5 on the right

Table 3 The p values for
experimental results presented in
Fig. 5

k n Student’s t test Wilcoxon rank sum test

3 16 1.46 × 10−3 4.14 × 10−6

3 32 1.88 × 10−12 2.87 × 10−20

3 64 2.59 × 10−14 5.29 × 10−26

5 32 9.32 × 10−15 1.58 × 10−34

5 64 8.01 × 10−15 1.58 × 10−34

Figure 5 presents the results of a comparison of the heavy-tailed (1 + (λ, λ)) GA
with the (1 + 1) EA on Jump with jump parameter k ∈ {3, 5}. We chose two most
distant distribution parameters for the heavy-tailed (1 + (λ, λ)) GA for presenting
in this figure. However, the difference between these is negligible compared to the
difference to the (1 + 1) EA. Such a difference aligns well with the theory, as the
running time of the (1+ 1) EA is �(nk), whereas Theorem 13 predicts much smaller
running times for the heavy-tailed (1 + (λ, λ)) GA.

Due to large standard deviation, we performed statistical tests on the results pre-
sented in Fig. 5 using two statistical tests: the Student’s t test as the one which checks
mean values which are the subject of our theorems, and the Wilcoxon rank sum test
as a non-parametric test. The results are presented in Table 3, where for each row and
each test the maximum p value is shown out of two between the (1+1) EA and either
of the parameterizations of the heavy-tailed (1 + (λ, λ)) GA. The p values in all the
cases are very small: except for the case k = 3, n = 16, they are all well below 10−10,
which indicates a vast difference between the algorithms and hence a clear superiority
of the heavy-tailed (1 + (λ, λ)) GA.

The parameter study, presented in Fig. 6, suggests that for Jump the particular values
of βpc are not very important, although larger values result in the marginally better
performance. However, larger βλ tend to make the performance worse, which is more
pronounced for larger jump sizes k. This finding agrees with upper bound proven in
Corollary 16, in which (n/k) is raised to a power that is proportional to ελ = βλ − 1.
Each difference is statistically significant with p < 0.008 using the Wilcoxon rank
sum test.

123

Algorithmica (2024) 86:442–484 481

2 2.1 2.2 2.3 2.4

105

106

βλ

R
un

ti
m
e

βpc = 1.0 βpc = 1.2 βpc = 1.4

2 2.1 2.2 2.3 2.4
106
107
108
109

βλ

Fig. 6 Dependency of running times of the heavy-tailed (1 + (λ, λ))GA on Jumpk on βλ and βpc for k = 3
(on the left) and k = 6 (on the right). Problem size n = 27 is used

23 24 25 26 27

105

Problem size n

R
un

ti
m
e

k = 6
k = 5
k = 4
k = 3
k = 2

Fig. 7 Running times of the heavy-tailed (1 + (λ, λ)) GA with βpc = 1.0 and βλ = 2.0 on Jumpk for
k ∈ [2..6] depending on the problem size n

Finally, Fig. 7 shows the running times of the heavy-tailed (1 + (λ, λ)) GA for a
fixed parameterization βpc = 1.0 and βλ = 2.0 for all available values of n and k, to
give an impression of the typical running times of this algorithm on the Jump problem.

5 Conclusion

Using mathematical and experimental methods, we showed that choosing all param-
eters of an algorithm randomly from a power-law distribution can lead to a very good
performance both on easy unimodal and on multimodal problems. This lazy approach
to the parameter tuning and control problem requires very little understanding how
the parameters influence the algorithm behavior. The only design choice left to the
algorithm user is deciding the scaling of the parameters, but we observed that the
natural choices worked out very well. Our empirical and theoretical studies show that
the precise choice of the (other) parameters of the power-law distributions does not
play a significant role and they both suggest to use unbounded power-law distributions
and to take a power-law exponent 2 + ε for the population size (so that the expected
cost of one iteration is constant) and 1 + ε for other parameters (to maximize the
positive effect of a heavy-tailed distribution). With these considerations, one may call
our approach essentially parameter-less.

Surprisingly, our randomized parameter choice even yields a runtimewhich is better
than the best proven runtime for optimal static parameters on Jump functions of some
jump sizes. An interesting question (which we leave open for the further research) is

123

482 Algorithmica (2024) 86:442–484

whether a randomparameter choice can outperform the algorithmswith knownoptimal
static parameters also on other problems. The experiments on OneMaxwhen starting
with a good solution (in distance

√
n from the optimum) indicate that it is possible

since there we observed a benefit from the key mechanisms of the (1 + (λ, λ)) GA.

Acknowledgements This work was supported by RFBR and CNRS, Project Number 20-51-15009 and by
a public grant as part of the Investissements d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx
LMH.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Antipov, D., Buzdalov, M., Doerr, B.: Lazy parameter tuning and control: choosing all parameters ran-
domly from a power-law distribution. In: Genetic and Evolutionary Computation Conference, GECCO
2021, pp. 1115–1123. ACM (2021)

2. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms. Algorithmica 84,
1724–1761 (2022)

3. Antipov, D., Doerr, B.: Runtime analysis of a heavy-tailed (1 + (λ, λ)) genetic algorithm on jump
functions. In: Parallel Problem Solving From Nature, PPSN 2020, Part II, pp. 545–559. Springer
(2020)

4. Antipov, D., Doerr, B.: A tight runtime analysis for the (μ + λ) EA. Algorithmica 83, 1054–1095
(2021)

5. Antipov, D., Doerr, B., Karavaev, V.: A tight runtime analysis for the (1 + (λ, λ))GA on LeadingOnes.
In: Foundations of Genetic Algorithms, FOGA 2019, pp. 169–182. ACM (2019)

6. Antipov, D., Doerr, B., Karavaev, V.: A rigorous runtime analysis of the (1 + (λ, λ)) GA on jump
functions. Algorithmica 84, 1573–1602 (2022)

7. Benbaki, R., Benomar, Z., Doerr, B.: A rigorous runtime analysis of the 2-MMASib on jump functions:
ant colony optimizers can cope well with local optima. In: Genetic and Evolutionary Computation
Conference, GECCO 2021, pp. 4–13. ACM (2021)

8. Buzdalov, M., Doerr, B.: Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable
3-CNF formulas. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 1343–
1350. ACM (2017)

9. Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Parallel
Problem Solving from Nature, PPSN 2014, pp. 892–901. Springer (2014)

10. Corus, D., Oliveto, P.S., Yazdani, D.: On the runtime analysis of the Opt-IA artificial immune system.
In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 83–90. ACM (2017)

11. Corus, D., Oliveto, P.S., Yazdani, D.: Artificial immune systems can find arbitrarily good approxima-
tions for the NP-hard number partitioning problem. Artif. Intell. 274, 180–196 (2019)

12. Corus, D., Oliveto, P.S., Yazdani, D.: Automatic adaptation of hypermutation rates for multimodal
optimisation. In: Foundations of Genetic Algorithms, FOGA 2021, pp. 4:1–4:12. ACM (2021)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2024) 86:442–484 483

13. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the (1 + (λ, λ)) genetic
algorithm. Algorithmica 80, 1658–1709 (2018)

14. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theor.
Comput. Sci. 567, 87–104 (2015)

15. Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation strengths for multi-valued decision
variables. Algorithmica 80, 1732–1768 (2018)

16. Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solution length at almost no extra
cost. Algorithmica 81, 703–748 (2019)

17. Dang, D.-C., Eremeev, A.V., Lehre, P.K., Qin, X.: Fast non-elitist evolutionary algorithms with power-
law ranking selection. In: Genetic and Evolutionary Computation Conference, GECCO 2022, pp.
1372–1380. ACM (2022)

18. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton,
A.M.: Escaping local optima with diversity mechanisms and crossover. In: Genetic and Evolutionary
Computation Conference, GECCO 2016, pp. 645–652. ACM (2016)

19. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton,
A.M.: Escaping local optima using crossover with emergent diversity. IEEE Trans. Evol. Comput. 22,
484–497 (2018)

20. Droste, S., Jansen, T.,Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theor. Comput.
Sci. 276, 51–81 (2002)

21. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)
22. Doerr, B., Le, H.P.,Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Genetic and Evolutionary

Computation Conference, GECCO 2017, pp. 777–784. ACM (2017)
23. Doerr, B.: Optimal parameter settings for the (1 + (λ, λ)) genetic algorithm. In: Genetic and Evolu-

tionary Computation Conference, GECCO 2016, pp. 1107–1114. ACM (2016)
24. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Doerr, B., Neu-

mann, F. (eds.) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization,
pp. 1–87. Springer, Cham (2020) . arXiv:1801.06733

25. Doerr, B.: The runtime of the compact genetic algorithm on Jump functions. Algorithmica 83, 3059–
3107 (2021)

26. Doerr, B.: Does comma selection help to cope with local optima? Algorithmica 84, 1659–1693 (2022)
27. Doerr, B., Qu, Z.: A first runtime analysis of the NSGA-II on a multimodal problem. In: Parallel

Problem Solving From Nature, PPSN 2022. Springer (2022). arXiv:2204.13750
28. Doerr, B., Rajabi, A.: Stagnation detection meets fast mutation. In: Evolutionary Computation in

Combinatorial Optimization, EvoCOP 2022, pp. 191–207. Springer (2022)
29. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. Algorithmica 83,

1012–1053 (2021)
30. Doerr, B., Zheng, W.: Theoretical analyses of multi-objective evolutionary algorithms on multi-modal

objectives. In:Conference onArtificial Intelligence,AAAI 2021, pp. 12293–12301.AAAIPress (2021)
31. Friedrich, T., Kötzing, T., Krejca, M.S., Nallaperuma, S., Neumann, F., Schirneck, M.: Fast building

block assembly by majority vote crossover. In: Genetic and Evolutionary Computation Conference,
GECCO 2016, pp. 661–668. ACM (2016)

32. Friedrich, T., Quinzan, F., Wagner, M.: Escaping large deceptive basins of attraction with heavy-tailed
mutation operators. In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 293–
300. ACM (2018)

33. Hasenöhrl, V., Sutton, A.M.: On the runtime dynamics of the compact genetic algorithm on jump
functions. In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 967–974. ACM
(2018)

34. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary
algorithms. Evol. Comput. 13, 413–440 (2005)

35. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms—a proof that crossover really can
help. Algorithmica 34, 47–66 (2002)

36. Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the time complexity of algorithm selection hyper-
heuristics for multimodal optimisation. In: Conference on Artificial Intelligence, AAAI 2019, pp.
2322–2329. AAAI Press (2019)

37. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: Parallel Problem
Solving from Nature, PPSN 1992, pp. 15–26. Elsevier (1992)

123

http://arxiv.org/abs/1801.06733
http://arxiv.org/abs/2204.13750

484 Algorithmica (2024) 86:442–484

38. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum span-
ning tree problem. Theor. Comput. Sci. 378, 32–40 (2007)

39. Quinzan, F., Göbel, A., Wagner, M., Friedrich, T.: Evolutionary algorithms and submodular functions:
benefits of heavy-tailed mutations. Nat. Comput. 20, 561–575 (2021)

40. Rowe, J.E., Aishwaryaprajna: The benefits and limitations of voting mechanisms in evolutionary
optimisation. In: Foundations of Genetic Algorithms, FOGA 2019, pp. 34–42. ACM (2019)

41. Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovǎc (1997)
42. Rajabi, A., Witt, C.: Self-adjusting evolutionary algorithms for multimodal optimization. In: Genetic

and Evolutionary Computation Conference, GECCO 2020, pp. 1314–1322. ACM (2020)
43. Rajabi, A., Witt, C.: Stagnation detection in highly multimodal fitness landscapes. In: Genetic and

Evolutionary Computation Conference, GECCO 2021, pp. 1178–1186. ACM (2021)
44. Rajabi, A., Witt, C.: Stagnation detection with randomized local search. In: Evolutionary Computation

in Combinatorial Optimization, EvoCOP 2021, pp. 152–168. Springer (2021)
45. Wald, A.: Some generalizations of the theory of cumulative sums of random variables. Ann. Math.

Stat. 16, 287–293 (1945)
46. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In:

Symposium on Theoretical Aspects of Computer Science, STACS 2005, pp. 44–56. Springer (2005)
47. Witt, C.: Runtime analysis of the (μ + 1) EA on simple pseudo-Boolean functions. Evol. Comput. 14,

65–86 (2006)
48. Witt, C.: On crossing fitness valleys with majority-vote crossover and estimation-of-distribution algo-

rithms. In: Foundations of Genetic Algorithms, FOGA 2021, pp. 2:1–2:15. ACM (2021)
49. Wu, M., Qian, C., Tang, K.: Dynamic mutation based Pareto optimization for subset selection. In:

Intelligent Computing Methodologies, ICIC 2018, Part III, pp. 25–35. Springer (2018)
50. Whitley, D., Varadarajan, S., Hirsch, R., Mukhopadhyay, A.: Exploration and exploitation without

mutation: solving the jump function in �(n) time. In: Parallel Problem Solving from Nature, PPSN
2018, Part II, pp. 55–66. Springer (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Lazy Parameter Tuning and Control: Choosing All Parameters Randomly from a Power-Law Distribution
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Objective Functions
	2.2 Power-Law Distributions
	2.3 The Heavy-Tailed (1 + (λ, λ)) GA
	2.4 Useful Tools

	3 Runtime Analysis
	3.1 Easy Problems
	3.1.1 OneMax
	3.1.2 LeadingOnes
	3.1.3 Minimum Spanning Tree Problem
	3.1.4 Approximations for the Partition Problem

	3.2 Jump Functions
	3.3 Recommended Hyperparameters

	4 Experiments
	4.1 Results for OneMax
	4.2 Results for Jump Functions

	5 Conclusion
	Acknowledgements
	References

