
Algorithmica (2023) 85:2238–2259
https://doi.org/10.1007/s00453-023-01097-0

Online Minimization of the Maximum Starting Time:
Migration Helps

Asaf Levin1

Received: 16 September 2020 / Accepted: 14 January 2023 / Published online: 26 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
We consider non-preemptive load balancing on m identical machines where the cost
of a machine is defined as the maximum starting time of a job assigned to the machine,
and the goal is to find a partition of the jobs thatminimizes themaximummachine cost.
In our variant the last job on each machine is the smallest job assigned to that machine.
The online model for this problem is too restrictive as a trivial example shows that
there is no competitive algorithm for the problem. We show that a constant migration
factor is sufficient to guarantee a ( 32 +ε)-competitive algorithm for all ε > 0, and using
a constant migration factor cannot lead to a better than a 3

2 -competitive algorithm. We
also show that for this problem, constant amortized migration factor is strictly more
powerful and allows us to obtain a polynomial time approximation scheme with a
constant amortized migration factor. Thus, the ability to move some limited set of jobs
on each step allows the algorithm to be much better than in the pure online settings.

Keywords Online algorithms · Scheduling · Migration factor

1 Introduction

In this work we consider a load balancing problem on identical machines. The input
consists of n jobs denoted as 1, 2, . . . , n where job j has a processing time p j ≥ 0,
and m identical machines. We sometimes refer to the processing time of a job as the
size of the job. A feasible solution is a partition of the job set into m machines, which
means that we consider a non-preemptive scheduling problem. Here, for eachmachine
we are concerned with the point in time in which the last job assigned to that machine
is starting. In our settings Pr- min the adversary chooses this permutation, so it will
schedule the smallest job as the last job. Thus, if the algorithm assigns the set of jobs
S to machine i , then the cost of i in Pr- min will be

∑
j∈S p j −min j∈S p j if S is not
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empty and zero otherwise (i.e., if S is empty). The goal is to find a feasible solution
(that is a partition of the jobs intom machines) so that the maximum cost of a machine
is minimized. Given a solution to the problem, the load of machine i is the total size
of jobs assigned to i . Note that the load of a machine is not smaller than the cost of
the machine.

In order to motivate our scheduling problem consider the following scenario.
Assume that we are given a computer center withm identical computers, and there is a
sequence of jobs arriving to be processed. Once a job arrives the system administrator
needs to allocate the job to a machine. However, in order to start processing a job
the administrator needs to do additional operation like pressing a key. Therefore, the
administrator cannot go home at the end of the working day before the last job has
started. The goal of the administrator is to schedule all jobs in a way that minimizes
the time in which he could go home. However, the head of the computer is trying to
use the administrator for other tasks as well and thus he is reshuffling the permutation
of jobs assigned to each machine so as the last processed job is a smallest one (among
jobs assigned to that machine).

Given an algorithmalg for aminimization problem,we say that it has a competitive
ratio of at most ρ if it always returns a feasible solution of cost at most ρ times the
offline optimal cost on that instance. In this case, we also say thatalg is ρ-competitive.
If the competitive ratio of alg is a constant then we say that alg is competitive.

Here, we consider an online environment where the jobs are revealed to the algo-
rithm one by one, and the algorithm needs to maintain a partition of the jobs into m
identical machines. In these online scenarios, the online algorithm is committed to
the partition of the jobs into the m machines, while the internal permutation of jobs
assigned to a machine may change once further jobs are assigned to that machine and
in fact it is always the worst permutation both for the algorithm as well as for the
optimal offline solution.

We motivate our research by observing that in the (pure) online scenario, there
is no competitive algorithm. We show this claim by proving that for every constant
M > 1, there is no deterministic algorithm with competitive ratio M . In order to
establish this claim we consider the following instance. The input sequence starts with
m identical jobs of size 1. At this point an optimal offline solution places one such
job on each machine, and has zero cost. Thus, any competitive algorithm must place
one such job on each machine (any other solution has a cost of at least 1 leading to an
unbounded competitive ratio). After these m jobs are scheduled the input continues
with one additional job of size M+1 and then the input ends. At this point the optimal
offline cost is (at most) 1: a feasible solution of this cost is obtained by placing a pair
of unit sized jobs on one machine, and exactly one job on each other machine (there
are m − 1 additional jobs). However, the algorithm places this job of size M + 1 on
a machine that previously had a job of size 1. The cost of that machine is M + 1, and
the claim that the algorithm has a competitive ratio of at least M + 1 follows.

Since for the pure online scenario there is no competitive algorithm, we would like
to follow the approach of allowing the algorithm to perform some limited changes to
the solution whenever a new job is revealed to the algorithm. Here we study two such
models.
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The first model is the class of algorithms with a constant migration factor that we
define next. An online algorithm for some scheduling problem on identical machines
has a migration factor f if whenever a new job j is revealed to the algorithm with its
size p j it may migrate a subset of the job set of total size not larger than f · p j . We
say that an algorithm has a constant migration factor if there is a constant number f
for which the algorithm has a migration factor f .

The second model was suggested in the literature for cases in which there is a non-
trivial lower bound on the competitive ratios of algorithms with constant migration
factors, where a non-trivial lower bound means a lower bound that is strictly larger
than 1. In this second model we define the notion of amortized migration factor. Here,
an algorithm with an amortized migration factor f , considers the input jobs one by
one, and may change the schedule of previously assigned jobs in later steps of the
algorithm (when new jobs are revealed). However, such an algorithm needs to satisfy
the following accumulating constraints. For every prefix of the input job sequence of
total job size of P , the algorithm can migrate subsets of jobs (throughout this prefix of
the input) of total size at most f · P where if a job is migrated several times during this
prefix its size is contributed several times to the total size of migrated subsets of jobs.
Similarly, we say that an algorithm has a constant amortized migration factor if there
is a constant f for which the algorithm has an amortized migration factor f . Note that
by definition if an algorithm has a constant migration factor then it also has a constant
amortized migration factor (but the other direction need not hold). Furthermore, the
study of algorithmswith constant amortizedmigration factors is meaningful only if we
are able to obtain smaller competitive ratios using such algorithms with respect to the
competitive ratios we are able to get using algorithms with constant migration factors
and similarly, this is a meaningful result only if these are smaller than the competitive
ratios for the pure online case.

Literature Review. In another variant of the problem the machine (or the algorithm)
is choosing the permutation of jobs on each machine so it will schedule the largest job
as the last job while in a third variant the permutation of jobs assigned to a machine
is according to the index of the jobs. The version where the largest job is the last
job was studied in the online environment recently in [10] where it is shown that the
pure online problem admits a 3-competitive algorithm whereas no online algorithm
has a competitive ratio smaller than 2.26953, and furthermore allowing a constant
migration factor is sufficient to obtain an approximation scheme. The last version
where jobs have to be scheduled sorted by indexes and cannot be reordered (this is
the order of arrival for the online case) was studied both as an online problem and as
an offline problem [11, 12]. Other scheduling and bin packing problems where the
relevant time is the starting time of the last job or item were studied as well [5, 19,
20, 25] where for bin packing problems of this type the term open-end bin packing
is frequently used. Note that our problem Pr- min is significantly harder than the two
other online scheduling variants of this type. First, for the pure online case, we showed
above that Pr- min does not admit a competitive algorithm whereas [12] showed that
the version where jobs are sorted by their indexes has a 12-competitive algorithm,
and [10] showed a 3-competitive algorithm for the version where the last job is the
largest job. Second, with respect to algorithms with constant migration factor, we will
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show the non-existence of an algorithm with a competitive ratio smaller than 3
2 for

Pr- minwhereas [10] showed the existence of an approximation schemewith constant
migration factor for the version where the last job scheduled on each machine is its
largest job.

Next, we discuss the earlier studies of other scheduling problems with respect to
algorithms with constant migration factor and with respect to algorithms with constant
amortized migration factor (see also [24]). In [21], the model of constant migration
factor was introduced and analyzed with respect to the makespan minimization on
identical machines. They showed that for this makespan objective one is able to get
an approximation scheme with constant migration factor. Later [23] established that
not every problem that has a standard PTAS still has one in the online scenario with
constant migration factors. They showed this result for the Santa-Claus objective on
identical machines, and used this result as a motivation for studying algorithms with
constant amortized migration factors. Among the last family of algorithms, the ones
with constant amortized migration factors, they establish the existence of an approxi-
mation scheme for the Santa-Claus objective and other load balancing objectives (not
including our problem). See also [14] for additional results on the possible competi-
tive ratio for the Santa-Claus objective when one restrict himself for algorithms with
constant migration factor. Namely it is shown that an algorithm that is based on the
Longest Processing Time (LPT) rule has a competitive ratio of 4

3 + ε and migration
factor of O( 1

ε3
) for every ε > 0. In [8], the makespan objective on identical machines

in the preemptive case was analyzed, and it is shown that one can maintain an opti-
mal schedule with a migration factor smaller than 1. Such maintenance of optimal
solutions with constant migration factors is unique, and was shown to be impossi-
ble for the non-preemptive case by [21]. The preemptive case on uniformly related
machines cannot have a similar result as [8] exhibits a non-constant lower bound on
the migration factor of optimal solutions for this uniformly related machines case. In
[9] the total weighted completion time objective was analyzed and it is shown that
if every machine processes its assigned jobs according to Smith’s rule, then there is
an approximation scheme with constant migration factor, whereas if the algorithm is
committed to the time slots of every assigned job, then such result cannot be obtained.

Similar studies regarding algorithms with constant migration factors and constant
amortized migration factors were carried out for the bin packing problem [3, 6, 13,
15], cube packing [7], strip packing [16], and bin covering [2]. See also [1] for a study
of algorithms with constant amortized migration factors for such packing problems.

Paper Outline. In Sect. 2 we prove that there is no algorithm whose competitive ratio
is strictly smaller than 3

2 that has a constant migration factor. This lower bound for
algorithms with constant migration factor is in fact tight, as we show in Sect. 3 that
for every ε > 0 there is an algorithm with a competitive ratio of 3

2 + ε and a constant
migration factor (this migration factor is some function of ε). In order to break the
lower bound of 3

2 we consider in Sect. 4 the more powerful set of algorithms, namely
the ones with constant amortized migration factors and show that in this family there
is an approximation scheme with a constant amortized migration factor.
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2 Lower Bound on the Competitive Ratio of Algorithms with a
Constant Migration Factor

In this section we prove the following lower bound which applies for every number
of identical machines (that is at least two).

Theorem 2.1 The online problem Pr- min on m identical machines where m ≥ 2 does
not have an algorithm whose competitive ratio ρ is strictly smaller than 3

2 and its
migration factor is bounded.

Proof Assume by contradiction that the competitive ratio of alg is ρ < 3/2 and the
migration factor of alg is some constant M . Next, let δ > 0 be such that 1

δ
> M is

an even integer number and ρ < 3
2 − δ. Our proof distinguishes between the case that

m is an even number and the case where m is an odd number.
First consider the case where m is an even number. The input starts with m jobs

of size 1. At this stage, the optimal offline cost is 0 as the solution that schedules one
job on each machine has a zero cost. Thus, the algorithm is forced to schedule these
jobs exactly like that, namely one job on each machine. In the next stage the input
continues with m

2δ jobs each of which of size δ. The algorithm cannotmigrate any of the
unit-sized jobs as otherwise it will violate the migration factor, and by the pigeonhole
principle it must place at least 1

2δ jobs on a common machine. In this machine the
resulting maximum starting time is at least 3

2 − δ. However, an offline solution may
place a pair of unit sized jobs on each of the first m

2 machines, and on each other
machine it schedules 1

δ
jobs each of which of size δ. The resulting cost of this offline

solution is 1, and we get a contradiction to the claimed competitive ratio of alg.
Next, consider the case where m is an odd number. The input starts with one job

of size 2 and m − 1 jobs of size 1. At this stage, the optimal offline cost is 0 as the
solution that schedules one job on each machine has a zero cost. Thus, the algorithm
is forced to schedule these jobs like that, namely one job on each machine. Assume
without loss of generality that the algorithm schedules the job of size 2 on machine
m. In the next stage the input continues with m−1

2δ jobs each of which of size δ. The
algorithm cannot migrate any of the unit-sized jobs or the job of size 2 as otherwise it
will violate the migration factor. We claim that the cost of the solution returned by the
algorithm is at least 3

2 − δ. First, if the algorithm places a job of size δ on machine m,
then the cost of that machine is at least 2 and the claim follows. Otherwise, the set of
jobs of size δ is assigned to the first m − 1 machines, and by the pigeonhole principle
algmust place at least 1

2δ jobs on one of those machines. In this machine the resulting
maximum starting time is at least 3

2 − δ. However, an offline solution may place a pair
of unit sized jobs on each of the first m−1

2 machines, another machine with one job of
size 2 (and no other jobs) and on each other machine it schedules 1

δ
jobs each of which

of size δ. The resulting cost of this offline solution is 1, and we get a contradiction to
the claimed competitive ratio of alg. ��
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3 Our Algorithmwith Constant Migration Factor

Our aim is to present for every ε > 0 an algorithm whose competitive ratio is 3
2 + ε

and its migration factor is bounded by some function of ε. Thus, the first step of our
algorithm, namely to round up the size of every (arriving) job to the next integer power
of 1+ε could be carried out without loss of generality (at the end we will need to scale
ε by some constant factor). This is so, as the cost of every solution cannot decrease by
this rounding and the cost of an optimal offline solution (for the rounded instance) is at
most 1+ ε times its cost on the original instance, the migration factor of the resulting
algorithm in terms of the original instance is at most 1+ε times themigration factor on
the rounded instance. Thus, without loss of generality we could assume the following.

Assumption 3.1 Without loss of generality, the input to the problem satisfies that the
size of every job is an integer power of 1+ ε. Assuming this assumption increases the
competitive ratio as well as the migration factor by a multiplicative factor of at most
1 + ε.

We let opt be a valid upper bound on the cost of an optimal offline solution that
can only increase when new jobs arrive (observe that the optimal offline cost cannot
decrease when new jobs are added to the instance). We maintain this value as new
jobs are revealed by the adversary as we discuss below. Consider a given point in time
where some jobs were released. We partition the current job set into the following
partitions (named classes): let H = { j : p j > opt}, L = { j : opt ≥ p j > 3

4 · opt},
M = { j : 3

4 · opt ≥ p j > ε · opt}, and T = { j : p j ≤ εopt}. With respect to
this partition, we say that a job j is huge if j ∈ H, it is large if j ∈ L, it is medium
if j ∈ M, and tiny if j ∈ T . Observe that when new jobs arrive, the value of opt
may increase and thus jobs may move from one class to another. However, since the
maintenance of this partition is carried out in an auxiliary data structure we are able
to maintain it whenever a new job arrives without migrating jobs.

The following lemma follows by observing the cost of solutions to Pr- min.

Lemma 3.2 Consider a feasible solution of cost at most opt. Let S be the set of jobs
assigned by this solution to a common machine i . Then the following holds:

1. If S ∩ H �= ∅, then S has a unique job that is a huge job (and no other jobs).
2. If |S| ≥ 2, then either both |S| = 2 and |S ∩ L| ≥ 1, or the load of S is at most

3
2 · opt.

Proof If S has a huge job then if S has another job then the maximum starting time of
a job on machine i is at least as large as the size of a huge job assigned to i and this is
more than opt, contradicting the cost of this feasible offline solution. Thus, the first
claim holds.

To prove the second claim, first note that if |S| = 2, then either the load of S is at
most 3

2opt or at least one of its jobs has size larger than 3
4opt (and thus by the first

claim it is large). Thus, to prove the claim assume that |S| ≥ 3. Since the maximum
starting time of machine i is at most opt, adding to it the size of the smallest job
assigned to i adds at most opt

2 time units and so the total size of jobs in S is at most
3
2 · opt. ��
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Given the value of opt, the partition of the jobs into huge, large, medium, and tiny
is fixed. We will keep the schedule in a way that maintains the following invariants:

Invariants 3.3 The schedule of the jobs in H ∪ L ∪ M ∪ T satisfies the following
invariants:

1. Each job inH is scheduled on a dedicated machine without other jobs.
2. There is at most one machine containing both one large job and a non-empty set of

medium jobs. If such machine exists, then the large job scheduled on that machine
is a smallest large job (in terms of the rounded size of the jobs) and we call this
machine containing both large and medium jobs the mixed machine. This mixed
machine has either exactly two jobs where one of those is a smallest large job and
the other is a largest medium job, or its load is at most ( 32 +3ε) ·opt. Furthermore,
if a machine has exactly one large job and a set of tiny jobs, then its load is at most
( 32 + 3ε) · opt.

3. The other large jobs are scheduled in the following way where each machine is
assigned at most two large jobs. For a machine containing two large jobs, we
require that the sizes of these jobs are either equal or consecutive in the sorted list
of sizes of large jobs in the instance. For a pair of consecutive sizes s1, s2 of large
jobs, we require that there will be at most one machine with jobs of sizes s1, s2
(one of each).

4. Each machine that contains only medium and tiny jobs has load of at most ( 32 +
3ε) · opt.

We observe that if we can maintain the Invariants 3.3, then the competitive ratio
of 3

2 + 3ε is guaranteed (if in every step opt denotes the optimal cost of the instance
after adding the last arriving job of this step). This holds as machines with one huge
job or two large jobs (or one large job and one medium job) have maximum starting
time of at most opt while for every other machine the maximum starting time is at
most its load which is at most ( 32 + 3ε) · opt. Thus, we established the following.

Lemma 3.4 An algorithm that maintains the Invariants 3.3 for opt being the cost of
an optimal offline solution of the prefix of jobs considered so far has competitive ratio
of at most 3

2 + 3ε.

In order to describe our algorithm we note that in some iterations the values of
opt is increased while in other iterations it stays unchanged. In order to simplify the
presentation, we consider iterations in which opt is increased as a pair of iterations,
in the first iteration of such pair opt increases but there is no new job that we need
to schedule, and in the second iteration of this pair the new job is scheduled (perhaps
migrating other jobs). Then, there are two types of iterations. In the first type of
iterations opt is increased, no job is released and we are not allowed to migrate jobs.
In the second type of iterations, a new job of index j is released and the value of opt
remains the same (so it is still a valid upper bound on the cost of an optimal offline
solution even after the new job is released). In this second type of iterations we need
to schedule the new job so that the invariants are maintained and to migrate jobs of
small total size so that the migration factor will be maintained.
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The events where opt increases are easily handled as follows (the arguments here
are the motivation for allowing large jobs to be scheduled on machines without other
large jobs).

Lemma 3.5 If a solution sol maintains the invariants with a smaller value of opt
(denoted as opt′) then it also satisfies the invariants with a larger value of opt denoted
as opt′′.

Proof Let H′,L′,M′ be the three classes of huge, large, and medium jobs prior to
the increase of the value of opt, respectively. Similarly, let H′′,L′′,M′′ be the three
classes of huge, large, and medium jobs just after the increase of the value of opt,
respectively.

First, observe that H′′ ⊆ H′ and since sol used to satisfy invariant 1 prior to the
increase of opt, we conclude that each job inH′′ is scheduled on a dedicated machine
without other jobs so invariant 1 continues to hold after the increase of opt.

Every machine has the same total size of jobs as it used to have, and the machines
containing medium and tiny jobs after the increase of opt may have either at most
two jobs (so the bound clearly holds by the upper bound on the size of medium jobs)
or used to have a job set of total size at most ( 32 + 3ε) · opt′ ≤ ( 32 + 3ε) · opt′′ so
invariant 4 is satisfied.

Consider invariants 2 and 3 . If there is no job in L′ \ L′′, then the claim follows
since sol used to satisfy these invariants and no machine becomes a mixed machine
so the claim about the load of that machine (if it has at least three jobs) continues to
hold by opt′ ≤ opt′′. Otherwise some large jobs become either medium or tiny. The
set of jobs that stop being large contains the job in L′ of the earlier mixed machine (if
such machine used to exist), so that machine stops being a mixed machine. Since sol
used to satisfy invariants 1 and 3 , it continues to satisfy invariants 2 and 3 . ��

We will use the following properties of a solution of cost at most opt.

Lemma 3.6 Let alg denote the solution constructed by the algorithm that satisfies the
invariants. Assume that there is (an offline) solution of cost at most opt, then there is
a solution sol of cost at most opt that satisfies the following properties.

1. sol has at most one machine containing exactly one large job (and perhaps some
tiny or medium jobs) and all other large jobs are scheduled in pairs on machines
each of which is assigned two large jobs. If such machine with exactly one large
job exists, it is called a mixed machine in sol.

2. Every pair of large jobs that alg places on a common machine, are also scheduled
on a common machine in sol. Furthermore, if sol has a mixed machine then the
large job of this mixed machine is not scheduled in one of the pairs of large jobs
in alg.

Proof We first show that without loss of generality the first property holds. Assume by
contradiction that there is no such solution sol of cost smaller than opt with at most
one such machine (containing exactly one large job). Let sol be a feasible solution
for Pr- min with an objective value of at most opt that minimizes the number of
such machines. Since sol does not satisfy the requirement, there are at least two such
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machines. We pick a pair of machines i, i ′ each of which has exactly one large job
�, �′, respectively, and some set of non-large jobs. We let σi , σi ′ denote these two sets
of other jobs scheduled by sol on i, i ′, respectively. We replace the schedule of the
jobs on those two machines. Without loss of generality, we assume that among the
set of jobs in σi ∪ σi ′ , if it is not empty, then there is a minimum sized job in σi ′ . On
machine i , we schedule the two large jobs �, �′, and note that since these two jobs
are large, the cost of i would be at most opt. On machine i ′ we schedule the jobs in
σi ∪ σi ′ . Note that if σi consists of a single job, then since it is not large its size is
smaller than �′, so adding this set of jobs to σi ′ would not increase the cost of i ′ with
respect to its cost in sol. Otherwise, if σi has more than one job, then by Lemma 3.2,
their total size is smaller than 3

4 · opt. Thus, once again adding this set of jobs to σi ′
would not increase the cost of i ′ with respect to its cost in sol. Last, if σi = ∅, then
the new cost of i ′ is smaller than its cost in sol. Thus, we get a contradiction to our
choice of sol among all solutions with objective function value of at most opt.

Next, we claim that without loss of generality, we can assume that every pair of
large jobs that alg schedules on a common machine, are also scheduled on a common
machine in sol, and if there is a mixed machine in sol (by the previous claim this
happens if and only if |L| is an odd number), then the large job of this mixed machine
is not scheduled in one of the pairs of large jobs in alg. This is indeed without loss of
generality, as any pair of large jobs could be scheduled on a common machine with a
resulting cost of at most opt and replacing the large job of the mixed machine of sol
with the smallest such job does not increase the cost of that mixed machine. Thus,
we can reorder the pairs of jobs in sol to fit the last assumption and this reordering
does not change the number of machines with pairs of large jobs so the first property
continues to hold. ��

Next, we consider an iteration in which job j is revealed to the algorithm and we
need to schedule it, but the value of opt remains the same. Here, we first consider the
case in which j is tiny, and later the other cases where j is non-tiny. For a tiny job j ,
we will schedule the job without migrating any job. Specifically, among the machines
not containing a huge job, we pick one where the load prior to the current step is at
most ( 32 + 2ε) · opt and schedule j there. Observe that this step clearly maintains the
invariants because the size of j is at most ε · opt. Thus, we only need to prove that
whenever the new job is tiny, we can indeed find such machine to schedule j there.

Lemma 3.7 If j is tiny, then prior to the scheduling of j , there is a machine without
huge jobs whose load is at most ( 32 + 2ε) · opt.
Proof Let alg be the solution of the algorithm just before j is revealed. Assume by
contradiction that such machine does not exist. Observe that for every huge job j ′
we have that both the algorithm and every optimal offline solution to the instance of
Pr- min place j ′ on a dedicated machine. Thus, in order to prove the claim we can
delete this huge job j ′ as well as one machine. We are left with an instance ofm−|H|
machines and without huge jobs, and we need to show that if there is a solution sol
to the instance with j with an objective value of at most opt then there is a machine
whose load is at most ( 32 + 2ε) · opt prior to scheduling of j .

Thus, by Lemma 3.2, we conclude that on every machine of sol that does not
contain large jobs, the load is at most 3

2 · opt if it does not contain tiny jobs, and it
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is at most 1 + ε if it has a tiny job. Next, we allow sol to fractionally schedule the
medium and tiny jobs subject to these constraints (where the schedule of the large jobs
is kept without modifications). The (relaxed) constraints for the fractional solution are
as follows. If a machine has a fraction of a tiny job then its load is at most (1+ε) ·opt,
and otherwise if it has at most one large job it has a load of at most ( 32 + ε) · opt, we
allow the mixed machine to contain exactly two jobs even in cases where their total
size is above ( 32 + ε) · opt. The solution sol is still a feasible solution. In order to
prove the lemma, it suffices to show that we can transform this (fractional) solution
into a different fractional solution where the large jobs are scheduled as in alg while
the load of every machine with at most one large job is at most ( 32 + 2ε) · opt (except
perhaps the mixed machine whose content is not changed). If we will prove the last
claim, then by the pigeonhole principle it will show that alg has at least one machine
whose load is at most ( 32 + 2ε) · opt.

Note that by Lemma 3.6, if the number of machines with pairs of large jobs in sol
is the same as their number in alg, then the claim follows. Since sol has a maximum
number of pairs of large jobs scheduled on common machines, we conclude that this
number in sol is not smaller than its number in alg.

Next, we delete from the instance as well as from alg and sol every pair of large
jobs that are scheduled on a common machine (together with one machine for each
such removed pair). By Lemma 3.6, we conclude that in alg every remaining large
job is scheduled on a separate machine (together with some non-large jobs) while in
sol there are still pairs of large jobs on common machines. Let x be the number of
remaining large jobs in the instance. Then, there are at least x − 1 machines with one
large job and no medium jobs in alg. Since the load of every such machine is larger
than ( 32 + 2ε) · opt (otherwise the lemma holds), we conclude that the total size of
tiny jobs scheduled on such machine is at least ( 12 + 2ε) · opt.

Next, we modify sol for the fractional problem by sorting the fractions of medium
and tiny jobs so that the mixed machine of sol has medium jobs (if there is one) and
there is at most one machine containing both fractions of medium jobs and fractions
of tiny jobs. This feasibility of the fractional solution obtained as a result of this
rearrangement of sol follows by a trivial exchange argument. Thus, there are more
than

(x − 1) · ( 12 + 2ε) · opt
(1 + ε) · opt >

x − 1

2

machines in (the modified) sol with load at most 1 + ε containing fractions of tiny
jobs, each of which has no large jobs except possibly for the mixed machine.

First, consider the casewhere sol does not have amixedmachine, that is,we assume
that x is an even number.We take the large jobs that sol schedules onmachines andwe
reschedule them by having each large job together with fractions of tiny and medium
jobs (that were scheduled on machines with load at most (1 + ε) · opt) of total size
of 1+ε

2 · opt to create a schedule of a machine with load at most ( 32 + ε) · opt that
replaces the  x−1

2 � = x
2 machines without large jobs and load of at most 1+ ε as well
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as the x
2 machines with pairs of large jobs. Other machines are not modified and we

know that the load of each such machine is at most ( 32 + ε) · opt.
Last, consider the case where x is an odd number. Thus, x−1

2 is the number of pairs
of large jobs scheduled on a common machine. However, we have at least x−1

2 + 1
machines in solwith load of at most (1+ε) ·opt. If the mixedmachine has load larger
than 3

2 · opt, then we take one such machine with load of at most (1 + ε) · opt and
we move fractions of medium jobs from the mixed machine to this selected machine
so that the resulting load on both these machines will be at most 3

2 · opt (we move a
fraction of size 1

4 · opt so the selected machine will have a new load not larger than
( 54 + ε) · opt < 3

2 · opt). If the mixed machine has load of at most 1 + ε and it is
counted in these x−1

2 + 1 machines we do not change its solution and not consider it
in the next step. We are left with other x−1

2 machines of load at most 1+ ε (which are
not the mixed machine nor the selected machine) and together with the x−1

2 pairs of
large jobs we apply the same transformation we have described for the case without a
mixed machine in sol. ��

It remains to maintain a solution that satisfies Invariants 3.3 with a bounded migra-
tion factor when the new job j is inH∪L∪M, that is, a non-tiny job. The huge jobs
will be scheduled on dedicated machines, while the jobs in L ∪M will be scheduled
so as to satisfy the invariants 3.3 using a configuration-IP, that is an integer program
we define below. Themigration of large andmedium jobs will be carried out whenever
the new job is in H ∪ L ∪ M but we will not migrate huge jobs as long as they are
huge. Whenever we decide to migrate some jobs we will fix the schedule of jobs pre-
viously assigned to some machines while we reschedule the jobs that were assigned
to some constant number of machines. This includes the large and medium jobs that
were assigned to those machines but also the tiny jobs that were assigned to those
machines. Since the load of a machine not containing huge jobs was at most 2opt
while the size of the new job is at least εopt (as it is not tiny), if we ensure that the
number of machines whose previous assigned jobs are migrated is a constant (that
may depend on ε) then the constant upper bound on the migration factor will follow.
Namely, if this number of machines is at most τ , then the bound on the migration
factor is at most 2τ

ε
.

Configuration of a machine is an encoding of the multi-set of sizes of jobs L ∪M
that are scheduled on that machine. A configuration-IP means that we formulate a
feasibility integer program whose decision variables are associated with the possible
configurations, one variable per possible configuration, and a feasible solution for this
integer program defines the assignment of jobs fromL∪M to themachines not having
huge jobs. Recall that we insist on satisfying the invariants, so we define the set of
possible configurations as follows.

A set of jobs of load at most ( 32 + 3ε) · opt is a possible configuration that has
a corresponding decision variable. Furthermore, a pair of jobs where at least one of
those is large, is a possible configuration. Observe that two identical sized jobs is a
configuration that always satisfy the invariants, however, for a pair of distinct sized
jobs of total size larger than ( 32 +3ε) ·opt, they correspond to a possible configuration,
however, such configuration satisfies the invariants only if the sizes are consecutive
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in the sorted list of sizes and if this pair of sizes appears as a configuration of at most
one machine. While we will have a decision variable for every pair of jobs of distinct
sizes of total size larger than ( 32 + 3ε) · opt, we will enforce the invariants by placing
upper bound constraints on these variables where these upper bounds are either 0 or
1. We let P be the set of configurations of pair of jobs of distinct sizes with total size
larger than ( 32 + 3ε) ·opt, and we let C be the set of other possible configurations. For
a configuration C ∈ C ∪ P we assume that C is a vector that specifies the number of
jobs of each size in this configuration, and we let xC be the decision variable counting
the number of machines of this configuration. With respect to the current solution, let
μ be the number of machines that do not have a huge job (namely, μ = m −|H|), and
let n→ be the vector with a component for each size of job that will be either medium
or large (if it exists) whose corresponding value of this component is the number of
jobs in the instance of this size.

Now, we are ready to formulate the integer program that is a feasibility problem,
namely there is no objective function and the goal is to find a feasible integer solution
to the following set of constraints where for C ∈ P we let δ(C) be 1 if the two sizes
in C are currently consecutive in the list of distinct sizes of jobs in the current set of
L ∪ M and δ(C) = 0 otherwise.

∑
C∈P∪C xC = μ

∑
C∈P∪C C · xC = n→

xC ≤ δ(C) ∀C ∈ P
xC ≥ 0 ∀C ∈ P ∪ C .

We are going to use the following sensitivity analysis result for upper bounding
the change of feasible solutions due to bounded change of the right hand side. In our
setting the common objective function v is the zero vector so every feasible solution
is also optimal.

Theorem 3.8 [4] (see alsoCorollary 17.2a, [22])Let A be an integralm×d matrix such
that each sub-determinant of A is at most � in absolute value, let û and u′ be column
m-vectors, and let v be a row d-vector. Suppose max{vx |Ax ≤ û; x is integral} and
max{vx |Ax ≤ u′; x is integral} are finite. Then, for each optimum solution y of the
first maximum there exists an optimum solution y′ of the second maximum such that
||y − y′||∞ ≤ d�

(||û − u′||∞ + 2
)
.

Our use of this theorem is based on the following lemma.

Lemma 3.9 Let A be the constraint matrix of the configuration-IP. Then A has at most
O((log1+ε

1
ε
)2) rows, and at most O(( 2

ε
)log1+ε 1/ε) columns. Each entry of A is a non-

negative integer that is at most 2
ε
so the maximum absolute value of a sub-determinant

of A is at most

� ≤
(
2

ε

)O((log1+ε
1
ε
)2)

· O((log1+ε

1

ε
)O((log1+ε

1
ε
)2 .
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Furthermore, when a new job is released (and the value of opt stays without
changes), the configuration-IP is modified only through a change of the right hand
side such that the infinity norm of the change is 1.

Proof First consider the bounds on the matrix A. The number of rows in A is the
number of constraints excluding the non-negativity constraints, and if we denote by
ν the number of distinct sizes of jobs that are medium or large, then there is one row
for

∑
C∈P∪C xC = μ, there are ν rows for

∑
C∈P∪C C · xC = n→ and there are

O(ν2) rows for xC ≤ δ(C) ∀C ∈ P . The claim now follows since ν = O(log1+ε
1
ε
)

due to the rounding and the fact that medium and large jobs have sizes in the interval
(εopt,opt].

Next, consider the maximum entry of A, that is either 0 or 1 or represents the
number of medium or large jobs (of a common size) that can be scheduled on one
machine. Since the load of every machine is at most 2opt and the size of every such
job is at least εopt, we conclude that the maximum entry of A as well as the maximum
entry of every configuration is at most 2

ε
.

Now, consider the number of columns in A that is the number of possible config-
urations. These are a subset of vectors with ν components, where every component
is a non-negative integer that is at most 2

ε
. Thus, the claim regarding the number of

columns follows. The upper bound on � follows by the bound on the number of rows
of such sub-matrix and the bound on the maximum entry in A.

Last, consider the changes for the configuration-IP once a new job j is released
where this job is inH∪L∪M. If j is a huge job, then the only change is the decrease
of μ by 1, so the right hand side after j is released is changed from the right hand
side before its release by exactly one component that is decreased by 1, so the claim
is satisfied. If j ∈ L ∪ M, there might be two types of changes. The first change is
that the component of n→ corresponding to the size of j is increased by 1. The second
type of changes occur only if j is the first job in the instance of its (rounded) size. In
this last case the set of consecutive sizes of jobs is changing so at most three values of
δ are modified between 0 and 1 (at most two δ values are changed from 0 to 1, while
at most one value of δ is changed from 1 to 0). Observe that if j is tiny there are no
changes to the configuration-IP. ��

Our next goal is to establish the connection between feasible schedules that satisfy
the invariants and solutions for the configuration-IP. Given a feasible schedule of
non-huge jobs into μ machines that satisfy the invariants, we consider the schedule
of the large and medium jobs to these μ machines. Then, we use the definition of
components of a configuration in order to define a configuration for each machine.
After defining a configuration for each machine, we count the number of machines
of each configuration. We note that this is a feasible solution to the configuration-
IP as the constraint

∑
C∈P∪C xC = μ is satisfied as each machine has exactly one

configuration,
∑

C∈P∪C C · xC = n→ are satisfied as every job is scheduled to exactly
onemachine, and xC ≤ δ(C) are satisfied by the invariants. Thus, if prior to the release
of the current job, we have a schedule that satisfies the invariants, then this solution
implies a feasible solution for the configuration-IP.

Next, we modify the solution for the configuration-IP based on the new right
hand side (after the release of the current job). By Lemma 3.9, we conclude that
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the configuration-IP has a feasible solution such that the infinity norm of the differ-
ence between the old solution and the new solution is bounded by a constant that is
upper bounded by a function of ε, namely by 3d� where d = O(( 2

ε
)log1+ε 1/ε) and

� ≤ ( 2
ε

)O((log1+ε
1
ε
)2) · O((log1+ε

1
ε
)O((log1+ε

1
ε
)2 . We let τ = 3d� that is a constant.

We find a new solution for the configuration-IP with the modified right hand side such
that the infinity norm of its difference from the previous solution is bounded by τ as
follows. Observe that this norm difference is a linear inequality, so by imposing this
new linear inequality we get an integer program in fixed dimension and by solving it
using Lenstra’s algorithm [17, 18] we get the required solution for the modified right
hand side configuration-IP.

Next, wemodify the schedule of the non-huge jobs to correspond to the new solution
of the configuration-IP. Todo that,wedefine a set ofmachinesM ′ whose configurations
should change. We do this one configuration at a time, and when the new solution
has less machines with the current configurations (with respect to their number in
the old solution) then we pick a minimal set of machines of that configuration in
the old solution (so their number is exactly the difference of the two corresponding
variables in the two solutions) and we add those machines to M ′. All jobs previously
scheduled to M ′ will be re-scheduled and no other job will migrate. This is sufficient
for guaranteeing the constant migration factor as the set of machines M ′ has at most
3d� times the number of columns in A machines and this is a function of ε, and the
load of such machine was at most 2opt while the size of the new arriving job is at
least ε · opt. Rescheduling the jobs in M ′ is done as follows. If the new job is huge,
it means that one of the machines in M ′ is reserved to the new job, and the other
machines are available for the currently non-scheduled non-tiny jobs. The resulting
set of available machines without configuration is denoted as M ′′. Then, M ′′ is M ′
if the new job is non-huge or it has one machine less, if the new job is huge. Next,
we define a configuration to each machine in M ′′. The configurations are defined so
that the resulting number of machines of each configuration will be exactly the value
of the corresponding decision variable in the new solution (for the configuration-IP
with the new right hand side). By constraint

∑
C∈P∪C xC = μ, this is indeed possible.

Then, we allocate the non-scheduled non-tiny jobs to the machines in M ′′ based on the
configurations of these machines. Last, the tiny jobs that were used to be scheduled on
the machines in M ′ are re-inserted into the schedule while maintaining the invariants
as shown in Lemma 3.7. Indeed the new schedule satisfies the invariants and we can
continue to process the release of the next job.

We conclude the following result.

Theorem 3.10 For every ε > 0, there is a polynomial time algorithm whose competi-
tive ratio is 3

2 + ε and whose migration factor is bounded by a function of ε.

4 Algorithms with Constant AmortizedMigration

We have established the existence of a ( 32 + ε)-competitive algorithm with a constant
migration factor, and showed that there is no better than 3

2 competitive that maintains
a constant migration factor. In this section we analyze the impact of allowing constant
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amortizedmigration factor where the possibility tomigrate some jobs due to the arrival
of other jobs might be postponed to later iterations of the algorithm. More precisely,
in this section we design a polynomial time approximation scheme for Pr- min with
a constant amortized migration factor.

Let ε > 0 be such that 1
ε

≥ 2, so ε ≤ 1
2 .

Preliminaries: The Offline Problem. First, we discuss the offline problem and we
design a newPTAS for this problem such thatwewill be able tomaintain its outputwith
a constant amortized migration. Even though there are known approximation schemes
for Pr- min, it seems hard to adapt these schemes for the scenario with migration.

First, the size of every job is rounded up to the next integer power of 1 + ε. Next,
we consider the resulting rounded instance and let opt be the cost of an optimal
solution rounded up to the next integer power of 1 + ε. Observe that we can indeed
guess this value of opt in the offline settings as this value is either 0 or in the interval
[min j p j , (1 + ε) · ∑

j p j ].
Inwhat follows, wewill use the fact that we can find an approximated solution to the

rounded instance and obtain a PTAS for that. The solution constructed for the rounded
instance is the output of the PTAS for the original instance though the competitive
ratio is increased by a multiplicative factor of 1 + ε. Thus, without loss of generality
we assume that the original instance is already rounded and p j is the (rounded) size
of job j .

Next, we note that every job of size larger thanoptmust be scheduled on a dedicated
machine by any optimal solution for the problem. Letting H be the subset of jobs of
size larger than opt, we denote μ = m −|H|. We place every job ofH on a dedicated
machine and later we will schedule all other jobs (jobs not in H) on the μ other
machines. Let J ′ be the set of remaining jobs (the ones not in H). We define a valid
lower bound on the optimal cost:

LB =
∑

j∈J ′ p j

2μ
.

Lemma 4.1 We have that LB ≤ opt ≤ 2 · (1 + ε) · LB.
Proof The inequality LB ≤ opt follows, as each machine in the optimal solution that
does not contain a job inH (there areμ suchmachines) has only jobs from J ′ and their
total size is at most 2opt. Thus, by summing over all these machines we conclude that
∑

j∈J ′ p j ≤ 2μ · opt and thus LB =
∑

j∈J ′ p j

2μ ≤ opt.
The inequality opt ≤ 2 · (1+ ε) · LB will follow as we next establish the existence

of a feasible solution of the jobs in J ′ on μ machines with cost of at most 2 · LB. We
sort the jobs in non-increasing order of their size and schedule them to the machines in
a next-fit way as follows. At each point in time the procedure has one open machine,
and the next job (in the sorted list) is scheduled there. If the total size of jobs on this
machine has exceeded the value of 2 · LB, then this machine is closed and a new
machine is defined as an open machine. Note that every closed machine has total
size of jobs of more than 2 · LB but its cost is at most 2 · LB. Thus, all jobs of J ′
are assigned before we close the last machine among the available μ machines. The
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resulting feasible solution shows that the optimal one has cost of at most 2 · LB, and
thus after rounding the optimal cost we get at most 2 · (1 + ε) · LB as required. ��

In order to present the remaining steps of the scheme, we will use a value LB such
that LB ≤ opt ≤ 2 · (1 + ε) · LB. One such choice of LB is given above, but any
other formula that can be computed in polynomial time and satisfies this inequality is
sufficient for the correctness of our PTAS as we show next and use later.

The jobs in H will be called huge jobs and J ′ is the set of non-huge jobs. We
let LB ′ be a rounded up value of LB to the next integer power of 1 + ε. Since opt
is also an integer power of 1 + ε, and the value is rounded up, we conclude that
LB ′ ≤ opt ≤ 2 · (1+ ε) · LB ′. Define a job j as a small job if its size is smaller than
ε2 · LB ′, and large if its size is in the interval [ε2 · LB ′,opt]. Our scheme finds the
value of LB ′, and based on that value partitions the jobs of J ′ into small and large
as follows. Based on the last lemma, the number of distinct sizes of large jobs is a
constant (it is at most log1+ε

2
ε2

+ 2) that we denote as ψ .
The next step is to pack the small jobs into bundles. The size of each bundle is

ε · LB ′ and this is an upper bound on the total size of small jobs packed into the
bundle. We pack the small jobs into bundles using Next-Fit. That is, in every step (if
there are small jobs) we have an open bundle that is used to pack the next small job,
and the first such bundle is opened for the first small job. If the total size of jobs in
the open bundle is at least ε · LB ′ − ε2 · LB ′, this open bundle is closed and a new
bundle is opened (and declared as the open bundle). We note that scheduling the large
jobs and bundles into μ machines can be done with cost of at most (1 + 5ε) · opt as
we show next. In what follows, we say that we schedule a bundle on a machine and
mean that we schedule the entire set of small jobs packed into this bundle on the same
machine.

Lemma 4.2 There is a feasible solution of cost at most (1 + 5ε) · opt that schedules
the bundles and large jobs on μ machines.

Proof First, we modify the solution such that the assignment of large jobs is the same
as in the optimal solution while the assignment of small jobs is modified as follows.
For a machine that used to obtain small jobs of total size σ , we assign some bundles,
so that if σ = 0, then the number of bundles is 0, while if σ > 0, the number of
bundles assigned to this machine is  σ

ε·LB′−ε2·LB′ � + 1. Observe that the number of

closed bundles is at most the total size of small jobs divided by ε · LB ′ − ε2 · LB ′ and
since there is at least one machine for which σ > 0 we will have an available slot for
the open bundle as well. Moreover, in the case σ > 0, the machine with these jobs
has completion time of at least σ , and its smallest job has size at most ε2 · opt, and
therefore, the cost for this machine is at least σ − ε2opt, so opt ≥ σ − ε2opt, and
therefore σ ≤ (1 + ε2)opt.

For a machine that contained no small jobs in the optimal solution, we have a
cost that equals the cost of the optimal solution on that machine (and in particular at
most opt). For a machine that in the optimal solution contained small jobs of total
size σ > 0, the total size of jobs assigned to that machines in the optimal solution
is at most (1 + ε2) · opt (as it contained a small job), while we schedule jobs and

bundles of total size at most (1 + ε2) · opt − σ +
(
 σ

ε·LB′−ε2·LB′ � + 1
)

· ε · LB ′ ≤
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(1 + ε2) · opt + σ(−1 + 1
1−ε

) + 2ε · LB ′ ≤ (1 + ε2 + 4ε) · opt. The last inequality
holds using σ ≤ (1 + ε2)opt and LB ′ ≤ opt, and by ε2 ≤ ε

4 (since ε ≤ 1
2 ), and we

get at most (1 + 5ε) · opt. ��
Next,we consider the problemof placing the large jobs andbundles intoμmachines.

We formulate this problem as a configuration IP that will be an integer program of
fixed dimension with ψ + 2 constraints (excluding the non-negativity constraints on
all variables). While the configuration IP of this section is similar to the one of the
previous section, these are not the same ones. The decision variables of this integer
program are once again counters of the number of machines of a given configuration.
That is, we define a configuration of a machine in a schedule as a vector with ψ + 1
components, the first ψ components are the number of jobs of each size of large jobs
that are scheduled on the machine, while the last component is the number of bundles
which are scheduled on this machine. If the number of bundles of a given configuration
is at least 1, we say that the cost of the configuration is the total size of jobs and bundles
on this machine, while if the number of bundles is zero, then we compute the total size
of jobs excluding one large job of the smallest size whose corresponding component
(in the configuration vector) is non-zero. In order to solve the problem, by Lemma 4.2,
it suffices to consider the set of configurations C whose costs are at most (1+ 6ε)opt.

The constraints of this configuration IP are as follows. First, the sum of the decision
variables is μ, second, the sum of the product of the configuration and the decision
variable counting the number of machines with this configuration is equal to the
number of large jobs and bundles of the corresponding sizes. Thus, if we denote by
n→ the vector of dimensionψ +1 specifying the number of large jobs of each size and
the number of bundles, and we denote by xC the decision variable of the configuration
IP for configuration C , then the configuration IP is to find a feasible solution for the
following integer program.

∑
C∈C xC = μ

∑
C∈C C · xC = n→

xC ≥ 0 ∀C ∈ C.

Since the number of large jobs and bundles in such configurations is upper bounded
by a constant (at most 5

ε2
, since the total size of jobs assigned to a machine is at most

opt · (1+ 6ε)+opt ≤ 5 · LB ′, where the smallest job size is ε2 · LB ′), the number of
configurations is also a constant. Thus, the integer programcan be solved in polynomial
time. To obtain an actual schedule, we can assign the large jobs and bundles according
to the optimal solution of this integer program, and the resulting cost does not exceed
the maximum cost of a configuration of the IP. This concludes the description of the
offline PTAS.

Transforming the Offline PTAS into a PTASwith Constant AmortizedMigration
Factor.Wewould like to obtain an algorithm that imitates the offline PTAS. Here, it is
also assumed that all job sizes are powers of (1+ ε), by rounding the sizes and never
considering the original sizes. The value opt is still the optimal cost for the rounded
sizes, also rounded up to the next power of (1+ ε), where jobs are considered as they
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are, without bundles. The value opt is monotonically non-decreasing throughout the
execution since the set of jobs is only augmented along time. However, in order to
obtain a schedule, the small jobs are assigned to bundles. Such bundles are treated as
jobs for the purpose of assignment, exactly as in the offline version of the PTAS. The
algorithm often assigns small jobs to an existing bundle, and occasionally it opens a
new bundle, at times explained below.

Similarly, we keep track of the value of LB in every prefix of the input, and note
that by the monotonicity of the optimal cost, we can revise the definition of LB that
will be the maximum value of this parameter corresponding to a prefix of the current
input. Once using this new definition for the value of LB, we let LB ′ be the value of
LB rounded up to the next integer power of 1+ε. Since the value of opt is monotone,
we maintain the required property that LB ≤ opt ≤ 2 · (1 + ε)LB, and since opt is
an integer power of 1+ ε then LB ′ ≤ opt ≤ 2 · (1+ ε) · LB ′. Thus, as mentioned in
the offline case, the resulting algorithm with this definition of LB is indeed a PTAS.
Furthermore, in iterations in which LB ′ changes, it increases by amultiplicative factor
of at least 1 + ε and cannot decrease. Furthermore, in such step the value of LB is

defined as LB =
∑

j∈J ′ p j

2μ (and it is not defined as the outcome of this formula for a
strict prefix of the current input sequence).

In each step, the solution will be a suitable output of the PTAS. We have iterations
in steady states and once in a while we have an iteration in a non-steady state. A steady
state is as long as there are no changes in the crucial values: opt, LB ′, and μ, where
a change in opt may trigger a change in the setH, resulting in a change in the values
μ and LB ′ (and the value LB ′ may change even without a change in H), and we
will also consider such situations of non-steady state. In the steady state, there will be
changes in the set of jobs due to arrivals of jobs, which require modifications of the
schedule. The value LB ′ is a power of 1 + ε and thus it is possible that an arrival of
a job will not change it. Since opt will never decrease, jobs that are not new cannot
be inserted back to H. It is possible that a job moves from H to J ′ after an increase
in the value opt (in which case the value of μ increases), and it is also possible that
a new job joins H, such that the value of μ decreases by 1. We use the monotonicity
assumption of LB that holds by its modified definition to conclude that the value of
LB ′ never decreases.

Our constant amortized migration scheme is divided into phases where a phase
is a maximal consecutive set of jobs in the input sequence for which the value of
LB ′ is the same. Observe that the value of LB ′ can only increase and in every such
increase its value is increased by a multiplicative factor of (at least) 1 + ε. In every
such increase of LB ′ our scheme reschedules all jobs in J ′ on μ machines (both J ′
and μ are the values of these arguments after considering the new job as well) using
the offline approximation scheme (using the modified definition of LB, but in such
steps this new definition is the same as the original one). In such events the set of
migrated jobs might be the entire set J ′. In particular in such iteration all bundles are
split and created from scratch.

Furthermore, in every phase, when the offline approximation scheme is about to
open the first new bundle during the current phase, we reschedule all jobs of J ′
according to the offline approximation scheme. These are the events in which we
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reschedule all jobs of the current J ′ using the amortized migration power of jobs that
had arrived or moved fromH to J ′ during the last few phases. Next, we upper bound
the impact on the amortized migration factor due to these rescheduling events.

Lemma 4.3 Let J̃ be the set of jobs J ′ at the end of phase i (and without the job that
arrives and causes the start of phase i + 1), and let S be the set of jobs that either
arrive during phase i or moved from H to J ′ during phase i including the job that

causes the start of phase i + 1. Then,
∑

j∈ J̃ p j ≤ 16·∑ j∈S p j

ε
.

Proof Let μi−1, μi be the value of μ at the end of phase i − 1 and after the first job of
phase i +1, respectively. First assume thatμi ≤ (1− ε

3 ) ·μi−1 orμi ≥ (1+ ε
3 ) ·μi−1.

Then in the set S there are at least ε
4 · μi jobs that were either inH at the end of phase

i − 1 and were moved to J ′ until the first iteration of phase i + 1 or jobs that arrived
during this period and were added to H upon arrival. These jobs are of sizes at least
LB ′ (that is the value of LB ′ during the i-th phase). Thus, the total size of these jobs is
at least ε

4 ·μi ·LB ′, while by Lemma 4.1 the total size of jobs in J̃ is at most 4 ·LB ′ ·μi

and the claim follows in this case.
Thus, in the remaining case we assume that (1+ ε

3 ) · μi−1 > μi > (1− ε
3 ) · μi−1.

Let Ĵ be the set of jobs J ′ at the end of phase i−1. Then, we know that Ĵ ⊆ J̃ ⊆ S∪ Ĵ .
We know that the value of LB ′′ that is defined using the original formula for LB (that

need not be monotone) at the end of phase i − 1 is
∑

j∈ Ĵ p j

2μi−1
≤ (1+ ε

3 )·∑ j∈ Ĵ p j

2μi
and thus

the value of 2μi ·LB ′′ at the end of phase i−1 is atmost (1+ ε
3 )·

∑
j∈ Ĵ p j . On the other

hand, the value of LB ′′ after the first iteration of phase i + 1 (and since LB ′ increases
at this iteration, we conclude that LB ′′ = LB) is at least (1+ε) times the value of LB ′′

at the end of phase i − 1 that is at least (1+ ε) ·
∑

j∈ Ĵ p j

2μi−1
≥ (1+ ε) · (1− ε

3 ) ·
∑

j∈ Ĵ p j

2μi
.

Therefore, after the first iteration of phase i+1 the value of 2μi ·LB ′′ that by definition
is

∑
j∈ J̃∪S p j satisfies that it is at least (1 + ε) · (1 − ε

3 ) · ∑
j∈ Ĵ p j . By J̃ ⊆ S ∪ Ĵ ,

we conclude that
∑

j∈S p j ≥ ∑
j∈ J̃∪S p j − ∑

j∈ Ĵ p j ≥ [
(1 + ε) · (1 − ε

3 ) − 1
] ·

∑
j∈ Ĵ p j ≥ ε

3 · ∑
j∈ Ĵ p j and the claim follows in this case as well. ��

Thus, the rescheduling of the jobs of J ′ at most twice in every phase could be
charged to the jobs that arrive (or moved to J ′) in phases i , i −1 and i −2 so every job
is charged at most six times for these operations. Thus, in order to maintain a constant
amortized migration it suffices to consider iterations in which the value of LB ′ is not
changed and these iterations are not the first times of their phase in which we open a
new bundle for small jobs.

In order to analyze the migrations in other cases, we are going to use the sensitivity
result for integer programming, namely Theorem 3.8 with respect to a change of
the right hand side of the configuration IP. Our modifications of the right hand side
will have an infinity norm of 1, so in order to bound the change of the solution
for the configuration IP, we need to bound the parameters of its constraint matrix.
Let A be the constraint matrix of the configuration IP (of this section). Then, in A
there are ψ + 2 rows, that is, at most log1+ε

2
ε2

+ 4 rows, and each component is at

most 5
ε2
. Furthermore, the number of columns in A is the number of configurations

that is at most the number of non-negative integer vectors with ψ + 1 components
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where every component is at most 5
ε2
. Thus, the number of columns in A is at most

d ≤
(

5
ε2

+ 1
)log1+ε

2
ε2

+3
. The maximum absolute value of a sub-determinant of A

is at most � ≤
(

5
ε2

· (log1+ε
2
ε2

+ 3)
)log1+ε

2
ε2

+3
. By Theorem 3.8, if the infinity

norm of the change of the right hand side of the configuration IP is at most 1, then
there is a new solution (with respect to the modified right hand side) whose distance

in the 1-norm from the old solution is at most 3d2� ≤ 3 ·
(

5
ε2

+ 1
)2·(log1+ε

2
ε2

+3) ·
(

5
ε2

· (log1+ε
2
ε2

+ 3)
)log1+ε

2
ε2

+3
. We denote this constant (depending on ε) by φ.

In each such iteration in which the value of opt increases, some jobs may move
from H to J ′. We first consider the previous solution of the configuration IP with
respect to the new value of opt. This interpretation does not cause any migration. It
simply means adding more configurations to C with zero valued decision variables,
and considering the jobs that were moved from H to J ′ as jobs which are scheduled
according to the configurations of scheduling each such job on a dedicated machine.
Next, we consider the maintenance of the solution upon arrival of a new job where
both LB ′ and opt are not changed.

First, if the new job is a small job, then we pack it into an open bundle (this
operation does not cause migration of jobs), and if we need to open a new bundle, it
means that the right hand side of the configuration IP is changed by an additive +1
in the component of the constraint saying that we need to schedule all bundles. The
resulting integer program is solved optimally and using the sensitivity theorem for
integer programming, that is, Theorem 3.8 we conclude that we need to reschedule
jobs on a constant number of machines (among the μ machines for non-huge jobs).
This rescheduling of a constant number of machines is charged to the small jobs of
the bundle we have closed while we open the new bundle for small jobs.

Next, consider the case where the new job is a huge job, then in this case we need to
release one machine for this new coming job. To do that we modify the right hand side
of the configuration IP by decreasing the number of available machines for scheduling
all large and small jobs (i.e., the right hand side of the first constraint) to μ − 1. Once
again using Theorem 3.8 we conclude that we need to reschedule jobs on a constant
number of machines and this rescheduling of jobs is charged to the new coming job
(of size at least LB ′).

Last, consider the case that the new arriving job is a large job. We modify the right
hand side of the configuration IP by increasing by 1 the number of jobs of the size
of the new job. Once again by Theorem 3.8, we conclude that we need to reschedule
jobs on a constant number of machines and this rescheduling of jobs is charged to the
new coming job (of size at least ε2 · LB ′).

In all cases, we modify the schedule of a φ number of machines whose jobs are
from J ′ (each of these machines has jobs of total size at most 6 · LB ′) and charge
this rescheduling operation to a set of jobs of total size at least ε2 · LB ′, and each job
is charged at most once for these operations. Thus, we incur an amortized migration
factor of 6φ

ε2
due to these iterations. The total amortized migration factor is this value

plus the one due to the charging of a new phase and the first time we open a new bundle
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in a phase (of at most 96
ε
). Thus, the amortized migration factor is at most 7φ

ε2
, and we

conclude the following result.

Theorem 4.4 For every ε > 0, there is a polynomial time algorithmwhose competitive
ratio is at most 1 + ε and whose amortized migration factor is upper bounded by a
constant.

We note that in iterations where we do not perform rescheduling of the entire set
J ′, the value of LB ′ is not modified and thus the partition of jobs into large and small
does not change including the definition of bundles so we can indeed maintain the
property that in every step there is at most one open bundle for small jobs and there is
such a bundle only if the instance so far has at least one small job.
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