
Algorithmica (2023) 85:2318–2347
https://doi.org/10.1007/s00453-023-01096-1

A Color-Avoiding Approach to Subgraph Counting in
Bounded Expansion Classes

Felix Reidl1 · Blair D. Sullivan2

Received: 22 November 2021 / Accepted: 4 January 2023 / Published online: 3 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
We present an algorithm to count the number of occurrences of a pattern graph H
on h vertices as an induced subgraph in a host graph G. If G belongs to a bounded
expansion class, the algorithm runs in linear time, if G belongs to a nowhere dense
class it runs in almost-linear time. Our design choices are motivated by the need for
an approach that can be engineered into a practical implementation for sparse host
graphs. Specifically, we introduce a decomposition of the pattern H called a count-
ing dag �C(H) which encodes an order-aware, inclusion-exclusion counting method
for H . Given such a counting dag and a suitable linear ordering G of G as input, our
algorithm can count the number of times H appears as an induced subgraph in G
in time O(‖ �C‖ · h wcolh(G)h−1|G|), where wcolh(G) denotes the maximum size of
the weakly h-reachable sets in G. This implies, combined with previous results, an
algorithm with running time O((3h2 wcolh(G))h2 |G|) which only takes H and G as
input. We note that with a small modification, our algorithm can instead use strongly
h-reachable sets with running time O(‖ �C‖ · h colh(G)h−1|G|), resulting in an overall
complexity of O(h(3 colh(G))h2 |G|) when only given H and G. Because order-
ings with small weakly/strongly reachable sets can be computed relatively efficiently
in practice (Nadara et al.: in J Exp Algorithmics 103:14:1–14:16, 2018), our algo-
rithm provides a promising alternative to algorithms using the traditional p-treedepth
coloring framework (O’Brien and Sullivan in: Experimental evaluation of counting
subgraph isomorphisms in classes of bounded expansion, CoRR, arXiv:1712.06690,
2017).We describe preliminary experimental results from an initial open source imple-
mentation which highlight its potential.

B Felix Reidl
f.reidl@dcs.bbk.ac.uk

Blair D. Sullivan
sullivan@cs.utah.edu

1 Birkbeck, University of London, London, UK

2 School of Computing, University of Utah, Salt Lake City, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01096-1&domain=pdf
http://orcid.org/0000-0002-2354-3003
http://arxiv.org/abs/1712.06690

Algorithmica (2023) 85:2318–2347 2319

Keyword Sparse graphs · Subgraph counting · Bounded expansion ·Weak coloring
number · Strong coloring number

1 Introduction

We consider the problem of counting the number of times a pattern graph H appears
in a host graph G as an induced subgraph. Without any restrictions on G, this problem
is already difficult for very simple H : Flum and Grohe [10] showed that it is #W[1]-
complete when H is a clique and Chen, Thurley, and Weyer showed that it is #W[1]-
complete when it is a path [2] (a related result by Chen and Flum shows that counting
maximal paths is #W[1]-hard). That is, there is little hope for algorithms with running
time f (|H |) · poly|G| for these problems unless e.g. counting satisfying assignments
of a 3-CNF formula is possible in time 2o(n) (further details on parameterized counting
classes can be found in Flum and Grohe’s book [11]).

The situation is less glum when we restrict ourselves to sparse host graphs. For
example, Eppstein, Löffler, and Strash showed that enumerating all cliques in a d-
degenerate host graph G is possible in time O(d · 3d/3|G|) [8]. More generally, we
can count any pattern graph H on h vertices in time O(f (h) · |G|) provided that G
is taken from a graph class of bounded expansion (where f depends on the class) and
time O(f (h) · |G|1+o(1)) if it is taken from a nowhere dense graph class. These two
classes generalize well-known notions like classes excluding a (topological) minor or
classes of bounded degree and are therefore attractive targets for algorithmic research.

Intuitively, bounded expansion classes have the property that they have bounded
average degree and this property is maintained when taking a minor of bounded depth
(also called a shallow minor), meaning a minor whose branch sets are bounded by a
constant (the ‘depth’). The average degree of the graphs that can be obtained by such
an operation is then only a function of the original graph class and the depth of the
minor. Nowhere dense classes are similar, but instead of the average degree we have
that the clique number remains constant under this operation. Classes with bounded
expansion are degenerate, but there are degenerate classes that do not have bounded
expansion (the simplest example are one-subdivision of complete graphs which are 2-
degenerate but have neither bounded expansion nor are they nowhere dense). Nowhere
dense classes generalise bounded expansion classes and allow a (slightly) superlinear
number of edges, as such these classes are incomparable with degenerate classes.

In summary, bounded expansion is a very general notion of sparseness that allows us
to design linear-time algorithms for problems that, in all likelihood, do not admit linear-
time algorithms on general graphs. Moreover, we have evidence based on random
graph models [3, 9, 22] as well as measurements [4, 17] that at least some types of
networks can be described as “having bounded expansion”.1 We therefore believe that
algorithm based on the bounded expansion toolkit can be useful to analyse real-world
data, though making these algorithms practical is not without challenges.

1 Since bounded expansion is a property of graph classes, this statement is of course not mathematically
rigorous. See Sect. 5 for a brief discussion on this topic.

123

2320 Algorithmica (2023) 85:2318–2347

Case in point, the two existing types of approaches to count substructures in bounded
expansion classes have not shown much promise in practice. One class of algorithms
is based on so-called p-treedepth colorings: given a class G of bounded expansion we
can color any G ∈ G in time f (p) · |G| with f (p) colors so that any subgraph of
G with i < p colors has treedepth ≤ i . By computing an h-treedepth coloring this
effectively reduces the problem to counting H in a graph G ′ of treedepth t ≤ |H |.
Ossona deMendez and Nešetřil, who also introduced the notion of bounded expansion
[18] and nowhere dense classes [19], presented an algorithm for this latter step with a
running time of O(2ht ht · |G ′|) [20]; with Demaine, Rossmanith, Sánchez Villaamil,
and Sikdar we later improved this to O((6t)hh2 · |G ′|) [3]. Using this subroutine,
we can count occurrences of H in G by first computing an h-treedepth coloring with
f ′(h) colors, then iterate through all

∑h
i=1

(f ′(h)
i

)
color combinations and count in the

aforementioned time the number of times H appears in the subgraph G ′ induced by
these colors. The final count is then computed via inclusion-exclusion over the counts
obtained for the color sets.

While conceptually simple, it turns out that these algorithms are currently imprac-
tical: a) computing h-treedepth colorings is currently computationally quite expensive
and b) the number of colors f ′(h) is so big that already the act of enumerating all rele-
vant color subsets takes too long [21]. It turns out that the underlying technique for these
algorithms—so-called transitive-fraternal augmentations [20] (tf-augmentations) with
some practical improvements [21, 22]—also lies at the heart of the other available tech-
nique. Kazana and Segoufin used tf-augmentations to enumerate first-order queries
with constant delay (or to count such queries in linear time) in classes with bounded
expansion [14] andDvořák and Tůma designed a dynamic data structure2 to count sub-
graphs with amortized polylogarithmic updates [7]. The latter approach also has the
drawback that in order to count induced subgraphs, one must perform a big inclusion-
exclusion over all supergraphs of the pattern.3

Despite our best efforts to make tf-augmentations practical, so far they seem to be
only useful in very tame settings like bounded-degree graphs [1]. It is thus natural to ask
whether we can solve the subgraph-counting problem without relying on p-treedepth
colorings or even tf-augmentations. In particular, the computation of so-called general-
ized coloring numbers (a set of graphmeasures introduced by Kierstead and Yang [15]
which provide an alternative characterisation of bounded expansion/nowhere dense
classes [24]), appears much more feasible in practice [17], and offers an attractive
ordering-based alternative.

Our contribution here is to provide an algorithm to count induced subgraphs which
is solely based on the weak coloring number (or the coloring number). At a high level,
we do this by using a suitable linear order of the host graph and counting how often
each of the possible pattern graph orders appears in it.4 The crucial insight here is that
under some orderings, the pattern graph can only appear inside certain neighborhood-

2 To be precise this data structure only uses fraternal augmentations.
3 Consider, for example, the graphs we need to count in order to compute the number of P4s in a graph
(Fig. 2). This list excludes e.g. K4.
4 We view these orderings as a type of graph decomposition and therefore assume they are part of the input.
See the Preliminaries for a discussion on how a suitable ordering can be computed efficiently in theory and
a discussion of practical approaches in Sect. 5.

123

Algorithmica (2023) 85:2318–2347 2321

subsets and that all other orderings can be reduced to these easily countable cases
via inclusion-exclusion style arguments. Note that in contrast to Dvořák and Tůma’s
approach, the objects in our inclusion–exclusion are specific ordered graphs and we
can therefore avoid counting all supergraphs of the pattern.

In order to establish the practicality of our approach, we implemented a prototype
of the entire algorithmic pipeline described in this paper using a combination of Rust
and Python. The code is available under a BSD 3-clause license at http://www.github.
com/theoryinpractice/mandoline.

We begin in Sect. 2 by providing necessary definitions and notation related to
ordered graphs, reachability and bounded expansion. We then describe our approach
to decomposing the pattern graph and combining counts of partial matches in Sect. 3.
We combine these subroutines with a new data structure in Sect. 4 to form the basis of
our linear-fpt algorithm. Finally, in Sect. 5, we briefly discuss our experimental results
and future work.

2 Preliminaries

Webeginwith a high-level description of howour algorithmworks, in order tomotivate
the technical concepts and notation defined in this section. To that end, let us first review
how complete subgraphs can be counted in linear time in a d-degenerate graph G: We
first compute a degeneracy ordering ofG, meaning that every vertex v has atmost d left
neighbors N−(v) i.e. neighbors of v that appear before v in the ordering. Assume some
vertex set X ⊆ V (G) induces a complete subgraph Kt inG. Letv ∈ X be the last vertex
of X in the ordering, then note that X ⊆ N−(v) ∪ {v}. Accordingly, we can count all
complete subgraphs in G by exhaustively searching every left-neighborhood N−(v)∪
{v} for every vertex v ∈ G and tally up the results.

In order to extend this algorithm, we need to generalise it in two directions. First,
instead of using degeneracy orderings and left neighborhoods we will use weak r-
coloring orderings and the related weakly r-reachable sets. Similar to the clique
example, we find that for some pattern graphs H it is enough to search the weakly
r -reachable set of each vertex to locate H . For other patterns, however, we can only
locate pieces of the pattern and we need to combine these pieces in order to count
appearances of H .

More specifically, our algorithm enumerates all possible orderings of the pattern H
and counts how often the pattern appears in this order inside the ordered host graph.
For most ordered patterns, the algorithm needs to decompose the pattern into pieces, a
process that depends on both the ordering of the pattern as well as certain connectivity
properties of the pattern itself. This is formalized by the notion of tree ordered graphs
and relaxations below. The tree order informs how an ordered pattern needs to be
decomposed into piece-sums, that is, a collection of pieces whose respective counts in
the host graph can be combined to compute the number of times the ordered pattern
appears.

Finally, the above process needs to be corrected as it will also count certain sub-
graphs which are not isomorphic to the pattern. We call these graphs defects—in short
these graphs contain all the necessary pieces that we identified in the decomposition

123

http://www.github.com/theoryinpractice/mandoline
http://www.github.com/theoryinpractice/mandoline

2322 Algorithmica (2023) 85:2318–2347

of the pattern, but in such a way that pieces either share vertices or are connected by
edges and hence do not form the sought pattern. In order to describe defects precisely,
we introduce the notation of embeddings of tree-ordered graphs below. Our algorithm
counts defects by the same procedure as it counts the patterns, i.e. it decomposes them
into pieces and counts those individually, this in turn generates further defects to be
counted etc. This recursion terminates since at every step the defects become denser
and “more linear”.

2.1 General Notation

We frequently use the notation [n] := {1, . . . , n} for natural numbers n. The symbol •
is reserved for variables whose value is unimportant in this contex, we write e.g. f (•)
to emphasise that f has a single argument. In the proof of Lemma 6 we make heavy
use of Iverson brackets: for any predicate S the expression �S� evaluates to 1 if S is
true and 0 otherwise.

2.2 Trees

All trees in this paper will be assumed to be rooted. In particular, a subtree is always
a rooted subtree. For a tree T , we write root(T) to denote its root and leaves(T) to
denote its leaves. The root path rpathT (x) for a node x ∈ T is the unique path from
root(T) to x in T .

The ancestor relationship �anc
T of a tree T is the partial order defined via

x �anc
T y ⇐⇒ x ∈ rpathT (y).

2.3 Partial and Total Orders

We will use the symbol � to denote partial orders and the symbol ≺ to denote the
relation (x � y)∧ (x
= y). Given a partial order � over S, its digraph representation
is a dag with vertices S and arcs {xy ∈ S × S | x ≺ y}.

The principal digraph of a partial order � over S is the dag with vertices S and the
arcs

{xy ∈ S × S | x ≺ y and there is no z ∈ S with x ≺ z ≺ y}

Note that if �D is the principal digraph of �, S; then the transitive closure of �D is the
digraph representation of �, S.

A partial order � over S is a tree if is has a unique minimum and if for every
element x ∈ S, the set {y | y � x} is well-ordered by �. Alternatively, � is a tree
if its principal digraph is a directed tree, e.g. all arcs are oriented away from the root
node.

A linear extension of � is a total order ≤ such that x � y implies x ≤ y. The
linear extensions of � are precisely the topological orderings of either its digraph
representation or its principal digraph.

123

Algorithmica (2023) 85:2318–2347 2323

2.4 Ordered Graphs

A tree ordered graph (tog) G = (G,�) is a graph whose vertex set V (G) := V (G)

is imbued with a (partial) order relation � with the following properties:

1. The relation � is a tree order.
2. The relation E(G) is guarded by �: for every edge uv ∈ E(G) it holds that either

u � v or v � u.

We define T (G) to be the tree-representation of � with node set V (G). We extend the
notions andnotationof roots, leaves, and root-paths to togs via root(G) := root(T (G)),
leaves(G) := leaves(T (G)), and rpathG(•) = rpathT (G)(•). Given a tog G we write
�G to denote its tree-order relation and we will use the notation u ≺G v to mean that
u �G v and u
= v. An ordered vertex set x̄ := x1, . . . , x� of a tog G is a sequence
of vertices which satisfies x1 ≺G x2 ≺G . . . ≺G x�. The length of an ordered vertex
set x̄ is the number of elements in it. We use the symbol ∅ to denote both the empty
set and the empty ordered vertex set and make sure it is clear from the context which
is meant.

If �G is a total order we call G a linear graph. We will use the symbol G (instead
of G) and ≤G (instead of �G) in cases were we want to emphasize that the ordering
is linear. For a given graph G we write �(G) for the set of all linear graphs obtained
from G by permuting its vertex set.

A tog isomorphism H � G is a bijection between the vertex sets of H and G that
preserves both the edge and the ordering relations. Given a vertex set X ⊆ V (G)

with a unique minimum under �G, the tog induced by X , denoted byG[X], is the tog
(G[X],�G |X). Note that we need X to have a unique minimum in order to ensure
that �G |X is still a tree order. Since �G guards the edge relation E(G) this is already
true if G[X] is connected. In general, a tog H is an induced subtog of a tog G if there
exists a vertex set X such that H � G[X] and we write H ⊆ G.

The stem of a tog G is the ordered set x̄ of maximal length such that x̄ is linearly
ordered under �G and max x̄ �G u for all vertices u ∈ V (G)− x̄ . If we visualize �G
as a tree then the stem is the path from the root to the first node with more than one
child.

We say that a tog H embeds into a tog G if there exists an induced subgraph
isomorphism φ from H to G that further satisfies

u �H v �⇒ φ(u) �G φ(v)

and we write H
φ

↪−→ G. If we do not need to asign a variable for the embedding, we
will simply write H ↪−→ G or, in cases where we want specify that the embedding

maps stem-vertices x̄ of H onto ȳ in G, we write H
x̄ �→ ȳ

↪−−−→ G.

We further write H
φ
↪−� G if H

φ
↪−→ G and φ is an isomorphism between H and G,

we will call such embeddings strict. Again, we simply write H ↪−� G to denote that

such a strict embedding exists or H
x̄ �→ ȳ
↪−−−� G if we want to specify the mapping of

stem-vertices.

123

2324 Algorithmica (2023) 85:2318–2347

For a vertex set X ⊆ V (G), we let minG X and maxG X be the minimum and
maximum according to �G (if they exist). We extend this notation to subtogs via
minG H := minG V (H) and maxG H := maxG V (H). We observe that minima are
preserved by tog embeddings:

Observation 1 Let H
φ

↪−→ G and let H′ ⊆ H. Then minG φ(H′) = φ(minH H′).

Proof Since H′ is a subtog of H the minimum minH H′ exists. From minH H′ �H u
for every u ∈ H′ and the fact that φ is an embedding we conclude that φ(minH H′) �G
φ(u) for every u ∈ H′. Therefore minG φ(H′) = φ(minH H′). ��
This in particular implies that embeddings preserve ordered vertex sets: if x̄ is an

ordered vertex set of H and H
φ

↪−→ G, then φ(x̄) is an ordered vertex set of G.
Similarly, if x̄ is the stem of H and ȳ is the stem of G then φ(x̄) is a prefix of ȳ.

Finally, we note that embeddings are transitive:

Observation 2 If K
φ

↪−→ H and H
ψ

↪−→ G then K
ψ ◦ φ

↪−−−→ G.

The notion of elimination trees (known also under the name treedepth decomposition
and many others) connects tree ordered graphs to linearly ordered graphs.

Definition 1 (Elimination tree) Given a connected linearly ordered graphH, the elimi-
nation treeET(H) is defined recursively as follows:Let x := minH and letK1, . . . ,Ks

be the connected components of H − x . Then ET(H) has x as its root with the roots
of ET(K1), . . . ,ET(Ks) as its children.

Definition 2 (Tree order relaxation) Given a connected linearly ordered graph H and
its elimination tree T := ET(H), we define its tree order relaxation as the tog
relax(H) = (H ,�anc

T).

Observe that relax(H) ↪−� H and these embeddings have the stem of relax(H) as fixed
points.

Definition 3 (Elimination-ordered graph (etog)) A togH for which there exists a linear
graph H such that relax(H) = H is called an elimination-ordered graph (etog).

Lemma 1 Let H = relax(H) be a tree order relaxation of a connected linear graph
H. Then for every pair of vertices x, y ∈ V (H) it holds that that x �H y if and only
if there exists an x–y-path P with minH P = x.

Proof Let T = ET(H) be the elimination tree whose ancestor relationship defines
�H. First assume that x �H y. By definition, the nodes of the subtree Tx induce a
connected subtog of H and hence in H, thus there exists a path P from x to y in
H[V (Tx)] and hence minH P = x . In the other direction, assume an x–y-path P with
minH P = x exists. Since y ∈ P it follows that x �H y, as claimed. ��
Corollary 1 Let H = relax(H) be a tree order relaxation of a connected linear graph
H. Then for every pair of vertices x, y ∈ V (H) which are incomparable under �H,
every path P from x to y satisfies minH P /∈ {x, y}.

123

Algorithmica (2023) 85:2318–2347 2325

2.5 Reachability and Bounded Expansion

For any integer r , we define the set Pr (u) as the set of all paths with length between
1 and r which have u as one of their endpoints. Similarly, we the set Pr (u, v) as the
set of all u–v-paths of length ≤ r . With this notation, we can now define the weak
r-neighbors of a vertex u in a linear graph G as the set

W r
G
(u) = {min P | P ∈ Pr (u)} \ {u},

that is, W r
G
(u) contains all vertices that are weakly r-reachable from u. Notice that

by definition every vertex in W r
G
(u) precedes u inG. In words, this set contains those

vertices v �G u that can be reached from u by using a path of length at most r which
does not use any vertices to the left of v.

We also define the strong r-neighbors as the set

Sr
G
(u) = {v �G u | ∃P ∈ Pr (u, v) s.t. u �G (P − v)},

that is, Sr
G
(u) contains all vertices that are strongly r-reachable from u. This set

contains those vertices v �G u which can be reached by paths of length at most r
which, apart from its endpoints, lie entirely to the right of u. For convenience, we
define W r

G
[u] := W r

G
(u) ∪ {u} and Sr

G
[u] := Sr

G
(u) ∪ {u}. As usual, we omit the

subscript G if clear from the context.
The notions of weak and strong reachability are at the core of the generalized

colorings numbers colr and wcolr . For a linear graph5 G, we define them as

wcolr (G) := max
v∈G |W r

G
[v]|,

colr (G) := max
v∈G |Sr

G
[v]|,

which lets us define the generalized coloring numbers for unordered graphs as

wcolr (G) := min
G∈�(G)

wcolr (G),

colr (G) := min
G∈�(G)

colr (G).

Kierstead and Yang [15] showed that the weak r -coloring number is bounded iff the
r -coloring number is:

colr (G) ≤ wcolr (G) ≤ colr (G)r ,

and Zhu related the above graph measures to classes of bounded expansion [24]. As
a result, we can work with the following characterisation of bounded expansion and
nowhere dense classes:

5 These definitions could also be applied to tree-ordered graphs, but this does not bear any benefit here.

123

2326 Algorithmica (2023) 85:2318–2347

Proposition 1 The following statements about a graph class G are equivalent:

1. G has bounded expansion,
2. there exists a function f such that colr (G) < f (r) for all G ∈ G and all r ∈ N0,
3. there exists a function g such that wcolr (G) < g(r) for all G ∈ G and all r ∈ N0.

In nowhere dense classes these measures might depend on the size of the graph, albeit
only sublinearly [13]:

Proposition 2 The following statements about a graph class G are equivalent:

1. G is nowhere dense,
2. there exists a sequence of functions (fr)r∈N0 with fr (n) = O(no(1)) such that

colr (G) < fr (|G|) for all G ∈ G and all r ∈ N0,
3. there exists a sequence of functions (gr)r∈N0 with gr (n) = O(no(1)) such that

wcolr (G) < gr (|G|) for all G ∈ G and all r ∈ N0.

We are left with the question of computing orderings which provide small values for
W r or Sr . Finding optimal orderings for weakly reachable sets is NP-complete [12]
for r ≥ 3, we therefore have to resort to approximations. To our knowledge, the best
current option for theoretical purposes is via admissibility, yet another order-based
measure: the r -admissibility admG

r (v) of a vertex v in an ordered graph G is the
maximum number of paths of length at most r which a) only intersect in v and b) end
in vertices that come before v in ≤G. The admissibility of an ordered graph G is then

admr (G) = max
v∈G

| admG
r (v)|,

and it is not too difficult to see that admr (G) ≤ colr (G). As with the other generalized
coloring numbers, the admissibility of an unordered graph is taken over all its possible
orderings:

admr (G) = min
G∈�(G)

admr (G).

In the other direction, we have the following results:

Proposition 3 (cf. Dvořák [5]) For any linear ordering G of G and r ∈ N it holds that

colr (G) ≤ admr (G)(admr (G) − 1)r−1 + 1.

Proposition 4 (cf. Dvořák [6]) For any linear ordering G of G and r ∈ N it holds that

wcolr (G) ≤ (
r2 admr (G)

)r
.

Importantly, a linear-time algorithm to compute the admissiblity exists6.

6 The algorithm relies on heavy machinery and is in its current formulation probably not practical. See
Sect. 5 below for a discussion of this issue.

123

Algorithmica (2023) 85:2318–2347 2327

Proposition 5 (cf. Dvořák [5]) Let G be a class with bounded expansion and r ∈ N.
There exists a linear-time algorithm that for each G ∈ G computes an ordering G

with admr (G) = admr (G).

As a corollary to these three proposition, we can compute an orderingG of G in linear
time with

colr (G) ≤ colr (G)(colr (G) − 1)r−1 + 1 = O(colr (G)r)

and

wcolr (G) ≤ (
r2 wcolr (G)

)r
.

2.6 Conventions

In the remainder, we fix a linear graphG, the host graph, and a pattern graph H . Our
goal is to count how often H appears as an induced subgraph in the underlying graph
G ofG. For ease of presentation, we will assume that H is connected and discuss later
how the algorithms can be modified for disconnected patterns.

3 Pattern Decomposition

We will be counting the pattern by considering the possible orderings in which it may
appear in the host graph. However, it turns out that some of these orderings need to
be treated as a unit with our approach, namely those orderings that result in the same
pattern relaxation. In that sense, we count the number of embeddings only formembers
of the following set:

Definition 4 (Pattern relaxation) For the pattern graph H we define its pattern relax-
ations as the set

H := {relax((H ,≤π)) | π ∈ π(V (H))}.

Each pattern relaxation will be decomposed further until we arrive at an object that is
easily countable. To that end, we define the following:

Definition 5 (Pieces, linear pieces) Given a pattern relaxationH ∈ H and a subset of
its leaves S ⊆ leaves(H), the piece induced by S is the induced subtog

H
[⋃

x∈S

rpath(x)
]
.

If |S| = 1, the resulting piece is a linear graph and we refer to it as a linear piece.

With that, we define the decomposition of a pattern relaxation via piece sums (see
Fig. 1 for examples):

123

2328 Algorithmica (2023) 85:2318–2347

Fig. 1 The tog H is decomposed into pieces H1 and H2 along its stem x̄ . D is a defect of H as H
↪→ D

but there exists a mapping φ such that H1
φ

↪−→ D and H2
φ

↪−→ D. On the right the same situation with a
concrete example where H is an etog of P4

Definition 6 (Piece sum) Let H be a tog with stem x̄ . We write H = H1 ⊕x̄ H2 to
denote that H1 and H2 are pieces of H with the properties that

1. leaves(H1) and leaves(H2) are both non-empty and partition leaves(H),
2. and H1 ∩H2 = x̄ .

Note that pieces of a connected tog are not necessarily connected. However, in the
case of etogs, some connectivity is maintained, namely between non-stem vertices:

Lemma 2 Let H = H1 ⊕x̄ H2 be an etog and let u ∈ H1 − x̄ . Then any vertex v with
u �H v is contained in H1 − x̄ . Moreover, there exists a u–v-path P ⊆ H1 − x̄ with
minH P = minH1 P = u.

Proof SinceH is an etog, there exists an elimination tree T whose ancestor relationship
defines�H. Consider the subtree Tu rooted at u, because u �H v we have that v ∈ Tu .
Recall that by the definition of elimination trees H [Tu] is connected, therefore H [Tu]
contains a u–v-path P ⊆ Tu .

Because u ∈ H1 − x̄ it follows that Tu ⊆ H1 − x̄ , thus the same is true for P . It
immediately follows that minH1 P = u. ��
We now show that linear pieces can be enumerated or counted in linear time given
a suitable vertex ordering of the host graph with constant-sized weak/strong r -
neighborhoods.

3.1 Counting (Relevant) Linear Pieces

Wefirst prove that all relevant linear pieces (those that can be completed to the full pat-
tern) are completely contained in weakly reachable sets and therefore can be counted
easily in time O(wcol|H|(G)|H|−1 · |G|), see Sect. 4 for details.

Lemma 3 Let K be a linear piece for some pattern relaxation H ∈ H and let z =
max(K). Then for every H

φ
↪−→ G it holds that φ(K) is contained in W |H|

G
[φ(z)].

Proof Let φ be such an embedding and fix any x ∈ K. We need to show that φ(x) ∈
W |H|

G
[φ(z)]. Since we assumed that H is connected, so isH. Then by Lemma 1, there

123

Algorithmica (2023) 85:2318–2347 2329

exists a path P path from x to z in H with minH P = x . Since φ is an embedding, by
Observation 1 it holds that

min
G

φ(P) = φ(min
H

P) = φ(x).

We conclude that φ(x) ∈ W |P|
G

[φ(z)] ⊆ W |H|
G

[φ(z)]. ��
The above does not hold if we replace weak reachability by strong reachability, how-
ever, the following statement already suffices to build the strong-reachability variant
of our algorithm:

Lemma 4 LetK be a linear piece for some pattern relaxationH ∈ H. Let z = max(K)

and let x <K z be an arbitrary vertex of K. There exists a vertex y ∈ K, x <K y ≤K z

such that for every embedding H
φ

↪−→ G it holds that φ(x) ∈ S|H |
G

[φ(y)].
Proof Let φ be such an embedding. Again, sinceH is connected there exists a path P
from x to z in H with minH P = x . Let y = minH((P − x) ∩ V (K)) be the smallest
vertex ofK which lies on P; since z lies in this intersection this minimum must exist.
Let P ′ be the portion of P which goes from x to y.

Claim y = minH(P ′ − x).

Proof Assume towards a contradiction that y′ = minH(P ′ − x) with y′
= y. Note
that by our choice of P it holds that y′ ≺H z.

First consider the case that y′ ≺H y. Hence y′ must lie somewhere on the path from
x to y in T (H). But then y′ is contained in the piece K and hence (P − x) ∩ V (K),
contradicting our choice of y.

Otherwise, y′ and y are incomparable under �H and in particular y′ cannot lie
anywhere on rpathT (H)(y) or anywhere below y in T (H). Since �H guards E(H) the
path P can only go from y′ to y by intersecting rpathT (H)(y) in some vertex y′′. But
then y′′ ∈ (P − x) ∩ V (K), contradicting our choice of y. ��
Finally, we apply Observation 1 and find that

min
G

φ(P ′ − x) = φ(min
H

(P ′ − x)) = φ(y)

from which we conclude that indeed φ(x) ∈ S|P|
G

[φ(y)] ⊆ S|H |
G

[φ(y)]. ��
We call such a vertex y a hint and introduce the following notation to speak about it
more succinctly:

Definition 7 (hint). Let K be a linear piece of H ∈ H with vertices x1, . . . , x p. For
every index i ∈ [p] we define the function hintH

K
(i) to be the largest index j > i such

that for every embedding H
φ

↪−→ G it holds that φ(xi) ∈ S|H |
G

[φ(x j)].
To use these hints algorithmically, we proceed as follows. Given a linear pieceKwith
vertices x1, . . . , x p, we first match the last vertex x p to a vertex x̂ p inG. By Lemma 4,

123

2330 Algorithmica (2023) 85:2318–2347

we can now restrict our search for x̂ p−1 to vertices in the set S p
G
[x̂ p]. For any match

of x p−1 to x̂ p−1 in G, we then can attempt to find a match for x p−2 by searching the
set S p

G
[x̂ j] where j = hint(p − 2) ∈ {p − 1, p}. This algorithm is described in more

detail in the last section.

3.2 Combining Counts

In order to succinctly describe our approach, we need to introduce the following
notation for counting embeddings of a pattern graph H into a host graph G where we
already fix the embedding of a prefix of H’s stem vertices.

Definition 8 ((Strict) embedding count) For togs H,G with x̄ a stem prefix of H and
ȳ ⊆ G an ordered vertex set with |x̄ | = |ȳ|, we define

#
x̄ �→ȳ

(H,G) := ∣
∣{φ | H φ

↪−→ G and φ(x̄) = ȳ}∣∣.

The central idea is now that in order to count H, we instead count the occurrences
of two pieces H1 ⊕stemH H2 and compute #stemH �→ȳ(H,G) by taking the product
#stem H �→ȳ(H1) ·#stem H→ȳ(H2). Of course, the latter quantity over-counts the former,
aswewill discuss below. First, let us introduce the following notation for this ‘estimate’
embeddings count:

Definition 9 (Relaxed embedding) For togs H = H1 ⊕x̄ H2,G with x̄ a stem prefix

of H we write (H1,H2)
φ
↪−� G to denote that the mapping φ ∈ V (G)V (H) has the

following properties:

• H1
φ

↪−→ G and H2
φ

↪−→ G,
• φ(H) = V (G).

Definition 10 (Relaxed embedding count) For togs H = H1 ⊕x̄ H2,G with x̄ a stem
prefix of H and ȳ ⊆ G an ordered vertex set with |x̄ | = |ȳ| we write #x̄ �→ȳ(H,G |
H1,H2) for the number of embeddings (H1,H2)

φ
↪−� G with φ(x̄) = ȳ.

Now, how does a mapping which embeds H1 and H2 fail to embed H = H1 ⊕x̄ H2?
We either must have that the images of H1 and H2 intersect or that there exists an
edge between their images which does not belong to H. We will call such pair of
embeddings a defect:

Definition 11 (Defect) Let H ∈ H be a pattern relaxation and let H1 ⊕x̄ H2 = H. A
defect of H1,H2 is any etog D that satisfies the following properties:

1. H
↪→ D,

2. H1
id

↪−→ D,

123

Algorithmica (2023) 85:2318–2347 2331

3. H2
φ

↪−→ D where φ is the identity on the set (V (H2) \ V (H1)) ∪ x̄ ,
4. and V (D) = V (H1) ∪ φ(H2).

We will write D(H1,H2) to denote the set of all defects for the pair H1,H2.

Note that several of the above properties are for convenience only: we insist that H1
is a subgraph of D to avoid handling yet another embedding and we make φ preserve
all vertices that it possibly can for the same reason. Importantly, all the togs H, H1,
H2, and D share the ordered set x̄ as a stem prefix.

At this point we should point out that it is not a priori clear that it is enough
to consider defects that are etogs themselves, it could very well be the case that
defects are arbitrary tree-ordered or just ‘ordered’ graphs. Note that what we really
want to count are linear subgraphs D ⊆ G into which H1 and H2 embed, but H =
H1 ⊕x̄ H2 does not (as these are precisely the cases that we over-count in the product
#x̄ �→ȳ(H1) · #x̄ �→ȳ(H2), for some prefix ȳ of D). The next lemma shows that instead
of trying to find these linear subgraphs, we can instead recourse to counting their
relaxations, thus circling back to etogs:

Lemma 5 Let H be a connected etog with pieces H1⊕x̄ H2 = H. Let D ∈ D(H1,H2).
Then for every linear graph D with relax(D) = D it holds that

#
x̄ �→x̄

(H,D | H1,H2) = #
x̄ �→x̄

(H,D | H1,H2)

Proof Fix a linear graph D with D = relax(D) in the following. Let ξ1, . . . , ξp be all

strict embeddings of D into D with fixed points x̄ , that is, D
ξi
↪−� D and ξi (x̄) = x̄

for all i ∈ [p]. Recall that the mappings ξi are in particular automorphisms of the
underling graph D and therefore the inverse mappings ξ−1

i exist.

Claim Let (H1,H2)
φ
↪−� D with φ(x̄) = x̄ . Then (H1,H2)

ξi ◦ φ
↪−−−� D and (ξi ◦φ)(x̄) =

x̄ for each i ∈ [p].

Proof For each H j , j ∈ {1, 2}, and i ∈ [p] we have that H j
φ

↪−→ D
ξi
↪−� D, therefore

by transitivity H j
ξi ◦ φ

↪−−−→ D. Since φ(H) = V (D) and each ξi is an automorphism of
the underlying graph D, it follows that (ξ ◦φ)(H) = V (D) = V (D). We conclude that

indeed (H1,H2)
ξi ◦ φ
↪−−−� D. Finally, since both φ and each ξi have x̄ as fixed points,

(ξ ◦ φ)(x̄) = x̄ . ��

Claim Let (H1,H2)
ψ
↪−� D with ψ(x̄) = x̄ . Then (H1,H2)

ξ−1
i ◦ ψ

↪−−−−� D and (ξ−1
i ◦

ψ)(x̄) = x̄ for each i ∈ [p].
Proof Fix ξi , i ∈ [p] and let θ := ξ−1

i ◦ψ . We first show thatH j
θ

↪−→ D for j ∈ {1, 2}.
Clearly θ is an induced subgraph isomorphism from Hj to D with fixed points x̄ , it
remains to show that the ordering �H j is properly embedded into �D.

Consider a pair u �H j v. Then ψ(u) ≤D ψ(v) and since D
ξi
↪−� D, we have two

possibilities for the pre-images ofψ(u) andψ(v) under ξi : either (ξ
−1
i ◦ψ)(u) = θ(u)

123

2332 Algorithmica (2023) 85:2318–2347

and (ξ−1
i ◦ψ)(v) = θ(v) satisfy θ(u) �D θ(v), in which case we are done, or the two

are incomparable. We now argue that the latter case is impossible.

First, note that if u ∈ x̄ then necessarily θ(u) �D θ(v): if v ∈ x̄ then their order is
maintained because θ(x̄) = x̄ , otherwise the claim follows because x̄ is a stem-prefix
of D and therefore x̄ �D D− x̄ .

Therefore we may assume that u ∈ H j − x̄ and we apply Lemma 2 to obtain a u–v-

path P ⊆ Hj − x̄ with minH j P = u. SinceH j
ψ

↪−→ D, there exists a ψ(u)–ψ(v)-path
P ′ ⊆ ψ(P) in D with minD P ′ = ψ(minH j P) = ψ(u). But then by Corollary 1, the
pre-images ofψ(u) andψ(v) under ξi (namely θ(u) and θ(v)) cannot be incomparable
(Corollary 1 applies after a trivial relabelling of graphs to D and D).

We conclude that indeed θ(u) �D θ(v) and therefore that Hj
θ

↪−→ D for j ∈ {1, 2},
as claimed. ��
Let (L, R, E) be a bipartite graph where the side L := {φ | (H1,H2)

φ
↪−�

D and φ(x̄) = x̄} contains all relevant mappings from H into D and similarly

R := {ψ | (H1,H2)
ψ
↪−� D and ψ(x̄) = x̄} those from H into D. We draw an

edge between φ ∈ L and ψ ∈ R if ξi ◦ φ = ψ for some i ∈ [p]. This is of course
precisely true iff φ = ξ−1

i ◦ ψ . Therefore, by the above observations, we find that
vertices on both sides have degree exactly p. The lemma now follows by observing
that in a regular bipartite graph both sides must have the same size. ��
We are now ready to prove the main technical lemma of this paper, the recurrence that
will allow us to compute #x̄ �→ȳ(H,G), i.e. the number of embeddings from H into G

which map the stem prefix x̄ of H onto the ordered subset ȳ of G. Note that in order
to compute the number of induced subgraphs, we simply have to divide this value by
#x̄ �→x̄ (H,H), the number of automorphisms of H with fixed points x̄ .

Lemma 6 Let H ∈ H be a (non-linear) pattern relaxation and let H1⊕x̄ H2 = H. Fix
an ordered vertex set ȳ ∈ G such that H[x̄] � G[ȳ]. Then

#
x̄ �→ȳ

(H,G) = #
x̄ �→ȳ

(H1,G) #
x̄ �→ȳ

(H2,G) −
∑

D∈D(H1,H2)

cD #
x̄ �→ȳ

(D,G)

with coefficients cD = #x̄ �→x̄ (H,D | H1,H2)/ #x̄ �→x̄ (D,D)

Proof In order to prove this equation we will rewrite it in terms of individual linear
subtogs K ⊆ G and consider how they contribute to the different terms. To that end,
define
(K) to be all pairs (φ1, φ2) with φ1(x̄) = φ2(x̄) = ȳ such that

(a) H1
φ1

↪−→ K and H2
φ2

↪−→ K; and

123

Algorithmica (2023) 85:2318–2347 2333

(b) V (K) = V (φ1(H1)) ∪ V (φ2(H2)).

That is,
(K) contains all pairs of embeddings that minimally embed the graphs H1
and H2 into K while also mapping x̄ onto ȳ.

Claim Let K ⊆ G such that H
x̄ �→ ȳ

↪−−−→ K. Then |
(K)| = #x̄ �→ȳ(H,K).

Proof First note that since H ↪−→ K, it follows that H � K . Fix an embedding-pair
(φ1, φ2) ∈
(K) and let V1 := V (φ1(H1)) and V2 := V (φ2(H2)) By definition,
V1 ∪ V2 = V (K) and since |H| = |K| it follows that V1 and V2 partition V (K).

As the embeddings of H1 and H2 are vertex-disjoint and since ‖K‖ = ‖H‖, it
follows that there cannot exist an edge between V1 \ ȳ and V2 \ ȳ. But then H

ξ
↪−→ K

with ξ(u) = φ1(u) for u ∈ H1 and ξ(u) = φ2(u) for u ∈ H1 − x̄ .

In the other direction, any embedding H
ξ

↪−→ K with ξ(x̄) = ȳ can of course
be trivially decomposed into an embedding-pair (φ1, φ2) ∈
(K). Accordingly, we
have a one-to-one correspondence and we conclude that |
(K)| = #x̄ �→ȳ(H,K), as
claimed. ��
We can now use Iverson bracket notation to rewrite #x̄→ȳ(H,G) and obtain

#
x̄ �→ȳ

(H,G) =
∑

K⊆G

#
x̄ �→ȳ

(H,K) =
∑

K⊆G

�H
x̄ → ȳ

↪−−−→ K�|
(K)|

=
∑

K⊆G

|
(K)|
︸ ︷︷ ︸

♣

−
∑

K⊆G

�H
x̄ → ȳ
↪−−−→ K�|
(K)|

︸ ︷︷ ︸
♠

which holds because
(K) = ∅wheneverK does not have ȳ as a stem prefix. We will
now consider the two sums (♣) and (♠) individually.

Claim

#
x̄ �→ȳ

(H1,G) #
x̄ �→ȳ

(H2,G) =
∑

K⊆G

|
(K)|.

Proof Fix an embedding-pair (φ1, φ2) with φ1(x̄) = φ2(x̄) = ȳ as well as H1
φ1

↪−→ G

andH2
φ2

↪−→ G. Such a pair contributes exactly one to the left-hand side of the equation
and we therefore have to show that there is exactly oneK ⊆ Gwith (φ1, φ2) ∈
(K).
Concretely, we claim that this subtog is K = G[V (φ1(H1) ∪ V (φ2(H2)))]. Clearly
(φ1, φ2) ∈
(K), to see that this is the only subtog with this property, simply note
that (φ1, φ2) ∈
(K′) implies that V (K′) = V (φ1(H1)) ∪ V (φ2(H2)) = V (K) and
therefore K′ = K. ��
The following claim will help us to rewrite the sum (♠):

Claim Let K ⊆ G be a linear subtog with H
x̄ �→ ȳ
↪−−−→ K and
(K)
= ∅. Then there

exists a unique defectD ∈ D(H1, H2) withD � relax(K) and |
(K)| = #x̄ �→ȳ(H,D |
H1,H2).

123

2334 Algorithmica (2023) 85:2318–2347

Proof Since
(K) is non-empty there exists at least one embedding-pair (φ1, φ2)with

H1
φ1

↪−→ K, H2
φ2

↪−→ K and V (K) = V (φ1(H1)) ∪ V (φ2(H2)). Define ξ : V (H) →
V (K) to be ξ(u) = φ1(u) for u ∈ H1 and ξ(u) = φ2(u) for u ∈ H2 \ H1. Then ξ

fulfils all the properties as in Definition 10, meaning that

|
(K)| = #
x̄ �→ȳ

(H,K | H1,H2) = #
x̄ �→ȳ

(H,K | H1,H2),

where we applied Lemma 5 with K := relax(K) in the second step.
Now note that the etogK satisfiesH
↪−→ K and V (K) = V (φ1(H1))∪V (φ2(H2)).

ThereforeK is, up to relabelling, a defect ofH1,H2. Concretely, there exists a unique
D ∈ D(H1,H2) such that D � K and accordingly

#
x̄ �→ȳ

(H,K | H1,H2) = #
x̄ �→x̄

(H,D | H1,H2)

from which the claim follows. ��
With this claim, we can now rewrite the sum (♠) as follows:

∑

K⊆G

�H
x̄ → ȳ
↪−−−→ K�|
(K)| (Lemma 5)

=
∑

K⊆G

�H
x̄ → ȳ
↪−−−→ K� #

x̄ �→ȳ
(H,K | H1,H2).

=
∑

K⊆G

�H
x̄ → ȳ
↪−−−→ K� #

x̄ �→ȳ
(H, relax(K) | H1,H2)

=
∑

K⊆G

�H
x̄ → ȳ
↪−−−→ K�

∑

D∈D(H1,H2)

�D � relax(K)� #
x̄ �→x̄

(H,D | H1,H2)

Since we are now summing only over subtogs whose relaxation is isomorphic to a

defect D(H1,H2), we can drop the condition that H
x̄ → ȳ
↪−−−→ K:

♠ =
∑

K⊆G

∑

D∈D(H1,H2)

�D � relax(K)� #
x̄ �→x̄

(H,D | H1,H2)

=
∑

D∈D(H1,H2)

∑

K⊆G

�D � relax(K)� #
x̄ �→x̄

(H,D | H1,H2)

=
∑

D∈D(H1,H2)

#
x̄ �→x̄

(H,D | H1,H2)
∑

K⊆G

�D � relax(K)�

The sum
∑

K⊆G
�D � relax(K)� counts how many subtogs ofG are isomorphic to D.

This is the same as counting how often D embeds into G divided by the number of
automorphisms D has. We finally arrive at

123

Algorithmica (2023) 85:2318–2347 2335

♠ =
∑

D∈D(H1,H2)

#
x̄ �→x̄

(H,D | H1,H2)
#x̄ �→ȳ(D,G)

#x̄ �→x̄ (D,D)
.

With these alternative computations of the sums (♣) and (♠) we finally arrive at the
claimed equality

#
x̄ �→ȳ

(H,G) = #
x̄ �→ȳ

(H1,G) #
x̄ �→ȳ

(H2,G) −
∑

D∈D(H1,H2)

#x̄ �→x̄ (H,D | H1,H2)

#x̄ �→x̄ (D,D)
#

x̄ �→ȳ
(D,G).

��
For practical purposes, it is preferable to compute embedding-counts which
exclude automorphisms. Define #̂x̄ �→ȳ(H,G) := #x̄ �→ȳ(H,G)/ #x̄ �→x̄ (H,H) to
be this automorphism-corrected count, then the equation in Lemma 6 becomes

#̂
x̄ �→ȳ

(H,G) =#x̄ �→x̄ (H1,H1) #x̄ �→x̄ (H2,H2)

#x̄ �→x̄ (H,H)
#̂

x̄ �→ȳ
(H1,G) #̂

x̄ �→ȳ
(H2,G)

−
∑

D∈D(H1,H2)

#
x̄ �→x̄

(H,D | H1,H2)

#
x̄ �→x̄

(H,H)
#̂

x̄ �→ȳ
(D,G).

The above form is better suited for implementation as the numbers stay smaller
but for the mathematical presentation the form in Lemma 6 is simpler.

Note

We next prove that the recurrence implied by the equation in Lemma 6 is finite to
prove that the decomposition algorithm does indeed terminate. Here the recurrence
terminates if the first argument is a linear graph as these cannot be decomposed further
and, as described in the previous sections, these graphs can be counted in linear time.
Weare not interested in precise bounds here, insteadweprovide relevantmeasurements
for small graphs of interest in Table 1 in the last section.

Lemma 7 The recurrence for #x̄ �→ȳ(H,G) as stated in Lemma 6 has depth at most
|H|2.

Proof Let h := |H|. We argue that the measure

f (G) = (h − | stem(G)|)h + κ(G− stem(G)),

where κ denotes the number of connected components, strictly decreases for all graphs
involved in the right hand side of the recurrence. That is, we show that f (K) < f (H)

for all togs K ∈ {H1,H2} ∪ D(H1,H2). All these graphs have at most h vertices,
therefore κ(K− stem(K)) ≤ h. Note therefore that the measure already decreases if
| stem(K)| > | stem(H)|, independent of the value of κ(K − stem(K)).

First consider H1,H2. Since H1 ⊕x̄ H2 = H, we have that κ(Hi − stem(H)) <

κ(H − stem(H)) for i ∈ {1, 2}. Thus for stem(Hi) = stem(H) we have f (Hi) <

f (H), as observed above the same holds true when stem(Hi) > stem(H).

123

2336 Algorithmica (2023) 85:2318–2347

Thus we are left to prove that the measure decreases for all D ∈ D(H1,H2). Let φ

be the embedding H2
φ

↪−→ D with fixed points x̄ (recall that H1 is simply a subtog of
D). SinceH
↪→ D, we conclude thatH1− x̄ and φ(H2)− x̄ must either be connected
by an edge or share a vertex in D. In either case, κ(H− x̄) < κ(D− x̄). Accordingly,
the measure decreases if x̄ = stem(D). If that is not the case, we necessarily have that
| stem(D)| > | stem(H)|. We conclude that the measure indeed decreases in either
case.

Finally, note that once the measure is 0 we have that stem(K) = h and the etog
in question is therefore linear. Since we are only considering connected patterns, the
maximum value the measure can possibly take is (h − 1)h + h − 1 = h2 − 1. We
conclude that the recurrence has depth at most |H|2. ��

3.3 Computing Defects

For the remainder of this section, fix H = H1 ⊕x̄ H2 where x̄ := stem(H). Let also
V1 := V (H1) − x̄ and V2 := V (H2) − x̄ be the vertex sets exclusive to H1 and H2.

Definition 12 (Monotone) Let � be a partial order over a set S and let M ⊆ (S
2

)
be a

matching. Let further �D be the digraph representation of�.We say that M ismonotone
with respect to � if the digraph obtained from �D by identifying the pairs in M is a
dag.

Definition 13 (Defect map) A defect map is a bijection κ : x̄∪ Ṽ1 → x̄∪ Ṽ2 for subsets
Ṽ1 ⊆ V1 and Ṽ2 ⊆ V2 with the following properties:

• κ is an isomorphism between H [x̄ ∪ Ṽ1] and H [x̄ ∪ Ṽ2],
• the matching {xκ(x) | x ∈ Ṽ1} is monotone with respect to �H.

In the followingwe construct a set of etogsD′ and prove that it is preciselyD(H1,H2).
Given the decomposition H1 ⊕x̄ H2 of H, we generate the etogs in D′ as follows:

1. Select appropriate subsets Ṽ1 ⊆ V1 and Ṽ2 ⊆ V2 and a defect map κ : x̄ ∪ Ṽ1 →
x̄ ∪ Ṽ2. Let M := {xκ(x) | x ∈ Ṽ1}.

2. Identify the pairs matched by M in H to create the (unordered) graph H ′ and
create the relation �M from �H by the same process.

3. Select a set E+ ⊆ (V1 − Ṽ1)× (V2 − Ṽ2) with E+ ∩ E(H) = ∅ and add it to H ′;
we only allow E+ = ∅ if Ṽ1, Ṽ2
= ∅.

4. For every linear ordering ≤ of V (H) that is compatible with �M , add the graph
relax((H ′,≤)) to D′.

For compatibility with Definition 11, whenever we identify vertices xy ∈ M , we label
the resultant vertex x , thus V1 ⊆ V (H ′).

Theorem 1 The above process generates exactly D(H1,H2).

We prove Theorem 1 by showing the following two lemmas.

Lemma 8 D(H1,H2) ⊆ D′.

123

Algorithmica (2023) 85:2318–2347 2337

Proof ConsiderD ∈ D(H1,H2) and letH2
φ

↪−→ D such that φ is the identity on the set

V (H2) \ V (H1)∪ x̄ . Recall that, by convention,H1
id

↪−→ D. Let Ṽ := V1 ∩φ(V2) and
define the mapping κ : x̄ ∪ Ṽ → x̄ ∪φ−1(Ṽ) as the identity on x̄ and κ(x) := φ−1(x)

for x ∈ Ṽ ⊆ V1. Let further M := {xκ(x) | x ∈ Ṽ }.
Claim κ is a defect map.

Proof SinceH1[x̄ ∪ Ṽ] id
↪−→ H[x̄ ∪ Ṽ] andH2[κ(x̄ ∪ Ṽ)] κ−1

↪−−→ H[x̄ ∪ Ṽ]we conclude
that κ is an isomorphism of the underlying graphs H1[x̄ ∪ Ṽ] and H2[κ(x̄ ∪ Ṽ)].

Let �O be the digraph representation of �H and �O ′′ of �D. By construction, �O ′′ is
precisely the digraph obtained from �O by identifying the pairs matched in M . Since
D is a tree-ordered graph, �D is a partial order and thus �O ′′ is a dag. In other words,
the matching M is monotone with respect to �H and we conclude that κ is a defect
map. ��
Let Ṽ1 := Ṽ and Ṽ2 := κ(Ṽ) in the following. Define E+ := E(D) ∩ ((V1 − Ṽ1) ×
(φ(V2)− Ṽ1)). Let H ′ be the graph obtained from H by identifying the pairs matched
by M and adding E+ to it. Let further �M be the relation obtained from �H by
identifying the pairs matched by M . It is left to show that there exists a linear order ≤
which is compatible with�M and satisfies D = relax((H ′,≤)). Let �O ′ be the digraph
representation of �M and let �O ′′ be again the digraph representation of �D. Note that
the difference between �O ′ and �O ′′ are arcs corresponding to an orientation �E+ of
E+ and transitive arcs resulting from the addition of �E+. Since all edges in E+ are
between V1 − Ṽ and φ(V2) − Ṽ and those two sets are disjoint, we can choose, for
example, to orient �E+ by letting all arcs point towards φ(V2)− Ṽ . Then �O ′ ∪ �E+ is a
digraph and so is its transitive closure Õ ′′. Now note that every topological ordering≤
of �O ′′ is also a topological ordering of �O ′ and we conclude that �M is compatible
with �D . Since D is an etog, these orderings also all satisfy relax((H ′,≤)) = D. We
conclude that D ∈ D′ and therefore D(H1,H2) ⊆ D′. ��
Lemma 9 D′ ⊆ D(H1,H2).

Proof ConsiderD ∈ D′ and let Ṽ1, Ṽ2, κ , E+ and≤ be those choices that generatedD.
Let also H ′ be the graph generated by identifying the pairs matched by M := {xκ(x) |
x ∈ Ṽ1} in H and adding E+ to the resulting graph. We need to show that D is indeed
a defect; note that by the last step of the construction it is necessarily an etog.

First, let us convince ourselves that H
↪→ D. If Ṽ1
= ∅, then D has less vertices
than H and thus no embedding can exist. Otherwise, we have that E+ is non-empty
and therefore D has more edges than H, again no embedding can exist.

Next, we need to show thatH1
id

↪−→ D. We chose to label the vertices from identify-
ing the pairs in M by their respective endpoint in Ṽ1. Furthermore, no edge in E+ has

both its endpoints in x̄∪V1, thereforeD[x̄∪V1] = H[x̄∪V1] and thereforeH1
id

↪−→ D.

Similarly, we need to show thatH2
φ

↪−→ D. Define φ to be the identity on x̄ ∪V2 \V1
and κ−1 on Ṽ2. Again, no edge in E+ has both its endpoints in φ(H2) and hence

H[V2] id
↪−→ D[φ(H2)] and therefore H2

φ
↪−→ D.

123

2338 Algorithmica (2023) 85:2318–2347

Fig. 2 Top: Patterns (0–6), defects (7–8) and pieces (9–24) needed to count a path on four vertices. The
arrangements indicate the tree order, all pattern relaxations except 1,3,4,7 and 8 are linear. Bottom:Algebraic
expressions to compute non-linear patterns, gray boxes indicate the stems. The graphs are understood as
automorphism-corrected embedding counts #̂x̄ �→ȳ(H,G) (see note below Lemma 6). For example, in order
to compute the number of embeddings of defect 8 which map its stem x̄ onto a vertex pair ȳ in the host
graph, we first need to compute the number of embeddings of the pieces 24 and 10 which likewise map the
first two vertices of their stem prefix onto x̄

Finally, it follows directly from the construction ofD that indeed V (D) = x̄ ∪V1∪
φ(V2) = V (H1) ∪ φ(H2), thus we conclude that D is indeed a defect. It follows that
D′ ⊆ D(H1,H2), as claimed (Fig. 2). ��

4 The Algorithms

In order to efficiently implement the counting algorithm we need a data structure C
which acts as a map from ordered vertex sets to integers; the idea being that for a fixed
pattern relaxationH ∈ Hwith stem x̄ we store in C[ȳ], ȳ ⊂ G howmany embeddings

H
x̄ �→ ȳ

↪−−−→ G exist. We use Lemmas 3 or 4 to populate these counters for all linear
pieces of H and then use Lemma 6 to progressively compute counts for larger and
larger pieces of H until we arrive at a count for H itself. We organize the progressive
decompositions of H and the coefficients resulting from the application of Lemma 6
in a counting dag. Leaves of the counting dag correspond to linear pieces of H, the
single source to H itself. The computation then proceeds from the leaves upwards;
a task can be completed as soon as all its out-neighbors have been completed (leaf
nodes are completed by applying Lemmas 3 or 4).

Repeating this procedure for all pattern relaxations inH and correcting the sum by
the number of automorphisms of H then gives us the total number of times H appears
as an induced subgraph of G. For convenience, we compute a joint counting dag for
all relaxations H and read of the final value from all its source nodes—note that in
practice this will save some computations since the counting dags likely have nodes
in common.

We first outline the notation and necessary operations of C and then discuss how
it can be implemented, then we describe the counting dag and then finally provide

123

Algorithmica (2023) 85:2318–2347 2339

the algorithms. We will assume in the following that G is a linear ordering of G, we
present the algorithm with a dependence on wcol|H |(G) and show what modifications
have to be made to arrive at an algorithm depending on col|H |(G) instead. At the end
of the section we will use Propositions 3 and 5 to express the running times in terms
of wcol|H |(G) and col|H |(G), respectively.

4.1 Counting Data Structure

The counting data structure C of depth d is a map from d-length ordered vertex sets
ȳ ⊆ G to positive integersC[ȳ]. Initially, the counting data structure contains a count of
zero for every possible key. We write |C| to denote the number of keys stored in Cwith
non-zero counts. The data structure supports the following queries and modifications:

• Increment count C[ȳ] by any integer for tuples ȳ of length d in time O(d);
• Answer the prefix query

C[ȳ] :=
∑

z̄:|z̄|=d
and z̄|r=ȳ

C[z̄]

for tuples ȳ of length r ≤ d in time O(r);
• for γ ∈ R we can compute the scalar product γC with

(γC)[ȳ] := γ · C[ȳ] ∀ȳ ∈ V (G)d

in time O(d|C|).
Given two counting data structures C1,C2 of depth ≥ r the following two operations
must be supported:

• The r-depth difference C1 −r C2 with

(C1 −r C2)[ȳ] := C1[ȳ] − C2[ȳ] ∀ȳ ∈ V (G)r

in time O(r ·max(|C1|, |C2|));
• the r-depth product C1 ∗r C2 with

(C1 ∗r C2)[ȳ] := C1[ȳ] · C2[ȳ] ∀ȳ ∈ V (G)r

in time O(r ·max(|C1|, |C2|)).
A convenient way to implement C is a prefix-trie in which every node contains a
counter (which contains the sum-total of all values stored below it) and a dynamically
sized hash-map to store its descendants. It is trivial to update the counters during an
increment and answering the prefix query C[ȳ] amounts to locating the node with
prefix ȳ in C and returning its counter in time O(|ȳ|).

Since we can easily enumerate all keys contained in C by a depth-first traversal,
implementing the scalar product can be done by first creating an empty counting data

123

2340 Algorithmica (2023) 85:2318–2347

Fig. 3 Task-dag for counting a path on four vertices, as depicted in Fig. 2. Blue arcs belong to edges E×, gray
arcs to E−. Note that the coefficients are for the automorphism-corrected counts, therefore the hyperedges
E× need to be imbued with a weight as well (Color figure online)

structure C′ and inserting all keys x̄ contained C by incrementing the value of C′[x̄] by
γC[x̄]. The DFS on C takes time O(|C|) and each insertion takes time O(d), hence
the claimed running time holds true (Fig. 3).

To perform the r -depth difference and product we traverse the two tries C1 and C2
in lockstep, meaning that we only descend in the DFS if the two currently active nodes
x1 in C1 and x2 in C2 both have a child with the same respective key, and truncating
the DFS at depth r . During this traversal, it is easy to populate a new trie to obtain the
final result (C1−r C2) or (C1 ∗r C2). The lockstep DFS takes time O(max(|C1|, |C2|)),
each insertion into the resultant trie takes time O(r) and the running time follows.

4.2 The Counting Dag

A counting dag is a directed hypergraph (V, E×, E−) with two types of edges. E× ⊆
V3 contains edges of the form (H,Hl ,Hr) withH = Hr ⊕x̄ Hl which indicate that in
order to compute #x̄ �→•(H) by application of Lemma 6, we need to compute #x̄ �→•(Hl)

and #x̄ �→•(Hr) first because they appear in the product on the right hand side. Every
node in V has at most one outgoing hyperedge in E×. Also note that Hl = Hr is
possible.

Similarly, E− ⊆ V2 ×R contains edges of the form (H,D, γ) where D is a defect
of Hl ,Hr and in order to compute #x̄ �→•(H) from #x̄ �→•(Hl) · #x̄ �→•(Hr) we need to
subtract γ · #x̄ �→•(D) for all such edges.

For two counting dags �C, �C ′ wewrite �C ∪ �C ′ to denote the union of their vertex and
edge sets. With that notation in mind, Algorithm 1 shows how to compute a counting
dag for a given etog H. Note that the choice of decomposition H = H1 ⊕x̄ H2 is
arbitrary, reasonable choices include either lettingH1 be as small as possible or trying
to balance the size of H1 and H2.

Lemma 10 Given a graph H on h vertices, we can construct a counting dag �C(H)

with ‖ �C‖ = O(3h2) using Algorithm 1 in time O(‖ �C‖).

123

Algorithmica (2023) 85:2318–2347 2341

Input: An etog H.
Output: A counting dag �C(H).

function decompose(H)
Initialize �C as an empty counting dag
Let x̄ = stem(H)

Choose decomposition H = H1 ⊕x̄ H2
�C ← �C ∪ decompose(H1)

�C ← �C ∪ decompose(H2)

E×(�C) ← E×(�C) ∪ {(H,H1,H2)}
for D ∈ D(H1,H2) do

η ← #x̄ �→x̄ (H,D | H1,H2)

α ← #x̄ �→x̄ (D,D)

�C ← �C ∪ decompose(D)

E−(�C) ← E−(�C) ∪ {(H,D, η/α)}
return �C

Algorithm 1: Recursive computation of a counting dag.

Proof We enumerate the at most h! etogs of H and run Algorithm 1, then we take the
union of all resulting counting dags to obtain �C := �C(H).

If we employ memoization across the calls we can upper-bound the running time
and the size of the counting dag by the total number of togs on ≤ h vertices.

We arrive at a crude upper bound by noting that there are at most O(2.956h) tree
orders on h vertices [16, chap. 2.3.4.4], each of which can contain up to

(h
2

)
edges;

hence

‖ �C‖ ≤ | �C |2 = O
((
2.956h · 2 1

2 (h2−h)
)2

)
= O

(
2h2+2.128h

)
= O

(
3h2).

We obtain the same bound on the running time:

O(h! · ‖C‖) = O(2h log h · 2h2+2.128h) = O
(
3h2).

��

4.3 The Algorithms

The following proofs of the worst-case running time are not very indicative of the
algorithms performance as a) the term O(3h2) is a (crude) upper bound on the size of
the counting dag and b) not every pattern of size h needs to use the (h − 1)-reachable
sets. As an extreme example, the graph Kh only needs 1-reachable sets, e.g. only a
degeneracy ordering of the host graph. We include a table with sizes of counting dags
and the necessary depth for various patterns graph in the subsequent section.

Lemma 11 Algorithm 2 computes the number of induced embeddings of H into G in
time O(‖ �C‖ · h wcolh(G)h−1|G|) = O(3h2 · h wcolh(G)h−1|G|) where h := |H |.

123

2342 Algorithmica (2023) 85:2318–2347

Input: A linear host graph G and a counting dag �C(H) of a pattern H .
Output: The number of embeddings of H into induced subgraphs of G

1 Initialize counting data structures
Compute topological ordering H1, . . . ,H� of V (�C) such that H1, . . . ,Hs are source-nodes in �C and
Ht , . . . ,H� are sink-nodes in �C
Initialize counting data structures Ci of depth | stem(Hi)| for i ∈ [1, �]
2 Count linear patterns
for i ∈ [t, �] do

for v ∈ G do
3 Count patterns ending in v using weak reachability

W ← W |H|
G

(v)

for ȳ ∈ W |Hi |−1 do

if Hi
V (H) �→ ȳv

↪−−−−−−−−→ G then
Ci [ȳv] ← Ci [ȳv] + 1;

4 Propagate counts
for i ∈ (t − 1, t − 2, . . . , 1) do

Let l, r be the indices for which (Hi ,Hl ,Hr) ∈ E×(�C)

k ← | stem(Hi)|
Ci ← Cl ∗k Cr

for (H,Hd , γ) ∈ E−(�C) do
Ci ← Ci −k γCd

5 Sum up counts in source-nodes
c ← 0
for i ∈ (1, . . . , s) do

c ← c + Ci [∅]
return c

Algorithm 2: The subgraph counting algorithm using weak reachability. Note that
part 1 is independent of G, hence the counting dag �C for any given pattern graph
H can be precomputed. The part marked with 3 can be optmized further in practice
by matching the vertices in ȳ one-by-one and discarding unsuitable combinations
early.

Proof In part 1 , for every one of the � := leaves(�C) many sinks Hi , i ∈ [t, �], of �C
we fill the counting data structure Ci in time O(wcolh(G)h−1|G|) by application of
Lemma 3.

Since every counting data structure at the end of part 2 contains at most
O(wcolh(G)h−1|G|)many tuples, it follows that all operations in step 4 on counting
data structures (r -depth products, differences, scalar products) can be computed in
time O(h wcolh(G)h−1|G|). The number of such operations is proportional to ‖ �C‖,
thus in total step 4 takes times O(‖ �C‖ · h wcolh(G)h−1|G|). The time taken in step
5 is negligible compared to the previous steps and we conclude that the total running
time is as claimed.

The correctness of the algorithm follows by induction over the counting dag: the
leaf counts are correct by Lemma 3 and the counts at the internal nodes are correct by
Lemma 6. ��

123

Algorithmica (2023) 85:2318–2347 2343

Input: A linear host graph G and a counting dag �C(H) of a pattern H .
Output: The number of embeddings of H into induced subgraphs of G

.

.

.

2 Count linear patterns
for i ∈ [t, �] do

for v ∈ G do
3 Count patterns ending in v using strong reachability

h ← |Hi |
for xh−1 ∈ S|H |

G
[v] do

j ← hintHHi
(h − 2)

for xh−2 ∈ S|H |
G

[x j] do
. . .

j ← hintHHi
(2)

for x1 ∈ S|H |
G

[x j] do
if Hi � G[x1, . . . , x p] then

Ci [x1, . . . , x p] ← Ci [x1, . . . , x p] + 1

...

.

.

.

Algorithm 3:Modification of Algorithm 2 to use strong instead of weak reachability.
For ease of presentation, the algorithm is shown as a sequence of nested loops instead
of recursion or a loop with a stack of partial solutions.

Combining the above lemma with Propositions 4 and 5 , we immediately obtain the
following:

Corollary 2 There exists an algorithm that given a graph G and a graph H on h
vertices computes the number of times H appears as an induced subgraph in G in
total time O((3h2 wcolh(G))h2 |G|).
Note that this running time is linear in |G| if G is taken from a class with
bounded expansion. Further, if we consider h to be constant, then the running time
is O(|G|1+o(1)), i.e. almost linear, when G is taken from a nowhere dense class.

Exchanging Lemma 3 for Lemma 4 in the above proof shows a similar running
time for the variants using strong reachability:

Lemma 12 Algorithm 3 computes the number of induced embeddings of H into G in
time O(‖ �C‖ · h colh(G)h−1|G|) = O(3h2 · h colh(G)h−1|G|) where h := |H |.
Corollary 3 There exists an algorithm that given a graph G and a graph H on h
vertices computes the number of times H appears as an induced subgraph in G in
total time O((3h2 colh(G))h2 |G|).

123

2344 Algorithmica (2023) 85:2318–2347

5 Discussion

The goal of our work is to design an algorithm for subgraph counting that has the
potential for being useful in practice, which is why we chose to avoid certain tools
from the bounded expansion toolkit which—as discussed in the introduction—would
immediately render our algorithm unuseable. Outside these questions of algorithmic
feasibility, we then need to ask whether real-world networks exhibit the presumed
properties, namely, whether they “have bounded expansion”. As cited in the Introduc-
tion, there is theoretical and empirical evidence supporting the hypothesis that some
types of real-world networks can be treated as bounded expansion graphs. However,
we still need to address the fact that the notion is ill-defined for single instances.

We could approach this problem by computing statistics like the weak r -coloring
number for a network and then decide based on those numbers whether the network
has “bounded expansion” or not. This is of course deeply unsatisfactory (though useful
as a comparative approach) as we have to draw arbitrary boundaries around how large
the statistics should be for any given r and which values of r we should consider.

We believe that the better approach is to side-step the more philosophical question
of whether a single given network is better treated as “bounded expansion” or not
and instead simply run the algorithm in question and see whether it appears to be
useful/competitive. Algorithms designed for bounded expansion classes by design
will still work on dense inputs, unlike e.g. certain algorithms that assume that the input
graph is planar. Grounding the experiments in known use-cases then also provides us
with a natural limit on the ‘depth’ r at which we operate the algorithm. In our case,
practical subgraph counting is usually limited to pattern graphs of size≤ 5 [23] which
provides an upper bound on r for our purposes (see column ‘d’ in Table 1).

With these considerations in mind, let us now discuss our proof-of-concept imple-
mentation7 along with preliminary experimental results. Several observations on
natural extensions of this algorithm follow.

In practice, Algorithm 2 and 3 have a lot of engineering potential. In most cases,
the search space for linear patterns is much smaller than the h-weak or strong neigh-
borhoods since previously-fixed vertices will often have the sought vertices in their
left neighborhood or in a weak/strong neighborhood at distance less than h. Further-
more, the task dag for a given pattern can be precomputed and optimized; in order to
minimize memory use, we can process tasks in an order which enables us to delete
counting data structures as soon as they have been propagated along all in-edges.

Since we view the counting dag computation as a form of pre-processing, we
implemented this stage using Python and show results for several small pattern graphs
in Table 1. We have not yet explored whether different decomposition strategies (i.e.
which piece-sum decomposition to choose if there are multiple options) significantly
impact the size of these dags. As expected, the counting dag is smaller for denser
graphs—for complete graphs the algorithm essentially reduces to the well-known
clique-counting algorithm for degenerate graphs.
For the subgraph counting algorithm, we choses to implement in Rust. While we
recognize that there is significant additional optimization and engineering needed, it

7 Code available under a BSD 3-clause license at http://www.github.com/theoryinpractice/mandoline.

123

http://www.github.com/theoryinpractice/mandoline

Algorithmica (2023) 85:2318–2347 2345

Table 1 Size and number of
leaves for counting dags for
various small graphs. The final
column gives the
reachability-depth d necessary
to count the specified pattern.
Named graphs can be looked up
under http://www.graphclasses.
org/smallgraphs.html

n G | �C | (leaves) ‖ �C‖ d

P3 5 (4) 3 1

P4 25 (20) 26 2

P5 247 (186) 552 3

C3 1 (1) 0 1

C4 5 (4) 3 1

C5 32 (27) 27 2

C6 424 (338) 689 2

S3 14 (9) 21 1

S4 60 (36) 200 2

S5 619 (389) 4919 2

W3 1 (1) 0 1

W4 21 (18) 9 1

W5 141 (123) 90 2

W6 1707 (1395) 2332 2

Ki 1 (1) 0 1

K2,2 5 (4) 3 1

K3,3 24 (17) 27 1

K4,4 132 (87) 281 2

K5,5 890 (620) 1570 2

4 Diamond 8 (7) 3 1

Paw 18 (15) 12 1

5 Butterfly 56 (44) 85 2

Gem 90 (77) 61 2

Cricket 94 (65) 226 2

House 110 (92) 88 2

Dart 121 (93) 171 2

Kite 141 (116) 175 2

Bull 199 (154) 325 2

6 Co-net 371 (306) 441 2

Domino 723 (572) 1110 2

Co-domino 733 (606) 1050 2

Co-fish 908 (734) 1515 2

Net 1805 (1388) 4333 3

Fish 2052 (1556) 5436 3

is notable that runtimes remain reasonable (see Table 2) on host graphs with tens of
thousands of nodes even for relatively large patterns (all measurements where taken
on a simple laptop with an intel i5 core and 4GB RAM).

Additionally, we chose to use a very simple heuristic for the vertex ordering by
sorting the vertices by descending degree. Nadara et al. showed that these orderings
yield acceptable results for weak coloring numbers on real-world networks [17] and

123

http://www.graphclasses.org/smallgraphs.html
http://www.graphclasses.org/smallgraphs.html

2346 Algorithmica (2023) 85:2318–2347

Table 2 Runtimes for counting several common patterns in five real-world networks

Network n m P5 W5 bull K4,4

soc-advogato 6551 43,427 4m36s 1m17s 2m23s 1m5s

cora-citation 23,166 89,157 3m23s 2m8s 2m58s 1m33s

ca-CondMat 23,133 93,497 3m26s 1m57s 2m41s 1m21s

Google+ 23,628 39,194 2m57s 1m45s 2m13s 1m18s

digg 30,398 86,312 5m50s 2m53s 3m38s 2m8s

are, of course, very fast to compute. In the future, we will investigate the impact of
computing better orderings (using e.g. the more involved heuristics discussed in [17])
on the subsequent counting step and how these two phases of the algorithm should be
balanced.

We plan to engineer these implementations further and compare this approach to
other subgraph-counting algorithms on a larger corpus of host and pattern graphs in
future work. Note that it is straightforward to extend our algorithm to edge- and vertex-
labelled graphs by defining isomorphisms and embeddings appropriately. We chose
not to include labels here as they add another layer of notation that would make the
presentation less clear.

We also, for simplicity, assumed that the pattern graph H is connected. This is
easily remedied by a labelled version of the algorithm: we add an apex vertex with
a unique label to both H and G and make it the minimum in G. Alternatively, the
presented algorithm can be modified by allowing piece-sums to work on connected
components. This modification does not significantly change the algorithm, but adds
additional cases in many proofs.

Finally, we observe that the approach presented here can be modified to count non-
induced subgraphs, subgraph homomorphisms or boolean queries instead by adjusting
the notions of patterns and pattern decompositions appropriately.

Acknowledgements We thank Marc Roth for pointing out a misattribution of parameterized hardness
results in an earlier version of this paper. This work was supported in part by the Gordon & Betty Moore
Foundation under award GBMF4560 to Blair D. Sullivan.

References

1. Brown, C.T., Moritz, D., O’Brien, M.P., Reidl, F., Reiter, T., Sullivan, B.D.: Exploring neighborhoods
in largemetagenome assembly graphs using spacegraphcats reveals hidden sequence diversity.Genome
Biol. 21(1), 1–16 (2020)

2. Chen, Y., Thurley, M., Weyer, M.: Understanding the complexity of induced subgraph isomorphisms.
In: International Colloquium on Automata, Languages, and Programming, pp. 587–596. Springer,
(2008)

3. Demaine, E.D., Reidl, F., Rossmanith, P., Sánchez Villaamil, F., Sikdar, S., Sullivan, B.D.: Structural
sparsity of complex networks: bounded expansion in randommodels and real-world graphs. J. Comput.
Syst, Sci (2019)

4. Dobler, A., Sorge, M., Villedieu, A.: Turbocharging heuristics for weak coloring numbers. In: 30th
Annual European Symposium on Algorithms (ESA 2022), volume 244 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pp. 44:1–44:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2022)

123

Algorithmica (2023) 85:2318–2347 2347

5. Dvořák, Z.: Constant-factor approximation of the domination number in sparse graphs. Eur. J. Comb.
34(5), 833–840 (2013)

6. Dvořák, Z.: On weighted sublinear separators. J. Graph Theory 100(2), 270–280 (2022)
7. Dvořák, Z., Tůma, V.: A dynamic data structure for counting subgraphs in sparse graphs. In: Workshop

on Algorithms and Data Structures, pp. 304–315. Springer (2013)
8. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time.

In: International Symposium on Algorithms and Computation, pp. 403–414. Springer, (2010)
9. Farrell, M., Goodrich, T.D., Lemons, N., Reidl, F., SánchezVillaamil, F., Sullivan, B.D.: Hyperbolicity,

degeneracy, and expansion of random intersection graphs. In: Algorithms and Models for the Web
Graph—12th International Workshop, WAW 2015, Eindhoven, The Netherlands, December 10–11,
2015, Proceedings, volume 9479 of Lecture Notes in Computer Science, pp. 29–41. Springer (2015)

10. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33(4),
892–922 (2004)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Computer Science. An
EATCS Series). Springer, New York (2006)

12. Grohe, M., Kreutzer, S., Rabinovich, R., Siebertz, S., Stavropoulos, K.: Colouring and covering
nowhere dense graphs. In: International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, pp. 325–338. Springer (2015)

13. Grohe, M., Kreutzer, S., Siebertz, S.: Characterisations of Nowhere Dense Graphs (Invited Talk). In:
IARCSAnnualConference on Foundations of Software Technology andTheoretical Computer Science
(FSTTCS 2013), volume 24 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 21–40.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2013)

14. Kazana, W., Segoufin, L.: Enumeration of first-order queries on classes of structures with bounded
expansion. In: Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), pp. 297–308. ACM (2013)

15. Kierstead, H.A., Yang, D.: Orderings on graphs and game coloring number. Order 20(3), 255–264
(2003)

16. Knuth, D.E.: The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd edn.
Addison-Wesley, Boston (1997)

17. Nadara, W., Pilipczuk, M., Rabinovich, R., Reidl, F., Siebertz, S.: Empirical evaluation of approxima-
tion algorithms for generalized graph coloring and uniform quasi-wideness. J. Exp. Algorithmics 103,
14:1-14:16 (2018)

18. Nešetřil, J., de Mendez, P.O.: Grad and classes with bounded expansion I. Decompositions. Eur. J.
Comb. 29(3), 760–776 (2008)

19. Nešetřil, J., Ossona de Mendez, P.: On nowhere dense graphs. Eur. J. Comb. 32(4), 600–617 (2011)
20. Nešetřil, J., de Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms, volume 28 of Algorithms

and Combinatorics. Springer, New York (2012)
21. O’Brien, M.P., Sullivan, B.D.: Experimental evaluation of counting subgraph isomorphisms in classes

of bounded expansion. CoRR, arXiv:1712.06690 (2017)
22. Reidl, F.: Structural sparseness and complex networks. Dr., Aachen, Techn.Hochsch., Aachen,Aachen,

p. 2015. Hochsch., Diss, Techn (2016)
23. Ribeiro, P., Paredes, P., Silva, M.E.P., Aparicio, D., Silva, F.: A survey on subgraph counting: concepts,

algorithms, and applications to network motifs and graphlets. ACM Comput. Surv. 54(2) (2021)
24. Zhu, X.: Colouring graphswith bounded generalized colouring number. DiscreteMath. 309(18), 5562–

5568 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1712.06690

	A Color-Avoiding Approach to Subgraph Counting in Bounded Expansion Classes
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 General Notation
	2.2 Trees
	2.3 Partial and Total Orders
	2.4 Ordered Graphs
	2.5 Reachability and Bounded Expansion
	2.6 Conventions

	3 Pattern Decomposition
	3.1 Counting (Relevant) Linear Pieces
	3.2 Combining Counts
	3.3 Computing Defects

	4 The Algorithms
	4.1 Counting Data Structure
	4.2 The Counting Dag
	4.3 The Algorithms

	5 Discussion
	Acknowledgements
	References

